CN102403315A - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN102403315A
CN102403315A CN2011100668391A CN201110066839A CN102403315A CN 102403315 A CN102403315 A CN 102403315A CN 2011100668391 A CN2011100668391 A CN 2011100668391A CN 201110066839 A CN201110066839 A CN 201110066839A CN 102403315 A CN102403315 A CN 102403315A
Authority
CN
China
Prior art keywords
mentioned
semiconductor layer
semiconductor device
groove
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100668391A
Other languages
English (en)
Other versions
CN102403315B (zh
Inventor
斋藤涉
小野升太郎
谷内俊治
渡边美穗
山下浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN102403315A publication Critical patent/CN102403315A/zh
Application granted granted Critical
Publication of CN102403315B publication Critical patent/CN102403315B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种降低场效应型晶体管部的通态电阻并且抑制了肖特基势垒二极管部的漏泄电流的半导体装置。具备:第一导电型的第一半导体层;第二导电型的第二半导体层,设置在第一半导体层的上方;第一导电型的第三半导体层,设置在第二半导体层的上方;填充电极,隔着第一绝缘膜设置在第一沟槽内;控制电极,在第一沟槽内隔着第二绝缘膜设置在填充电极的上方;第二导电型的第四半导体层,连接于第二沟槽的下端,选择性地设置在第一半导体层内;第一主电极,与第一半导体层电连接;以及第二主电极,设置在第二沟槽内,与第二半导体层、第三半导体层、第四半导体层连接。填充电极与第二主电极或控制电极电连接,在第二沟槽的侧壁形成有由第二主电极和第一半导体层构成的肖特基结。

Description

半导体装置
相关申请的交叉引用
本申请基于并要求申请日为2010年9月7日的日本专利申请No.2010-200251的优先权,其全部内容作为参考被包含在本文中。
技术领域
本发明涉及半导体装置。
背景技术
作为功率用的半导体装置的例子,有上下电极结构的功率MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属氧化物半导体场效应型晶体管)。作为降低这种功率MOSFET的通态电阻的手段,有在漂移层内形成深的沟槽,在该沟槽内隔着绝缘膜形成填充电极的场板(fieldplate)结构的功率MOSFET。场板结构被周期地设置在漂移层内,通过在施加电压时从场板结构向漂移层的横向伸出耗尽层来维持高耐压。其结果,在该功率MOSFET中,能够使漂移层的杂质浓度比现有的功率MOSFET更高,实现超出材料限度的低通态电阻化。
