CN102421918A - 用于pcr的试剂和方法 - Google Patents

用于pcr的试剂和方法 Download PDF

Info

Publication number
CN102421918A
CN102421918A CN2010800201706A CN201080020170A CN102421918A CN 102421918 A CN102421918 A CN 102421918A CN 2010800201706 A CN2010800201706 A CN 2010800201706A CN 201080020170 A CN201080020170 A CN 201080020170A CN 102421918 A CN102421918 A CN 102421918A
Authority
CN
China
Prior art keywords
additive
primer
amplification
dabcyl
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800201706A
Other languages
English (en)
Other versions
CN102421918B (zh
Inventor
L·J·万
J·赖斯
N·赖斯
贾艳伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandeis University
Original Assignee
Brandeis University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brandeis University filed Critical Brandeis University
Publication of CN102421918A publication Critical patent/CN102421918A/zh
Application granted granted Critical
Publication of CN102421918B publication Critical patent/CN102421918B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及修饰的双链寡核苷酸,其在每个链上具有末端区,具有6-50个核苷酸长的杂交物长度,具有至少32℃的解链温度Tm,并且包括2-4个修饰基团,每个修饰基团共价连接到不同末端区,优选连接到末端核苷酸,所述修饰基团为不具有非平面大体积部分的多环取代基,所述修饰的寡核苷酸能够结合到DNA聚合酶的5’核酸外切酶域,并且当以通常不高于2000nM的浓度包括在PCR或其它引物依赖性DNA扩增反应中时,该浓度对于以下功能的至少一个是有效的:抑制引导错误、增加聚合酶对3’端错配的选择性、增加聚合酶对富含AT 3’端的选择性、减少重复间发散、抑制聚合酶5’核酸外切酶活性和抑制聚合酶活性;以及包含此类修饰的双链寡核苷酸的扩增反应混合物,和包括此类修饰的双链寡核苷酸的扩增反应、扩增测定和试剂盒。