另一方面,上下电极结构的功率MOSFET具有由基层、漂移层和漏层构成的pn二极管(内置二极管)。作为使内置二极管更高速化的手段,还有在半导体装置内内置利用了肖特基结的肖特基势垒二极管(SchottkyBarrier Diode,SBD)的方法。
但是,若在功率MOSFET的基本单位单元内形成肖特基势垒二极管,则形成了肖特基结的区域的单元单位(单元的横向的周期)就变大。在具备场板结构的功率MOSFET中,若横向的周期变长,则通态电阻上升。此外,若横向的周期变长,则肖特基结部中的电场强度变强,在肖特基势垒二极管中有漏泄电流增加的可能性。
发明内容
本发明的实施方式提供一种降低场效应型晶体管部的通态电阻并且抑制了肖特基势垒二极管部的漏泄电流的半导体装置。
实施方式的半导体装置具备:第一导电型的第一半导体层;第二导电型的第二半导体层,设置在上述第一半导体层的上方;第一导电型的第三半导体层,设置在上述第二半导体层的上方;填充电极,隔着第一绝缘膜设置在从上述第三半导体层的表面贯通上述第二半导体层直至上述第一半导体层的第一沟槽内;以及控制电极,在上述第一沟槽内,隔着第二绝缘膜设置在上述填充电极的上方。实施方式的半导体装置具备:第二导电型的第四半导体层,连接于从上述第三半导体层的表面贯通上述第二半导体层直至上述第一半导体层的第二沟槽的下端,选择性地设置在上述第一半导体层内;第一主电极,与上述第一半导体层电连接;以及第二主电极,设置在上述第二沟槽内,与上述第二半导体层、上述第三半导体层、上述第四半导体层连接。上述填充电极与上述第二主电极或上述控制电极中的某一方电连接,在上述第二沟槽的侧壁形成有由上述第二主电极和上述第一半导体层构成的肖特基结。
根据本发明的实施方式,可以降低场效应型晶体管部的通态电阻,并且抑制肖特基势垒二极管部的漏泄电流。
附图说明
图1是第一实施方式涉及的半导体装置的主要部分模式剖视图。
图2是示出第一实施方式涉及的半导体装置的制造过程的主要部分模式剖视图。
图3是示出第一实施方式涉及的半导体装置的制造过程的主要部分模式剖视图。
图4是示出第一实施方式涉及的半导体装置的制造过程的主要部分模式剖视图。
图5是比较例涉及的半导体装置的主要部分模式剖视图。
图6是第一实施方式的第一变形例涉及的半导体装置的主要部分模式剖视图。
图7是第一实施方式的第二变形例涉及的半导体装置的主要部分模式剖视图。
图8是第二实施方式涉及的半导体装置的主要部分模式剖视图。
图9是第二实施方式的变形例涉及的半导体装置的主要部分模式剖视图。
图10是第三实施方式涉及的半导体装置的主要部分模式剖视图。
图11是第三实施方式的第一变形例涉及的半导体装置的主要部分模式剖视图。
图12是第三实施方式的第二变形例涉及的半导体装置的主要部分模式剖视图。
具体实施方式
以下,参照附图,关于本实施方式进行说明。
在以下的实施方式中,作为一例,假设第一导电型为n型,第二导电型为p型。在各图的同一结构要素上标记同一符号。
(第一实施方式)
图1是第一实施方式涉及的半导体装置的主要部分模式剖视图。图1示出了半导体装置的元件部。在后述的图2~图9中也同样。
半导体装置1a具有:具有上下电极结构的功率MOSFET、和肖特基势垒二极管(以下记作SBD)。在半导体装置1a中,如图1所示,在n+型的漏层10的上方设置有n型的漂移层(第一半导体层)11。在漂移层11的表面上形成有p型的基层(第二半导体层)12。在基层12的表面上形成有n+型的源层(第三半导体层)13。在本实施方式中,将漏层10侧作为下方,源层13作为上方来说明实施方式。即,将源层13设置在比漏层10浅的位置。
从源层13的表面朝向漂移层11设置有多个沟槽21。例如,沟槽21从源层13的表面贯通基层12到达漂移层11的内部。例如在大致平行于漂移层11的主面的方向上周期地设置各个沟槽21。各个沟槽21相互平行地延伸。