Description

用于PCR的试剂和方法
相关专利申请的交叉引用
本申请要求2009年3月12日提交的Zhang的美国临时专利申请No.61/202,565的权益,该专利申请据此通过引用整体并入。
领域
提供了包括实时和端点均相聚合酶链反应(PCR)单重和多重扩增测定的核酸扩增反应和测定。
背景
对于扩增和检测核酸靶序列,熟知的是使用DNA引物和DNA聚合酶的扩增和扩增测定。用于指数式扩增的方法包括聚合酶链反应(PCR)、链置换扩增(SDA)、基于核酸序列的扩增(NASBA)、转录介导的扩增(TMA)、和滚环扩增(RCA)。这些引物依赖性扩增方法(例如PCR)中的某些包括热循环,而其它方法(例如NASBA)是等温的。在众多DNA聚合酶中,通常使用的是粞热水生菌(Thermusaquaticus)DNA聚合酶(Taq聚合酶)和逆转录酶。线性DNA寡核苷酸扩增引物的设计通常是借助于为该目的而设计的计算机程序来实现。可用的程序中,可以使用的是PRIDE(Haas等人,Nucl.Acids Res.26:3006-3012 1998);OLIGO(Rychlik等人,Nucl.Acids Res17(21):8543-51 1989);OSP(Hilber等人,OSP:a computer program forchoosing PCR and DNA sequencing primers.PCR Methods Appl.1(2):124-128 1991);Primo(Li等人,Genomics 40(3):476-85 1997);和Primer Master(Proutski等人,Comput Appl Biosci 12(3):253-5 1996)。
采用PCR的核酸扩增是熟知的,如包括PCR扩增的测定。参见美国专利4,683,202、4,683,195和4,965,188,以及通常参见PCRPROTOCOLS,a guide to Methods and Applications,Innis等人编,Academic Press(San Diego,CA(USA)1990)。均相PCR测定也是熟知的,其不需要洗涤来移除未结合的检测试剂或探针,因此不用打开扩增反应容器便可进行。均相PCR测定包括其中在扩增反应结束时检测到扩增产物的端点测定和其中反应进行时在一些和所有热循环期间检测到扩增产物的实时测定。参见美国专利5,994,056、5,487,972、5,925,517和6,150,097。
PCR扩增反应,如上文所述的其它扩增方法,一般被设计为对称的,即通过使用“匹配”的正向引物和反向引物来制备双链扩增子;即,它们的解链温度尽可能接近,并且将它们以等摩尔浓度加入反应中。已发现的有限地用于在PCR反应中直接制备单链DNA的技术为“不对称PCR”。Gyllensten和Erlich,“Generation of Single-Stranded DNAby the Polymerase Chain Reaction and Its Application to DirectSequencing of the HLA-DQA Locus,”Proc.Natl.Acad.Sci.(USA)85:7652-7656(1988);和美国专利5,066,584。不对称PCR与对称PCR不同之处在于,一个引物以通常为另一引物浓度的1-20%的有限量加入。
已知最近发展的不对称PCR扩增方法称为“指数后线性(Linear-After-The-Exponential)”PCR或简称为“LATE-PCR”。参见Sanchez等人(2004)PNAS 101:1933-1938,Pierce等人(2005)PNAS102:8609-8614,和公布的国际专利申请WO 03/054233(2003年7月3日),该专利申请以引用方式整体并入本文。LATE-PCR将扩增起始时PCR引物的实际浓度调节的解链温度纳入考虑,该温度称为Tm[0]。Tm[0]可以通过经验测定(在使用非天然核苷酸时是必要的)或计算。多种荧光探针可用于LATE-PCR,包括下列及其他:分子信标,其为能够形成茎-环结构的单链,当不结合到靶标时该结构可封闭,从而使一端上的荧光团和另一端上的淬灭剂相互靠近;线性单链探针,其在一端上具有荧光团而在另一端上具有淬灭剂;FRET探针对,其为邻近地杂交于靶序列上的双标记、单链探针,允许它们的标记通过FRET在其间传递能量;荧光团标记线性探针,其具有DNA染料的FRET;和线性双链探针,其中荧光团在结合到靶标的链上,并且淬灭剂位于在靶标不存在的情况下相等Tm下结合到探针的互补链上。
对称PCR扩增的不利特征是,在扩增指数期后,通过实时监测重复扩增而获得的荧光曲线在不同水平发散和达到稳定。发散表明重复不具有相同的反应效率并且降低检测精确度。这对PCR测定来说是个一般性问题,但就端点分析而言是特别不期望的。虽然重复间的发散显著降低但在LATE-PCR测定和不对称PCR测定中依然存在,这两个测定均具有指数期和线性期。线性期的发散部分反映出当限制性引物耗尽时指数扩增结束处平稳阶段中的发散。
引物依赖性扩增反应(包括PCR扩增)的另一个重要问题为引导错误,我们认为其显示为几种不同类型:1型引导错误,其发生在扩增起始前制备反应混合物期间;2型引导错误,如果温度(其在PCR扩增中意味任何热循环中的温度)由于任何原因降到引物解链温度以下则发生在扩增期间;和3型引导错误,其发生在已产生高浓度扩增子后继续进行的扩增(包括PCR扩增)后期阶段。当在LATE-PCR和不对称反应中发生3型引导错误时,单链扩增子引物的3’端引导入另一ss-DNA分子上,从而将ss-DNA转换为ds-DNA。反应中的引导错误还可导致重复反应中的发散。引导错误包括可发生于扩增任何阶段的引物二聚体形成。
已采用若干方法来解决1型引导错误。一种方法为在化学修饰聚合酶使其在被加热到高温如95℃之前是失活的。参见美国专利5,677,152和5,773,258。另一方法为将抗体结合到聚合酶,以在反应被加热到高温如95℃以不可逆地变性抗体之前抑制聚合酶。参见美国专利5,338,671。化学修饰的和抗体结合的DNA聚合酶常常称为“热启动”DNA聚合酶。另一“热启动”方法为使反应混合物中包括适配体。参见Doug和Jayasena(1996),J.Mol.Biol.264:268-278和美国专利6,020,130。适配体为约30个核苷酸长度的单链寡核苷酸,其结合到聚合酶并且抑制聚合酶在低温下延伸3’凹端的能力。适配体未在95℃(PCR循环来说通常是最高温)不可逆地变性。Eppendorf-5 Prime Inc.销售一种专有配体,其据说以温度依赖性方式结合到Taq聚合酶,并且抑制Taq聚合酶在温度低于约50℃时结合到双链DNA。尽管做了这许多尝试,引导错误仍然是PCR扩增的一个问题。
在引物依赖性扩增反应(包括PCR扩增)期间的另一类型的引导错误称为引物二聚体形成和引物二聚体扩增。根据该现象,一个引物杂交到其它引物或其自身另一拷贝,然后经历3’端延伸以生成小双链扩增子,然后所述扩增子可进一步扩增或可多聚化并进一步扩增。可在不存在靶标的情况下发生引物二聚体形成。
通过实时检测方法已使扩增反应(包括PCR扩增)的定量分析成为可能。在PCR扩增中,高于阈值循环时荧光信号变得可见的PCR循环或反应的CT指示起始靶标浓度。端点分析最好为半定量的,部分由于反应退出指数扩增时的重复间发散。双链扩增子的电泳分析为半定量的,并且可以使用荧光标记引物。使用荧光标记探针的端点分析(等位基因辨别探针或容许错配的探针)也最好为半定量的。通过减少发散和制备单链产物,LATE-PCR在端点分析中提供显著提高,但重复间发散通常并未完全消除,使定量和多重检测不够准确并且问题比预期更加严重。
多重PCR测定的设计和构建通常遇到引导错误的问题,因为单个反应中多个引物对的使用几何级数地增加了引物与靶序列或可能存在的其它DNA链可能的非预期相互作用数目。实际上,在对称多重PCR测定中,很难设计所有引物对具有相同解链温度,并且在不对称或LATE-PCR多重PCR测定中,很难设计所有限制性引物具有单个解链温度并且所有过量引物具有单个解链温度。因此,在多重PCR测定中,用于一个或多个热循环的特定退火温度不可能对于所有引物对为最优。如果PCR循环的引物退火步骤设定为允许最低Tm引物的杂交,则该反应对于具有较高Tm的引物将具有降低的严格性,从而增加引导错误发生机会。此外,LATE-PCR测定中,所用限制性引物(无论单重或多重)的解链温度通常比过量引物的解链温度高5℃或更多,又使其可以将单个引物退火温度匹配到两个引物的解链温度。
引物依赖性扩增(包括PCR扩增)中的DNA聚合酶的性能为选择性的标称量,特别是在完全互补于引物的靶序列与除了在引物3’端核苷酸处的错配以外完全互补的序列之间辨别的标称能力。已试图通过设计引物使其3’端核苷酸互补于遭受突变的靶核苷酸,利用该标称选择性来检测单核苷酸突变或SNP。称为扩增阻滞突变系统(ARMS)的扩增测定方法试图这样做(Newton等人,Nucl.Acids Res.17,2503-2516(1989);Wu等人,Proc.Natl.Acad.Sci.USA86:2757-2760(1989))。由于引导错误和引物二聚体形成,ARMS测定易于产生假阳性信号。某些引导错误事件可涉及不正确杂交的引物,使得存在3’错配核苷酸。引物二聚体形成还可能涉及错配的3’核苷酸。在LATE-PCR扩增的最后阶段,反应混合物中另一单链上的单链扩增子的引导错误还可能涉及错配的3’核苷酸。因此,除了其它效果外,增强聚合酶对3’端错配的辨别可减少引导错误。已试图通过使扩增引物其自身更具选择性,以提高超过上述标称选择性的扩增期间的选择性。例如,Tyagi等人向引物的5’端加入互补于引物3’端的序列以形成茎-环结构,其中环和茎的3’部分互补于靶链(美国专利6,277,607)。经观察,该方法并未降低设计用于多个测定的引物的难度(如上所述)。当然,使引物更具选择性不会提高DNA聚合酶的选择性。
为提高选择性,修饰引物的替代方式为影响DNA聚合酶自身。美国专利申请US 11/242,506描述了一类试剂添加物,稍微提高产物特异性并且大大降低或在某些情况下可行地消除PCR扩增反应中引导错误的影响。该类试剂包含单一寡核苷酸分子,其能在温度低于茎的解链温度时折叠成具有茎和环的发夹结构。虽然双链茎封闭,但3’和5’端的核苷酸往往会解旋。因此,这些添加物在其3’和5’端上被化学修饰以保持末端封闭。这种方式的末端封闭有效地提高了茎的解链温度。在封闭构型中,这些试剂添加物与DNA聚合酶相互作用,以便提高选择性。在封闭构型中,它们还抑制DNA聚合酶的聚合酶活性。虽然这些添加物优于所有类型PCR中现有的“热启动”方法,并且可用于在反应的早期阶段和在具有许多循环(通常60个循环和更多)的LATE-PCR反应期间防止非所需产物(包括引物二聚体和引导错误的扩增子)的积聚,但它们的确具有其包含单一寡核苷酸固有的局限性。特别地,茎长度不能大于约12个核苷酸,因为如果这样并且还在其末端被化学修饰,则其解链温度会变得很高,以致于当PCR被加热到延伸温度时,其不容易打开。甚至当以低浓度加入时,具有长茎和高Tm的发夹分子往往抑制反应。这些添加物固有的另一难点在于,它们为非线性对称,即,闭合发夹的一端为打开的而另一端为环。如美国专利申请US 11/242,506中所述,具有包含3-22个核苷酸的环的分子往往比其中使用3碳或6碳连接子形成环的分子更容易倾向于抑制扩增。期望具有结构对称的端-到-端的试剂。
Kainz等人(2000)Biotechniques 28:278-282报道,具有16-21个核苷酸长度的DNA片段(双链DNA寡核苷酸)可抑制在对称PCR反应的最佳退火温度或略低于退火温度下发生的引导错误,从而防止非特异性产物的扩增。DNA低聚物在PCR循环的解链步骤期间被可逆地变性。在所有情况下,Kainz等人采用的测定均显示存在和抑制引导错误,所述引导错误是在95℃下的第一次解链事件后温度降低到最佳退火温度时发生的。这并未解决1型引导错误,如Kainz等人证实并且他们的数据显示,在1型引导错误发生时仅为双链的双链片段(即,解链温度大于5℃而小于反应的退火温度)不能防止引导错误。来自Kainz等人的一人推断他们的方法在多重反应中可能更不可靠,因为如上所解释,退火温度不可能同时对所有引物对为最佳。Kainz等人还承认,虽然他们未在其具体实验中观察到这一点,但如果它们变为反应中的一个或多个引物杂交的靶标,则双链DNA寡核苷酸可以触发引导错误。
概述
一个实施方案为用于引物依赖性DNA扩增反应(优选PCR扩增反应)的反应混合物,所述扩增反应包括通过扩增至少一个DNA靶序列的DNA聚合酶来引物延伸,所述反应混合物包括至少一个引物对、热稳定DNA聚合酶和dNTP,改良处包括:在扩增开始前将至少一个双链寡核苷酸添加物包括在反应混合物内,该双链寡核苷酸添加物具有6-50个核苷酸长的杂交物长度,在32℃下至少50%为双链,在其每条链上具有末端区并且包括1-4个修饰基团(优选2个、3个或4个修饰基团),每个修饰基团均共价连接到不同末端区(优选连接到末端核苷酸),所述修饰基团为不具有非平面大体积部分的多环部分,其中所包括的所述至少一个双链寡核苷酸添加物的浓度与所述DNA聚合酶浓度有关并且对于以下功能的至少一个是有效的:抑制引导错误、提高聚合酶对具有未完全互补的3’凹端序列的杂交物的选择性、提高聚合酶对具有富含AT的3’凹端序列的杂交物的选择性、降低重复反应间的发散、抑制聚合酶5’核酸外切酶活性、以及抑制聚合酶活性;条件是,如果添加物为任何靶序列的引物或检测探针,则其包括至少三个修饰基团。
另一个实施方案为如前文所述的反应混合物,其包括两种此类双链添加物的混合物。
另一个实施方案为上述反应混合物,其中该添加物包括:第一链,其为所述至少一个靶序列的引物或探针;和反向互补链,其部分互补于第一链,并且其中添加物包括三个所述修饰基团。
另一个实施方案为DNA(包括cDNA)靶标的引物依赖性扩增(优选PCR扩增),使用上述反应混合物,并且其中需要逆向转录RNA以获得待扩增的DNA靶序列。
另一个实施方案为均相检测测定(实时和端点测定),其包括扩增此类引物依赖性产物及扩增产物的荧光检测。
另一个实施方案为试剂盒,其包含针对至少一个DNA靶序列的引物、dNTP、热稳定的DNA聚合酶、和如上所述至少一个修饰的双链寡核苷酸添加物。
另一个实施方案为此类试剂盒,其也包括用于均相地检测扩增反应产物的至少一种荧光检测试剂。
另一个实施方案为修饰的的双链寡核苷酸,其在各链上具有末端区,具有6-50个核苷酸长的杂交物长度,在40℃下(优选32℃下)至少50%为双链,并且包括2-4个修饰基团,各修饰基团共价连接到不同末端区,优选连接到末端核苷酸,所述修饰基团为不具有非平面大体积部分的多环部分,所述修饰的寡核苷酸能够结合到DNA聚合酶的5’核酸外切酶域。
另一个实施方案为引物依赖性DNA扩增反应混合物,其包括通过用于扩增至少一个DNA靶序列的DNA聚合酶来引物延伸,所述反应混合物包括至少一个引物对、DNA聚合酶和dNTP,改良处包括:在扩增起始前将至少一个双链寡核苷酸添加物包括在反应混合物内,该双链寡核苷酸添加物具有6-50个核苷酸长的杂交物长度,在32℃下至少50%为双链,在其每条链上具有末端区并且包括1-4个修饰基团,每个修饰基团均共价连接到不同末端区,所述修饰基团为不具有非平面大体积部分的多环部分,其中所包括的所述至少一个双链寡核苷酸添加物的浓度与所述DNA聚合酶浓度有关并且对于以下功能的至少一个是有效的:抑制引导错误、提高聚合酶对具有未完全互补的3’凹端序列的杂交物的选择性、提高聚合酶对具有富含AT的3’凹端序列的杂交物的选择性、减少重复反应间的发散、抑制聚合酶5’核酸外切酶活性、以及抑制聚合酶活性;条件是,如果添加物为任何靶序列的引物或检测探针,则其包括至少三个修饰基团。
另一个实施方案为扩增测定,其包括在扩增期间实时或在扩增后端点对反应的单链产物、反应的双链产物、或两者进行扩增和荧光检测,其中所述反应的双链产物用荧光DNA染料检测,所述反应的单链产物用至少一个荧光标记杂交探针检测,或两者均有。
另一个实施方案为修饰的双链寡核苷酸,在其各链上具有末端区,具有6-50个核苷酸长的杂交物长度,在32℃下至少50%为双链,并且包括2-4个修饰基团,每个修饰基团均共价连接到不同末端区,所述修饰基团为不具有非平面大体积部分的多环部分,所述修饰寡核苷酸能够抑制DNA聚合酶的5’核酸外切酶域。修饰的双链寡核苷酸可以具有1到4个单链突出端,并在未杂交于双链寡核苷酸结构中时,其可以具有形成茎-环(发夹)结构的1个或2个单链,在此情况下,该茎有6个或更少个碱基对长度。
附图简述
图1示出在实施例1中描述的使用浓度为300nM的添加物16merA的LATE-PCR扩增的重复的解链曲线。
图2示出在实施例1中描述的使用浓度为300nM的添加物16merB的LATE-PCR扩增的重复的解链曲线。
图3示出在实施例1中描述的使用浓度为300nM的添加物EP049的LATE-PCR扩增的重复的解链曲线。
图4示出在实施例1中描述的使用浓度为300nM的添加物EP027的LATE-PCR扩增的重复的解链曲线。
图5为SYBR Green荧光作为在实施例1中描述的使用浓度为100nM、300nM、600nM和1000nM的添加物EP027的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图6示出在实施例2中描述的使用浓度为100nM的添加物22merA和使用浓度为100nM的添加物EP003的LATE-PCR扩增的重复的解链曲线。
图7A为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为25/600/575nM的三链添加物混合物EP043的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图7B为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为50/600/550nM的三链添加物混合物EP043的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图7C为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为75/600/525nM的三链添加物混合物EP043的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图7D为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为100/600/500nM的三链添加物混合物EP043的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图8A为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为25/600/575nM的三链添加物混合物EP045的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图8B为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为50/600/550nM的三链添加物混合物EP045的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图8C为SYBR Green荧光作为在实施例4中描述的使用总浓度为600nM和链浓度为75/600/525nM的三链添加物混合物EP045的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图8D为SYBR Green荧光作为在使用实施例4中描述的总浓度为600nM和链浓度为100/600/500nM的三链添加物混合物EP046的LATE-PCR扩增的重复的扩增循环次数变化的函数的图。
图9A为来自两种探针的荧光作为在实施例5中描述的未使用添加物和退火温度为65℃的LATE-PCR双重扩增的重复的扩增循环次数的函数的图。
图9B为来自两种探针的荧光作为在实施例5中描述的使用浓度为400nM的添加物EP020和65℃的退火温度的LATE-PCR双重扩增的重复的扩增循环次数的函数的图。
图9C为来自两种探针的荧光作为在实施例5中描述的使用浓度为400nM的添加物EP020和60.7℃的退火温度的LATE-PCR双重扩增的重复的扩增循环次数的函数的图。
图9D为来自两种探针的荧光作为在实施例5中描述的使用浓度为300nM的添加物EP013和66℃的退火温度的LATE-PCR双重扩增的重复的扩增循环次数的函数的图。
图9E为来自两种探针的荧光作为在实施例5中描述的使用浓度为300nM的添加物EP013和64.2℃的退火温度的LATE-PCR双重扩增的重复的扩增循环次数的函数的图。
图9F为来自两种探针的荧光作为在实施例5中描述的使用浓度为300nM的添加物EP013和60.7℃的退火温度的LATE-PCR双重扩增的重复的扩增循环次数的函数的图。
图10为探针荧光作为实施例6中描述的使用若干添加物中的任何添加物或未使用添加物的不依赖引物的探针-裂解测定的温度振荡循环次数的函数的图。
图11A示出由实施例7中描述的未使用添加物的LATE-PCR扩增的重复引起的探针扩增子杂交物的解链曲线,以及单独探针的解链曲线。
图11B示出由实施例7中描述的使用浓度为600nM的添加物EP013的LATE-PCR扩增的重复引起的探针扩增子杂交物的解链曲线,以及单独探针的解链曲线。
图12为示出在实施例8中描述的未使用添加物、使用浓度为300nM的添加物EP011、使用浓度为600nM的添加物EP011由1000个线粒体基因组DNA(靶序列)拷贝起始的12重LATE-PCR扩增的产物的电泳凝胶。
图13为SYBR Green荧光作为在实施例9中描述的未使用添加物的Taq DNA聚合酶、未使用添加物的Taq DNA聚合酶和抗体、使用浓度为600nM的添加物EP046的Taq DNA聚合酶、和使用浓度为600nM的添加物EP046的Taq DNA聚合酶和抗体的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图14A为探针荧光作为在实施例10中描述的使用浓度为600nM的添加物EP010由1000个、100个和10个靶标拷贝起始的具有低温检测步骤的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图14B示出在实施例10中所描述的使用浓度为600nM的添加物EP010由1000个、100个和10个靶标拷贝起始的LATE-PCR ColdStop扩增的40个循环之后探针扩增子杂交物的解链曲线。
图14C示出在实施例10中所描述的使用浓度为600nM的添加物EP010由1000个、100个和10个靶标拷贝起始的LATE-PCR ColdStop扩增的70个循环之后探针扩增子杂交物的解链曲线。
图15A为SYBR Green荧光作为在实施例13中描述的使用总浓度为600nM和链浓度为50/600/550nM的添加物混合物EP043、用去尾引物和加尾引物的LATE-PCR扩增的重复的扩增循环次数的函数的图。
图15B示出具有添加物EP043的6种扩增产物的解链曲线,其中朝下的箭头指示正确双链DNA产物的解链温度(86℃)。圆圈153标示具有去尾引物的一个重复,示出图15A中无产物进化(平稳段)的正确峰,并且圆圈154标示具有加尾引物的两个重复,也示出图15A中无产物进化(平稳段)。
图16A示出在实施例14中描述的使用5’-Dabcyl化引物但无反向互补序列的LATE-PCR扩增的重复的解链曲线。
图16B示出在实施例14中描述的使用5’-Dabcyl化引物和浓度为100nM的反向互补序列的LATE-PCR扩增的重复的解链曲线。
图16C示出在实施例14中描述的使用5’-Dabcyl化引物和浓度为200nM的反向互补序列的LATE-PCR扩增的重复的解链曲线。
图16D示出在实施例14中描述的使用5’-Dabcyl化引物和浓度为300nM的反向互补序列的LATE-PCR扩增的重复的解链曲线。
图17A为探针荧光作为在实施例15描述的使用浓度为2000nM的添加物EP020的具有RNA靶标逆转录的LATE-PCR扩增的重复循环次数的函数的图。
图17B为探针荧光作为在实施例15描述的使用浓度为200nM的添加物EP010的具有RNA靶标逆转录的LATE-PCR扩增的重复循环次数的函数的图。
图17C为随在实施例15描述的使用浓度为400nM的添加物EP003的具有RNA靶标逆转录的LATE-PCR扩增的重复循环次数变化的探针荧光图。
图17D为探针荧光作为在实施例15描述的使用浓度为400nM的添加物EP010和浓度为1000nM的添加物EP020的混合物的具有RNA靶标逆转录的LATE-PCR扩增的重复循环次数的函数的图。
图17E为探针荧光作为在实施例15描述的使用浓度为400nM的添加物EP003和浓度为1000nM的添加物EP020的混合物的具有RNA靶标逆转录的LATE-PCR扩增的重复循环次数的函数的图。
图17F为探针荧光作为在实施例15描述的未使用添加物的具有RNA靶标逆转录的LATE-PCR扩增的重复循环次数的函数的图。
图18A为根据本发明的由两个线性(无规卷曲)寡核苷酸形成并且具有单链突出端的修饰双链添加物的示意图。
图18B为如图18A中所述的修饰双链添加物(但由一个线性寡核苷酸和一个发夹形成寡核苷酸形成)的示意图。
图18C为如图18A中所述的修饰双链添加物(但由两个发夹寡核苷酸形成)的示意图。
图19A示出如实施例16中所述的利用Taq聚合酶加抗体、用或不用添加物SL04的LATE-PCR扩增产物的解链曲线。
图19B示出如实施例16中所述的利用Taq聚合酶加抗体、用或不用添加物SL07的LATE-PCR扩增的产物的解链曲线。
图19C示出如实施例16中所述的利用Taq聚合酶加抗体、用或不用添加物SL08的LATE-PCR扩增的产物的解链曲线。
图19D示出如实施例16中所述的利用Taq聚合酶加抗体、用或不用添加物SL09的LATE-PCR扩增的产物的解链曲线。
图20为探针荧光作为在实施例18中描述的使用不同浓度添加物的不依赖引物的探针-裂解测定的温度振荡循环次数的函数的图。
图21为示出阻断物寡核苷酸在限制性引物与靶标之间形成与引物完全互补的3’端错配的作用的示意图。
图22A为针对如实施例19中描述的不用阻断物的稀释系列扩增的阈值循环(CT)与靶标起始浓度(拷贝数)的关系图。
图22B为针对如实施例19中描述的利用阻断物的稀释系列扩增的阈值循环(CT)与靶标起始浓度(拷贝数)的关系图。
图23A为示出抗体在实施例20中描述的扩增中的作用的SYBRGreen荧光与扩增循环次数的关系图。
图23B为示出添加物EP010在实施例20中描述的扩增中的作用的SYBR Green荧光与扩增循环次数的关系图。
图23C为实施例20中描述的仅用DNA聚合酶制备的产物和用在测定的第一孵育步骤之后添加的抗体制备的产物的解链曲线。
图23D为实施例20中描述的用在测定的第一孵育步骤之前添加的抗体制备的产物的解链曲线。
图23E为实施例20中描述的用在测定的第一孵育步骤之前和之后添加的添加物EP010制备的产物的解链曲线。
详述
提及双链添加物、引物和探针的解链温度(Tm)。根据定义,Tm是指双链寡核苷酸为50%双链和50%单链时的温度。对于添加物,Tm是指的双链寡核苷酸的计算Tm,不说明取代基修饰物的任何效应。本说明书中所示的双链添加物的Tm是根据以下文献计算:Markhan和Zuker(2005)DINAMELT web server for nucleic acid meltingprediction,Nucleic Acids Res 33:W577-W581,以及Markham和Zuker(2008)UNAFOLD:software for nucleic acid folding andhybridization。Keith,J.M.编,BIOINFORMATICS,vol.II,Structure,Functions and Applications,No.453 Methods in Molecular Biology,第1章,第3页至第31页(Humana Press,Totowa,New Jersey.ISBN978-1-60327-428-9。在使用提及的万维服务器时,进行以下输入:各链浓度,以μM计,如实施例中所报道;70mM的盐浓度;和3mM的镁浓度。扩增起始时LATE-PCR扩增反应中的探针和引物的Tm称为Tm[0]。Tm[0]可凭经验测定(在使用结构探针时是必要的),或使用盐浓度调整根据“最近邻”方法(Santa Lucia,J.(1998)PNAS(USA)95:1460-1465;及Allawi,H.T.和Santa Lucia,J.(1997)Biochem.36:10581-10594)计算,该文献通过引用整体并入本文。在工作中,我们使用0.07M的单价盐浓度,但也可使用其它浓度。
提及位于末端区寡核苷酸链上的修饰基团。“末端区”是指连接到5’或3’端核苷酸或连接到从5’或3’端不超过5个、不超过3个、或不超过2个核苷酸的内部核苷酸。在一些实施方案中,末端修饰物连接到5’或3’端核苷酸。
提及选择性。“选择性”通常是指在满足某些条件时DNA聚合酶延伸3’凹端的优选性。一般来讲,结合到靶序列的3’凹端为热不稳定的,即其交替地结合到链上和从其所杂交的链上局部解旋。据称,这些端结合到受益于形成更多氢键的靶标时这些端是稳定的,而在形成较少氢键时则是不稳定的。根据此观点,完全互补于其靶标的3’凹端比未完全互补于其靶标的3’端更稳定。相似地,富含GC的3’凹端通常比富含AT的3’凹端更稳定,因为GC二核苷酸对形成3个氢键,而AT二核苷酸对形成2个氢键。
根据此理解,一种选择性类型为当3’凹端的3’端区域(特别是包括3’末端核苷酸)完全互补(即,无错配的杂交)时DNA聚合酶优选延伸杂交物的3’凹端。换句话说,这种类型的选择性为对未完全匹配到其靶标的3’端引导序列的选择性。对3’端区域错配的选择性适用于引物-靶杂交物,其中它表明相比于在例如3’末端核苷酸上具有错配的引物-靶杂交物,聚合酶优先选择在引物3’端上完全互补的引物-靶杂交物。对3’端-区域错配的选择性也更一般地适用于通过任何2个DNA链在扩增反应混合物中形成的具有可延伸的3’凹端的杂交物,例如当一个扩增子链杂交到另一扩增子链上(即,引导入)时可能发生的。
第二种类型的选择性为DNA聚合酶优选具有富含GC而非富含AT的3’端区域的引物(或引物链),或换句话说,对末端区富含AT的引物或其它引物链的选择性。
对于任一类型的选择性来说,选择性的度量为来自非优选杂交物(例如,由引物和错配靶标形成的杂交物)扩增的信号的阈值循环(CT)与来自优选杂交物(例如,引物和错配靶标形成的杂交物)扩增的信号的CT之间的差值(ΔCT)。使用添加物引起的选择性提高为净CT差异,其通过从具有添加物产生的ΔCT中减去没有添加物的ΔCT而获得。
可包括在引物依赖性DNA扩增反应和使用此类反应(包括PCR扩增反应和PCR扩增测定)的核酸检测测定中减少引导错误、抑制DNA聚合酶活性、提高任一类型的DNA聚合酶选择性、抑制DNA聚合酶核酸外切酶活性或减少重复反应间的发散或上述任何组合的添加物。
溶于DNA扩增缓冲液并且包括1到4个或2到4个共价结合部分(称为修饰基团或简称修饰物)的化学试剂抑制引导错误并且提高聚合酶对引物和完全互补靶序列之间的杂交物的选择性。共价结合的修饰基团是多环的(包括但不限于芳族)部分,其如果是大体积的,则为平面的并且可被构型成结合到具有核酸外切酶域的DNA聚合酶(活性或非活性的),以便抑制引导错误和提高聚合酶对引物和完全互补靶序列之间的杂交物的选择性。
在一些实施方案中,淬灭剂Dabcyl(4-(4′-二甲基氨基偶氮苯基))可以用作这些试剂的修饰基团。
通过将这些多环部分连接到双链寡核苷酸,可使这些多环部分溶解。如上所述的具有1-4个多环部分的某些双链寡核苷酸可用作在引物依赖性DNA扩增反应和在使用此类反应(包括PCR扩增反应和PCR扩增测定)的核酸检测测定中用于减少引导错误、抑制DNA聚合酶活性、增加DNA聚合酶选择性、抑制DNA聚合酶核酸外切酶活性、减少重复间发散或上述的任何组合的添加物。修饰的双链寡核苷酸可以包含天然核苷酸,即,其可以为DNA、RNA、或DNA和RNA的混合物。修饰双链寡核苷酸还可包含非天然核苷酸,例如LNA和2’O-甲基核苷酸。扩增反应可能是对称或非对称的,包括不对称PCR扩增反应,并且优选LATE-PCR反应。
添加物可以是修饰的的线性双链DNA寡核苷酸,其中互补核酸链为6-50个、优选12-30个、更优选16-26个核苷酸长度。修饰的双链的寡核苷酸可以是平端的或可以在一个或两个端上包含1-8个核苷酸、优选1-5个核苷酸的短突出端。图18A-18C示出在添加物双链区域的一个或两个末端处的链中具有非互补末端区的若干不同实施方案。为了示例,示出所有构型含具有具体位置的3个修饰基团(M),但应理解,诸如此类的实施方案不限于所示位置或不限于包括3个修饰基团。图18A示出杂交以形成双链添加物183的两个部分互补、无规卷曲寡核苷酸181、182,所述双链添加物183包括双链区域184和单链突出端185、186。杂交物184的解链温度(Tm)可通过改变其长度和GC含量来调节。类似地图18B示出杂交以形成双链添加物189的两个部分互补寡核苷酸187、188,所述双链添加物189包括双链区域190和单链突出端191、192。突出端191、192可以包含即便在低温下也不相互杂交的序列。可选地,突出端可以包含仅在低温下相互杂交的序列(Tm低于双链区域184的Tm,如由互补程度和GC含量决定)。图18B中示出的实施方案不同于图18A中所示实施方案,在于一个寡核苷酸即寡核苷酸187,当未杂交于寡核苷酸188时,呈现包括多达6个核苷酸长度的双链茎193的发夹结构。图18C示出杂交以形成双链添加物196的两个部分互补寡核苷酸194、195,所述双链添加物196包括双链区域197和单链突出端198-201。在图18C所示实施方案中,寡核苷酸194和195两者,当不相互杂交时,分别呈现包括茎202和203的发夹结构。实施例16和17使用图18C中所示结构。对于其中任一链或两个链形成发夹、或茎-环结构的添加物,每个茎的Tm高于双链区域的Tm,以确保在使用期间形成发夹,但不会太高以致于当在使用期间反应温度降低时,在合理时间段内阻止形成添加物的双链构象。在一些实施方案中,其中寡核苷酸链不用作扩增引物或探针,两个3’端均被阻断以阻止通过DNA聚合酶延伸。阻断可以通过以下方式实现:共价链接修饰基团到链的3’端核苷酸,或否则阻断延伸,例如通过包括3’端磷酸酯基。添加物可包括32℃下至少50%为双链的双链寡核苷酸,这一温度与在组装扩增反应混合物期间可能遇到的温度相同。
在线性双链寡核苷酸中包括1-4个修饰基团,优选2个、3个或4个修饰基团。修饰物在其末端区中共价连接到添加链,即在末端核苷酸处,或在距离末端核苷酸不超过5个,优选不超过2个核苷酸的核苷酸处。一些实施方案使用连接到双链寡核苷酸的末端核苷酸的修饰物。这些修饰物可共价连接到寡核苷酸链。修饰基团的共价连接在例如用于掺入荧光团和淬灭剂的领域中是熟知的。
修饰基团可以是多环部分,包括但不限于聚芳族,并且如果为大体积部分则具有总体平面形状。例子包括:地高辛配基,一种植物甾体化合物;香豆素,一种双环芳族;QSY-21,一种非平面的用作淬灭剂的小聚芳族化合物。据信包括了黄腐酸和腐殖酸。在一些实施方案中,修饰基团为熟知的淬灭剂Dabcyl,其为大体积并且是平面的聚芳族。因此,修饰基团可为不具有非平面大体积部分的多环部分,优选为聚芳族。
添加物可包括具有1个、2个、3个和4个修饰基团的各种可能构型的线性双链DNA寡核苷酸。就一个末端修饰基团而言,存在4种可能的构型:修饰物可以连接到任一链的3’或5’末端核苷酸。就2个末端修饰基团而言,存在6个可能的构型;就3个末端修饰基团而言,存在4个可能的构型;以及就4个修饰基团而言,仅存在一个可能的构型。连接修饰物到末端区的内部核苷酸产生了另外的可能构型。在其中链不是引物并且修饰基团未连接到链的3’端核苷酸的所有情况下,所述核苷酸以不同方式阻断,如通过磷酸酯基团(实施例中以“p”在序列中标示)阻断。
在某些实施方案中,一个链还用作引物,并且其3’端未阻断。在某些其它的实施方案中,一个链用作检测探针,其中它的3’端可被阻断,例如,通过末端修饰基团、末端荧光团、或末端磷酸酯基。对于引物的实施方案,通过包括互补于该引物的单链寡核苷酸(我们称之为反向互补序列),单链扩增引物可被转变成添加物,从而其形成具有引物的双链杂交物。当杂交物为双链时其可作为添加物起作用。杂交物可包括3个修饰物,例如Dabcyl基。引物链的反向互补序列的Tm可设计成5-30℃,优选15-25℃,低于扩增靶序列的引物链的Tm。为实现Tm的差异,通过使其较短和/或在一个或多个核苷酸上错配或通过两者,可以使反向互补序列部分互补于引物链。对于探针实施方案,标记的单链杂交探针可类似于引物的转变,被转变为添加物并且Tm类似地低于探针靶杂交物的Tm。优选的探针的实施方案包括具有荧光团和淬灭剂的探针链以及具有两个末端淬灭剂的反向互补序列。
可以包括用于扩增至少一个DNA或cDNA靶的引物依赖性扩增反应混合物。反应混合物包括上述添加物中的至少一个以及靶核酸和包括引物、DNA聚合酶、dNTP和(通常地)扩增缓冲液的扩增试剂。如果扩增混合物是用于包括双链扩增产物、单链扩增产物、或两者的扩增和均相检测的扩增测定,则反应混合物可包括至少一种用于产物检测、优选荧光检测的试剂。用于检测双链扩增产物的优选试剂为DNA染料,例如SYBR Green。用于检测单链产物的优选试剂为荧光标记检测探针,其对单链产物的杂交导致可检测荧光信号改变或其在扩增期间对单链产物的杂交引起可检测荧光信号改变。许多均相检测试剂是本领域所已知的,并且可使用任何适当的检测试剂或试剂。也可使用其它试剂。如果所包括的靶核酸为RNA靶序列,则反应混合物将包括逆转录酶。
反应混合物可包括用于多重扩增和测定的多个靶的多个引物对。实施例5示出反应混合物,用于针对包括2个引物对和每个扩增产物的荧光探针的两个靶序列的双重LATE-PCR测定。实施例8示出高度多重扩增的反应混合物,包含用于12个不同靶标的12个引物对的12重体。如果添加物包括引物链中的一个,则反应混合物还可包括合适的反向互补序列。反应混合物可为PCR反应混合物,在一些实施方案中为LATE-PCR反应混合物。反应混合物可以包括2种添加物的组合或混合物。此类混合物可包含4个链,或者如果所述2个添加物共享共有链,则具有3个链。反应混合物可包括至少一个修饰的双链添加物,所述双链添加物总浓度高达2000nM,优选高达1000nM并且更优选高达600nM。如果反应混合物包括添加物的混合物,则添加物的总浓度可保持如所述。
提供了使用上述反应混合物用于一个或多个DNA或cDNA靶序列的引物依赖性扩增以及具有扩增产物的均相检测(即,具有均相检测的扩增测定)的一个或多个DNA或cDNA靶序列的引物依赖性扩增的方法。扩增方法和扩增测定方法的可以包括等温扩增反应或热循环扩增反应。在一个实施方案中,扩增方法可为PCR,并且在一些实施方案中,为LATE-PCR。经选择用于具体扩增或扩增测定的添加物或添加物的组合,以及该添加物或添加物的组合的量取决于所需效果和扩增期间使用的温度。等温扩增可以仅包括反应混合物制备温度,通常为室温,然后在单个反应温度如37℃下等温扩增反应。PCR和其它热循环扩增方法包括反应混合物制备温度,然后是许多热循环,所述热循环包括引物退火温度(退火温度)、引物延伸温度(延伸温度)、和链变性温度(解链温度)。虽然退火温度和延伸温度可以相同,但更通常来说退火温度应低于延伸温度5-20摄氏度(℃)。LATE-PCR测定还可以在一些或所有热循环中包括低温检测步骤,在其间,反应混合物的温度降低到退火温度以下,以使得低温探针结合到其靶序列。扩增反应可以在中间点被中断,以便进行可能包括低温(低于退火温度)的一些操作,其后扩增反应可重新开始。扩增可以利用其它的减少引导错误的方法。例如,所用的DNA聚合酶可以是热启动聚合酶。另外,所用引物可被设计成具有富含AT的5’端,包括在必要时增加延伸。另外地或可选地,引物的3’端可被设计成富含GC或富含AT,以便改变扩增和扩增测定中的聚合酶抑制作用。扩增反应的产物可适用于测序,包括但不限于双脱氧法测序。
扩增测定可以包括在DNA靶序列的扩增期间例如在PCR扩增反应的一些或所有循环期间多次实时均相检测单链产物、双链产物或两者。如上所述,可以使用荧光检测。可选地,扩增测定可以包括在扩增反应完成之后在端点处均相检测。检测可以包括作为温度的函数的解链扩增产物和检测荧光改变。检测可以为定性或定量的。对于靶标是RNA的测定可包括逆向转录。
提供了用于进行扩增和扩增测定的试剂盒。此类试剂盒可包括制备反应混合物必需的试剂,包括至少一个靶序列的引物、dNTP、DNA聚合酶和至少一个修饰的双链添加物,如上所述。用于扩增测定的试剂盒还可包括至少一种检测试剂,例如,DNA荧光染料或荧光标记杂交探针。扩增试剂盒和扩增测定试剂盒还可包括用于样品制备的试剂(例如,细胞裂解试剂)、用于核酸分离的试剂和逆转录酶。扩增测定试剂盒可以包括对照靶序列和用于其扩增的引物。
对添加物或添加物混合物的选择可考虑以下:DNA聚合酶抑制作用的性质、对3’端引物错配的选择性、对富含AT引物3’端区域的选择性、聚合酶核酸外切酶活性的抑制、引导错误的抑制和重复间发散的减少。添加物的效果又取决于添加物的固有性质、其浓度、其解链温度和其浓度。例如,固有聚合酶抑制作用往往随添加物中所包括的修饰物数目而增加,并且添加物的有效抑制随其浓度而增加。已发现,对3’端引物错配的选择性与DNA聚合酶的阻断核酸外切酶活性有关,该DNA聚合酶具有该活性或至少具有核酸外切酶位点。这可能是因为通过添加物阻断了酶的核酸外切酶位点。
添加物可以对于以下一个或多个功能有效的浓度加入扩增反应混合物中:抑制引导错误、提高聚合酶对具有未完全互补的3’凹端序列的杂交物的选择性、提高聚合酶对具有富含AT的3’凹端序列的杂交物的选择性、减少重复反应间的发散、抑制聚合酶5’核酸外切酶活性、以及抑制聚合酶活性。因为添加物与DNA聚合酶相互作用,所需浓度随扩增反应混合物中所包括的DNA聚合酶的浓度而变化。对有效用于上述功能中的一个或多个所需的添加物浓度的测定,以及对最佳浓度的测定,可常规通过尝试在扩增反应或扩增测定中添加物所希望的若干浓度来测定,如在以下实施例中所示。例如,实施例3报道了若干浓度的若干添加物的经验性试验,以确定各种浓度的添加物的效果,以帮助选择优选的添加物,明确有效浓度,以及确定具体LATE-PCR测定中用于特定目的的最佳浓度。对于Taq DNA聚合酶(对扩增反应和测定而言最常使用的聚合酶),通常的聚合酶浓度可能为25微升(μl或ul)反应混合物中1.25个单位。在一些实施方案中,需要不超过2000纳摩尔(nM)的添加物,在一些实施方案中,需要不超过1000nM,以及在一些实施方案中,不超过600nM。对于可能以比Taq DNA聚合酶更高的浓度包含在反应混合物中的Tfi DNA聚合酶,相同浓度的添加物通常是有效的。
对于充当“热启动”试剂的添加物,优选的是,在低于等温扩增的反应温度和低于热循环反应例如PCR的退火温度的温度下,几乎或完全抑制所用聚合酶(例如,Taq DNA聚合酶)的聚合酶活性的添加物。为此,添加物可具有对聚合酶活性的高抑制作用,和解链温度(Tm),其为至少32℃并等于或低于等温反应温度或PCR温度,优选比其低1-15℃,更优选比其低1-5℃,并且浓度足以完全或至少基本上抑制聚合酶活性。当添加物通过在高于其Tm的温度下解链分开而没有不可逆变性时,在PCR热循环的等温反应期间每次温度降低足以使添加物变成双链时添加物将起作用,例如,在低温检测步骤期间,如有时用于LATE-PCR测定。
在等温扩增的反应温度或在高于PCR扩增的退火温度的温度下,特别是在延伸温度下,添加物也可用于减少引导错误和提高聚合酶选择性。为此,添加物可具有低的至适度的对聚合酶活性的抑制作用,和这样的解链温度,其比等温反应温度或PCR延伸温度低不超过2℃,优选至少等于该温度,并且更优选高于该温度,并且浓度仅与足以实现所需效应而不过度地抑制反应效率所必需的一样高。另外,因为在PCR循环的链-解链步骤期间未使添加物不可逆变性,所以在每个PCR循环期间当温度对于链-解链温度而言降低至退火温度或更低的温度时,添加物可用于提高聚合酶选择性。
添加物可单独或组合使用。两个修饰的双链寡核苷酸的混合物可以包括4个链,或者,如果两个添加物共享共有链,则包括3个链。3个链混合物将不到一个链插入反应混合物,这在实施方案中可能是有利的,其中添加物不是针对扩增反应混合物中任何靶序列的引物和探针。使用组合的添加物赋予设计灵活性。例如,为抑制I型引导错误,混合物可包括第一添加物,所述第一添加物通过其固有性质(Tm和浓度)在低于扩增反应的引物退火温度下充分抑制聚合酶活性,但其在扩增期间为单链以便不抑制聚合反应。与此类添加物组合以抑制II型引导错误以及在合适时在扩增期间抑制III型引导错误,混合物可以包括在引物退火期间为双链但在引物延伸期间最低程度地抑制聚合酶活性的添加物。
提供了直接与等温DNA扩增反应或热循环DNA扩增反应例如PCR反应中所用的DNA聚合酶相互作用的寡核苷酸试剂。寡核苷酸试剂可在其中它们为双链的所有步骤期间作用于扩增反应。它们可具有抑制引导错误和增加聚合酶选择性的效果,包括相比于非完全互补的杂交链的3’凹端,DNA聚合酶优选延伸完全互补的杂交链的3’凹端。引导错误可根据不同类型来考虑。I型是每当反应混合物温度低于引物退火温度时就发生的引导错误。它发生于在扩增起始前反应混合物制备期间。如果温度降低到引物退火温度以下,它也可能发生于扩增期间。II型在扩增期间每当反应混合物温度处于或高于引物退火温度但低于存在的引物的解链温度时发生的引导错误。III型是在已制备了高浓度扩增产物(扩增子)之后继续的扩增期间发生的引导错误。引导错误的另一表现为引物二聚体形成,其中一个引物杂交到另一引物或杂交到其自身然后经历延伸以生成短双链扩增子,该短双链扩增子然后可进一步扩增或甚至进一步多聚化并扩增。将扩增反应分为阶段来考虑引导错误可能性是有用的。引导错误产生了可扩增产物,所以发生于扩增反应早期的引导错误事件将被扩增,几乎就如其为靶分子一样。随后的一般性描述是针对PCR反应,但本领域技术人员将会理解其适用于其它扩增反应。PCR的该一般性说明是仅为了示例,而并非意图限制可用扩增反应的类型。
预备阶段:制备试剂并在25℃或更低温度(例如,冰上)混合。引物浓度在预备阶段期间为最高,该阶段通常持续数分钟。通常,靶标数目在预备阶段期间低或非常低,并且这些靶标中一些或所有可以为单链,取决于样品如何制备和其是否为cDNA。实际上,使用酶例如逆转录酶的cDNA合成也是预备阶段的一部分,当用于cDNA合成的反应混合物也包含引物和DNA聚合酶时,因为反应混合物的这些成分可能在cDNA合成所需条件下错误引导,通常在40-60℃的温度范围内5-30分钟。通过加热到高温(例如95℃)以使反应混合物中的所有双链DNA变性来结束预备阶段。如果DNA聚合酶以非活性形式(例如,抗体结合的DNA聚合酶)加入,则该加热步骤激活该聚合酶,此过程称为“热启动”。
I型引导错误发生于预备阶段期间。如果DNA聚合酶不是热启动酶并且如果反应混合物中未包括任何其它聚合酶活性抑制剂,则I型引导错误的机率增加。而且,如果聚合酶的热启动改性或用于阻断聚合酶活性的所加入抑制剂未能进行完全抑制,则发生I型引导错误。引物二聚体形成和I型引导错误在预备阶段期间优先发生,因为温度较低。预备阶段引导错误的产物将被扩增。
早期阶段:反应的该阶段通常为10-15个热循环的PCR扩增。3步PCR的每个循环的热曲线包括链-解链温度、引物退火温度和引物延伸温度。对于2步PCR,引物退火和引物延伸是在相同温度下进行。分配给热循环中每个步骤的时间量通常为几秒长。在第一和第二热循环期间,引物第一次退火至其在全长靶标内的靶序列并且旨在仅当在完全互补靶序列上时选择性延伸。引物退火至并且延伸于靶标的两个链上,并且如果所有都完美进行,则生成并随后指数扩增确定长度的两个互补链。产物链相互杂交的趋势低,因为其浓度低。
如果引物延伸于其非完全互补的等位靶标上,则II型引导错误可在早期阶段期间发生。对于引物来说,通常具有高于退火温度若干度或甚至更多的Tm,这会招致II型引导错误。较短退火时间和较高退火温度(相对于引物Tm)比较长退火时间和较低退火温度更严格,因此降低了II型引导错误并提高聚合酶选择性。II型引导错误的产物可在剩余扩增期间被扩增。在此未使用热启动聚合酶改性,因为首次加热到高温会不可逆地使热启动抗体或酶烷基化反应失活。热稳定抑制剂,包括本文所述的那些,将在首次和后续的退火步骤期间起作用,因为它们未被高温不可逆地变性。
中期阶段:PCR反应的该阶段通常包含10-25个热循环并且包括解链、引物退火和引物延伸。在热循环中分配给每个步骤的时间量通常为几秒长。引物退火到和延伸于靶标的两个链上,并在最佳条件下,生成和随后指数扩增由引物对决定的确定长度的2个互补链。
就实时对称PCR测定而言,中期阶段通常包括在反应的退火步骤或延伸步骤期间的产物检测。就LATE-PCR反应而言,中期阶段可以包括在低于退火温度的温度下的产物检测,并且该检测发生于延伸步骤之后。使用杂交探针的荧光信号通常在对称PCR和LATE-PCR的指数期晚期变得可检测。
在对称PCR中期阶段结束时,指数性蓄积的产物链的浓度增长到足够高以在引物-退火步骤期间杂交产物链。指数扩增减慢并达到稳定,因为据信聚合酶结合到反应的双链产物。就LATE-PCR而言,在产物链浓度变得足够高以减慢反应之前,限制性引物耗尽并且终止反应指数期。
在包括低温检测步骤的LATE-PCR扩增中,I型和II型引导错误可发生于中期阶段,正如在早期阶段中。这在实时LATE-PCR中的低温检测步骤期间尤其是个风险。当产物链浓度增加时,III型引导错误还可发生于中期阶段。任何类型的引导错误,无论在预备阶段、早期阶段或中期阶段期间,均导致重复反应间的发散,这在指数扩增减慢时尤其明显。
晚期阶段:扩增的晚期阶段通常仅发现于LATE-PCR中,因为对称PCR已达到稳定并且已通过此阶段终止。LATE-PCR扩增的该阶段通常包含10-25个热循环,所述热循环包括解链步骤、引物退火(仅过剩引物)、和引物延伸(仅过剩引物)。热循环中分配给各步骤的时间量通常为几秒长。每个过剩引物退火到并延伸于通过延伸其对应限制性引物(其限制性引物链)来制备的延伸产物上,并且如果所有都完美进行,则有效地生成过剩引物链,其线性累计直到其开始超过该过剩引物自身。因而,LATE-PCR反应减慢,但没有像对称PCR反应那样达到稳定。
就实时LATE-PCR测定而言,该阶段可以包括在引物退火温度或在低于退火温度的温度下的产物检测,并且所述产物检测发生于延伸期之后。使用杂交探针的荧光信号在该阶段期间通常随大约线性的动力学提高。
III型引导错误可发生于在多个线性循环之后的晚期阶段,因为过剩引物链的3’端可沿着过剩引物链的另一分子的任何位置错误引导。因此,III型引导错误的概率随以下情况增加:1)单链产物浓度增加;2)多重反应中不同单链产物的数目增加;3)反应温度降低;4)过剩引物链的3’端或靠近3’端的碱基富含GC并且更容易杂交(错误引导)。III型引导错误导致单链DNA转化回双链DNA,我们称之为“产物进化”(虽然产物不完整或不正常)。产物进化表现为在使用检测双链产物的染料的荧光中突然的后期增加(平稳阶段后的斜率增加),或来自检测单链DNA的探针的荧光突然降低。因此,III型引导错误类似于II型引导错误,原因在于错误可在退火温度以上发生,但III型引导错误还类似于I型引导错误,原因在于错误可在退火温度以下发生。当然,II型引导错误可发生于该阶段,同样,如果包括了低温步骤,则I型引导错误也可发生于该阶段。
结束阶段:LATE-PCR中的结束阶段不涉及额外扩增,因为双链产物不再解链分离。结束阶段为扩增后阶段,其中进行了一些操作。最普遍地,温度降低至退火温度以下以允许探针靶向杂交(信号产生=退火信号),然后温度随时间升高以解链分离探针靶复合物(信号丧失=解链)。我们称之为“探针退火-解链分析”。结束阶段的探针退火-解链分析可在LATE-PCR扩增期间用或不用实时分析来进行。通常,在10-15个循环的晚期阶段之后的探针退火-解链分析生成关于反应起始时存在的靶拷贝数的定量信息。
通常,在结束阶段不发生引导错误,或者如果发生,则其之后不发生使引导错误的产物可见所需的额外扩增。并且,如实施例10所示,可以使用“ColdStop(冷终止)”方案来在晚期阶段进行探针退火-解链分析,然后为额外循环重新起始扩增,直到达到结束阶段,此时可重复探针退火-解链分析。如实施例10所示,当在探针退火-解链分析之前未使用实时分析时,重复间发散较少,因为通过在每个热循环中省略检测步骤减少了III型引导错误的频率。
虽然不愿受任何理论束缚,但我们推论,修饰的双链寡核苷酸(如本文所述)直接与DNA聚合酶相互作用,从而抑制所有类型的引导错误,即I型、II型、III型和引物二聚体。我们相信,当添加物为双链时,优选结合到DNA聚合酶的的5’核酸外切酶域,但如果以足以超过饱和5’核酸外切酶域的浓度加入,则也结合到DNA聚合酶的聚合酶域。从经验来看,25μL反应体积中每1.25单位Taq DNA聚合酶300-600nM浓度的添加物可足以饱和5’核酸酶域和聚合酶域。
虽然不愿受任何理论束缚,但我们推论,通过在低于引物退火温度的温度下饱和两个域,通过质量作用和由于修饰基团引起的结合的组合而有效停止聚合酶,添加物(如本文所述)阻止I型引导错误。在高于引物退火温度的温度下,添加物可在不饱和5’核酸外切酶域和聚合酶域的浓度下使用。在这些温度下,添加物优选结合到并且选择性抑制5’核酸外切酶域的活性,同时留给聚合酶域极大自由来进行正确杂交的引物的延伸。通过选择性结合到5’核酸外切酶域,添加物通过变构效应增加聚合酶域的选择性。
虽然不愿受任何理论束缚,我们推论,通过可用于针对特定目的来选择一个或多个添加物的方式,修饰基团(例如Dabcyl基)有助于添加物的功能。甚至一个3’端修饰基团都可抑制潜在地由添加物自身导致的引导错误。然而,3’端修饰基团,无论一个还是两个在双链寡核苷酸上,不会提高聚合酶对在引物3’端的错配的选择性起作用。另一方面,5’末端的修饰基团,特别是两个5’修饰基团,可显著提高该聚合酶选择性。在双链寡核苷酸两个链的一个端上包括修饰物(即,一个5’修饰物和一个3’修饰物)可显著提高选择性,即使双链寡核苷酸不是平端的。对于选择性增强来说,在双链寡核苷酸的两个端上具有两个修饰物可比仅在一个端上具有两个修饰基团更好,但具有4个修饰基团的双链寡核苷酸往往比具有一个、两个或三个修饰基团的双链寡核苷酸更能降低聚合反应的效率。我们推论,原因在于,具有四个修饰基团的添加物比具有较少修饰基团的添加物更有效地结合到聚合酶域。
I型引导错误的抑制
添加物包括双链寡核苷酸,其位于或靠近链末端(即在链的末端区)通过加成1、2、3或4个修饰基团(例如Dabcyl修饰基团)被修饰。在一些实施方案中,存在2-4个此类基团,而在一些实施方案中,这些基团共价连接到末端核苷酸。在实施例中,如本文所述的添加物,无论单一添加物还是混合物,由前缀“EP”指示以使其区别于用于比较而描述的其它添加物。实施例1表明添加物抑制I型引导错误而不导致额外的引导错误。在该实施例中,使用了产生错误产物(与引物对定义的产物不同的产物,如由解链分析所确定)的LATE-PCR扩增。错误产物的产生指示I型引导错误。在此扩增中,尝试将包含具有相同长度(16个核苷酸)但不同序列的未修饰双链寡核苷酸的两个不同添加物作为对照添加物。一个添加物(16merA)以至少300nM的浓度加入使得反应产生正确产物(图1)。另一个添加物(16merB)则不会(图2),甚至当以600nM或1000nM的浓度加入时也不会,并且实际上导致引导错误。此不一致性符合Kainz等人的教导:双链寡核苷酸可能抑制引导错误或可能导致引导错误。用添加物重复该测定,所述添加物为导致引导错误的寡核苷酸(16merB)的修饰,该修饰包括一个或两个末端Dabcyl修饰物。相比于16merB(图2),包括600nM浓度的单一Dabcyl修饰物、添加物EP048(图3)或添加物EO049抑制引导错误,包括由未修饰低聚物导致的引导错误。包括仅300nM浓度的两个Dabcyl修饰物、添加物EP027时能抑制引导错误,并且当以仅100nM浓度加入时提供改善(图4)。如包含不同浓度的添加物EP027(图5)的反应的动力学分析所示,300nM浓度的添加物EP027消除重复间发散,并且认为300nM为此测定中的最佳浓度。
用长度12到30个核苷酸的若干其它未修饰双链寡核苷酸来重复实施例1的测定。实施例1中所报道的结果证实就抑制或导致I型引导错误来说未修饰寡核苷酸是不一致的。如实施例1中所报道,还用许多双链寡核苷酸重复该测定,所述双链寡核苷酸具有8-22个核苷酸的长度范围并且具有两个Dabcyl修饰物、两个地高辛配基修饰物、四个Dabcyl修饰物、或四个地高辛配基修饰物。结果证实如本文所述的添加物抑制I型引导错误。这些结果还显示出Tm对添加物的影响。(在本申请中,添加物的Tm是指未修饰双链序列的计算Tm,如上所定义。修饰物往往会稍微提高实际Tm,也许提高1-2℃,读者可纳入考虑)。为抑制I型引导错误,优选的是,直至或近乎至引物退火温度和引物Tm时维持双链的添加物。在实施例1中,第一次10个循环的引物退火温度为55℃。虽然在实施例1中,在600nM浓度的所有情况下用Tm范围为37℃到63℃的添加物获得了良好结果,但其仅为添加物EP021,具有最低Tm的添加物在300nM下也不提供良好结果。在100nM和50nM浓度下表现最佳的添加物的Tm至少为60℃。为抑制PCR扩增反应中的I型引导错误,添加物的Tm可至少为32℃,更通常为至少50℃,并且更优选为至少60℃。
作为对本文所述添加物抑制I型引导错误的一致性的进一步检查,我们使用不同引物进行不同靶序列的LATE-PCR测定。在此测定中,如实施例2中所报道,我们比较了12个添加物与在实施例1的第一部分的测定中表现良好的未修饰双链寡核苷酸(寡核苷酸22merA)。添加物均具有22个核苷酸的长度、若干不同序列、和两个、三个或四个末端Dabcyl修饰物的若干不同构型。所有这些在300nM浓度下在抑制引导错误方面至少与添加物22mer A一样好,并且在仅100nM的较低浓度下几乎其中的一半也能达到相同效果。图6为添加物EP003和添加物22merA的解链曲线,表明只有100nM浓度的添加物抑制引导错误。
实施例9示出定量LATE-PCR测定以在第一热循环之前测量DNA聚合酶的聚合酶活性。相同的测定可用于定量和比较添加物的DNA聚合酶抑制能力,其可在宽范围的浓度、温度和孵育时间上进行测定。初始反应混合物包括高浓度的两个寡核苷酸(分别62个和75个碱基对),该寡核苷酸能够在其3’端处退火至彼此上以形成杂交物,该杂交物为27个碱基对长并且具有60℃的计算Tm。它们在5’端上也具有引入部位。扩增引物未包括在初始反应混合物内。反应的热曲线是以在50℃下等温浸泡10分钟起始。在此步骤期间,重叠的寡核苷酸可引入其自身,即,杂交并且通过活性DNA聚合酶延伸。如果这种情况发生,则将为引物产生双链靶标的拷贝,其在热循环之前加入反应混合物。在50℃长时间孵育期间聚合酶活性的活性抑制将减少该步骤期间形成的靶标拷贝数。
在50℃长时间孵育之后,加入高Tm引物,并且进行2步LATE-PCR扩增以扩增已制备的任何靶标。用于扩增的引物退火温度(72℃)远高于重叠核苷酸的Tm,从而不产生额外双链靶标。在此测定中,生成可探测水平产物所需的循环次数(以SYBR Green或过剩引物链的探针来观察)取决于在部分互补低聚物的初始等温孵育期间产生了多少全长链。这又取决于在等温孵育期间DNA聚合酶的活性,因为存在/不存在已知组合物和浓度的任何潜在酶抑制剂(此类抑制剂),已在冰上并在重叠寡核苷酸加入之前首次组装反应混合物时被加入反应混合物中。
我们在此定量分析中测试了添加物,包括Tm处于或低于50℃孵育温度的添加物(EP020,Tm 50℃;EP022,Tm 45℃)和Tm显著高于孵育温度的添加物(EP046,Tm 67℃)。较低Tm的添加物在50℃孵育期间可能为基本上至少为单链,而高Tm添加物EP046可能为双链。低Tm添加物掺入反应混合物未引起CT延迟,但600nM浓度的EP046的掺入引起CT延迟,无论聚合酶为Taq还是Taq加抗体。添加物EP046的动力学曲线示于图13中。图13表明,在不存在任何DNA聚合酶抑制剂的情况下,重叠寡核苷酸的3’端相互杂交并且延伸。加入具有用于热启动的聚合酶的抗体部分抑制I型引导错误达约1000倍,但进一步加入600nM EP046抑制I型引导错误额外10倍。
实施例16报道用具有6个核苷酸长度的单链突出端和22个碱基对的双链区域的添加物的类似测试。添加物均含有相同的链序列,但不同的是修饰物(该实施例中为Dabcyl基)的数目和位置。两种个别链形成发夹,如图18C所示。测试方法包括在50℃下等温浸泡1分钟(而不是实施例9中的10分钟),然后在冰上孵育并随后LATE-PCR扩增。解链曲线分析表明具有两个修饰物(图19A)和三个修饰物(图19B、图19C)的添加物减少了不正确产物的产生,并且具有四个修饰物(图19D)的添加物完全抑制其产生。
实施例20报道根据实施例9的测试,其在预备阶段期间更严格地隔离了I型引导错误。通过使用在PCR退火/延伸温度下变为单链的添加物,消除了可能的II型引导错误。基于实施例20报道的结果,我们断定:a)热启动抗体不完全抑制DNA合成并且在抗体存在下生成的大多数产物是I型引导错误所引起;b)在冰上孵育期间合成的产物大部分为I型引导错误的结果;c)添加物EP010用于提高产物冰上延伸的特异性,并且因为大多数冰上产生的产物是I型引导错误的结果,所以EP010抑制了大部分冰上引物延伸事件。因为含添加物EP010的扩增产物的解链曲线(图23E)表明,双链形式在72℃下不再存在,该温度为在扩增时引物退火和延伸进行的温度,实施例20中所观察的EP010的效果完全是由于起始扩增前在50℃和冰上孵育时EP010活性所致。实施例9中所用添加物的相同分析表明,它们具有高于EPO10的解链峰(未示出),因此实施例9中添加物的效果并不仅严格归因于扩增前步骤,而且还归因于扩增期间的步骤。
抑制II型引导错误和增加PCR反应的聚合酶选择性
添加物可抑制II型引导错误和提高DNA聚合酶对引物的杂交3’端核苷酸的选择性。为测定在LATE-PCR测定中在扩增期间在限制性引物的3’端核苷酸上错配的选择性,我们扩增完全互补于两种引物的靶标(匹配靶标),并且我们分别扩增完全互补于过剩引物但包含对限制性引物的3’端核苷酸的单一错配的靶标。或者,如下文所述并且在实施例19中所显示,3’端错配可通过使用阻断物寡核苷酸来产生。我们通过DNA染料检测双链产物。“选择性”为介于来自错配靶标的扩增信号的CT与来自匹配靶标的扩增信号的CT差异(ΔCT)。当在不含添加物的样品上进行时,该测定可显示聚合酶对引物/匹配靶标的基本选择性超过引物/错配靶,以及引物/匹配靶的扩增的基本效率。对于Taq DNA聚合酶,ΔCT可能少于两个扩增循环。添加物引起的选择性提高为由扩增反应混合物中包括添加物所引起的ΔCT的增益。
我们在该选择性测定中测试了未修饰双链寡核苷酸和多个添加物。在实施例3中报道了一式三份的运行的测定结果。基于三次重复的平均,所报道的CT差异(ΔCT)为选择性的提高。未修饰的双链寡核苷酸22merA,尽管Tm稍微高于测定的引物退火温度,但通过小于两个CT单位在多达300nM的浓度下也提高了Taq DNA聚合酶其自身的基本选择性。我们测试了具有相同长度(22个核苷酸)和具有两个、三个、或四个Dabcyl修饰物的不同构型的许多添加物。如在实施例3中所报道,两个、三个、或四个Dabcyl修饰物的大多数构型显著提高聚合酶的选择性,从而减低了其II型引导错误的倾向。如在实施例3中进一步报道,我们还测试了用于添加物和荧光素(FAM)而不在添加物中用作修饰基团的三个其它修饰物。在至少一些双链寡核苷酸中,相比于添加物22merA和相比于22个核苷酸长的具有四个FAM修饰物的寡核苷酸,修饰物地高辛配基、香豆素和淬灭剂QSY21中的每一个均显著提高选择性。
如实施例17中所报道,我们相似地用不同量的3个添加物测试了扩增,所述添加物具有22个碱基对的双链区域和6个核苷酸长的单链突出端。添加物的序列在实施例16中给出。添加物包含两个形成发夹的链,如图18C中所示。具有两个和三个Dabcyl基作为修饰物的此类添加物示出大于3个CT单位的选择性(ΔCT)的适当提高。选择性的最大增益是用具有4个Dabcyl基作为修饰物的添加物来实现的,即大于6个CT单位。
添加物还可在常规的对称PCR扩增中抑制II型引导错误和提高聚合酶选择性。实施例11报道用于两个靶序列的对称PCR测定,一个完全互补于两个引物,一个完全互补于一个引物但含有相对另一引物3’端核苷酸的错配。该测定既在反应混合物中无添加物时进行,也在反应混合物中具有两个添加物的组合时进行。该组合(命名为EP043)包括组合浓度为300nM的具有Dabcyl修饰物的两个双链寡核苷酸。在实施例11的测定中,Platinum Taq DNA聚合酶、热启动DNA聚合酶和高度辨别等位基因-特异性引物对的组合相对于错配靶标优选以7.84CT值扩增匹配靶标。该检测特异性可能等同于在两个DNA靶标的理论混合群体中在超过229个错配靶标中检测1个匹配靶标(即0.43%预期靶标)。与之相比,将添加物EP043加入相同的对称PCR测定提高了有利于匹配靶标的特异性由另外4.75CT值到12.59CT值,这可能等同于在超过6,615个错配靶标中检测1个匹配靶标(即0.02%),对应于在检测特异性中提高26.7倍。
在实施例5中报道的实验中,我们通过不用添加物、用低Tm添加物(EP020(Tm 51℃))和用高Tm添加物(EP013(Tm 62℃))进行了一系列LATE-PCR扩增。该实验包括在高度严格条件(高退火温度)、中等严格条件和相当不严格条件(相对于引物Tm的低退火温度)下使用不同引物退火温度来测试扩增反应。当严格性降低时,引导错误问题通常恶化。测定为用于两个靶序列的双重测定,每个序列均具有其自身的引物对和其自身的检测探针。
探针为在杂交到正确扩增子后发荧光的分子信标探针。图9A-9F中报道了在首先的50个循环上的探针荧光的动力学曲线。
图9A示出,在该扩增反应中,Platinum Taq DNA聚合酶(一种热启动聚合酶)未能抑制I型和II型引导错误,即便是在严格条件下:对于所有循环65℃退火温度。相比之下,两个添加物在所用浓度下能够抑制(图9B和9D)。在首次20个循环(退火温度60.7℃)期间低严格性情况下,在退火温度下不为双链的低Tm添加物EP020在扩增期间(图9C)未抑制II型引导错误,但较高Tm添加物EP013能抑制(图9F)。这表明,为抑制在特定温度发生的引导错误类型,添加物应在该温度下为双链。对图9D-9F的比较表明,用添加物EP013,对首次20个循环使用严格退火条件(66.5℃)实现了最少的重复间发散,并且在最不严格条件(60.7℃)下比在中等严格性(64.2℃)下的发散更少。后一种结果的解释在于,事实上,双链的浓度(添加物的作用浓度)在较低退火温度下较高,说明了添加物浓度和引物退火温度间的相互关系。从图9D-9F中可知,用添加物EP013,一个靶序列在反应中扩增显著不如另一产物序列有效。我们发现,通过将用于效率较低的扩增的限制性引物浓度从50nM增加到100nM,可大大减小差异。
III型引导错误的抑制
添加物可抑制III型引导错误。实施例13报道一种实验,其中LATE-PCR反应进行到65个循环,足以发生III型引导错误并且产生由另一扩增子链引导一个扩增子链而形成的长双链产物。我们测试了:不用添加物的扩增;用Tm十分接近于58℃引物退火温度(添加物EP047,Tm 59.1℃)的添加物的扩增;和用添加物混合物的扩增,在混合物中,将少量(仅约十分之一)的添加物EP047替换为在高于退火温度的温度下为双链的添加物。在该实施例中,我们使用了较高Tm的添加物,其Tm(67.4℃)基本上高于退火温度。不用添加物的三次重复扩增的解链曲线表明,在65个扩增循环之后,所检测产物的Tm高于预期产物,说明发生了产物进化。动力学曲线表明在稳定期中SYBR信号发生增加,也说明发生了产物进化。当限制性引物的5’端通过加入一对A-核苷酸来修饰时,结果仍然相同:解链曲线示出与所需扩增子相比产物具有更高的Tm。包括600nM浓度的EP047及未修饰限制性引物有少许帮助:其将产物进化延迟了若干循环,并且在三次重复的两次中的某些所检测产物具有正确Tm。包括600nM的EP047和使用修饰的限制性引物显著减少了产物进化并且在3次重复中的一次中完全阻止了产物进化。当使用未修饰限制性引物时,包括600nM总浓度的添加物混合物EP043显著降低了产物进化并且在3次重复中的一次中完全阻止了产物进化。包括600nM的EP043和使用修饰的的限制性引物显著减少了产物进化并且在3次重复中的两次中完全阻止了产物进化。因此,经设计具有高于引物退火温度的Tm的低浓度添加物可抑制III型引导错误。另外,效果可被增强,如果使扩增子链的3’端富含AT-核苷酸,这可(必要时)通过修饰限制性引物的5’端来实现。
实施例15包括针对示出严重III型引导错误的RNA靶序列的无添加物对照扩增测定。还表明,包括添加物(双链寡核苷酸及双链寡核苷酸的四链混合物)可抑制对照中所见的III型引导错误。实施例15显示添加物、反应混合物和方法未抑制用于将RNA靶标转变成cDNA靶标的逆转录酶。
多重反应
添加物可以使多种引物对与多种靶序列高度多重反应。实施例8报道12重反应,即在单一反应混合物中使用12个引物对12个靶序列的重复扩增。该扩增反应为65个循环的LATE-PCR扩增。所述靶序列被包括作为人类线粒体基因组DNA,其以1000个、100个和10个启动拷贝数包括在反应混合物内。除了不用添加物的对照扩增以外,在反应混合物中还包括浓度为300nM和600nM的添加物EP011。在扩增之后,反应混合物经受电泳分离以确定是否制备了12个预期产物。另外,进行双脱氧法测序以评价扩增子。电泳凝胶图像(图12)示出,以1000个拷贝起始但不用添加物的扩增不能产生12个产物的预期组,但用1000个拷贝加上浓度为300nM和600nM的添加物EP011起始的扩增产生了12个产物。凝胶显示,在该反应中300nM浓度的EP011不能完全抑制引导错误,如通过轻量级产物带所证实。当添加物EP011以600nM浓度包括于反应混合物中时,引导错误产物未见于该凝胶中。作为对此终产物的进一步分析,对其测序。测序结果表明,已产生了足够量的12个扩增子中的每一个以允许通过简化的Dilute’N’Go方案进行双脱氧法测序。当靶标的起始数目减少到100个和10个拷贝时,发现情况并非如此。1000个拷贝的线粒体DNA的结果表明,在扩增前和在扩增期间,引导错误均被成功抑制。
添加物混合物
添加物的混合物(添加物混合物EP043)在上文结合实施例13作了讨论。使用混合物的原因可(例如)通过参考实施例1来理解。结果表明,I型引导错误的抑制通常需要适当高浓度的添加物。然而,图5中的动力学曲线表明,随着Tm显著高于引物退火温度的添加物的浓度提高时,聚合反应的效率倾向于降低。实施例13也表明,可能需要高Tm添加物来抑制III型引导错误。添加物的混合物可被设计成抑制两种类型的引导错误,而使扩增效率的减低减小化。在一个实施方案中,使用了包括Tm接近退火温度的较高浓度(300nM到1000nM)的添加物和在高于退火温度的温度时为双链的较低浓度(25nM到300nM)的添加物的混合物,具体而言,Tm高于退火温度若干度的添加物(或较高退火温度,如果在反应中使用了两种添加物)可用于抑制两种类型的引导错误。添加物的混合物可以包含4个不同链,即未共有共同链的2个双链添加物。可选地,添加物的混合物可以包含3个链,即共有共同链的2个双链添加物。后一种方法减少了扩增混合物中所包括的不同链的数目。
我们在实施例3所述的聚合酶选择性测定中测试了添加物的混合物(未修饰的双链寡核苷酸的混合物和添加物的混合物)。实验结果实施例4中有所报道。所测试混合物均为3链混合物,其中两个添加物共有共同链。混合物均包括:高Tm添加物,其Tm为67.4℃,高于引物退火温度(在本实验中为62℃)若干度;和低Tm添加物,其Tm在57.4-59.1℃的范围内,即稍微低于退火温度。两种混合物,添加物041和添加物042,含有未修饰的双链寡核苷酸。当针对较高Tm杂交物以75nM浓度加入和针对较低Tm杂交物以325nM加入时,具有未修饰的寡核苷酸的两种混合物均仅相对轻微地提高聚合酶的选择性(小于两个扩增循环)。我们还测试了添加物的4种混合物。在两个添加物(EP041,EP042)中,两个双链寡核苷酸均含有3个Dabcyl修饰物,在一个添加物(EP043)中,较高Tm的寡核苷酸含有3个Dabcyl,而较低Tm的聚核苷酸含有4个Dabcyl;并且在一个添加物(EP045)中,两个寡核苷酸均含有4个Dabcyl。所有4个混合物均比添加物041和042提高更多选择性。图7A-7D和图8A-8D分别为在600nM的相同总浓度下但较高Tm杂交物量从25nM到100nM变化的情况下混合物EP043和EP045的动力学曲线。这些曲线显示添加物和重复间发散所引起的抑制作用。ΔCT结果和动力学曲线一起表明,对于每个混合物而言,可能存在混合物中的较高Tm杂交物的最佳量。对于混合物EP043,(a)即便最低浓度(25nM)的高Tm组分也提高聚合酶选择性,(b)通过增加高达100nM的高Tm组分的比例并未更多地提高聚合酶选择性,和(c)制剂中的任何一种均未显著抑制引物到其匹配靶标的扩增效率。对于混合物EP045来说,(a)即便最低浓度(25nM)的高Tm组分也比EP043在更大程度上提高聚合酶选择性,(b)聚合酶选择性提高高Tm组分浓度的比例,(c)所有剂型均不显著地抑制其匹配靶标的引物的扩增效率,并且(d)抑制程度随高Tm组分比例而增加。我们判断混合物EP043的最佳剂型为75/600/525nM,并且我们判断混合物EP045的最佳剂型为50/600/550nM,当这些剂型具有重复间的低发散。
在实施例19中,我们还在测定中测试了添加物混合物EP043,其中通过使用阻断物寡核苷酸产生了3’端错配。该测定的方案一般性示于图21A和图21B中。图21A、21B示出了两个双链靶231、232,它们在限制性引物的结合位点(箭头233)近下游存在一个碱基对的差异(过剩引物链中的G或A)。过剩引物的结合位点(箭头234)也在两个靶标间被转变。寡核苷酸阻断物235为互补于,并且结合到靶标231(图21A),其为待选择的“错配”靶标。阻断物235为等位基因辨别的,并且错配于靶232(图21B)并且未结合至该靶232。因此,引物233完全结合至靶232并且被延伸,但引物233的3’端不能结合到靶标231,从而防止延伸。在图21A中,虚线242为由引物233延伸产生的限制性引物链。在图21B中,虚线243为通过延伸引物233产生的限制性引物链。阻断物235与末端荧光团236和末端淬灭剂237一同示出,但所有所需的是阻断物235具有阻断的3’端核苷酸,以便在扩增期间不可通过DNA聚合酶延伸。在图21A、21B中所示的具体实施方案中,靶标231、232经示出区别为来自阻断物235下游和来自过剩引物234下游的另一碱基对(图21A中的过剩引物链241中的G或图21B中过剩引物链244中的C)。荧光团239和淬灭剂240标记的序列特异性探针238结合到靶标231(“错配”靶标)的扩增产物,但未结合到靶标232的扩增产物,并在杂交后产生信号。探针238在不用于提高聚合酶选择性的意义上为任选的。例如,其可用于扩增产物的解链分析。实施例19表明,就诱导的II型引导错误而言,当添加物降低扩增效率时,以热循环依赖方式延迟了扩增,并且当由于存在添加物所致选择性增强的量度也为热循环依赖性时,选择性的明显增强需要针对效率的热循环依赖性降低来矫正。实施例19中示出了一种方法,用于在存在阻断物的情况下并且存在/不存在添加物的情况下使用一系列靶标稀释反应进行矫正。
我们在上述实施例8的12重反应中使用了添加物混合物EP043,以观察是否能产生足量的所有12个产物用于测序。对于这些实验,我们通过加入富含AT的尾部修饰了限制性引物,并且我们将扩增反应从65个循环扩展到80-90个循环。通过这些修饰,当包括链浓度为50/600/550nM的添加物混合物EP043并且基因组线粒体DNA的起始量为仅100个拷贝或10个拷贝时,以测序所需量成功制备了所有12个预期产物。这些结果表明,在扩增之前和扩增期间成功阻止了引导错误,尽管实际上扩增的延伸长度对III型引导错误的抑制构成严格测试。
在实施例12中,我们在限制性引物的3’端上有所不同的LATE-PCR扩增反应中,测试了总浓度为600nM的混合物EP043。一个反应包括具有富含GC的3’端(GGC)的限制性引物。其它反应包括具有富含AT的3’端(AAG)的限制性引物。相比无添加物的对照,在扩增中包括添加物EP013(3个Dabcyl修饰物,Tm 60℃)及富含GC3’端的引物导致聚合化(4个循环的CT延迟)效率相对很小的降低。然而,相比无添加物的对照,包括相同浓度的相同添加物及具有富含AT 3’端的引物导致效率显著更大的降低(11个循环的CT延迟)。在继续进行70个循环的两个反应中,相比无添加物对照,添加物EP013显著降低4个重复中的发散。
冷终止方案和所有类型的引导错误
通过在用于实时检测的PCR循环中包括低温检测步骤,增加了II型引导错误的可能性。通过延长LATE-PCR扩增以生成单链产物增加了III型引导错误。我们已测试了我们称为“冷终止”的方案,其中,作为对实时、低温检测的替换,在一个或若干个中间点中断扩增反应以便进行可以包括低温步骤的操作。实施例10示出“冷终止”方案,其中操作为解链分析。实施例10中的扩增为使用荧光检测的杂交探针进行的70个循环的2步LATE-PCR扩增。以600nM浓度测试添加物EP010。为了比较,用实时检测进行了扩增。对于实时检测,在扩增循环的每个退火/延伸步骤后加入低温检测步骤(60℃)。作为热循环函数的探针荧光示于图14A中,该图示出用1000个、100个和10个靶序列拷贝起始的扩增的重复间的适度发散。图14A也示出循环70附近开始会聚的初始靶的三个量的曲线。包括实时、低温检测增加了II型引导错误的机会。我们重复用无实时低温检测但具有40个循环后的中断的所有三个起始拷贝数的扩增以在45℃下进行解链起始。然后,我们重新起始扩增以在70个循环后结束,此时进行第二次解链。第一次解链的解链曲线示于图14B中。三个不同起始量的靶的重复有明显区别并且示出很小发散。第二次解链的解链曲线示于图14C中。在循环70附近,初始靶量的三个水平的曲线已会聚,并且检测到很小的发散。
为解释图14B和图14C中所示结果,描述以下内容。如果引导错误由于低温中断而发生,则单链DNA将转变为双链DNA,并且单链产物的量将在循环40和循环70之间下降。此状况并未发生。如果引导错误在40个循环后的中断期间发生,重复间的发散将在循环40和循环70之间增加。此状况并未发生。如果引导错误在中断期间发生,由不同量的初始靶标产生的单链产物量在70个循环之后将不能达到平衡。此状况并未发生。图14A、图14B和图14C的比较表明,添加物EP046在此“冷终止”扩增中完全抑制所有类型的引导错误。具有单个中断的“冷终止”方案消除在循环40前和在循环41后的任何低温步骤。这降低了在除循环41之外的所有循环期间II型和III型引导错误的机会。该第一解链包括在低于引物退火温度的温度下的较长时间(在该实施例中,约15分钟),从而增加了在解链(其可能包括错误引导的3’端的一个延伸)期间引导错误的可能性,作为交换在其它循环中消除低温步骤。该折衷选择可以帮助减少重复间发散。应了解,“冷终止”方案可用于筛选针对其对引导错误的效果来添加物组合物和浓度。
DNA聚合酶的5’核酸外切酶活性的抑制作用
添加物可有效抑制具有5’核酸外切酶活性的DNA聚合酶(例如Taq DNA聚合酶和Tfi(+)DNA聚合酶)的该活性。(此效果不适用于不具有该活性的DNA聚合酶,例如Klenow片段,其不具有5’核酸外切酶域,和Tfi(-)DNA聚合酶,其包含修饰的而使其失活的5’核酸外切酶域)。我们发展了实施例6中所报道的测定,作为不依赖引物的方式用于测量添加物对DNA聚合酶的5’核酸外切酶活性的抑制效果。在该测定中,荧光团和淬灭剂双标记的不可延伸探针被杂交到不具有反应混合物中所包括的引物的靶标。然后,反应混合物经受热振荡,其中温度在45℃与60℃之间循环45次,在此期间,实时检测探针荧光。探针裂解导致指示聚合酶的5’核酸外切酶活性的荧光增加。若干添加物以300nM的浓度在此测定中进行了测试,并且与包括探针但没有靶标的对照测定进行了对比。在对照测定中,无杂交物形成,并且探针未裂解。在包含探针和靶而无添加物的测定中,荧光发生较大增长。在包含探针、靶和添加物的测定中,相比于具有靶标而无添加物的测定,荧光增长明显减少,表明显著抑制了5’核酸酶活性。分别具有3个和4个共价连接的Dabcyl基的添加物EP004和EP001,完全抑制了对探针的不依赖引物的5’核酸外切酶裂解。添加物EP008(在其各5’核苷酸上具有共价连接的Dabcyl基)也完全抑制此测定中的引物独不依赖5’核酸外切酶活性。相比之下,添加物EP009(在其每个3’核苷酸上具有共价连接的Dabcyl基)仅部分抑制此测定中的不依赖引物的5’核酸外切酶活性。结果表明双链寡核苷酸上的Dabcyl修饰物基团可增强以位置依赖性方式抑制5’核酸外切酶活性。优选在添加物的两个5’端上的Dabcyl基,与两个Dabcyl基相比,优选的是三个和四个Dabcyl基。加成实验显示针对Tfi(+)DNA聚合酶的一致结果。
如实施例18中报道,我们以不同量的三个添加物进行实施例6的温度-振荡测定,所述添加物具有22个碱基对的单链区域和6个核苷酸长的单链突出端。添加物的序列在实施例16中给出。添加物包含两个形成发夹的链,如图18C中所示。此类添加物包括两个、三个、或四个Dabcyl基作为修饰物。如图20所示,具有两个Dabcyl修饰物的添加物以浓度依赖性方式抑制了Taq DNA聚合酶的不依赖引物的5’核酸外切酶活性,200nM和400nM的浓度较大地抑制活性并且600nM的浓度几乎完全抑制活性。具有三个和四个修饰物的所测试添加物还以浓度依赖性方式抑制了聚合酶的不依赖引物的5’核酸外切酶活性,但程度不及图20中所示的结果。
为量度在PCR扩增期间对5’核酸酶活性的抑制作用,我们使由实施例5中所述LATE-PCR扩增产生的探针和扩增子经受杂交条件,然后解链分析。探针的反应混合物单独地也经受解链分析。实施例7中报道了该实验,并且解链曲线示于图11A和图11B中。在图11A中比较单独来自探针和来自无添加物的扩增的荧光表明某些探针分子被裂解:解链完成后来自扩增反应的荧光没有下跌到探针荧光的水平。图11B表明当包括600nM浓度的添加物EP013的扩增反应混合物时,由于聚合酶(在这种情况下为Taq DNA聚合酶)的5’核酸酶活性导致的探针裂解被抑制:解链完成后来自扩增反应的荧光下跌到探针荧光的水平。
作为PCR引物的添加物
实施例14示出PCR引物形式的添加物。为将用于LATE-PCR扩增的典型过剩引物转变成抑制I型引导错误的添加物,进行了两个操作:首先,修饰基团(在这种情况下为Dabcyl基)被添加到引物5’端;其次,部分互补于过剩引物且具有5’端Dabcyl基和3’端Dabcyl基的反向互补链以100、200或300nM的浓度被包括于反应混合物。通过将若干错配引入反向互补链(可选地,可降低反向互补链的长度),相对于由过剩引物和靶序列形成的杂交物的Tm,过剩引物和反向互补链形成的杂交物的Tm降低。由过剩引物和反向互补链形成的杂交物包括三个修饰基团。双链扩增产物的解链分析表明,在反应混合物中包括200nM或300nM浓度的反向互补序列产生具有极少到没有其它产物的期望的扩增子,并且解链曲线显示极少的重复间发散。相比之下,反应混合物中无反向互补序列的扩增产生预期扩增子和较低Tm产物的混合物,并且解链曲线显示出重复间发散。
上述实施例试图示例添加物、反应混合物和方法的某些优选实施方案并且不应被解释为穷举性的或限制性的。许多变化是可能的并且将对所属领域的技术人员显而易见。例如,可使用除PCR以外的扩增方法,并且添加物可以为除双链DNA分子之外的分子的修饰版本。其它变化将对所属领域的技术人员显而易见。
实施例
实施例1.I型引导错误的抑制
使用单个引物对和单个靶标进行LATE-PCR测定以生成双链和单链扩增子。通过在扩增末端的解链分析来表征双链产物。除双链寡核苷酸之外的反应成分,以及反应条件如下。
限制性引物5′CCTGGATTATGCCTGGCACCAT(SEQ ID No.1)
过剩引物5′CCTTGATGACGCTTCTGTATCTA(SEQ ID No.2)
靶标
5′CCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGT
GTTTCCTATGATGAATATAGATACAGAAGCGTCATCAAAG
(SEQ ID No.3)
在由以下组成的25μl体积中进行LATE-PCR扩增:1X PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、50nM限制性引物、1000nM过剩引物、0.24X SYBR Green(Invitrogen,Carlsbad,CA)、1.25单位的Taq DNA聚合酶(Invitrogen,Carlsbad,CA)及人类基因组DNA的大约1000个基因组(Sigma-Aldrich,St.Louis,MO)。使用浓度为50、100、300、600、和1000nM的添加物,对每个添加物进行一式三份的扩增反应,以及无添加物反应。
这些反应的热曲线条件如下:95℃/10s-55℃/30s-70℃/30s,10个循环,然后95℃/10s-50℃/30s-70℃/30s,40个循环,然后,在55℃开始解链,间隔30秒递增1℃直到97℃。
使用双链DNA产物的SYBR Green荧光(-dF/dT,SYBR)的第一衍生物,通过解链曲线分析在50个循环结束时分析反应。另外,针对某些反应,分析产生双链产物的动力学(作为热循环的函数的SYBR强度读数)。
A.16mer
16个核苷酸长的以下添加物中的每一个均包括在起始反应混合物中(末端阻断物C3为3碳连接链):
16merA.5′CACGACCTCGCCGACC(C3)