在沟槽21内的下部设置有填充绝缘膜(第一绝缘膜)41和填充电极31。在沟槽21内的上部设置有栅绝缘膜(第二绝缘膜)42和栅电极(控制电极)32。填充电极31构成了利用填充绝缘膜41与漂移层11和栅电极32绝缘的填充场板结构(以下称作填充FP结构)。填充电极31隔着填充绝缘膜41与漂移层11相连。填充绝缘膜41的膜厚大于栅绝缘膜42的膜厚。
栅电极32隔着栅绝缘膜42与漂移层11、基层12和源层13相连。
漏层10设置在漂移层11的里面,与漏电极(第一主电极)34连接。基层12和源层13与设置在源层13上方的源电极(第二主电极)33连接。源电极33与栅电极32通过设置在栅电极32上部的层间绝缘膜43相绝缘。填充电极31与源电极33电连接。
在相邻的栅电极32之间形成有从源层13的表面到达漂移层11的沟槽22。沟槽22将源层13和基层12断开。沟槽22的下端位于比基层12的下表面还深的位置,位于比栅电极32的下表面还浅的位置。在沟槽22的内部填充着源电极33。
沟槽22的下端与着p+型的护圈层(第四半导体层)14连接。护圈层14与设置在沟槽22内的源电极33连接。
在沟槽22的侧壁的一部分中,金属性的源电极33与n-型的漂移层11接触。这样,在沟槽22与漂移层11接触的部分形成肖特基结50。即,半导体装置1a内置有由源电极33和漂移层11形成的SBD。该SBD连接于源电极33与漏电极34之间。
再有,漂移层11、基层12、源层13、漏层10和护圈层14的主要成分是例如硅(Si),填充电极31和栅电极32的主要成分是例如多晶硅(poly-Si),源电极33和漏电极34的主要成分是例如铝(Al),填充绝缘膜41和栅绝缘膜42及层间绝缘膜43的主要成分是例如氧化硅(SiO2)。
下面,关于本实施方式的制造过程的一例进行说明。
图2~图4是用于说明第一实施方式涉及的半导体装置的制造过程的主要部分模式剖视图。
首先,如图2(a)所示,准备基板状(例如,半导体晶片状)的n+型的漏层10。随后,在漏层10的表面上使n-型的漂移层11进行外延生长。然后,在漂移层11的表面上选择性地形成了未图示的由硅氧化膜或抗蚀剂等构成的掩模之后,使用各向异性刻蚀(例如,Reactive Ion Etching,RIE:反应离子刻蚀)等,在漂移层11内选择性地形成多个沟槽21。
然后,如图2(b)所示,在沟槽21内使用热氧化法、CVD(ChemicalVaper Deposition:化学气相沉积)法等形成填充绝缘膜41。填充绝缘膜41的材质是例如氧化硅(SiO2)、氮化硅(Si3N4)等。接着,将多晶硅(poly-Si)隔着填充绝缘膜41填充在沟槽21内。多晶硅的形成方法例如是CVD法。接着,对沟槽21内所填充的多晶硅以及绝缘膜进行回刻蚀(etch back)。这样,就在沟槽21的下部,隔着填充绝缘膜41形成填充电极31。
然后,如图3(a)所示,在沟槽21内使用热氧化法、CVD法等形成栅绝缘膜42。随后,通过CVD法,隔着栅绝缘膜42填充多晶硅。随后,对多晶硅和栅绝缘膜42进行回刻蚀,形成栅电极32。这样,就在填充电极31的上方形成栅电极32。
然后,如图3(b)所示,利用离子注入和热处理,在漂移层11的表面上形成p型基层12。接着,在基层12的表面上,利用离子注入和热处理形成n+型的源层13。这时,也可以根据需要,在不需要离子注入的部分被覆绝缘膜和抗蚀剂层等。
然后,如图4(a)所示,在源层13的表面上选择性地形成了由硅氧化膜和抗蚀剂层等构成的掩模60之后,使用RIE法等形成沟槽22。另外,利用离子注入,从沟槽22的底面(下端)向该底面下侧的漂移层11中打入p型杂质。在注入了p型杂质后,根据需要实施热处理。这样就形成与沟槽22的底面(下端)接触的护圈层14。