(C3)GTGCTGGAGCGGCTGG 5′(SEQ ID No.4)
16merB.5′CACGACCTCGCTGACC(C3)
(C3)GTGCTGGAGCGACTGG 5′(SEQ ID No.5)
EP048:在顶链的3’端具有一个Dabcyl的16merB(SEQ.ID No.6)
EP049:在底链的3’端具有一个Dabcyl的16merB(SEQ ID No.7)
EP027:具有两个Dabcyl(一个在每个链的3’端)的16merB(SEQID No.8)
无添加物下,扩增产生除“正确”产物以外的产物,即,除了引物定义的双链产物(扩增子)以外的产物。包含300nM浓度的添加物16merA的三次重复扩增反应的解链曲线示于图1中,指向下方的箭头标识了预期产物。圆圈11为三次重复的曲线。判断该扩增十分良好,因为(1)制备了正确产物而普遍排除不正确产物,并且(2)三次重复十分一致(重叠曲线)。较高浓度的16merA获得了相同结果。在较低浓度(50nM,100nM)下,发现了大量不正确产物,并且三次重复不一致。
300nM浓度的添加物16merB的解链曲线示于图2中。圆圈21为三次重复的曲线。判断该扩增十分不可接受,因为发现大量不正确产物,并且三次重复不一致。在任何所用浓度下,均未发现扩增生成正确产物而普遍排除不正确产物,并且在任何浓度下重复均未高度一致。所述不正确产物显著不同于无添加物情况下获得的不正确产物,指示添加物16merB导致引导错误。
600nM浓度的添加物EP049的解链曲线示于图3中,通过指向下方的箭头标识预期产物。圆圈31为三次重复的曲线。判断该扩增十分良好,因为(1)制备了正确产物而普遍排除不正确产物,并且(2)三次重复十分一致(重叠曲线)。用较高浓度获得了相同结果,但较低浓度在重复间不一致并且提供了不正确产物。添加物EP048示出100nM和600nM浓度的更一致产物,指示出两个链均能够引导错误。
100nM浓度的添加物EP027的解链曲线示于图4中,通过指向下方的箭头标识预期产物。圆圈41为三次重复的曲线。判断该扩增为良好而非十分良好,因为(1)制备了正确产物而普遍排除不正确产物,并且(2)三次重复相当地一致,曲线间振荡较小。在该添加物的较高浓度下,判断结果为十分良好,因为三次重复十分一致。然而,在50nM下,制备了大量的不正确产物,并且重复并不一致。
EP027的扩增动力学分析示于图5中。圆圈51为100nM浓度的三次重复;圆圈52为300nM浓度的三次重复;圆圈53为600nM浓度的三次重复;并且圆圈54为1000nM浓度的三次重复。在100nM浓度下,稳定区域中的三次重复间存在发散。包含300nM的三次反应具有完全重叠的动力学并且比包含600或1000nM的反应具有更高的效率。因此,300nM的EP027在此测定中为最佳量。
B.其它添加物
由未添加修饰物的长度为12个、18个、20个、22个和24个核苷酸的双链寡核苷酸组成的若干添加物以50nM、100nM、300nM、600nM和1000nM的浓度在该实施例的测定中进行试验。如在A部分中讨论的16mers,结果是不一致的。例如,在试验的三个不同12mer中,一个在所有浓度下未能产生正确产物,一个仅在1000nM浓度下产生正确产物,并且一个在600nM和更高浓度下产生正确产物。在试验的八个较长寡核苷酸中,甚至在600和1000nM的最高浓度下,一半产生了大量的不正确产物。在300nM浓度下,仅三个产生了正确产物而普遍排除不正确产物,并且没有一个在更低浓度下做到如此。我们判断添加物22merA在此测定中为最佳(末端阻断物p为磷酸酯):
22merA.5′GGAGCAAAATAGCAATGAGGTAp
          pCCTCGTTTTATCGTTACTCCAT 5′(SEQ ID No.9)
还测试了由包括两个或四个末端修饰物并且长度为8个、11个和22个核苷酸的双链寡核苷酸组成的若干添加物。修饰物为Dabcyl或地高辛配基(DIG):
添加物EP010.5′Dabcyl GGTCAGATGAAAATGATACGTG Dabcyl
               Dabcyl CCAGTCTACTTTTACTATGCAC Dabcyl 5′
               (SEQ ID No.10)
添加物EP018.5′GGTCAGATGAAAATGATACGTG Dabcyl
        Dabcyl CCAGTCTACTTTTACTATGCAC 5′
        (SEQ ID No.11)
添加物EP020.5′Dabcyl GAAATAAAATAAAAATAAAATADabcyl
               Dabcyl CTTTATTTTATTTTTATTTTAT Dabcyl 5′
               (SEQ ID No.12)
添加物EP021.5′Dabcyl CAGCCGGC Dabcyl
               Dabcyl GTCGGCCG Dabcyl 5′(SEQ ID No.13)
添加物EP022.5′Dabcyl CCGCCGGC Dabcyl
               Dabcyl GGCGGCCG Dabcyl 5′(SEQ ID No.14)
添加物EP023.5′Dabcyl GCGTACGCAGG Dabcyl
               Dabcyl CGCATGCGTCC Dabcyl 5′(SEQ ID No.15)
添加物EP024.5′Dabcyl GCGTACGAAGG Dabcyl
Dabcyl CGCATGCTTCC Dabcyl 5′(SEQ ID No.16)
添加物EP026.5′DIG GGAGCAAAATAGCAATGAGGTA DIG
               DIG CCTCGTTTTATCGTTACTCCAT DIG 5′
               (SEQ ID No.17)
添加物EP028.5′Dabcyl TGAGAGATGAAAATGATCGAGT Dabcyl
               Dabcyl ACTCTCTACTTTTACTAGCTCA Dabcyl 5′
               (SEQ ID No.18)
添加物EP029.5′GGTCAGATGAAAATGATACGTG DIG
            DIG CCAGTCTACTTTTACTATGCAC 5′
            (SEQ ID No.19)
所有这组添加物在等于或小于600nM的浓度下产生了正确产物而普遍排除了其它产物。除了一个(EP021)以外,所有均在300nM或更小浓度下做到如此。添加物EP028在100nM浓度下做到如此,并且添加物EP010在50nM浓度下做到如此。
实施例2.I型引导错误的抑制
在针对具有不同引物的不同靶标的测定使用未修饰的双链寡核苷酸22merA(判断为实施例1中的最佳未修饰添加物)以及若干Dabcyl-修饰的寡核苷酸。在扩增起始之前以100和300nM的浓度将各添加物分别加入LATE-PCR扩增反应混合物。使用双链DNA产物的SYBR Green荧光(-dF/dT,Sybr)的第一衍生物,通过解链曲线分析在50个循环结束时分析反应。另外,针对某些反应分析产生双链产物的动力学(Sybr强度读数作为热循环的函数)。除双链寡核苷酸之外的反应成分以及反应条件如下。
限制性引物5′AAATTGCGTCATTGTTTCACAGGGCCA(SEQ ID No.20)
过剩引物5′AATCTGGGTGGTGGTCATAC(SEQ ID No.21)
靶标
5′AATCTGGGTGGTGGTCATACAGGTCATCACTGTAAAATTCTTTGA
ACTTTTCTGTATATATCTTTGAAAATTTTGGAAAAAAAATGTTGG
AAAACTTAAAAGGCTGTTGCTTTGCTCATATTGGCGGTACATAT
ACAAAAGTGGAAAGGATGAGATTGATTGGCATGGCCCTGTGAA
ACAATGACGCAATTT(SEQ ID No.22)
在由以下组成的25μl体积中进行LATE-PCR扩增:1X InvitrogenPCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、50nM限制性引物、1000nM过剩引物、0.24X SYBR Green(Invitrogen,Carlsbad,CA)及人类基因组DNA的大约1000个基因组(Sigma-Aldrich,St.Louis,MO)。这些反应的热曲线条件如下:25℃下30分钟,然后95℃/10s-62℃/20s-70℃/20s,50个循环,然后以55℃/30s开始解链并且42个循环的1℃递增。(缩写“s”,如20s,表示“秒”。)使用双链DNA产物的SYBR Green荧光(解链曲线分析)的第一衍生物在50个循环结束时分析所有反应。
测试了以下添加物:
添加物22merA.5′GGAGCAAAATAGCAATGAGGTAp
            pCCTCGTTTTATCGTTACTCCAT5′
            (SEQ ID No.9)
添加物EP001.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID NO.23)
添加物EP002.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               pCCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.24)
添加物EP003.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
            Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
            (SEQ ID No.25)
添加物EP004.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.26)
添加物EP005.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT 5′
               (SEQ ID No.27)
添加物EP006.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               Dabcyl CCTCGTTTTATCGTTACTCCAT 5′
               (SEQ ID No.28)
添加物EP007.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
            pCCTCGTTTTATCGTTACTCCAT Dabcyl 5′
            (SEQ ID No.29)
添加物EP008.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               pCCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.30)
添加物EP009.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT 5′
               (SEQ ID No.31)
添加物EP020.5′Dabcyl GAAATAAAATAAAAATAAAATA Dabcyl
               Dabcyl CTTTATTTTATTTTTATTTTAT Dabcyl 5′
               (SEQ ID No.12)
添加物EP052.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               pCCTCGTTTTATCGTTACTCCAT5′
               (SEQ ID No.32)
添加物EP053.5′GGAGCAAAATAGCAATGAGGTAp
               Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.33)
判断300nM浓度的双链寡核苷酸22merA为十分良好,因为(1)产生了正确产物而普遍排除不正确产物,和(2)三次重复十分一致(重叠曲线)。然而,100nM浓度22merA却并非如此,因为其中一个重复并未普遍排除不正确产物。同样,判断所有含Dabcyl添加物在300nM下十分良好。还判断它们中的五个(EP001、EP002、EP003、EP004和EP005)在100nM浓度下为十分良好。图6示出用添加物EP003和用添加物22merA在100nM浓度下的三个重复反应的解链曲线。圆圈61为添加物22merA的三次重复。圆圈62为添加物EP003的三次重复。
实施例3.II型引导错误和聚合酶选择性
我们进行了LATE-PCR测定,其中我们扩增了互补于两个引物(匹配靶标)的靶标,并且其中我们分别扩增了互补于过剩引物但含有对限制性引物的3’端核苷酸的单一错配的靶标。我们实时检测了双链产物,即,在每个PCR循环的引物退火部分期间,通过DNA染料(在这种情况下为SYBR Green)。在存在任何浓度添加物的情况下对3’端错配的选择性为在来自错配靶标扩增的信号的阈值循环(CT)与来自匹配靶标扩增的信号的CT之间的差值(ΔCT)。一式三份地进行扩增反应。CT差值使用三次重复的平均值来计算。用于提高DNA聚合酶的选择性的添加物的效果为具有添加物的CT差值减去无任何添加物的CT差值。在这个和随后实施例中的标题“选择性”下,我们以CT单位(即,作为ΔCT)报道了由添加物的使用产生的CT差值的提高。
引物和单链靶的序列如下:
限制性引物5′CGTAAGATTACAATGGCAGGCTCCAGT
          (SEQ ID NO.34)
过剩引物5′GCCCAAGTTTTATCGTTCTTCTCA(SEQ ID NO.35)
匹配靶标(A).
5′CGTAAGATTACAATGGCAGGCTCCAG
Figure BPA00001462259700531
AGGTTCTAA
GTGCCATGATACAAGCTTCCCAATTACTAAGTATGC
TGAGAA GAACGATAAAACTTGGG(SEQ ID No.36)
错配靶标(T).
5′CGTAAGATTACAATGGCAGGCTCCAG
Figure BPA00001462259700541
AGGTTCTA
AGTGCCATGATACAAGCTTCCCAATTACTAAGTATGCTG
AGAAGAACGATAAAACTTGGGCAA(SEQ IDNo.37)
划线和加粗的核苷酸为其过剩引物链中的互补物将匹配或错配限制性引物的3’端核苷酸的核苷酸。
在由以下组成的25μl体积中一式三份地(三次重复测定)进行LATE-PCR扩增:1X Invitrogen PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、50nM限制性引物、1000nM过剩引物、0.24X SYBR Green(Invitrogen,Carlsbad,CA)、1.25单位PlatinumTaq DNA聚合酶(Invitrogen,Carlsbad,CA)及大约1000个单链靶A(匹配的)或T(错配的)。这些反应的热曲线条件为:95℃3分钟,然后95℃/5s-62℃/20s-72℃/30s,60个循环。对于包含两个靶标的这个和其它测定,我们进行了对照扩增,使用过剩引物(其完全互补于两个靶标)和对照限制性引物(其也完全互补于两个靶标)以确保两个靶标的起始拷贝数相同,在此情况下,两个靶标的CT相同。(如果对照扩增显示起始拷贝数不相同,则有两个选择:重新配制,或者,如果CT差值轻微-如在本文报道的实施例中那样的情况,则矫正所观察到的CT值以针对差值来调整。)
在报道Tm时,其为无修饰物的双链添加物的计算解链温度。本说明书中所述双链添加物的Tm是根据以下文献计算:Markhan和Zuker(2005)DINAMELT web server for nucleic acid melting prediction,Nucleic Acids Res 33:W577-W581,以及Markham和Zuker(2008)UNAFOLD:software for nucleic acid folding and hybridization。在Keith,J.M.编,BIOINFORMATICS,第二卷,Structure,Functions andApplications,No.453于Methods in Molecular Biology,Ch.1,第3-31页(Humana Press,Totowa,New Jersey.ISBN 978-1-60327-428-9。
A.无添加物
该测定在没有添加物的情况下进行。实时检测SYBR Green信号,即,在所有PCR循环的引物退火部分期间。作为扩增循环次数的函数的荧光强度读数表明该酶对匹配靶标具有合适的固有选择性。当在测定中测试添加物时,也包括了无添加物对照,并且从针对添加物的匹配和错配靶序列之间的CT差值上减去针对无添加物对照的匹配和错配靶序列间的CT差值以达到所呈现的选择性提高数目(ΔCT)。
B.无修饰物的双链添加物
以下22个核苷酸长的双链寡核苷酸(命名为“22merA”,其中各链的3′端用磷酸酯(p)加帽以阻止通过DNA聚合酶延伸)以三个不同浓度用作添加物:
22mer A.5′GGAGCAAAATAGCAATGAGGTAp
pCCTCGTTTTATCGTTACTCCAT 5′(SEQ ID NO.9)
选择性的结果(错配靶CT减去匹配靶CT)示于表1中。
表1
  添加物   长度(NT’s)   Tm,℃   浓度,nM   选择性,ΔC T
  22merA   22   63.1   100   0.1
  200   1.2
  300   1.8
C.具有两个Dabcyl修饰物的双链添加物
实施例1(SEQ ID No.5)中所述的双链寡核苷酸16mer B通过以下方式用两个Dabcyl来修饰:将Dabcyl放置于顶链5’端上和将Dabcyl放置于底链3’端上(添加物EP050,SEQ ID No.38);以及将Dabcyl放置于顶链3’端上和将Dabcyl放置于底链5’端上(添加物EP051,SEQ ID No.39)。在上文部分B中描述的双链寡核苷酸22merA(SEQ ID No.9)通过以下方式来修饰:将Dabcyl放置于顶链5’端上和将Dabcyl放置于底链3’端上(添加物EP006,SEQ ID No.28);将Dabcyl放置于顶链3’端上和将Dabcyl放置于底链5’端上(添加物EP007,SEQ ID No.29);将Dabcyl放置于每个链5’端上(添加物EP008,SEQ ID No.30);将Dabcyl放置于每个链3’端上(添加物EP009,SEQ ID No.31);将Dabcyl放置于顶链每个端上(添加物EP052,SEQ ID No.32);以及将Dabcyl放置于底链每个端上(添加物EP053,SEQ ID No.33)。这些添加物的序列在下文给出,并且选择性结果示于表2中。
添加物EP050.5′Dabcyl CAGGACCTGGCTGACC(C3)
               Dabcyl GTGCTGGAGCGACTGG 5′(SEQ ID No.38)
添加物EP051.5′CAGGACCTGGCTGACC Dabcyl
               pGTGCTGGAGCGACTGG Dabcyl 5′(SEQ ID No.39)
添加物EP006.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               Dabcyl CCTCGTTTTATCGTTACTCCAT 5′
               (SEQ ID No.28)
添加物EP007.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
               pCCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.29)
添加物EP008.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               pCCTCGTTTTATCGTTACTCCAT Dabcyl 5′(SEQ ID No.30)
添加物EP009.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT 5′(SEQ ID No.31)
添加物EP052.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               pCCTCGTTTTATCGTTACTCCAT 5′(SEQ ID No.32)
添加物EP053.5′GGAGCAAAATAGCAATGAGGTAp
Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl(SEQ ID No.33)
表2
  添加物   长度(NT’s)   Tm,℃   浓度,nM   选择性,ΔC T
  EP050   16   62.8   200   1.6
  300   2.9
  400   5.5
  EP051   16   62.8   200   1.1
  300   2.7
  400   1.8
  EP006   22   63.1   100   3.5
  300   8.3
  600   12.0
  EP007   22   63.1   100   3.5
  300   7.3
  600   11.5
  EP008   22   63.1   100   1.7
  300   5.8
  600   9.7
D.具有三个Dabcyl修饰物的添加物
在上文部分B中所述的双链寡核苷酸22merA(SEQ ID No.9)通过以下方式修饰:将Dabcyl放置于顶链的每个端和底链5’端上(添加物EP002,SEQ ID No.24);将Dabcyl放置于顶链3’端上和底链的每个端上(添加物EP003,SEQ ID No.25);将Dabcyl放置于顶链5’端上和底链的每个端上(添加物EP004,SEQ ID No.26);以及将Dabcyl放置于顶链的每个端上和底链3’端上(添加物EP005,SEQ ID No.27)。添加物的序列在下文给出并且结果示于表3中。
添加物EP002.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
      pCCTCGTTTTATCGTTACTCCAT Dabcyl 5′(SEQ ID No.24)
添加物EP003.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′(SEQ ID No.25)
添加物EP004.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′(SEQ ID No.26)
添加物EP005.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
Dabcyl CCTCGTTTTATCGTTACTCCAT 5′(SEQ ID No.27)
表3
  添加物   长度(NT’s)   Tm,℃   浓度,nM   选择性,ΔC T
  EP002   22   63.1   100   4.2
  200   7.1
  300   9.2
  EP003   22   63.1   100   2.1
  200   5.6
  300   8.2
  EP004   22   63.1   100   5.0
  200   6.6
  300   11.9
  EP005   22   63.1   100   5.9
  200   9.3
  300   7.8
E.具有四个Dabcyl修饰物的添加物
若干双链寡核苷酸用四个末端Dabcyl修饰物修饰:
添加物EP022.5′Dabcyl CGCCGCGC Dabcyl
               Dabcyl GCGGCGCG Dabcyl 5′(SEQ ID No.14)
添加物EP020.5′Dabcyl GAAATAAAATAAAAATAAAATA Dabcyl
               Dabcyl CTTTATTTTATTTTTATTTTAT Dabcyl 5′
               (SEQ ID No.12)
添加物EP001.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID NO.23)
添加物EP028.5′Dabcyl TGAGAGATGAAAATCATCGAGT Dabcyl
Dabcyl ACTCTCACTTTTTACTAGCTCA Dabcyl 5′
(SEQ ID No.18)
结果示于表4中。
表4
  添加物   长度(NT’s)   Tm,℃   浓度,nM   选择性,ΔC T
  EP0022   8   42.8   600   1.2
  EP0020   22   47.7   600   0.9
  EP001   22   63.1   100   7.1
  200   9.5
  EP028   22   60.6   300   10.0
F.具有不同修饰物的添加物
若干双链寡核苷酸用Dabcyl之外的修饰物修饰:三个修饰物(地高辛配基(DIG)、香豆素(CMN)、QSY 21(QSY))经示出用于添加物,一个修饰物(荧光素(FAM))未示出。寡核苷酸的序列如下:
添加物EP026.5′DIG GGAGCAAAATAGCAATGAGGTA DIG
               DIG CCTCGTTTTATCGTTACTCCATDIG 5′
               (SEQIDNo.17)
添加物EP029.5′GGTCAGATGAAAATGATACGTG DIG
           DIG CCAGTCTACTTTTACTATGCAC 5′
           (SEQ ID No.40)
添加物EP031.5′CMN GGTCAGATGAAAATGATACGTG CMN
               CMN CCAGTCTACTTTTACTATGCAC CMN 5′
               (SEQ IDNo.41)
添加物EP033.5′QSY GGTCAGATGAAAATGATACGTG QSY
               QSY CCAGTCTACTTTTACTATGCAC QSY 5′
               (SEQ IDNo.42)
添加物F032.5′FAM GGTCAGATGAAAATGATACGTG FAM
              FAM CCAGTCTACTTTTACTATGCAC FAM 5′
             (SEQ ID No.43)
结果示于表5中。
表5
  添加物   长度(NT’s)   Tm,℃   浓度,nM   选择性,ΔC T
  EP026   22   63.1   300   3.8
  EP029   22   63.1   300   0.9
  EP031   22   63.1   200   3.2
  EP033   22   63.1   200   3.4
  F032   22   63.1   200   0.9
实施例4.使用添加物混合物的II型引导错误和聚合酶选择性
两个添加物的组合可作为四个链加入反应混合物,即作为两个不同双链寡核苷酸的混合物。可选地,两个添加物可共有共同链,因此作为三个链加入反应混合物。该实施例报道在实施例3中报道的测定中使用三链版本混合物(包括无修饰物的对照混合物)获得的结果。对于共有共同链的两个添加物,我们将共同链写在中间,将与具有较高解链温度的中间链杂交的链写在顶部,以及将与具有较低解链温度的中间链杂交的链写在底部。我们以顶部/中间/底部方式书写链浓度(nM)。我们以上方/下方的方式书写两个杂交物的Tm(℃)。通过缩短底链或将错配引入底链来调整解链温度(错配核苷酸标有下划线)。所测试添加物为:
添加物041.pCCTCGTCTGATCGTGACTCCAT 5′
          5′GGAGCAGACTAGCACTGAGGTAp
          pTCTGATCGTGACTCCAT5′
          (SEQ ID No.44)
添加物EP041.Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
            5′GGAGCAGACTAGCACTGAGGTA Dabcyl
            Dabcyl TCTGATCGTGACTCCAT Dabcyl 5′
            (SEQ ID No.45)
添加物042.pCCTCGTCTGATCGTGACTCCAT 5′
          5′GGAGCAGACTAGCACTGAGGTAp
          pCCTGGTCTGATTGTGACTCCAT5′
          (SEQ ID No.46)
添加物EP042.Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
            5′GGAGCAGACTAGCACTGAGGTA Dabcyl
            Dabcyl CCTGGTCTGATTGTGACTCCAT Dabcyl 5′
            (SEQ ID No.47)
添加物EP043.5′GGAGCAGACTAGCACTGAGGTA Dabcyl
         Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
         5′Dabcyl AGACTAGCACTGAGGTA Dabcyl
         (SEQ ID No.48)
添加物EP045.5′Dabcyl GGAGCAGACTAGCACTGAGGTA Dabcyl
               Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
               5′Dabcyl AGACTAGCACTGAGGTA Dabcyl
               (SEQ ID No.49)
结果示于表6,以及上方两个链和下方两个链的未修饰杂交物的链浓度和Tm。相比无添加物对照(ΔCT)的选择性提高的数目如实施例3中所述来计算。
表6
  添加物   Tm(上方/下方,(℃))   浓度,nM   选择性,C T
  041   67.4/59.0   顶部75   1.7
  中间400
  底部325
  EP041   67.4/59.0   顶部75   4.8
  中间400
  底部325
  042   67.4/57.4   顶部75   1.9
  中间400
  底部325
  EP042   67.4/57.4   顶部75   6.8
  中间400
  底部325
  EP043   67.4/59.1   顶部25   2.4
  中间600
  底部575
  顶部50   2.9
  中间600
  底部550
  顶部75   2.2
  中间600
  底部525
  顶部100   3.3
  中间600
  底部500
  EP045   67.4/59.1   顶部25   5.0
  中间600
  底部575
  顶部50   6.9
  中间600
  底部550
  顶部75   7.7
  中间600
  底部525
  顶部100   10.8
  中间600
  底部500
使用添加物EP043和EP045的扩增反应的动力学分析分别示于图7A-7D和图8A-8D中。这些图示出作为不同浓度添加物的LATE-PCR循环次数的函数的SYBR Green染料的荧光强度读数。图7A示出使用具有25/600/575nM的链(上方/中间/下方链)浓度的添加物EP043的结果。在图7A中,圆圈71为匹配靶标的三个重复,并且圆圈72为错配靶标的三个重复。图7B示出使用具有50/600/575nM的链(上方/中间/下方链)浓度的添加物EP043的结果。在图7B中,圆圈73为匹配靶标的三个重复,并且圆圈74为错配靶标的三个重复。图7C示出使用具有75/600/575nM的链(上方/中间/下方链)浓度的添加物EP043的结果。在图7C中,圆圈75为匹配靶标的三个重复,并且圆圈76为错配靶标的三个重复。图7D示出使用具有100/600/575nM的链(上方/中间/下方链)浓度的添加物EP043的结果。在图7D中,圆圈77为匹配靶标的三个重复,并且圆圈78为错配靶标的三个重复。
图8A示出使用具有25/600/575nM的链(上方/中间/下方链)浓度的添加物EP045的结果。在图8A中,圆圈81为匹配靶标的三个重复,并且圆圈82为错配靶标的三个重复。图8B示出使用具有50/600/575nM的链(上方/中间/下方链)浓度的添加物EP045的结果。在图8B中,圆圈83为匹配靶标的三个重复,并且圆圈84为错配靶标的三个重复。图8C示出使用具有75/600/575nM的链(上方/中间/下方链)浓度的添加物EP045的结果。在图8C中,圆圈85为匹配靶标的三个重复,并且圆圈86为错配靶标的三个重复。图8D示出使用具有100/600/575nM的链(上方/中间/下方链)浓度的添加物EP045的结果。在图8D中,圆圈87为匹配靶标的三个重复,并且圆圈88为错配靶标的三个重复。
实施例5在双重反应中抑制I型和III型引导错误。
一式三份地用两个DNA靶标、每个靶标的标引物对和每个靶标标的分子信标杂交探针进行双重LATE-PCR反应。每个反应混合物包含以下引物和探针。
对于第一靶序列:
过剩引物.5′TGTCATCTTCTGTCCCTTCCCAGAAA(SEQ ID No.50)
限制性引物.5′ACTGTCCCAGAATGCAAGAAGCCCAGACG
           (SEQ ID No.51)
第一扩增子的探针.5′BHQ-1CCGTAGCTGCCCTGG′Cal Red 610
                 (SEQ ID No.52)
对于第二靶序列:
过剩引物5′GCACAGTTACAGTATTCCAGCAGACTCA
           (SEQ ID No.53)
限制性引物5′TCAGTGGTGGCAGTGGTAGTGGTGGC
           (SEQ ID No.54)
第二扩增子的探针5′BHQ-2TCAGTGGTGGCAGTGGTAGA Quasar
                670(SEQ ID No.55)
LATE-PCR反应混合物包括在25μl体积中的1X Platinum Taq缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、0.25nM dNTP、50nM每种限制性引物、1000nM每种过剩引物和500nM每种检测探针、1.25单位Platinum Taq聚合酶(Invitrogen,Carlsbad,CA)和人类DNA的1000个基因组当量。不同反应混合物不含添加物、含有400nM浓度的添加物EP020,或300nM浓度的添加物EP013。
LATE-PCR扩增反应热曲线条件为95℃/10s的20个循环、在以下指定的温度下退火10s、和72℃/10s;然后95℃/10s、65℃/10s、72℃/10s的50个循环,和54℃/20s的荧光信号检测。使用允许在相同仪器中可进行具有不同退火温度的多个扩增温度曲线的温度梯度功能,在Bio-Rad IQ-5多色实时PCR检测系统(Bio-Rad,Hercules,CA)中进行扩增。
添加物EP020.5′Dabcyl GAAATAAAATAAAAATAAAATA Dabcyl
               Dabcyl CTTTATTTTATTTTTATTTTAT Dabcyl 5′
               (SEQ ID No.12)
添加物EP013.5′Dabcyl GGTCAGATGAAAATGATACGTGp
               Dabcyl CCAGTCTACTTTTACTATGCAC Dabcyl 5′
               (SEQ ID No.56)
进行了六个测定。它们具有以下添加物和初始退火温度(首先20个循环):
反应1:无添加物,退火温度:65℃
反应2:添加物EP020,退火温度65℃
反应3:添加物EP020,退火温度60.7℃
反应4:添加物EP013,退火温度66.5℃
反应5:添加物EP013,退火温度64.2℃
反应6:添加物EP013,退火温度60.7℃
图9示出作为LATE-PCR热循环次数的函数的来自探针的荧光读数。图9A示出来自反应1的读数,其中圆圈911为来自在第一靶标扩增的四个重复中第一探针的读数,并且圆圈912为来自在第二靶标扩增的四个重复中第二探针的读数。图9B示出来自反应2的读数,其中圆圈913为来自在第一靶标扩增的四个重复中第一探针的读数,并且圆圈914为来自在第二靶标扩增的四个重复中第二探针的读数。图9C示出来自反应3的读数,其中圆圈915为来自在第一靶标扩增的四个重复中第一探针的读数,并且圆圈916为来自在第二靶标扩增的四个重复中第二探针的读数。图9D示出来自反应4的读数,其中圆圈917为来自在第一靶标扩增的四个重复中第一探针的读数,并且圆圈918为来自在第二靶标扩增的四个重复中第二探针的读数。图9E示出来自反应5的读数,其中圆圈919为来自在第一靶标扩增的四个重复中第一探针的读数,并且圆圈920为来自在第二靶标扩增的四个重复中第二探针的读数。图9F示出来自反应6的读数,其中圆圈921为来自在第一靶标扩增的四个重复中第一探针的读数,并且圆圈922为来自在第二靶标扩增的四个重复中第二探针的读数。
实施例6.用于评估对5’核酸外切酶活性抑制的不依赖引物的振荡温度 测定
许多DNA聚合酶(包括Taq和Tfi(+))有能力在杂交至其靶链的寡核苷酸探针的5’端上裂解荧光标记核苷酸。在不存在上游引物延伸时该5’核酸外切酶裂解甚至发生在等温条件下。因此,不依赖引物的裂解与发生于标准5’核酸酶扩增反应中的引物依赖性裂解形成对比。通过在高于和低于探针/靶杂交物的Tm的有限温度范围上振荡反应混合物温度,可提高不依赖引物的5’核酸外切酶裂解的速率。
振荡反应在由以下组成的25μl体积中进行:1X PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、200nM dNTP、1.25单位Taq DNA聚合酶(Invitrogen,Carlsbad,CA)、200nM具有5’FAM和3’Black Hole Quencher 1(BHQ1)的探针和100nM互补的41核苷酸靶标。此反应混合物与和不与任何添加物一起使用,并且与下文标识的300nM浓度的每种添加物一起使用。当在反应混合物中仅有寡核苷酸时,用探针进行对照反应。添加物包括PS060、形成茎-环结构(形成茎的互补核苷酸标有下划线)的单链添加物,以及双链添加物。使用以下热曲线来振荡反应混合物:45℃/20s,60℃/10s,45个循环,然后45℃/30s开始解链并且1℃递增30个循环。在热曲线的45℃/10s区段期间获得FAM荧光。探针、靶标和添加物的序列为:
探针5′FAM CCATGATACAAGCTTCC BHQ1(SEQ ID No.57)
靶标5′ACTTAGTAATTGGGAAGCTTGTATCATGGCACTTAGAACCT
       (SEQ ID No.58)
添加物EP001.5′Dabcyl GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.23)
添加物EP004.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
               (SEQ ID No.26)
添加物EP008.5′Dabcyl GGAGCAAAATAGCAATGAGGTAp
               pCCTCGTTTTATCGTTACTCCAT Dabcy 15′
               (SEQ ID No.30)
添加物EP009.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
               Dabcyl CCTCGTTTTATCGTTACTCCAT 5′
               (SEQ ID No.31)
添加物PS060.5′CGCGGCGTCAGGCATATAGGATACCGGGACAGAC
               GCCGCG(SEQ ID No.59)
核酸外切酶裂解活性从探针中分离探针荧光团,从而导致荧光(FAM)提高。结果报道于图10中。在图10中,针对仅探针反应的曲线101示出,在不存在靶标时探针不裂解。针对包含探针和靶标但无添加物的反应的曲线102示出最高的探针裂解。PS060的曲线103示出比添加物的曲线更高的探针裂解;即,曲线104,EP009;曲线105,对于EP004和EP008相同的曲线;和曲线106,EP001。
实施例7.在PCR期间的5’核酸外切酶活性抑制剂
在如实施例5中所述的LATE-PCR扩增之后,用于第一靶标的检测探针在50℃下历时1分钟被杂交到其互补扩增产物。然后,当探针从扩增子上解链时,通过在50℃和80℃之间以30秒1℃间隔监测探针荧光强度,使探针靶标杂交物经历解链曲线分析。仅含探针的无模板对照也经受解链方案(在不存在探针裂解的情况下,荧光随温度轻微增长,因为荧光团的荧光强度是温度依赖的)。使两个样品经受解链:一个不含添加物,而一个包含600nM浓度的添加物EP013(SEQ ID No.47)。
结果示于图11A和图11B中。在图11A中,曲线111仅针对探针,并且曲线112针对不含添加物的反应的扩增产物。在图11B中,曲线113仅针对探针,并且曲线114针对包含添加物EP013的扩增产物。通过来自扩增靶标溶解下来的探针的荧光信号匹配解链完成时仅含探针的对照样品的荧光信号,来证实对引物依赖性Taq DNA聚合酶5’核酸外切酶活性的抑制作用。
实施例8.大的多重反应