然后,如图4(b)所示,用层间绝缘膜43覆盖从源层13的表面突出的栅电极32的表面。另外,在沟槽22内使用溅射法或CVD法形成金属层,并且在源层13的上方形成源电极33。由于源电极33和沟槽22内所填充的金属层连通,因此,包括该金属层在内都叫做源电极33。
源电极33的主要成分是例如铝(Al)。也可以在金属层与沟槽22内壁之间,根据需要形成势垒膜(例如,以钛(Ti)为主要成分的膜)。此外,根据需要对漏层10的里面侧进行研磨,在漏层10的下侧形成漏电极34。利用这样的制造过程形成图1所示的半导体装置1a。
下面说明半导体装置1a的作用效果。
图1所示的半导体装置1a具备填充FP结构和SBD。包括源层13、漏层10和栅电极32在内的MOSFET与SBD并联连接在源电极33和漏电极34之间。源电极33起SBD的阳极电极的作用,漏电极31起阴极电极的作用。
在使源电极33成为比漏电极34低电位的状态下对栅电极32施加阈值电压以上的电压时,在隔着栅绝缘膜42与栅电极32相对置的基层12中形成沟道(反转层),源电极33与漏电极34之间导通。
这样,MOSFET就成为导通状态,例如,电子电流从源电极33经由源层13、沟道、漂移层11和漏层10流向漏电极34。
另一方面,若使栅电极32的电位成为低于阈值电压的电位,则基层12中不形成沟道,MOSFET成为关断状态。在MOSFET关断状态下变为对源电极33与漏电极34之间施加了高电压的状态。从而,耗尽层从与源电极33电连接的填充绝缘膜41朝向漂移层11伸展。即,耗尽层向半导体装置1a的横向(大致平行于漏层10的主面的方向)延伸,从相邻的填充绝缘膜41彼此之间伸展的耗尽层连在一起。这样,半导体装置1a就维持高耐压。
此外,由于填充绝缘膜41的膜厚比栅绝缘膜42的膜厚足够厚,因此,利用填充绝缘膜41维持高耐压。所以能够将漂移层11的杂质浓度提高相应的量,降低通态电阻。另外,横向的周期越窄,漂移层11就越容易完全耗尽化,所以能够进一步提高漂移层11的杂质浓度。这样,半导体装置1a的通态电阻就进一步降低。
在MOSFET是关断状态,并且源电极33处于比漏电极34高电位的状态的情况下,SBD进行工作,从源电极33通过肖特基结50,经由漂移层11和漏层10向漏电极34流过正向电流。
对比较例涉及的半导体装置100进行说明。
图5是比较例涉及的半导体装置100的主要部分模式剖视图。
在比较例涉及的半导体装置100中,源层13、基层12和漂移层11与源电极33的下表面连接。在半导体装置100中不存在如半导体装置1a中设置的那样的填充在沟槽22内的源电极33和护圈层14。在半导体装置100中,在漂移层11的表面的一部分中形成有肖特基结500。
在半导体装置100中,肖特基结500与漏电极34相对置。因此,在对漏电极34施加了高电压时,对肖特基结500施加很强的电场。从而,在肖特基结500中存在发生漏泄电流的可能性。
为了抑制肖特基结500的漏泄电流,必须选择肖特基势垒高的材料。但是,肖特基势垒的高度提高了SBD的正向电压,因此变得难以促进SBD的低损耗化。
作为降低半导体装置100的SBD的通态电压的手段,必须增大肖特基结500的面积。在半导体装置100中,与漏电极34相对置地设置肖特基结500,漏层10的主面与肖特基结的面大致平行。因此,若增大肖特基结500的面积,则相邻的填充电极31间的距离变长。从而,在半导体装置100中,使单元间距狭小化变得困难。其结果,在半导体装置100中,很难缩短横向的周期,从而很难降低通态电阻。
与此相对,在本实施方式涉及的半导体装置1a中,肖特基结50与栅电极32相对置,不与漏电极34相对置。因此,肖特基结50的面(界面)不是垂直于电流路径的面,而是成为与沿电流路径的方向大致平行的面。从而,即使对源电极33与漏电极34之间施加高电压,与比较例涉及的半导体装置100相比,肖特基结50上施加的电场强度也被抑制。另外,利用护圈层14进一步缓和了电场强度,因此,施加到肖特基结50上的电场强度接近于零。另外,肖特基结50位于比栅电极32的底面(下端)浅的位置。因此,成为施加到肖特基结50上的电场强度难增加的结构。从而,流过肖特基结50的反向漏泄电流被抑制。其结果,半导体装置1a的SBD的性能变得更良好。
此外,在半导体装置1a中,由于肖特基结50的面与漏层10的主面大致垂直,因此,根据肖特基结50自身的形成而横向的周期不变长。另外,通过加深沟槽22,能够扩大肖特基结50的面积。因此,不会增加基本单位单元的横向的周期,能够得到期望的肖特基结面积。从而,在确保了MOSFET的低通态电阻的同时,能够扩大SBD的面积,降低SBD的通态电压。
此外,在半导体装置1a中,将填充电极31与源电极33连接,因此降低了栅漏间电容。从而实现高速开关。
这样能够实现在半导体装置1a中具有低通态电阻的同时内置有反向漏泄电流小的SBD的纵式功率MOSFET。
下面关于半导体装置1a的变形例进行说明。
(第一实施方式的第一变形例)
图6是第一实施方式的第一变形例涉及的半导体装置的主要部分模式剖视图。
在第一实施方式的变形例涉及的半导体装置1b中,在沟槽21内,将填充电极31与栅电极32连接。
根据这样的结构,能够在MOSFET的导通状态下,在隔着填充绝缘膜41与填充电极31相对置的漂移层11中也形成电子的累积层。从而,半导体装置1b与半导体装置1a相比,沟道密度增加,通态电阻进一步降低。
(第一实施方式的第二变形例)
图7是第一实施方式的第二变形例涉及的半导体装置的主要部分模式剖视图。
在半导体装置1c中,沟槽22的下端位于比栅电极32的下端深的位置。
根据这样的结构,肖特基结50的面积比半导体装置1a、1b进一步扩大。因此,SBD的通态电压进一步降低。此外,通过在比栅绝缘膜42深的位置上存在护圈层14,能够在对源电极33与漏电极34之间施加了高电压时,缓和施加到栅绝缘膜42上的电场强度。这样,在半导体装置1c中,与半导体装置1a、1b相比,抑制了栅绝缘膜42的劣化(例如,绝缘破坏),可靠性提高。
(第二实施方式)
图8是第二实施方式涉及的半导体装置的主要部分模式剖视图。
如图8所示,在半导体装置2a中,在基层12的下侧的、沟槽21与沟槽22之间的区域A中设置有n型的高浓度半导体层(第五半导体层)15,该高浓度半导体层15含有浓度比漂移层的杂质浓度高的杂质。高浓度半导体层15的下端位于比护圈层14的下端浅的位置。高浓度半导体层15的杂质浓度是漂移层11的数倍程度。高浓度半导体层15的主要成分是例如硅(Si)。在沟槽22的侧壁的一部分中,金属性的源电极33与高浓度半导体层15接触。这样,在沟槽22与高浓度半导体层15接触的部分中形成有肖特基结50。除此以外与半导体装置1c的结构大致相同。
根据这样的结构,在对漏电极34施加了电压的情况下,耗尽层从栅绝缘膜42和填充绝缘膜41向横向伸展,并且耗尽层也从肖特基结50向横向伸展。从而,由肖特基结50与沟槽21夹着的区域A比沟槽21彼此之间的区域B更容易完全耗尽化。因此,不会降低耐压而可以提高区域A的杂质浓度。从而,即使设置高浓度半导体层15,半导体装置2a的耐压也不下降。通过在漂移层11设置杂质浓度高的高浓度半导体层15,能够实现更低通态电阻的MOSFET。
(第二实施方式的变形例)
下面关于半导体装置2a的变形例进行说明。
图9是第二实施方式的变形例涉及的半导体装置的主要部分模式剖视图。