12对引物(每种针对人类线粒体基因组的基因内的不同序列)被组合到用于12个不同靶序列的多重扩增的单一多重扩增混合物中。25μl反应混合物含有1x PCR缓冲液、400nM dNTP、3mM MgCl2、0.24x SYBR Green、50nM限制性引物、1000nM过剩引物和3.75个单位的Tfi(-)DNA聚合酶、无添加物或具有300nM浓度的添加物EP011或600nM浓度的添加物EP011。
使反应混合物经受以下LATE-PCR热循环方案:95℃下3分钟,然后95℃/5s、58℃/20s和68℃/2m,65个循环;然后在45℃下开始解链,以30s间隔递增1℃至95℃。使用双链DNA产物的SYBR Green荧光(-dF/dT,SYBR)的第一衍生物,通过解链曲线分析,在65个循环结束时分析反应。另外,针对反应,分析产生双链产物的动力学(作为热循环的函数的SYBR Green强度读数)。
添加物EP011的序列和12个靶标的序列和用于扩增每种序列的引物如下:
添加物EP011.5′Dabcyl GGTCAGATGAAAATGATACGTG Dabcyl
               pCCAGTCTACTTTTACTATGCAC Dabcyl 5′
               (SEQ ID No.60)
靶标HV1.
5′GCCCGGAGCGAGGAGAGTAGCACTCTTGTGCGGGATATTGA
TTTCACGGAGGATGGTGGTCAAGGGACCCCTATCTGAGGGG
GGTCATCCATGGGGACGAGAAGGGATTTGACTGTAATGTGC
TATGTACGGTAAATGGCTTTATGTACTATGTACTGTTAAGGG
TGGGTAGGTTTGTTGGTATCCTAGTGGGTGAGGGGTGGCTT
TGGAGTTGCAGTTGATGTGTGATAGTTGAGGGTTGATTGCT
GTACTTGCTTGTAAGCATGGGGAGGGGGTTTTGATGTGGAT
TGGGTTTTTATGTACTACAGGTGGTCAAGTATTTATGGTAC
CGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATA
CATAGCGGTTGTTGATGGGTGAGTCAATACTTGGGTGGTAC
CCAAATCTGCTTCCCCATGAAAGAACAGAGAATAGTTTAA
ATTAGAATCTTAGCTTTGGGTGCTAATGGTGGAGTTAAAGACT
TTTTCTCTGATTTGTCCTTGGAAAAAGGTTTTCATCTCCGGT
TTACAAGACTGGTG(SEQ ID No.61)
限制性引物5′GCCCGGAGCGAGGAGAGTAGCACTCTTG
          (SEQ ID No.62)
过剩引物5′CACCAGTCTTGTAAACCGGAGATGAA(SEQ ID No.63)
靶标HV2.
5′ACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCC
ATGCATTTGGTATTTTCGTCTGGGGGGTATGCACGCGATAGC
ATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTAT
CTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTA
CGTTCAATATTACAGGCGAACATACTTACTAAAGTGTGTTA
ATTAATTAATGCTTGTAGGACATAATAATAACAATTGAAT
GTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAA
ATTTCCACCAAACCCCCCCTCCCCCGCTTCTGGCCACAGCA
CTTAAACACATCTCTGCCAAACCCCAAAAACAAAGAACCC
TAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCG
GTATGCACTTTTAACAGTCACCCCCCAACTAACACATTATT
TTCCCCTCCCACTCCCATACTACTAATCTCATCAATACAAC
CCCCGCCCATCCTACCCAGCACACACACACCGCTG
(SEQ ID No.64)
限制性引物5′AGCGGTGTGTGTGTGCTGGGTAGGAT
          (SEQ ID No.65)
过剩引物5′ACAGGTCTATCACCCTATTAACCACTCA
        (SEQ ID No.66)
靶标CO1-1.
5′AGGTTGCGGTCTGTTAGTAGTATAGTGATGCCAGCAGCT
AGGACTGGGAGAGATAGGAGAAGTAGGACTGCTGTGATT
AGGACGGATCAGACGAAGAGGGGCGTTTGGTATTGGGTTA
TGGCAGGGGGTTTTATATTGATAATTGTTGTGATGAAATTG
ATGGCCCCTAAGATAGAGGAGACACCTGCTAGGTGTAAGG
AGAAGATGGTTAGGTCTACGGAGGCTCCAGGGTGGGAGT
AGTTCCCTGCTAAGGGAGGGTAGACTGTTCAACCTGTTCCT
GCTCCGGCCTCCACTATAGCAGATGCGAGCAGGAGTAGG
AGAGAGGGAGGTAAGAGTCAGAAGCTTATGTTGTTTATGC
GGGGAAACGCCATATCGGGGGCACCGATTATTAGGGGAAC
TAGTCAGTTGCCAAAGCCTCCGATTATGATGGGTATTACT
ATGAAGAAGATTATTACAAATGCATGGGCTGTGACGATAA
CGTTGTAGATGTGGTCGTTACCTAGAAGGTTGCCTGGCTGG
CCCAGCTCGGCTCGAATAAGGAGGCTTAGAGCTGTGCCTA
GGACTCCAGCTCATGCGCCGAATAATAGGTATAGTGTTCCA
ATGTCTTTGTGGTTTGTAGAGAATAGTCAACGGT
(SEQ ID No.67)
限制性引物5′AGGTTGCGGTCTGTTAGTAGTATAGTGATGCCAGCA
          (SEQ ID No.68)
过剩引物5′ACCGTTGACTATTCTCTACAAACCACA(SEQ ID No.69)
靶标CO1-2.
5′ATGGAGGGTTCTTCTACTATTAGGACTTTTCGCTTCGAAG
CGAAGGCTTCTCAAATCATGAAAATTATTAATATTACTGCT
GTTAGAGAAATGAATGAGCCTACAGATGATAGGATGTTTC
ATGTGGTGTATGCATCGGGGTAGTCCGAGTAACGTCGGGG
CATTCCGGATAGGCCGAGAAAGTGTTGTGGGAAGAAAGTT
AGATTTACGCCGATGAATATGATAGTGAAATGGATTTTGGC
GTAGGTTTGGTCTAGGGTGTAGCCTGAGAATAGGGGAAATC
AGTGAATGAAGCCTCCTATGATGGCAAATACAGCTCCTAT
TGATAGGACATAGTGGAAGTGGGCTACAACGTAGTACGTG
TCGTGTAGTACGATGTCTAGTGATGAGTTTGCTAATACAAT
GCCAGTCAGGCCACCTACGGTGAAAAGAAAGATGAATCC
TAGGGCTCAGAGCACTGCAGCAGATCATTTCATATTGCTTC
CGTGGAGTGTGGCGAGTCAGCTAAATACTTTGACGCCGGT
GGGGATAGCGATGATTATGGTAGCGGAGGTGAAATATGCT
CGTGTGTCTACGTCTATTCCTACTGTAAATATATGGTGTGC
TCACACGATAAACCCTAGGAAGCCAATTGATATCATAGCT
CAGACCATACCTATGTATCCAAATGGTTCTTTTTTTCCGGA
GTAGTAAGTTACAATATGGGAGATTATTCCGAAGCCTGG
TAGGAT(SEQ IDNo.70)
限制性引物5′ATGGAGGGTTCTTCTACTATTAGGACTTTTCGCT
         (SEQ ID No.71)
过剩引物5′ATCCTACCAGGCTTCGGAATAATCTC(SEQ IDNo.72)
靶标CO2.
5′AGGGTAAATACGGGCCCTATTTCAAAGATTTTTAGGGG
AATTAATTCTAGGACGATGGGCATGAAACTGTGGTTTGCTC
CACAGATTTCAGAGCATTGACCGTAGTATACCCCCGGTCG
TGTAGCGGTGAAAGTGGTTTGGTTTAGACGTCCGGGAATTG
CATCTGTTTTTAAGCCTAATGTGGGGACAGCTCATGAGTGCA
AGACGTCTTGTGATGTAATTATTATACGAATGGGGGCTTCA
ATCGGGAGTACTACTCGATTGTCAACGTCAAGGAGTCGCA
GGTCGCCTGGTTCTAGGAATAATGGGGGAAGTATGTAGGA
GTTGAAGATTAGTCCGCCGTAGTCGGTGTACTCGTAGGTTC
AGTACCATTGGTGGCCAATTGATTTGATGGTAAGGGAGGG
ATCGTTGACCTCGTCTGTTATGTAAAGGATGCGTAGGGAT
GGGAGGGCGATGAGGACTAGGATGATGGCGGGCAGGATA
GTTCAGACGGTTTCTATTTCCTGAGCGTCTGAGATGTTAGTA
TTAGTTAGTTTTGTTGTGAGTGTTAGGAAAAGGGCATACA
GGACTAGGAAGCAGATAAGGA(SEQ IDNo.73)
限制性引物
5′AGGGTAAATACGGGCCCTATTTCAAAGATTTTTAGGGGA
(SEQ ID No.74)
过剩引物5′TCCTTATCTGCTTCCTAGTCCTGTATGC(SEQ IDNo.75)
靶标12srRNA.
5′CCTCTAAATCACCACGATCAAAAGGAACAAGCATCAA
GCACGCAGCAATGCAGCTCAAAACGCTTAGCCTAGCCA
CACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATA
AACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTT
GGTCAATTTCGTGCCAGCCACCGCGGTCACACGATTA
ACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGAT
CACCCCCTCCCCAATAAAGCTAAAACTCACCTGAGTTGT
AAAAAACTCCAGTTGACACAAAATAGACTACGAAAGTGG
CTTTAACATATCTGAACACACAATAGCTAAGACCCAAAC
TGGGATTAGATACCCCACTATGCTTAGCCCTAAACCTCAA
CAGTTAAATCAACAAAACTGCTCGCCAGAACACTACGAG
CCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATA
TCCCTCTAGAGGAGCCTGTTCTGTAATCGATAAACCCCGA
TCAACCTCACCACCTCTTGCTCAGCCTATATACCGCCATC
TTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAG
TACCCACGTAAAGACGTTAGGTCAAGGTGTAGCCCATGAG
GTGGCAAGAAATGGGCTACATTTTCTACCCCAGAAAACT
ACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATT
TAGCAGTAAACTAAGAGTAGAGTGCTTAGTTGAACAGGG
CCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTCAAG
TATACTTCAAAGGACATTTAACTAAAACCCCTACGCATT
TATATAGAGGAGACAAGTCGTAACATGGTAAGTGT
ACTGGA(SEQ ID No.76)
限制性引物5′TCCAGTACACTTACCATGTTACGACTTGTCTCCTCTA
          (SEQ ID No.77)
过剩引物5′CCTCTAAATCACCACGATCAAAAGGAAC
        (SEQ IDNo.78)
靶标Cytb-1.
5′TGTGAGGGTGGGACTGTCTACTGAGTAGCCTCCTCAGAT
TCATTGAACTAGGTCTGTCCCAATGTATGGGATGGCGGATA
GTAAGTTTGTAATTACTGTGGCCCCTCAGAATGATATTTGG
靶标12srRNA.
5′CCTCTAAATCACCACGATCAAAAGGAACAAGCATCAA
GCACGCAGCAATGCAGCTCAAAACGCTTAGCCTAGCCA
CACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATA
AACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTT
GGTCAATTTCGTGCCAGCCACCGCGGTCACACGATTA
ACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGAT
CACCCCCTCCCCAATAAAGCTAAAACTCACCTGAGTTGT
AAAAAACTCCAGTTGACACAAAATAGACTACGAAAGTGG
CTTTAACATATCTGAACACACAATAGCTAAGACCCAAAC
TGGGATTAGATACCCCACTATGCTTAGCCCTAAACCTCAA
CAGTTAAATCAACAAAACTGCTCGCCAGAACACTACGAG
CCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATA
TCCCTCTAGAGGAGCCTGTTCTGTAATCGATAAACCCCGA
TCAACCTCACCACCTCTTGCTCAGCCTATATACCGCCATC
TTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAG
TACCCACGTAAAGACGTTAGGTCAAGGTGTAGCCCATGAG
GTGGCAAGAAATGGGCTACATTTTCTACCCCAGAAAACT
ACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATT
TAGCAGTAAACTAAGAGTAGAGTGCTTAGTTGAACAGGG
CCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTCAAG
TATACTTCAAAGGACATTTAACTAAAACCCCTACGCATT
TATATAGAGGAGACAAGTCGTAACATGGTAAGTGT
ACTGGA(SEQ ID No.76)
限制性引物5′TCCAGTACACTTACCATGTTACGACTTGTCTCCTCTA
          (SEQ ID No.77)
过剩引物5′CCTCTAAATCACCACGATCAAAAGGAAC
        (SEQ IDNo.78)
靶标Cytb-1.
5′TGTGAGGGTGGGACTGTCTACTGAGTAGCCTCCTCAGAT
TCATTGAACTAGGTCTGTCCCAATGTATGGGATGGCGGATA
GTAAGTTTGTAATTACTGTGGCCCCTCAGAATGATATTTGG
CCTCACGGGAGGACATAGCCTATGAAGGCTGTTGCTATAG
TTGCAAGCAGGAGGATAATGCCGATGTTTCAGGTTTCTGA
GTAGAGAAATGATCCGTAATATAGGCCTCGCCCGATGTGT
AGGAAGAGGCAGATAAAGAATATTGAGGCGCCATTGGCG
TGAAGGTAGCGGATGATTCAGCCATAATTTACGTCTCGAG
TGATGTGGGCGATTGATGAAAAGGCGGTTGAGGCGTCTGG
TGAGTAGTGCATGGCTAGGAATAGTCCTGTGGTGATTTGG
AGGATCAGGCAGGCGCCAAGGAGTGAGCCGAAGTTTC
ATCATGCGGA(SEQ ID No.79)
限制性引物5′TGTGAGGGTGGGACTGTCTACTGAGTAGCC
(SEQ ID No.80)
过剩引物5′TCCGCATGATGAAACTTCGGCTC(SEQ ID No.81)
靶标Cytb-2.
5′ACTCCACCTCCTATTCTTGCACGAAACGGGATCAAACAA
CCCCCTAGGAATCACCTCCCATTCCGATAAAATCACCTTCC
ACCCTTACTACACAATCAAAGACGCCCTCGGCTTACTTCTCT
TCCTTCTCTCCTTAATGACATTAACACTATTCTCACCAGAC
CTCCTAGGCGACCCAGACAATTATACCCTAGCCAACCCCT
TAAACACCCCTCCCCACATCAAGCCCGAATGATATTTCCT
ATTCGCCTACACAATTCTCCGATCCGTCCCTAACAAACTAG
GAGGCGTCCTTGCCCTATTACTATCCATCCTCATCCTAGCA
ATAATCCCCATCCTCCATATATCCAAACAACAAAGCATAAT
ATTTCGCCCACTAAGCCAATCACTTTATTGACTCCTAGCCG
CAGACCTCCTCATTCTAACCTGAATCG(SEQ ID No.82)
限制性引物5′CGATTCAGGTTAGAATGAGGAGGTCTGCGGCTAG
          (SEQ IDNo.83)
过剩引物5′ACTCCACCTCCTATTCTTGCACGA(SEQ ID No.84)
靶标ND1.
5′CATAAGAACAGGGAGGTTAGAAGTAGGGTCTTGGTGACAA
AATATGTTGTGTAGAGTTCAGGGGAGAGTGCGTCATATGT
TGTTCCTAGGAAGATTGTAGTGGTGAGGGTGTTTATTATAA
TAATGTTTGTGTATTCGGCTATGAAGAATAGGGCGAAGGG
GCCTGCGGCGTATTCGATGTTGAAGCCTGAGACTAGTTCGG
ACTCCCCTTCGGCAAGGTCGAAGGGGGTTCGGTTGGTCTC
TGCTAGTGTGGAGATAAATCATATTATGGCCAAGGGTCAT
GATGGCAGGAGTAATCAGAGGTGTTCTTGTGTTGTGATAA
GGGTGGAGAGGTTAAAGGAGCCACTTATTAGTAATGTTGA
TAGTAGAATGATGGCTAGGGTGACTTCATATGAGATTGTTT
GGGCTACTGCTCGCAGTGCGCCGATCAGGGCGTAGTTTGAG
TTTGATGCTCACCCTGATCAGAGGATTGAGTAAACGGCTA
GGCTAGAGGTGGCTAGAATAAATAGGAGGCCTAGGTTGA
GGTTGACCAGGGGGTTGGGTATGGGGAGGGGGGTTCATA
GTAGAAGAGCGATGGTGAGAGCTAAGGTCGGGGCGGTGA
TGTAGAGGGTGATGGTAGATGTGGCGGGTTTTAGGGG
(SEQ ID No.85)
限制性引物5′CATAAGAACAGGGAGGTTAGAAGTAGGGTCTTGGT
          (SEQ ID No.86)
过剩引物5′CCCCTAAAACCCGCCACAT(SEQ ID No.87)
靶标ND2.
5′AGTGTGATTGAGGTGGAGTAGATTAGGCGTAGGTAGAA
GTAGAGGTTAAGGAGGGTGATGGTGGCTATGATGGTGGGG
ATGATGAGGCTATTGTTTTTTGTGAATTCTTCGATAATGGC
CCATTTGGGCAAAAAGCCGGTTAGCGGGGGCAGGCCTCC
TAGGGAGAGGAGGGTGGATGGAATTAAGGGTGTTAGTCAT
GTTAGCTTGTTTCAGGTGCGAGATAGTAGTAGGGTCGTGGT
GCTGGAGTTTAAGTTGAGTAGTAGGAATGCGGTAGTAGTT
AGGATAATATAAATAGTTAAATTAAGAATGGTTATGTTAG
GGTTGTACGGTAGAACTGCTATTATTCATCCTATGTGGGTA
ATTGAGGAGTATGCTAAGATTTTGCGTAGCTGGGTTTGGTT
TAATCCACCTCAACTGCCTGCTATGATGGATAAGATTGAG
AGAGTGAGGAGAAGGCTTACGTTTAGTGAGGGAGAGATTT
GGTATATGATTGAGATGGGGGCTAGTTTTTGTCATGTGAG
AAGAAGCAGGCCGGATGTCAGAGGGGTGCCTTGGGTAACC
TCTGGGACTCAGAAGTGAAAGGGGGCTATTCCTAGTTTTAT
TGCTATAGCTATTATGATTATTAATGATGAGTATTGATTGG
TAGTATTGGTTATGGTTCATTGTCCGGAGAGTATATTGTTG
AAGAGGATAGCTATTAGAAGGATTATGGATGCGGTTGCTT
GCGTGAGGAAATACTTGATGGCAGCTTCTGTGGAACGAGGG
TTTATTTTTTTGGTTAGAACTGGAATAAAAGCTAGCATGTTT
ATTTCTAGGCCTACTCAGGTAAAAAATCAGTGCGAGCTTA
GCGCTGTGATGAGTGTGCCTGCA(SEQ ID No.88)
限制性引物5′AGTGTGATTGAGGTGGAGTAGATTAGGCGTAGGT
             AGAAGT(SEQ ID No.89)
过剩引物5′TGCAGGCACACTCATCACAGCGCTAAGCT
           (SEQ ID No.90)
靶标ND4-1.
5′AACACAACCACCCACAGCCTAATTATTAGCATCATCCCTC
TACTATTTTTTAACCAAATCAACAACAACCTATTTAGCTGTT
CCCCAACCTTTTCCTCCGACCCCCTAACAACCCCCCTCCTA
ATACTAACTACCTGACTCCTACCCCTCACAATCATGGCAAG
CCAACGCCACTTATCCAGTGAACCACTATCACGAAAAAAA
CTCTACCTCTCTATACTAATCTCCCTACAAATCTCCTTAATT
ATAACATTCACAGCCACAGAACTAATCATATTTTATATCTT
CTTCGAAACCACACTTATCCCCACCTTGGCTATCATCACCC
GATGAGGCAACCAGCCAGAACGCCTGAACGCAGGCACATA
CTTCCTATTCTACACCCTAGTAGGCTCCCTTCCCCTACTCAT
CGCACTAATTTACACTCACAACACCCTAGGCTCACTAAACA
TTCTACTACTCACTCTCACTGCCCAAGAACTATCAA
ACTCCTGAGC(SEQ ID No.91)
限制性引物5′GCTCAGGAGTTTGATAGTTCTTGGGCAGTGAGAG
(SEQ ID No.92)
过剩引物5′AACACAACCACCCACAGCCTAATTATTAG
        (SEQ ID No.93)
靶标ND4-2.
5′GTGGTGGGTGAGTGAGCCCCATTGTGTTGTGGTAAATAT
GTAGAGGGAGTATAGGGCTGTGACTAGTATGTTGAGTCCT
GTAAGTAGGAGAGTGATATTTGATCAGGAGAACGTGGTTA
CTAGCACAGAGAGTTCTCCCAGTAGGTTAATAGTGGGGGG
TAAGGCGAGGTTAGCGAGGCTTGCTAGAAGTCATCAAAAA
GCTATTAGTGGGAGTAGAGTTTGAAGTCCTTGAGAGAGGA
TTATGATGCGACTGTGAGTGCGTTCGTAGTTTGAGTTTGCT
AGGCAGAATAGTAATGAGGATGTAAGCCCGTGGGCGATTA
TGAGAATGACTGCGCCGGTGAAGCTTCAGGGGGTTTGGAT
GAGAATGGCTGTTACTACGAGGGCTATGTGGCTGATTGAA
GAGTATGCAATGAGCGATTTTAGGTCTGTTTGTCGTAGGCA
GATGGAGCTTGTTATAATTATGCCTCATAGGGATAGTACA
AGGAAGGGGTAG(SEQ ID No.94)
限制性引物5′GTGGTGGGTGAGTGAGCCCCATTGTGT
          (SEQ ID No.95)
过剩引物5′CTACCCCTTCCTTGTACTATCCCTATGAG
        (SEQ ID No.96)
然后使用填充了组合有1μl填充染料的1μl PCR产物的5%聚丙烯酰胺凝胶分析扩增产物。凝胶在4℃、30伏特下运行8个小时。使用SYBR Gold,将凝胶显影十分钟。凝胶的图片示于图12中。第一泳道为无添加物的反应。第二泳道为具有300nM浓度的添加物EP011的反应。第三泳道为具有600nM浓度的添加物EP011的反应。如从图12中可见,无添加物的反应未能生成预期的一组12个产物。根据泳道2可见,300nM添加物EP011抑制大多数引导错误(可在底部看见轻量产物的一个带)。根据泳道3可见,600nM浓度的添加物EP011抑制所有的引导错误。
包含600nM添加物EP011的反应经受称为Dilute-‘N’-Go法的测序样品制备。参见,Rice,J.E.等人(2007),Monoplex/MultiplexLinear-After-The-Exponential PCR Assay Combined with Prime Safe andDilute-‘N’-Go Sequencing,Nature Protocols 2:2429-2438。将制备的样品分为12个等分试样,并且使用12个限制性引物中的一个作为测序引物,使每一等分试样经受双脱氧法测序。测序结果显示,扩增反应生成足够的每个扩增子的单链DNA以使得可以经由Dilute’N’Go双脱氧法测序方案来测序来自单个反应的12个不同限制性引物链中的每一个。
在每个反应中使用1000个拷贝的线粒体基因组DNA获得上述结果。该实验的另外的样品(结果未示出)显示,当每个反应仅包含100个或10个拷贝的线粒体基因组DNA时,未获得所有12个产物的完整扩增。这与1型和3型引导错误随着靶标数目减少而增加的事实是一致的。
然而,用做了以下调整后的上述多重反应可成功扩增100个和10个拷贝的线粒体基因组DNA:1)使用具有50/600/550nM的链组合的EP043;2)提高扩增循环至80-90;和3)根据实施例14,通过加入至少两个错配的A’或T’到其5’端(下划线指示),来改变用于以下靶标的限制性引物。
对于靶标HV1:
限制性引物5′TAAAGCCCGGAGCGAGGAGAGTAGCACTCTTG
          (SEQ ID No.97)
对于靶标HV2:
限制性引物5′AAAGCGGTGTGTGTGTGCTGGGTAGGAT
          (SEQ ID No.98)
对于靶标CO1-1:
限制性引物
5′AAAGGTTGCGGTCTGTTAGTAGTATAGTGATGCCAGCA
(SEQ ID No.99)
对于靶标CO1-2:
限制性引物5′AAATGGAGGGTTCTTCTACTATTAGGACTTTTCGCT
          (SEQ ID No.100)
对于靶标CO2:
限制性引物5′TAAGGGTAAATACGGGCCCTATTTCAAAGATTTTT
          AGGGGA(SEQ ID No.101)
对于靶标12srRNA:
限制性引物
5′AATCCAGTACACTTACCATGTTACGACTTGTCTCCTCTA
(SEQ ID No.102)
对于靶标Cytb-1:
限制性引物5′AATGTGAGGGTGGGACTGTCTACTGAGTAGCC
          (SEQ ID No.103)
对于靶标Cytb-2:
限制性引物
5′AACGATTCAGGTTAGAATGAGGAGGTCTGCGGCTAG
(SEQ ID No.104)
对于靶标ND1:
限制:5′AACATAAGAACAGGGAGGTTAGAAGTAGGGTCTTGGT
(SEQ ID No.105)
对于靶标ND2:
限制性引物5′AAAGTGTGATTGAGGTGGAGTAGATTAGGCGT
             AGGTAGAAGT(SEQ ID No.106)
对于靶标ND4-1:
限制性引物
5′AAGCTCAGGAGTTTGATAGTTCTTGGGCAGTGAGAG
(SEQ ID No.107)
对于靶标ND4-2:
限制性引物5′TAGTGGTGGGTGAGTGAGCCCCATTGTGT
          (SEQ ID No.108)
实施例9.1型引导错误的抑制的直接定量测量
发展了该实施例中报道的测定来测量I型引导错误以及添加物和热启动试剂在抑制I型引导错误中的效果。在该测定中,可退火和延伸的两个重叠寡核苷酸首先在低于LATE-PCR退火温度的温度(50℃)下延长孵育期间(10分钟)。如果延伸发生,则产生用于一对LATE-PCR引物的引入部位,即,延伸的重叠核苷酸包括引入部位,但寡核苷酸其自身仅包含引入部位的补体。然后,使用引物对使反应混合物经受LATE-PCR扩增。在这些条件下,生成可探测水平产物所需的循环次数(以SYBR Green或过剩引物链的探针来观察)将取决于在部分互补低聚物的初始等温孵育期间产生了多少延伸(全长)链。这又将取决于DNA聚合酶在等温孵育期间有多少活性。通过比较具有抑制剂的反应和无抑制剂的反应的阈值循环(CT),获得对抑制剂在抑制初始的等温延伸(被认为是该测定中的引导错误事件)时的效果的定量测量。当所有初始存在的低聚物在第一轮扩增之前完全延伸时,观察到最低CT值。伴随越来越强的DNA聚合酶抑制,观察到越来越高的CT值。在混合了反应的各自组合之后和在50℃下等温孵育之前,所有反应都具有以大约100,000个拷贝加入的重叠寡核苷酸1和2。
使用了以下寡核苷酸。对于重叠寡核苷酸,互补于引入部位的序列标有下划线,并且重叠序列为斜体。
重叠寡核苷酸1:
5′TTGCACGAGAGCCAGCTCGTCAGGTAGTCACCAGT
Figure BPA00001462259700901
Figure BPA00001462259700902
(SEQ ID No.109)
重叠寡核苷酸2:
5′CAGCAGCAGACAGTGCACTCGTCACTCACTAACCGCTATTCGA
GTTCG
Figure BPA00001462259700903
(SEQ ID No.110)
限制性引物:5′TTGCACGAGAGCCAGCTCGTCAGGTAGTCACCAGT
            (SEQ ID No.111)
过剩引物:5′CAGCAGCAGACAGTGCACTCGTCAC(SEQ ID No.112)
添加物EP046.5′Dabcyl GGAGCAGACTAGCACTGAGGTA Dabcyl
               Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
               (SEQ ID No.113)
添加物EP020.5′Dabcyl GAAATAAAATAAAAATAAAATA Dabcyl
               Dabcyl CTTTATTTTATTTTTATTTTAT Dabcyl 5′
            (SEQ ID No.12)
添加物EP022.5′Dabcyl CCGCCGGC Dabcyl
               Dabcyl GGCGGCCG Dabcyl 5′
               (SEQ ID No.14)
每个反应一式三份地在25μl体积中进行。每个反应混合物含有1X PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、0.24X SYBR Green(Invitrogen,Carlsbad,CA)和1.25个单位Taq DNA聚合酶(Invitrogen,Carlsbad,CA)。一个反应混合物仅含有Taq DNA聚合酶。第二反应混合物含有Taq DNA聚合酶和600nM浓度的添加物EP046。第三反应混合物含有具有抗体的“热启动”Taq DNA聚合酶(Invitrogen,Carlsbad,CA)。第四反应混合物含有具有抗体和600nM浓度的添加物EP046的Taq DNA聚合酶。在混合了反应成分的各自组合之后和在50℃下等温孵育之前,所有反应都具有每一反应以大约100,000个拷贝加入的重叠寡核苷酸1和2。
这些反应的热曲线条件如下:50℃,10分钟,然后在冰上孵育长时间足以添加引物,然后迅速加热到98℃,然后98℃/10s和72℃/40s下60个循环。由重叠寡核苷酸形成的杂交物的解链温度为约60℃,即,高于初始10分钟孵育的温度。两步PCR方案的退火/延伸温度低于浓度调整的限制性引物和过剩引物的解链温度,其根据实施例1中给出的方法计算分别为75.1℃和73.6℃。每个样品通过SYBRGreen荧光实时分析,并且在该测定结束时,每个均经受解链曲线分析以确认反应生成88℃的单一产物峰,如对扩增反应的双链产物所预期(未示出)。
作为扩增循环的函数的SYBR Green荧光示于图13中,其中圆圈131标识仅具有Taq DNA聚合酶的样品的重复,圆圈132标识具有Taq DNA聚合酶和添加物EP046的样品的重复,圆圈133标识具有Taq DNA聚合酶-加-抗体的样品的重复,并且圆圈134标识具有Taq DNA聚合酶-加-抗体和添加物EP046的样品的重复。
实施例10.引导错误和“冷终止”检测
为确定是否可能中断PCR扩增以进行一些低温操作。需要确定这样做的引导错误效果。为此目的,我们已发展了在该实施例中报道的测定。该测定为LATE-PCR扩增测定,其中我们使用了以下靶链、引物和杂交探针(一端上用荧光团Quasar670(Biosearch Technologies,Novato,CA)标记并且另一端上用淬灭剂BHQ2(BiosearchTechnologies,Novato,CA)标记:
限制性引物5′CTCCAGCCCGGCACGCTCACGTGACAGACCG
         (SEQ ID No.114)
过剩引物5′CCGGTGGTCGCCGCGATCAAGGAG(SEQ ID No.115)
探针5′Quasar670 GCGGGTTGTTCTGGTCCATGA BHQ2
    (SEQ ID No.116)
靶标
5′CCGGTGGTCGCCGCGATCAAGGAGTTCTTCGGCACCAGCCA
GCTGAGCCAATTCATGGACCAGAACAACCCGCTGTCGGGG
TTGACCCACAAGCGCCGACTGTCGGCGCTGGGGCCCGGCG
GTCTGTCACGTGAGCGTGCCGGGCTGGAG(SEQ ID No.117)
反应混合物包括1X PCR缓冲液(Invitrogen,Carlsbad,CA)、2mMMgCl2、200nM dNTP、50nM限制性引物、1000nM过剩引物、200nM探针、1.25个单位Taq DNA聚合酶(Invitrogen,Carlsbad,CA)和待测添加物(在这种情况下为600nM浓度的添加物EP010)。另外,每个反应含有1千万个拷贝的人类基因组DNA(Sigma-Aldrich,St.Louis,MO)。所测添加物的序列为:
添加物EP010.5′Dabcyl GGTCAGATGAAAATGATACGTG Dabcyl
               Dabcyl CCAGTCTACTTTTACTATGCAC Dabcyl 5′
               (SEQ ID No.10)
首先进行三个对照测定,用包括于反应混合物中的测试添加物,但没有热循环方案的任何中断,以确立未中断方案是敏感和稳固的。在扩增反应混合物中,对照测定以1000个、100个和10个拷贝的靶链开始。热循环方案为:98℃下,3分钟,然后98℃/10s、75℃/40s和60℃/30s的70个循环,在60℃下荧光读数。图14A示出作为PCR循环次数的函数的探针的荧光读数,其中圆圈141为具有1000个拷贝的靶标的样品的四个重复扩增的读数,圆圈142(虚线)为100个拷贝的靶标的样品的重复的读数,并且圆圈143为具有10个拷贝的靶标的样品的重复。
使分离的反应混合物经受中断的热循环方案。热曲线为98℃下1分钟,然后98℃/10s、75℃/40s的40个循环,然后解链在45℃下起始并且以每30秒1℃梯级增加(对各梯级的数据采集),共40步,然后98℃/10s、75℃/40s的30个以上的循环,在其结束时重复解链。
两次解链的结果示于图14B和图14C。这些图示出解链曲线,其中每个温度下的荧光值通过除以75℃(该温度下探针不结合于单链产物)下的荧光值来归一化。在扩增结束后(图14C),在40个扩增循环(图14B)和70个循环之后测定归一化解链。在图14B中,圆圈144为靶标的1000个拷贝的重复,圆圈145为具有100个拷贝的靶标的样品的重复,并且圆圈146为具有10个拷贝的靶标的样品的重复。相似地,在图14C中,圆圈147(黑实线)为具有1000个拷贝的靶标的样品的三个重复扩增,圆圈148(虚线)为具有100个拷贝的靶标的样品的重复,并且圆圈149(灰实线)为具有10个拷贝的靶标的样品的重复。
实施例11.对称PCR反应中的II型引导错误
为证明添加物对常规的对称PCR、等位基因-识别引物的特异性的效果,进行了以下测定。在单个核苷酸位置上不同的相等浓度的两个DNA靶序列在对称PCR条件下在存在或不存在添加物EP043(SEQID No.45)的情况下使用引物对平行扩增,其中一个引物(等位基因特异性引物)对那些DNA靶标DNA(称为“匹配靶标”)为特异性。如在文献中所建议(Newton等人,Analysis of any point mutation in DNA.Theamplification refractory mutation system(ARMS).1989,Nucleic AcidsRes.17:2503-2516),构建了用于匹配靶标的优选扩增的一对对称PCR引物,使得一个引物的3’端互补于预期DNA靶标特有的核苷酸并且倒数第二3’端位置错配于预期和非预期DNA靶标。因此,预期靶标特异性引物仅在其3’端一次与预期DNA靶标错配,但其在3’端错配两次于错配靶标。该引物设计导致匹配靶标的优选扩增。在该实验之前,包含匹配和错配靶标的基因组DNA样品用完全互补于两个靶标的引物定量,以归一化靶标基因组浓度的差值的数据。在此情况下,错配靶标的CT比匹配靶标的CT低1.52,所以对于使用等位基因特异性引物的测定,错配靶标的CT的任何所示延迟必须通过将1.52添加到所观察ΔCT来矫正,以计算靶标浓度差值。
用于优选扩增的靶标和引物序列,以及添加物的序列为:
等位基因特异性引物5′TATCGTCAAGGCACTCTTGCCTACGCCTT
                (SEQ ID No.118)
共同引物5′GTACTGGTGGAGTATTTGATAGTGTATTAACC
        (SEQ ID No.119)
匹配靶标5′
GTACTGGTGGAGTATTTGATAGTGTATTAACCTTATGTGT
GACATGTTCTAATATAGTCACATTTTCATTATTTTTATTATA
AGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTT
GGAGCTGATGGCGTAGGCAAGAGTGCCTTGACGATA
(SEQ ID No.120)
错配靶标5′GTACTGGTGGAGTATTTGATAGTGTATTAACCTTATGT
GTGACATGTTCTAATATAGTCACATTTTCATTATTTTT
ATTATAAGGCCTGCTGAAAATGACTGAATATAAACTT
GTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGC
CTTGACGATA(SEQ ID No.121)
添加物EP043.5′GGAGCAGACTAGCACTGAGGTA Dabcyl
        Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
        5′Dabcyl AGACTAGCACTGAGGTA Dabcyl
        (SEQ ID No.48)
对称PCR扩增在25μl的最终反应体积中进行:1X Platinum Taq缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、0.2mM dNTP、1uM引物对、0.24X SYBR Green(Invitrogen,Carlsbad,CA)、1个单位Platinum Taq DNA聚合酶(Invitrogen,Carlsbad,CA)和包含匹配或错配靶序列的人类DNA的1000个基因组当量。反应混合物不含添加物或含有300nM总浓度的添加物EP043,其中顶链浓度为100nM,中间链浓度为300nM,并且底链浓度为200nM。
扩增条件为:94℃下5分钟;然后94℃/1分钟(m)、64℃/1m、72℃/1m的60个循环,并且以72℃梯级进行数据采集;和72℃/10m的最终延伸步骤。扩增在Bio-Rad IQ-5多色实时PCR检测系统(Bio-Rad,Hercules,CA)中进行。
根据SYBR Green实时荧光信号,测定出在不含添加物的测定中,来自错配靶标的信号相对于来自匹配靶标的信号延迟,从而提供7.84的矫正ΔCT。相似地,在包含总浓度300nM的添加物EP043的测定中,来自错配靶标的信号相对于来自匹配靶标的信号延迟甚至更多,从而提供12.59的矫正ΔCT。因此,因存在EP043所致的增加的聚合酶特异性为4.75个循环。
实施例12.Taq DNA聚合酶活性的抑制和限制性引物3’端的AT含量
就由本文所述添加物的存在导致的延迟,对使用3’端富含GC的限制性引物和3’端富含AT的限制性引物的LATE-PCR测定进行比较。进行了四个扩增反应:一个反应使用具有富含GC3’端的引物且无添加物,第二个使用相同引物和添加物EP013;第三个使用具有富含AT 3’端的引物且无添加物;以及第四个使用相同引物和添加物EP013。
每个25μl扩增反应混合物包括:1X Platinum Taq缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、1.25个单位Platinum Taq聚合酶(Invitrogen,Carlsbad,CA)、人类DNA的1000个基因组当量、1000nM浓度的过剩引物、50nM浓度的限制性引物和500nM浓度的检测探针。对于两个测定,包括的添加物EP013(SEQID Nos 47和157)以600nM浓度包括于反应混合物中。
热循环方案为:95℃下10秒、66.5℃下10秒、和72℃下10秒,20个循环;然后95℃下10秒、65℃下10秒、72℃下10秒,50个循环;以及54℃下20秒的荧光信号检测。当结合于其靶标时每个探针的荧光检测是在PCR循环的退火阶段期间测量。
在具有富含GC 3’端的限制性引物的测定中使用的靶标、引物和探针的序列为:
过剩引物5′GCACAGTTACAGTATTCCAGCAGACTCA
(SEQ ID No.122)
限制性引物5′TCAGTGGTGGCAGTGGTAGTGGTGGC
(SEQ ID No.123)
富含GC引物的靶标
5′GCACAGTTACAGTATTCCAGCAGACTCAAAT
ACAAGAACCTACTGCTAATGCCACCACTAC
CACTGCCACCACTGA(SEQ ID No.124)
检测探针5′BHQ-2TCAGTGGTGGCAGTGGTAGA Quasar 670
(SEQ ID No.125)
在具有富含AT3’端的限制性引物的测定中使用的靶标、引物和探针的序列为:
过剩引物5′CTTTGGCACCAGAGGTGAGC
(SEQ ID No.126)
限制性引物5′GGTGCGTGGGTCCCAGTCTGCAGTTAAG
(SEQ ID No.127)
富含AT引物的靶标5′GGTGCGTGGGTCCCAGTCTGCAGTTAAGGG
                   GGCAGGAGTGGCGCTGCTCACCTCTGG
                   TGCCAAAG(SEQ ID No.128)
检测探针5′BHQ-2GCAGGAGTGGCGCT Quasar 670(SEQ ID No.129)
添加物EP013的序列如下:
添加物EP013.5′Dabcyl GGTCAGATGAAAATGATACGTGp
               Dabcyl CCAGTCTACTTTTACTATGCAC Dabcyl 5′
               (SEQ ID No.56)
在使用具有富含GC 3’端的限制性引物的测定中,将添加物EP013以600nM浓度加入反应混合物中导致相比无添加物的扩增而言阈值循环(CT)延迟4个循环。在使用具有富含AT 3’端的限制性引物的测定中,将添加物EP013以600nM浓度加入反应混合物导致CT延迟11个循环。
实施例13.引物和III型引导错误的5’端的修饰
我们使用另外的核苷酸来在一个PCR扩增引物的5’端上形成非互补尾部。在该实施例中,我们使用LATE-PCR扩增,并且我们修饰限制性引物。我们比较修饰的和未修饰的引物以完全结合和部分结合3’端之间进行区分。将两个腺嘌呤加到用于扩增人类线粒体细胞色素b基因(以下划线示出)的限制性引物的5’端。我们测试了两个添加物:添加物EP047,靶标,引物;并且添加物序列如下:
靶标Cytb-1.
5′TGTGAGGGTGGGACTGTCTACTGAGTAGCCTCCTCAGAT
TCATTGAACTAGGTCTGTCCCAATGTATGGGATGGCGGATA
GTAAGTTTGTAATTACTGTGGCCCCTCAGAATGATATTTGG
CCTCACGGGAGGACATAGCCTATGAAGGCTGTTGCTATAG
TTGCAAGCAGGAGGATAATGCCGATGTTTCAGGTTTCTGA
GTAGAGAAATGATCCGTAATATAGGCCTCGCCCGATGTGT
AGGAAGAGGCAGATAAAGAATATTGAGGCGCCATTGGCG
TGAAGGTAGCGGATGATTCAGCCATAATTTACGTCTCGAG
TGATGTGGGCGATTGATGAAAAGGCGGTTGAGGCGTCTGG
TGAGTAGTGCATGGCTAGGAATAGTCCTGTGGTGATTTGG
AGGATCAGGCAGGCGCCAAGGAGTGAGCCGAAGTTTC
ATCATGCGGA(SEQ ID No.79)
限制性引物5′TGTGAGGGTGGGACTGTCTACTGAGTAGCC
(SEQ ID No.80)
过剩引物5′TCCGCATGATGAAACTTCGGCTC(SEQ ID No.81)
修饰的限制性引物
5′AATGTGAGGGTGGGACTGTCTACTGAGTAGCC(SEQ ID No.130)
添加物EP047.Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
            5′Dabcyl AGACTAGCACTGAGGTA
(SEQ ID No.131)
添加物EP043.5′GGAGCAGACTAGCACTGAGGTA Dabcyl
        Dabcyl CCTCGTCTGATCGTGACTCCAT Dabcyl 5′
        5′Dabcyl AGACTAGCACTGAGGTA Dabcyl
        (SEQ ID No.48)
添加物EP047包括形成17个核苷酸长的双链区域的22个核苷酸的链和17个核苷酸长的链,并且其具有四个末端Dabcyl修饰物。添加物EP047的Tm为59.1℃。添加物EP043为添加物的混合物。其包括作为一个组分的添加物EP047(其包含两个底链),该添加物EP047以550nM浓度包括于此测试中。混合物EP043也包括作为顶部两个链示出的另一双链寡核苷酸。该第二低聚物包括两个22个核苷酸长的互补链,并且其具有三个末端Dabcyl修饰物。其Tm为67.4℃,并且它以50nM浓度包括于该测试中。因为在混合物中的两个添加物共用共同链,所以链浓度对于顶部/中间/底链为50/600/550。
LATE-PCR反应混合物在25μl体积中包括1x PCR缓冲液、250nM dNTP、3mM MgCl2、0.24x SYBR Green、50nM限制性引物、1000nM过剩引物、人类线粒体DNA的1000个拷贝、和2.5个单位的TFi(-)DNA聚合酶、抗体-结合5’核酸外切酶(-)聚合酶(Invitrogen,Carlsbad CA)。进行了六个测定,其中反应混合物中的添加物和限制性引物如下:
(1)无添加物,去尾限制性引物(SEQ ID No.80)
(2)无添加物,加尾限制性引物(SEQ ID No.133)
(3)600nM浓度的添加物EP047,去尾限制性引物
(4)600nM浓度的添加物EP047,加尾引物
(5)链浓度为50/600/550的三链添加物混合物EP043,去尾引物
(6)链浓度为50/600/550的三链添加物混合物EP043,加尾引物
按以下条件扩增六个反应混合物:95℃下3分钟,然后95℃/5s、58℃/20s和68℃/2m的65个循环。然后,进行产物的解链分析,45℃下开始,30s间隔递增1℃到95℃。通过使用SYBR Green,监测PCR扩增以及解链分析。
对于无添加物的反应,产物进化导致Tm高于所需产物Tm的扩增子,无论使用哪种限制性引物。在反应混合物中包括添加物EP047通过若干扩增循环延迟了可检测的产物进化的发生,并且导致扩增产物的一部分为正确产物。用添加物EP047,使用加尾引物比使用去尾引物制备更多正确产物。添加物EP047具有基于其59.1℃的未修饰链的计算Tm。在反应混合物中包括添加物EP043也延迟了可检测产物进化的发生,并且导致最多正确产物生成。用添加物EP043,使用加尾引物比使用去尾引物制备更正确产物。添加物EP043为混合物,具有基于67.4℃和59.1℃的未修饰链的计算Tm。
具有添加物EP043、加尾限制性引物和去尾限制性引物的六个重复的实时动力学曲线示于图15A中。在图15A中,圆圈151(灰线)标识具有去尾引物的三个重复的曲线,圆圈152(黑线)标识具有加尾引物的重复的曲线。图15B中示出具有添加物EP043的6种扩增产物的解链曲线,其中朝下的箭头指示正确双链DNA产物的解链温度(86℃)。在图15B中,圆圈153标示去尾引物的一个重复,示出图15A中无产物进化(平稳段)的正确峰,圆圈154标示加尾引物的两个重复,也示出图15A中无产物进化(平稳段)。
实施例14:作为用于抑制引导错误的引物的添加物
引物(其为添加物)为双链寡核苷酸,其中一个链为具有可延伸3’端的扩增引物。其5’端具有修饰物取代基。我们称为反向互补序列的另一链具有两个修饰物取代基,并且其3’端为不可延伸的。因为该实施例的扩增测定为LATE-PCR测定,其中限制性引物以十分低的浓度包括于反应混合物中,所以仅过剩引物制备了添加物。当杂交到和延伸于其靶链上时,具有游离3’端的链用作扩增引物,并且当杂交到修饰的的互补链时,其用作引导错误的抑制剂。在该实施例中,引物-反向互补序列添加物具有三个末端的Dabcyl修饰物。引物链通过修饰基团(此处为Dabcyl基)与其5’末端的核苷酸的共价键来修饰。反向互补序列通过修饰基团(此处为Dabcyl基)的与每个5’和3’端共价键来修饰。引物链的反向互补序列的Tm被设计成5-30℃,优选15-25℃,低于扩增靶序列的引物链的Tm。为实现Tm的差异,通过使反向互补序列部分缩短或在一个或多个核苷酸上错配,可以使其互补于引物链。在该实施例中,包括了若干错配核苷酸。在具有不止一对引物的多重反应中,至少一个引物被转变为其对应部分互补的反向互补序列的添加物。在单重和多重反应中,所述至少一个寡核苷酸的浓度被经验性滴定和最佳化以实现引导错误抑制以及最低重复反应间发散。通常,所述最佳浓度接近双链添加物的浓度,所述双链添加物并非是被加入相同反应以抑制引导错误的引物。如所属领域技术人员将理解,使用添加物引物的反应可以进一步用非引物添加物补充,条件是后者不与前者交叉杂交。
使用以下序列一式三份地进行LATE-PCR反应:
限制性引物5′TCCAGTACACTTACCATGTTACGACTTGTCTCCTCTA
(SEQ ID No.132)
过剩引物5′Dabcyl AGTTCACCCTCTAAATCACCACGAT
(SEQ ID No.133)
反向互补序列5′Dabcyl ATCGTTGTGGTATAGAGGGTGAACT-Dabcyl
(SEQ ID No.134)
靶标
5′AGTTCACCCTCTAAATCACCACGATCAAAAGGAACAAGC
ATCAAGCACGCAGCAATGCAGCTCAAAACGCTTAGCCTAGCCA
CACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAAAC
GAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCG
TGCCAGCCACCGCGGTCACACGATTAACCCAAGTCAATAGAAGC
CGGCGTAAAGAGTGTTTTAGATCACCCCCTCCCCAATAAAGCTA
AAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGA
CTACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGA
CCCAAACTGGGATTAGATACCCCACTATGCTTAGCCCTAAACCT
CAACAGTTAAATCAACAAAACTGCTCGCCAGAACACTACGAGC
CACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTC
TAGAGGAGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCAC
CACCTCTTGCTCAGCCTATATACCGCCATCTTCAGCAAACCCTGA
TGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAGACGTTAG
GTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTC
TACCCCAGAAAACTACGATAGCCCTTATGAAACTTAAGGGTCGA
AGGTGGATTTAGCAGTAAACTAAGAGTAGAGTGCTTAGTTGAAC
AGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTCAAGT
ATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATA
GAGGAGACAAGTCGTAACATGGTAAGTGTACTGG
(SEQ ID No.135)
在由以下组成的25μl体积中进行LATE-PCR扩增:1X PlatinumTfi(-)缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、50nM限制性引物、1000nM过剩引物、0.24X SYBR Green(Invitrogen,Carlsbad,CA)、2.5单位的Platinum Tfi(-)DNA聚合酶(Invitrogen,Carlsbad,CA)及来自人类基因组DNA的大约1000个基因组。产生添加物的反向补体的浓度为100nM、200nM和300nM。在此情况下,我们通过将错配引入反向互补链(错配核苷酸标有下划线),相对于引物-靶标杂交物降低了引物-反向互补杂交物的Tm。
这些反应的热曲线条件如下:95℃下3分钟,然后95℃/5s-58℃/20s-68℃/2m的60个循环,然后45℃/45s下开始解链,1℃递增,持续51个循环。在热循环的延伸期期间(68℃)实时分析所有反应。使用双链DNA产物的SYBR Green荧光(解链曲线分析)的第一衍生物,在60个循环结束时分析扩增产物。
解链曲线示于图16A-16D中。图16A为无反向互补序列的三个重复的解链曲线。曲线161表明,在不存在互补寡核苷酸的情况下,三个反应中仅一个产生了解链温度为86℃(箭头)的预期产物。图16B为包含100nM浓度的反向互补序列的三个重复的解链曲线。曲线162表明,三个反应中的两个产生预期产物。图16C和图16D分别为具有200nM和300nM浓度的反向互补序列的重复的解链曲线。曲线163和164表明,在每个组的反应中所有三个重复产生正确产物(如通过存在86℃的解链峰判断)。
实施例15:具有RNA靶标的引导错误
该实施例描述了一系列LATE-PCR测定,其中起始靶序列为RNA而非DNA,所以初始反应混合物包括逆转录酶,并且该方案包括初始孵育以在cDNA扩增之前将RNA转变为cDNA。在此系列中所用的RNA是位于包含来自肠道病毒RNA的一部分5’未翻译区域(UTR)的肠道病毒装甲的RNA(Enterovirus Armored RNA)(EV,Catalog#42050,来自Asuragen,Austin,TX,USA)之内的序列。样品包括用于EV以及脚部和口腔疾病病毒(FMDV)的引物对,但无FMDV靶标包括于该实施例中。然后,通过使用具有荧光团(Cal Red 610)和淬灭剂(Black Hole Quencher No.2)的分子信标探针,实时进行扩增反应。所有组的所有反应均一式三份地进行,并且经由解链曲线分析在端点处分析产物。
将若干添加物(包括混合物)与无添加物对照进行比较。EV引物、EV探针和添加物的序列如下:
EV限制性引物5′GACTTGCGCGTTACGACAGGCCAATC
(SEQ ID No.136)
EV过剩引物5′TGAATGCGGCTAATCCCAAC(SEQ ID No.137)
EV探针5′Cal Red 610-AACCACCTGCCCCTT-BHQ2(SEQ ID No.138)
添加物EP020.5′Dabcyl GAAATAAAATAAAAATAAAATA Dabcyl
               Dabcyl CTTTATTTTATTTTTATTTTAT Dabcyl 5′
               (SEQ ID No.12)
添加物EP010.5′Dabcyl GGTCAGATGAAAATGATACGTG Dabcyl
               Dabcyl CCAGTCTACTTTTACTATGCAC Dabcyl 5′
               (SEQ ID No.10)
添加物EP003.5′GGAGCAAAATAGCAATGAGGTA Dabcyl
        Dabcyl CCTCGTTTTATCGTTACTCCAT Dabcyl 5′
        (SEQ ID No.25)
EV装甲的RNA(EVArmored RNA)在pH 8.3的10mM TRIS中稀释到约25,000个粒子/微升并且在75℃下加热3分钟以变性外壳蛋白和释放RNA。RNA(每个样品2μl)与包含浓缩引物(每个样品3μl)的溶液混合,并且室温下孵育5分钟,然后加入浓缩试剂混合物来在每个样品25μl的最终体积中得到以下浓度:3mM氯化镁、400nM每个脱氧核苷酸、500nM每个探针、50nM每个限制性引物、500nM每个过剩引物、1X Tfi(exo-)反应缓冲液、每个样品2单位Tfi(exo-)聚合酶(Invitrogen,Cat.No.60684-050)、以及每个样品100单位的SuperScriptIII逆转录酶(Invitrogen,Cat.No.18080-044)。EV RNA为每个样品约50,000个拷贝。所包括的添加物的浓度如下:
反应A-2000nM的添加物EP020
反应B-200nM的添加物EP010
反应C-400nM的添加物EP003
反应D-400nM的添加物EP010和1000nM的添加物EP020
反应E-400nM的添加物EP003和1000nM的添加物EP020
反应F-无添加物对照
将样品放入Stratagene MX3005P热循环仪并孵育,50℃下6分钟,95℃下1分钟,然后95℃/10s、64℃/10s和68℃/20s的25个循环,然后95℃/10s、64℃/10s、68℃/20s和50℃/30s的35个循环,在50℃下进行对探针的荧光检测。
图17A-17F示出在循环26-60中的低温(50℃)检测步骤期间探针荧光的实时结果。在图17A中,圆圈171为反应A的三个重复的曲线。在图17B中,圆圈172为反应B的三个重复的曲线。在图17C中,圆圈173为反应C的三个重复的曲线。在图17D中,圆圈174为反应D的三个重复的曲线。在图17E中,圆圈175为反应E的三个重复的曲线。在图17F中,圆圈176为反应F的三个重复的曲线。
圆圈176的曲线表明,无添加物对照显示出III型引导错误(严重产物进化),由在后期扩增循环(大概为循环42-60)中单链产物的减少所示。含有非常高浓度的低Tm添加物(Tm为47.7℃,稍微低于退火温度16℃且低于低温检测温度2.3℃)的反应A的圆圈171的曲线,示出抑制I型引导错误,但仅部分抑制III型引导错误,并且循环60附近重复间发散高。含有非常低浓度的具有稍微较高Tm的添加物(Tm为60℃,低于退火温度4℃,但高于低温检测温度)的反应B的圆圈172的曲线完全抑制了I型引导错误并仅部分抑制了III型引导错误(三个重复中的两个示出在循环60附近探针信号的一些降低),但在循环60处显著减少了发散。反应C、D、和E(所有均含有添加物)显示通过循环60时探针信号未降低。因为圆圈174的曲线示出具有高信号的III型引导错误抑制,指示反应效率的最小限度降低,所以判断反应D对这组反应来说为最佳。
实施例16通过具有突出端的添加物直接定量测量对I型引导错误的抑
此处报道的测定如实施例9中所述那样进行,具有以下不同:(a)Taq聚合酶抗体在50℃孵育步骤期间存在于所有样品中;(b)50℃孵育步骤历时1分钟。
每个添加物包含相同的两个形成发夹的34核苷酸长的单链低聚物,所述单链低聚物具有图18C中所示的低聚物194、195的结构,其中1个、2个、3个或4个末端通过加入Dabcyl部分来修饰。所有其中3’端未被淬灭剂阻断的低聚物被磷酸酯(P)或三碳修饰物(C3)阻断以阻止延伸。在每个单链低聚物的5’和3’端上的6个核苷酸是互补性的,使得当这些端相互杂交时,它们形成6-碱基对的茎和22-核苷酸的环结构。参照图18C,所述添加物的两个22-核苷酸环是互补的,使得当相互杂交时形成添加物196,所述添加物196具有22-碱基对长的双链部分197,该部分具有四个非互补性单链6-碱基对长的末端198、199、200、201。单链低聚物的序列并非随机指定,而因设计中的固有互补性,需要仔细考虑。该考虑为不允许低聚物在环接合的温度下形成其它结构,尤其要阻止臂序列保持相互脱离以及未结合到任一寡核苷酸的任何互补环序列。这些添加物序列有能力在一温度范围内维持于预定构象。
在其中一个或两个组分寡核苷酸链有能力形成茎-环结构(参见图18B、18C)的添加物的情况下,希望所述茎的解链温度(Tm)高于添加物的双链的解链温度,但又不太高以致于阻止在反应温度降低时的适当时间形成添加物的双链构象。在这种情况下,添加物的双链部分的计算Tm为59℃,并且茎核苷酸的计算Tm为65℃。这些计算是根据50℃下70mM Na+、3mM Mg++的试剂浓度得出。对于双链部分,使用了网站(http://dinamelt.bioinfo.rpi.edu/twostate.php),而对于茎,使用了网站(http://frontend.bioinfo.rpi.edu/applications/mfold/cgi-bin/dna- forml.cgi)。在实行过程中,实际Tm取决于相互作用的Dabcyl的数目并且可从计算Tm提高大约4℃。
使用了以下添加物,并且互补性序列标有下划线。
添加物SL02.
5′GCGCCTCACGTATCATTTTCATCTGACCAGGCGC(P)
3′Dabcyl GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC
(SEQ ID No.139)
添加物SL03.
5′GCGCCTCACGTATCATTTTCATCTGACCAGGCGC(P)
3′(P)GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC Dabcyl
(SEQ ID No.140)
添加物SL04.
5′Dabcyl GCGCCTCACGTATCATTTTCATCTGACCAGGCGC(P)
3′(P)GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC Dabcyl
(SEQ ID No.141)
添加物SL05.
5′GCGCCTCACGTATCATTTTCATCTGACCAGGCGC Dabcyl
3′Dabcyl GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC
(SEQ ID No.142)
添加物SL06.
5′Dabcyl GCGCCTCACGTATCATTTTCATCTGACCAGGCGC(P)
3′Dabcyl GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC
(SEQ ID No.143)
添加物SL07.
5′Dabcyl GCGCCTCACGTATCATTTTCATCTGACCAGGCGC Dabcyl
3′Dabcyl GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC
(SEQ ID No.144)
添加物SL08.
5′Dabcyl GCGCCTCACGTATCATTTTCATCTGACCAGGCGC(C3)
3′Dabcyl GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC Dabcyl
(SEQ ID No.145)
添加物SL09.
5′Dabcyl GCGCCTCACGTATCATTTTCATCTGACCAGGCGC Dabcyl
3′Dabcyl GCCTCCGTGCATAGTAAAAGTAGACTGGGGAGGC Dabcyl
(SEQ ID No.146)
每个反应在25μl体积中一式三份地进行。最终反应混合物含有1X PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、0.24X SYBR Green(Invitrogen,Carlsbad,CA)、1.25单位的Taq DNA聚合酶和Taq DNA聚合酶抗体(Invitrogen,Carlsbad,CA)。单独的反应混合物含有300nM的每种添加物和不含添加物。在混合了反应成分的各自组合之后和在50℃下等温孵育之前,所有反应都具有以大约100,000个拷贝加入的重叠寡核苷酸1和2(实施例9)。
这些反应的热曲线条件如下:50℃下1分钟,然后冰上孵育,然后添加引物到所有反应混合物以达到50nM限制性引物和1μM过剩引物的最终浓度。此后,迅速加热到95℃历时3分钟,然后在98℃/10s和72℃/40s下的50个循环。每个样品通过SYBR Green荧光实时分析,并且在该测定结束时,均经受解链曲线分析以确认反应生成88℃的单一产物峰,如对扩增反应的双链产物所预期。
添加物SL04、SL07、SL08和SL09的解链曲线分析示于图19A-19D中。各图中圆圈210标识的线条为具有Taq DNA聚合酶-加-抗体的样品的重复。圆圈211、212、213和214标识的线条分别为具有添加物SL04、SL07、SL08和SL09的重复。
结果(参见图19A)确认抗体(圆圈210)未减轻引导错误,因为存在两个峰,一低解链峰(即,不正确产物,85℃),且正确产物在较高峰(88℃)。添加物SL04、SL05、SL07和SL08的结果表明,每个添加物极大降低了不正确产物的量但未完全抑制它。图19D示出添加物SL09,其具有4个Dabcyl,能够完全抑制不正确产物的产生。
实施例17.具有突出端的添加物的II型引导错误和聚合酶选择性
我们使用200nM、400nM和600nM浓度的添加物SL06、SL07和SL09(实施例16)进行了实施例3中所述的LATE-PCR测定。这些添加物分别包含两个、三个或四个Dabcyl修饰物。
在由以下组成的25μl体积中一式三份地进行LATE-PCR扩增:1X Invitrogen PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、250nM dNTP、50nM限制性引物、1000nM过剩引物、0.24X SYBRGreen(Invitrogen,Carlsbad,CA)、1.25单位Platinum Taq DNA聚合酶(Invitrogen,Carlsbad,CA)及大约1000个单链靶标A(匹配的)或T(错配的)。这些反应的热曲线条件为:95℃下3分钟,然后95℃/5s-62℃/20s-72℃/30s的60个循环。对于包含两个靶标的这个和其它测定,进行了对照扩增,使用过剩引物(其完全互补于两个靶标)和对照限制性引物(其也完全互补于两个靶标)以确保两个靶标的起始拷贝数相同,在此情况下,两个靶标的CT相同。(如果对照扩增显示起始拷贝数不相同,则有两个选择:重新配制,或者,如果CT差值轻微-如在本文报道的实施例中那样的情况,则矫正所观察CT值以针对差值来调整。)
选择性的结果(ΔCT等于错配的靶标CT减去匹配的靶标CT)示于表7中。
表7
  添加物   浓度,nM   选择性,ΔC T
  SL06(两个Dabcyl)   200   1.3
  400   0.8
  600   3.2
  SL07(三个Dabcyl)   200   0.8
  400   2.4
  600   2.6
  SL09(四个Dabcyl)   200   2.8
  400   4.2
  600   6.8
实施例18.通过具有突出端的添加物的抑制引物依赖性5’核酸外切酶 活性
我们如实施例6中详细描述那样进行了LATE-PCR测定,以使用具有图18C所示类型的单链突出端的添加物确定DNA Taq聚合酶的引物依赖性5’核酸外切酶活性的抑制功效。
振荡反应在由以下组成的25μl体积中进行:1X PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、200nM dNTP、1.25单位Taq DNA聚合酶(Invitrogen,Carlsbad,CA)、200nM探针(实施例6)和100nM靶标(实施例6)。在未与任何添加物的情况下和在200nM、400nM、和600nM浓度的每个添加物的情况下,使用该反应混合物。当在反应混合物中仅有寡核苷酸时,用探针进行对照反应。添加物(参见实施例16)包括:SL06,其具有两个Dabcyl;SL07,其具有3个Dabcyl;和SL09,其具有4个Dabcyl。使用以下热曲线来振荡反应混合物:45℃/20s,60℃/10s,45个循环,然后45℃/30s开始解链,并且以1℃递增持续25个循环。在循环期间,在热曲线的60℃/10s区段期间获得FAM荧光。
核酸外切酶裂解活性从探针中分离探针荧光团,从而导致荧光(FAM)提高。添加物SL06的结果报道于图20中,其中圆圈220标识仅探针对照;圆圈221标识具有探针和靶标但无添加物的样品;圆圈222标识具有探针、靶标和200nM浓度的添加物SL06的样品;圆圈223标识具有探针、靶标和400nM浓度的添加物SL06的样品;并且圆圈224标识具有探针、靶标和600nM浓度的添加物SL06的样品。
实施例19.使用阻断物来产生3’端错配
上述实施例4显示在针对靶序列的LATE-PCR扩增中,添加物混合物对II型引导错误和聚合酶选择性的效果,该靶序列完全互补于限制性引物,相对于在限制性引物的3’端核苷酸上包含单个碱基对错配的错配靶标。本实施例显示使用寡核苷酸(称为“阻断物”)来阻止限制性引物3’端杂交到靶标,其在错配核苷酸或核苷酸在限制性引物结合位点下游时,被认为是错配靶标(即,选择所针对的靶标)。此类测定的靶标、引物和阻断物总体性示于图21A、图21B中。
使用完全互补于双链第一靶标的链且也完全互补于双链第二靶标的链的限制性引物和过剩引物,进行了LATE-PCR扩增。希望第二靶标相对于第一靶标被选择性扩增。第二靶标含有两个与第一靶标的碱基对差异。第一碱基对差异在限制性引物结合位点的下游,并且包括于用于产生3’端错配的阻断物寡核苷酸的结合位点中。第二碱基对差异在限制性引物结合位点和阻断物结合位点的下游,以及过剩引物结合位点的下游,并且用于探测。阻断物结合位点在限制性引物的3’端重叠限制性引物结合位点,如图21A中所示。
用于LATE-PCR测定的阻断物是等位基因特异性的,从而,由于靶标间的第一碱基对差异,其优选杂交到限制性引物杂交的第一靶链(参见图21A)而不是第二靶标(参见图21B)。阻断物的5’端和限制性引物的3’端均互补于第一靶链上的相同碱基,但所述链的阻断物的解链温度Tm(B)较高,使得其可首先在扩增期间反应温度降低时结合,从而阻止引物3’端杂交到第一靶标,产生与完全互补引物的3’端错配。阻断物的3’端被自身阻断以阻止在扩增期间延伸。在此情况下,阻断物用荧光团(Cal Orange 560)在其5’端上和Dabcyl淬灭剂在其3’端上双重标记。
LATE-PCR测定还含有等位基因特异性探针,在比杂交到由所述第二靶标产生的过剩引物链时的Tm(P2)更高的解链温度Tm(P1)下,其杂交到由所述第一靶标产生的过剩引物链(达到产生此类链的程度)。在此情况下,探针为分子信标探针,在5’端上用Black HoleQuencher 2(BHQ2)标记并在3’端上用荧光团(Quasar 670)标记。
限制性引物、等位基因特异性阻断物和等位基因特异性探针与所述第一和第二靶标的结合一般性示于图21A和21B中。为有效阻断限制性引物的结合和延伸,阻断物必须与引物的3’端重叠至少一个核苷酸的。阻断物5’端不用必须完美匹配于靶标,只要阻断物比限制性引物在更高温度结合即可。
反应成分和反应条件如下:
限制性引物:5′GCACTCTTGCCTACGCC(SEQ ID NO.147)
过剩引物:5′CTGGTGGAGTATTTGATAGTG(SEQ ID NO.148)
等位基因特异性阻断物:
5′Cal Org 560-GCCTACGCCACCAGCTCC-Dabcyl(SEQ ID NO.149)
分子信标探针:5′BHQ2-CAAGAACATGTCACACATAATG-Quasar
670(SEQ ID NO.150)
所述第一靶标的过剩引物链:
5′CTGGTGGAGTATTTGATAGTGTATTAACCTTATGTGTGACAT
GTTCTAATATAGTCACATTTTCATTATTTTTATTATAAGGCCTGC
TGAAAATGA
CTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAA
GAGTGC(SEQ ID NO.151)
所述第二靶标的过剩引物链(第一碱基对变化,其为阻断物结合位点的变化,被标示下划线;第二碱基对变化,其为探针结合位点的变化,被标示加粗:
5′CTGGTGGAGTATTTGATAGTGTATTAACCTTATGTGT
Figure BPA00001462259701151
ACAT
GTTCTAATATAGTCACATTTTCATTATTTTTATTATAAGGCCTGCT
GAAAATGA
CTGAATATAAACTTGTGGTAGTTGGAGCTGATGGCGTAGGCAAG
AGTGC
(SEQ ID NO.152)
LATE-PCR扩增在由以下组成的25ul体积中进行:1X PCR缓冲液(Invitrogen,Carlsbad,CA)、3mM MgCl2、200nM dNTP、50nM限制性引物、1000nM过剩引物、0.24X SYBR Green(Invitrogen,Carlsbad,CA)、200nM探针、2单位Taq DNA聚合酶(Invitrogen,Carlsbad,CA),该聚合酶具有不同浓度的质粒DNA(Epoch Biolabs,Inc,SugarLand,TX),其提供在100到106范围内的起始拷贝数,经系列稀释获得。在存在或不存在500nM阻断物以及无添加物或具有其链浓度(顶部/中间/底部)为33.3nM、200nM和166.7nM的添加物EP043(实施例4)下,针对各条件,一式两份地进行扩增反应。
这些反应的热曲线条件如下:95℃下3分钟,然后95℃/10s、70℃/30s、62℃/10s、72℃/20s的70个循环,然后30℃下开始解链,30s间隔递增1℃到90℃。SYBR Green信号是在所有PCR循环的引物延伸部分期间实时检测,并且测定了CT值。当一式两份地进行测定时,平均在各浓度靶标下的两个CT值。图22A示出CT值作为在无阻断物、具有和不具有EP043添加物的情况下进行的测定的靶标浓度的函数。图22B示出CT值作为在无阻断物、具有和不具有添加物的情况下进行的测定的靶标浓度的函数。
转到图22A,被填充的方形为在各种起始靶标量(拷贝数)、无阻断物和无添加物的情况下具有第一靶标(通过操作阻断物来判别)的样品的CT值,并且CT值通过线条250连接;并且经填充的三角形为具有第二靶标(将优选扩增,因为其错配于阻断物)、无阻断物和无添加物的样品的CT,并且CT值通过线条251链接。同样在图22A中,空心方形为具有第一靶标和添加物但无阻断物的样品的CT值,并且CT值通过线条252连接;并且空心三角形为具有第一靶标和添加物但无阻断物的样品的CT值,并且CT值通过线条253连接。
转到图22B,经填充的方形为具有第一靶标和阻断物但无添加物的样品的CT值,并且CT值通过线条254(其经推断到低拷贝数)连接;并且空心方形为具有第二靶标和阻断物但无添加物的样品的CT值,并且CT值通过线条255(其经推断到低拷贝数)连接。同样在图22B中,经填充的圆圈为具有第一靶标、阻断物和添加物的样品的CT值,并且CT值通过线条256(其经推断)连接;并且空心圆圈为具有第二靶标、阻断物和添加物的样品的CT值,并且CT值通过线条257(其经推断)连接。
在缺少添加物(在这种情况下为添加物EP043)情况下,针对所产生的3’端错配的选择性为在第一浓度下所述第一靶标的扩增的信号的阈值循环(CT)与在所述第一浓度下所述第二靶标的扩增的信号的CT之间的差值,并且被指定为ΔCTB。由于添加物EP043所致的选择性为双-CT差值,指定为(ΔΔCT),计算为ΔCTA-ΔCTB,其中ΔCTA在第二浓度下在存在添加物和阻断物的情况下被测量为在所述第一靶标与所述第二靶标之间的CT值的差值,其中所述第二靶标的CT值对于仅包含所述第一浓度的阻断物的反应和包含所述第二浓度的阻断物和添加物的反应是相同的。
图22A示出,在没有阻断物情况下,对于任何靶标不存在任何选择性,如我们所期望,由于缺乏在限制性引物与任何靶标之间的3’端错配所致。数据表明,在无添加物EP043的情况下,测定是高效的,因为线250和251均具有约3.5的斜率。然而,在添加物EP043的情况下,线252和253的斜率均为约3.9,从而表明EP043降低针对两个靶标的PCR扩增。
对于添加物对选择性的效果,转到图22B。在具有等位基因特异性阻断物但无添加物的情况下,向所述第一靶标产生了限制性引物的错配3’端,第一靶标提供第一选择性,示为所述第一靶标的CT与所述第二靶标的CT之间的ΔCT。如线条254、255所示,ΔCT为靶标浓度的函数。在阻断物和添加物EP043情况下,存在由于添加物所致的另一选择性。因为EP043对PCR扩增反应的抑制,在存在EP043情况下第一靶标和第二靶标间的CT差值实际包括两个因素:1)混合了由于EP043所致选择性的由于等位基因特异性阻断物所致的选择性;和2)由于PCR的EP043抑制所致的效率渐进降低。
为判别和定量这两个因素的作用,我们用图22B的信息进行以下操作。在某靶标浓度(拷贝数)下,具有第二靶标、阻断物和添加物的样品的CT具有线条257上的A点的值,并且具有第一靶标、阻断物和添加物的样品的CT具有线256上的D点的值。这些CT值分别为35和62,提供样品27的ΔCTA。然而,A点的CT值为线条255上的B点的CT值(相同靶标,即,第二靶标,无添加物EP043)。因为其对扩增的抑制,在存在EP043情况下,B点的第二靶标的浓度为有效靶标浓度。在B点的浓度下,ΔCTB为区段BC,其为17。无添加物EP043情况下,所述第一靶标和所述第二靶标之间的该选择性是由等位基因特异性阻断物所致。为去除ΔCTA的添加物EP043的抑制效果,从靶标的所述第二浓度下的ΔCTA(27)上减去在靶标的所述第一浓度下的ΔCTB(17)。得到等于10的ΔΔCT。等于10的ΔΔCT为在A点的靶标浓度下存在诱导-II型引导错误的情况下添加物EP043的选择性效果。如从图22B可见,添加物EP043的选择性效果的大小取决于靶标浓度,因为线条254、255、256、257不相互平行。靶标浓度越低,添加物的选择性效果越大。情况就是如此,因为需要更多热循环来检测产物。
实施例20.在扩增之前在冰上抑制I型引导错误
此处报道的测定如实施例9中所述那样进行,具有以下不同:(a)50℃下孵育步骤历时1分钟;(b)扩增循环的次数减少至50;(c)实施例10中所述,EP010用作添加物;(d)添加物的浓度为300nM。
在这些扩增反应中产生的双链产物的SYBR Green荧光示于图23A中,其中圆圈260标识仅具有Taq DNA聚合酶的样品的重复,圆圈261标识具有Taq DNA聚合酶和等温延伸步骤后立即加入的抗体的样品的重复,圆圈262标识具有在等温延伸步骤期间存在的TaqDNA聚合酶-加-抗体的样品的重复。
图23A示出抗体对重叠寡核苷酸延伸的效果。无任何抗体的重复样品(圆圈260)的CT值为22,因此,重叠模板的延伸是有效的。相比之下,重叠模板的延伸被充分抑制,当在50℃孵育步骤(圆圈262)之前加入抗体。当抗体加入被延迟直到50℃孵育结束(圆圈261)时,CT比在无抗体情况下(圆圈260)更高。这意味着,大多数但非所有的可能的重叠模板在50℃下1-分钟孵育期间被延伸。另外的重叠模板在随后的冰上孵育期间被延伸。
图23B示出添加物EP010对重叠寡核苷酸的延伸的效果。具有EP10的重复(圆圈263)在50℃下孵育之前或在50℃下孵育之后接收添加物EP010。当在孵育步骤之前或之后加入EP010时,结果(组合为圆圈263)表明无扩增差异。这说明EP010在孵育期间50℃步骤处未抑制聚合化。然而,相比在50℃步骤结束时接收抗体的CT重复(圆圈261),该CT值稍微更高。这说明,添加物EP010的加入在冰上抑制重叠寡核苷酸延伸的方面比抗体更有效。
图23C示出在具有仅Taq DNA聚合酶的重复中(圆圈264)和在延伸步骤后立即加入的Taq DNA聚合酶和抗体的重复中(圆圈265)产生的双链产物的SYBR Green解链曲线。图23D示出在延伸步骤期间在具有Taq DNA聚合酶-加-抗体的重复中产生的双链产物的SYBRGreen解链曲线(圆圈266)。图23E示出在50℃下孵育之前(圆圈267)或在50℃下孵育之后(圆圈268,仅两个重复,一个丢失)接收添加物EP010的重复中产生的双链产物的SYBR Green解链曲线(圆圈267)。
图23C说明,完全省略抗体(圆圈264)或在50℃下孵育模板期间省略抗体(圆圈265)导致相当清洁的在88℃解链的产物的延伸和随后扩增。图23D说明,相比之下,在50℃下孵育期间包括抗体(圆圈266)导致在88℃和85℃具有峰的产物混合物。图23E说明,50℃步骤之前或之后加入EP010添加物导致具有88℃的急剧解链峰的清洁双链产物的扩增。图23E中的解链曲线还示出存在67-71℃的小宽峰。该峰是由于解链双链形式的EP010所致。这表明,双链形式在72℃下不再存在,在该温度下,在这些反应的扩增期期间和在实施例9中进行延伸。相比之下,实施例9所用添加物被发现具有高于EPO10的解链峰(未示出)。
上述特定实施方案不是穷举性的,并且不应理解为限制权利要求。在不脱离本文所述概念的情况下,可进行这些实施方案的各种修改。此类修改旨在落在权利要求书的范围内。

Claims (40)

1.一种用于引物依赖性DNA扩增反应的反应混合物,所述扩增反应包括通过用于扩增至少一个DNA靶序列的DNA聚合酶来引物延伸,所述反应混合物包括至少一个引物对、DNA聚合酶和dNTP,改良处包括:在扩增起始前将至少一个双链寡核苷酸添加物包括在反应混合物内,该双链寡核苷酸添加物具有6-50个核苷酸长的杂交物长度,在32℃下至少50%为双链,在其每条链上具有末端区并且包括1-4个修饰基团,每个修饰基团均共价连接到不同末端区,所述修饰基团为不具有非平面大体积部分的多环部分,其中所包括的所述至少一个双链寡核苷酸添加物的浓度与所述DNA聚合酶浓度有关并且对于以下功能的至少一个是有效的:抑制引导错误、提高聚合酶对具有未完全互补的3’凹端序列的杂交物的选择性、提高聚合酶对具有富含AT的3’凹端序列的杂交物的选择性、减少重复反应间的发散、抑制聚合酶5’核酸外切酶活性、以及抑制聚合酶活性;条件是,如果添加物为任何靶序列的引物或检测探针,则其包括至少三个修饰基团。
2.根据权利要求1所述的扩增反应混合物,其中所述至少一个修饰基团为2-4个修饰基团。
3.根据权利要求2所述的扩增反应混合物,其中所述2-4个修饰基团为3个修饰基团。
4.根据权利要求3所述的扩增反应混合物,其中所述添加物包括:第一链,其为所述至少一个靶序列的引物或探针;和反向互补链,其部分互补于所述第一链。
5.根据权利要求2所述的扩增反应混合物,其中所述2-4个修饰基团为4个修饰基团。
6.根据权利要求1-5中任一项所述的扩增反应混合物,其中所述修饰基团共价连接到所述至少一个双链寡核苷酸添加物的末端核苷酸。
7.根据权利要求1-6中任一项所述的扩增反应混合物,其中所述修饰基团为Dabcyl。
8.根据权利要求2所述的扩增反应混合物,其中所述至少一个添加物为两种添加物的混合物。
9.根据权利要求8所述的扩增反应混合物,其中所述混合物由三个链组成。
10.根据权利要求1-9中任一项所述的扩增反应混合物,其中所述至少一个双链寡核苷酸添加物由天然核苷酸组成。
11.根据权利要求1-9中任一项所述的扩增反应混合物,其中所述至少一个双链寡核苷酸添加物为DNA。
12.根据权利要求1-3和5-11中任一项所述的扩增反应混合物,其中所述至少一个添加物不是所述至少一个靶序列的引物或探针。
13.根据权利要求1-12中任一项所述的扩增反应混合物,其中所述至少一个双链寡核苷酸添加物的浓度超过1000nM。
14.根据权利要求1-13中任一项所述的扩增反应混合物,还包括逆转录酶。
15.根据权利要求1所述的扩增反应混合物,其中所述至少一个双链添加物包括1至4个单链突出端。
16.根据权利要求15所述的扩增反应混合物,其中所述至少一个双链添加物包含至少一个链,所述链在未杂交时,形成茎-环结构。
17.一种用于扩增至少一个DNA靶序列的方法,所述方法包括:使所述至少一个DNA靶序列与根据权利要求1所述的扩增反应混合物接触;和使所述反应混合物经历具有引物退火温度和引物延伸温度的引物依赖性DNA扩增反应。
18.根据权利要求17所述的方法,其中使所述至少一个DNA靶序列与所述反应混合物接触是由加入所述至少一个单链形式的DNA靶序列到所述反应混合物中所组成。
19.根据权利要求17所述的方法,其包括逆转录RNA以获得至少一个DNA靶序列。
20.根据权利要求17所述的方法,其中所述至少一个修饰物为2-4个修饰物。
21.根据权利要求20所述的方法,其中所述双链寡核苷酸具有在引物退火温度到引物退火温度以下不超过5℃的范围内的解链温度Tm。
22.根据权利要求20所述的方法,其中所述双链寡核苷酸具有高于所述引物退火温度的解链温度Tm。
23.根据权利要求17所述的方法,其中所述添加物具有三个修饰基团并且包括:第一链,其为所述至少一个靶序列的引物或探针;和反向互补链,其部分互补于所述第一链。
24.根据权利要求20所述的方法,其中所述至少一个添加物为两种添加物的混合物。
25.根据权利要求22所述的方法,其中所述混合物包括:第一添加物,其具有Tm在所述引物退火温度到所述引物退火温度以下不超过5℃的范围内的双链寡核苷酸;和第二添加物,具有Tm高于所述引物退火温度的双链寡核苷酸。
26.根据权利要求25所述的方法,其中每个添加物包括3-4个修饰基团。
27.根据权利要求17-26中任一项所述的方法,其中所述引物依赖性扩增反应为聚合酶链反应(PCR)扩增反应。
28.根据权利要求17-26中任一项所述的方法,其中所述引物依赖性扩增为LATE-PCR扩增反应。
29.根据权利要求17-28中任一项所述的方法,其中所述至少一个DNA靶序列逆转录自RNA靶序列。
30.一种扩增测定方法,其包括根据权利要求17-29中任一项所述的扩增和在扩增期间实时或在扩增后端点对反应的单链产物、反应的双链产物、或两者进行荧光检测,其中所述反应的双链产物用荧光DNA染料检测,所述反应的单链产物用至少一个荧光标记的杂交探针检测,或两者均有。
31.一种扩增至少一个DNA靶序列的试剂盒,所述试剂盒包括所述用于根据权利要求1-16中任一项所述的反应混合物的试剂。
32.根据权利要求31所述的试剂盒,还包括逆转录酶。
33.根据权利要求31或32所述的试剂盒,还包括DNA染料。
34.根据权利要求31-33中任一项所述的试剂盒,还包括用于所述至少一个靶序列的荧光标记的检测探针。
35.一种修饰的双链寡核苷酸,所述修饰的双链寡核苷酸在其各链上具有末端区,具有6-50个核苷酸长的杂交物长度,在32℃下至少50%为双链,并且包括2-4个修饰基团,所述修饰基团各自共价连接到不同末端区,所述修饰基团为不具有非平面大体积部分的多环部分,所述修饰寡核苷酸能够抑制DNA聚合酶的所述5’核酸外切酶域。
36.根据权利要求35所述的修饰的寡核苷酸,其中所述双链寡核苷酸为DNA。
37.根据权利要求35或36所述的修饰的寡核苷酸,其中所述修饰基团连接到末端核苷酸。
38.一种根据权利要求35-37中任一项所述的两个修饰的双链寡核苷酸的混合物。
39.根据权利要求38所述的混合物,其中所述两个双链寡核苷酸包含三个链。
40.根据权利要求1所述的扩增反应混合物,其中所述DNA聚合酶为热稳定的。
CN201080020170.6A 2009-03-12 2010-03-11 用于pcr的试剂和方法 Expired - Fee Related CN102421918B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20256509P 2009-03-12 2009-03-12
US61/202565 2009-03-12
PCT/US2010/027011 WO2010105074A1 (en) 2009-03-12 2010-03-11 Reagents and methods for pcr

Publications (2)

Publication Number Publication Date
CN102421918A true CN102421918A (zh) 2012-04-18
CN102421918B CN102421918B (zh) 2016-01-20

Family

ID=42244601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080020170.6A Expired - Fee Related CN102421918B (zh) 2009-03-12 2010-03-11 用于pcr的试剂和方法

Country Status (7)

Country Link
US (3) US9034605B2 (zh)
EP (2) EP2703501A1 (zh)
JP (1) JP5757885B2 (zh)
CN (1) CN102421918B (zh)
AU (1) AU2010224100B2 (zh)
CA (1) CA2755207A1 (zh)
WO (1) WO2010105074A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164274A (zh) * 2013-01-23 2015-12-16 布兰代斯大学 用于提高pcr准确度的试剂
WO2017219929A1 (zh) * 2016-06-24 2017-12-28 广州康昕瑞基因健康科技有限公司 模板-引物核酸分子、聚合酶活性测定方法及试剂盒
CN114341150A (zh) * 2019-06-25 2022-04-12 生物辐射实验室股份有限公司 用于增强逆转录酶活性和/或减少逆转录酶抑制的组合物和方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980561B1 (en) 2006-08-22 2015-03-17 Los Alamos National Security, Llc. Nucleic acid detection system and method for detecting influenza
US20090047673A1 (en) 2006-08-22 2009-02-19 Cary Robert B Miniaturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids
CN102084238B (zh) 2008-05-05 2016-06-01 洛斯阿拉莫斯国家安全有限责任公司 基于高度简化的侧向流动的核酸样品制备和被动流体流动控制
AU2010224100B2 (en) * 2009-03-12 2015-10-22 Brandeis University Reagents and methods for PCR
US9169514B2 (en) 2010-12-03 2015-10-27 Brandeis University Detecting nucleic acid variations within populations of genomes
CA2853615C (en) 2011-04-20 2016-07-05 Mesa Tech International, Inc. Integrated device for nucleic acid detection and identification
JP2015508655A (ja) * 2012-02-14 2015-03-23 コーネル ユニバーシティー 組み合わせたヌクレアーゼ反応、連結反応、およびポリメラーゼ反応を用いて核酸配列、発現、またはコピー変化を相対的に定量するための方法
KR102126031B1 (ko) * 2013-07-23 2020-07-08 삼성전자주식회사 유전적 변이를 함유하는 핵산 검출 방법
CN105378160B (zh) 2013-08-12 2018-04-17 伯乐生命医学产品有限公司 具有碱基配对的寡聚体的扩增报告子
EP3044311A4 (en) * 2013-09-13 2017-03-15 Brandeis University Modified polymerase compositions, methods and kits
CA2971200A1 (en) * 2014-12-19 2016-06-23 Brandeis University Mispriming prevention reagents
CN107922970B (zh) * 2015-08-06 2021-09-28 豪夫迈·罗氏有限公司 通过单探针引物延伸的靶标富集
EP3400298B1 (en) 2016-01-08 2024-03-06 Bio-Rad Laboratories, Inc. Multiple beads per droplet resolution
CN109601008B (zh) * 2016-04-01 2023-02-28 克罗玛科德公司 用于工程化信号产生的竞争性探针
CN108774639B (zh) * 2018-05-31 2023-05-30 澳門帝傑數碼基因有限公司 一种定向聚合的荧光探针pcr
EP3818170A4 (en) * 2018-07-02 2022-03-09 Swift Biosciences, Inc. TEMPERATURE CONTROLLED DNA POLYMERASE INHIBITORS
WO2020252399A1 (en) * 2019-06-14 2020-12-17 University Of Washington An enzymatic assay to measure long-term adherence to pre exposure prophylaxis and antiretroviral therapy
US20230101896A1 (en) * 2020-02-21 2023-03-30 Mission Bio, Inc. Enhanced Detection of Target Nucleic Acids by Removal of DNA-RNA Cross Contamination
JP7209980B2 (ja) * 2020-12-11 2023-01-23 東洋紡株式会社 Dnaポリメラーゼの5’→3’エキソヌクレアーゼ活性ドメインに特異的に結合する抗体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090153A2 (en) * 2003-04-01 2004-10-21 Eragen Biosciences,Inc. Polymerase inhibitor and method of using same
WO2006044994A2 (en) * 2004-10-18 2006-04-27 Brandeis University Primers, probes and methods for nucleic acid amplification
WO2007008728A2 (en) * 2005-07-07 2007-01-18 Quanta Biosciences, Inc. Compositions and methods for increasing amplification efficiency

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5066584A (en) 1988-09-23 1991-11-19 Cetus Corporation Methods for generating single stranded dna by the polymerase chain reaction
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
US5338671A (en) 1992-10-07 1994-08-16 Eastman Kodak Company DNA amplification with thermostable DNA polymerase and polymerase inhibiting antibody
US5925517A (en) 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
US20050242506A1 (en) 1994-07-22 2005-11-03 Shuffle Master, Inc. Poker game variation with variable size wagers and play against a pay table
CA2223078C (en) 1995-06-07 2008-11-25 Nexstar Pharmaceuticals, Inc. Nucleic acid ligands that bind to and inhibit dna polymerases
US5773258A (en) 1995-08-25 1998-06-30 Roche Molecular Systems, Inc. Nucleic acid amplification using a reversibly inactivated thermostable enzyme
AU713667B2 (en) 1996-04-12 1999-12-09 Phri Properties, Inc. Detection probes, kits and assays
US6277607B1 (en) 1999-05-24 2001-08-21 Sanjay Tyagi High specificity primers, amplification methods and kits
US7198897B2 (en) 2001-12-19 2007-04-03 Brandeis University Late-PCR
CN101076608B (zh) * 2004-10-18 2013-04-17 布兰迪斯大学 在pcr扩增中提高再现性和降低引物错导的试剂和方法
ES2327956T3 (es) * 2006-10-12 2009-11-05 Bio-Rad Pasteur Sondas de doble hebra para la deteccion de acidos nucleicos, mediante fluorescencia.
EA200900782A1 (ru) 2006-12-14 2009-12-30 Новартис Аг Композиции и способы, предназначенные для лечения мышечных и сердечно-сосудистых нарушений
AU2010224100B2 (en) 2009-03-12 2015-10-22 Brandeis University Reagents and methods for PCR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090153A2 (en) * 2003-04-01 2004-10-21 Eragen Biosciences,Inc. Polymerase inhibitor and method of using same
WO2006044994A2 (en) * 2004-10-18 2006-04-27 Brandeis University Primers, probes and methods for nucleic acid amplification
WO2007008728A2 (en) * 2005-07-07 2007-01-18 Quanta Biosciences, Inc. Compositions and methods for increasing amplification efficiency

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KABOEV O K ET AL: "PCR hot start using primers with the structure of molecular beacons (hairpin-like structure)", 《NUCLEIC ACIDS RESEARCH》 *
KAINZ PETER ET AL: "Specificity-enhanced hot-start PCR: Addition of double-stranded DNA fragments adapted to the annealing temperature", 《BIOTECHNIQUES》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164274A (zh) * 2013-01-23 2015-12-16 布兰代斯大学 用于提高pcr准确度的试剂
CN105164274B (zh) * 2013-01-23 2018-11-30 布兰代斯大学 用于提高pcr准确度的试剂
WO2017219929A1 (zh) * 2016-06-24 2017-12-28 广州康昕瑞基因健康科技有限公司 模板-引物核酸分子、聚合酶活性测定方法及试剂盒
CN114341150A (zh) * 2019-06-25 2022-04-12 生物辐射实验室股份有限公司 用于增强逆转录酶活性和/或减少逆转录酶抑制的组合物和方法

Also Published As

Publication number Publication date
US9758813B2 (en) 2017-09-12
AU2010224100A1 (en) 2011-10-27
US20150322503A1 (en) 2015-11-12
JP2012520080A (ja) 2012-09-06
US20180002739A1 (en) 2018-01-04
CN102421918B (zh) 2016-01-20
WO2010105074A1 (en) 2010-09-16
US20120088275A1 (en) 2012-04-12
US9034605B2 (en) 2015-05-19
JP5757885B2 (ja) 2015-08-05
CA2755207A1 (en) 2010-09-16
AU2010224100B2 (en) 2015-10-22
EP2406394A1 (en) 2012-01-18
EP2406394B1 (en) 2014-01-08
EP2703501A1 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CN102421918B (zh) 用于pcr的试剂和方法
EP2162551B1 (en) Chimeric primers for improved nucleic acid amplification reactions
EP2989213B1 (en) A method for blocking polymerase extension of 3 prime dna ends by stem-loop structure
Tong et al. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection
KR102377229B1 (ko) 표적 핵산 및 변이체의 검출
US20180094309A1 (en) Nucleic acid retro-activated primers
US7118867B2 (en) Quantitative multiplex PCR with high dynamic range
EP3555316B1 (en) Modified multiplex and multistep amplification reactions and reagents therefor
CN104603268A (zh) 协同引物、探针及其应用
Jung et al. A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP)
US20210310048A1 (en) Method for generating single-stranded circular dna libraries for single molecule sequencing
US20210262021A1 (en) Cleavable co-operative primers and method of amplifying nucleic acid sequences using same
EP2252708B1 (en) Non-competitive internal controls for use in nucleic acid tests
EP3668999B1 (en) Methods and kits for detection of nucleic acid molecules
EP3856931B1 (en) Allele-specific design of cooperative primers for improved nucleic acid variant genotyping
US20230407390A1 (en) Nucleic acid amplification method, primer set, probe, and kit for nucleic acid amplification method
EP2208797A2 (en) Methods, compositions and kits for use in polynucleotide amplification
WO2020037290A1 (en) Reagents, mixtures, kits and methods for amplification of nucleic acids
JP2008528021A (ja) 生化学試薬及びその使用
IL203074A (en) Chimeric primers for enhancing nucleic acid enhancement reactions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20190311