如图9所示,在半导体装置2b中,高浓度半导体层15未与沟槽22接触。在沟槽22的侧壁的一部分中,金属性的源电极33与漂移层11接触。这样,在沟槽22与漂移层11接触的部分形成有肖特基结50。除此以外与半导体装置2a的结构大致相同。
根据这样的结构,在半导体装置2b中,与半导体装置2a同样地,由于从肖特基结50伸展的耗尽层,不会降低耐压而能够提高漂移层的杂质浓度,实现低通态电阻。由于形成了肖特基结50的半导体层是漂移层11,因此与半导体装置2a相比,杂质浓度低。从而,能够抑制经SBD流过的漏泄电流。在半导体装置2b中,降低了通态电阻的同时,且能够实现更低漏泄电流的SBD。
(第三实施方式)
图10是第三实施方式涉及的半导体装置的主要部分模式剖视图。
图10中不仅示出形成了MOSFET的元件区域71,还示出从元件区域71至外侧的终端区域72。即,半导体装置具有元件区域71和围绕元件区域71设置在其外侧的终端区域72。所述元件区域71是在MOSFET的漏电极与源电极之间形成主电流路径的区域,例如,在图10中是包含栅电极32等的区域。所述终端区域72是围绕元件区域71配置在其外周侧的区域,是设置有后述的场板电极35和场绝缘膜44等的区域。在终端区域72中,在漂移层11的上方和基层12a的一部分的上方进一步设置有场绝缘膜44。图11和图12中也同样。
如图10所示,在本实施方式涉及的半导体装置3a中,在元件区域71外侧的终端区域72中,在漂移层11上设置有场绝缘膜44。在场绝缘膜44上设置有与源电极33一体地形成的场板电极35。在与沟槽21相邻的终端区域72中设置有p型的基层12a。在基层12a的上方未设置源层13。基层12a延长到场绝缘膜的下方。
在基层12a中,比基层12a的与漂移层11接触的侧壁12w更靠近沟槽21地设置沟槽22a。换言之,设置在终端区域72中的沟槽22a与设置在终端区域中的基层12a的和漂移层11接触的侧壁12w之间的距离,比设置在终端区域中的沟槽22a与设置在元件区域71中的沟槽21之间的距离长。沟槽22a将基层12a断开。沟槽22a的下端位于比基层12a的下表面深的位置。在沟槽22a的内部填充有源电极33。沟槽22a的下端与p+型的护圈层14a接触。护圈层14a与设置在沟槽22a内的源电极33连接。在沟槽22a的侧壁的一部分中,金属性的源电极33与n-型的漂移层11接触。这样,在沟槽22a与漂移层11接触的部分中形成有肖特基结50a。
从基层12a与漂移层11接触的侧壁12w到沟槽22a的侧壁为止的距离a,比从基层12a的底面到护圈层14a的下端位置为止的距离b长。除此以外的元件部与半导体装置1a的结构大致相同。
在对漏电极34施加了高电压时,电场在基层12a的端部集中。因此,有时半导体装置3a的耐压下降。在半导体装置3a中,利用在场绝缘膜44上设置了场板电极35的场板结构来缓和电场集中。另外,利用护圈层14a进一步缓和电场强度。从而,在半导体装置3a中抑制了耐压的下降。
此外,将从基层12a的侧壁到沟槽22a的侧壁为止的距离a设得比从基层12a的底面到护圈层14a的下端位置为止的距离b长,来缓和处于护圈层14a的上方的肖特基结50a上施加的电场集中。从而可以降低SBD的漏泄电流。
下面,关于半导体装置3a的变形例进行说明。
(第三实施方式的第一变形例)
图11是第三实施方式的第一变形例涉及的半导体装置的主要部分模式剖视图。
如图11所示,在半导体装置3b中,在漂移层11的表面上设置p型半导体的第二护圈层(第六半导体层)16。第二护圈层16与基层12a接触,设置在基层12a的外侧。第二护圈层16的表面与源电极33的下表面连接。第二护圈层16的下端位置比基层12a的下端的位置深。
根据这样的结构,利用第二护圈层16可以进一步抑制向基层12a的端部的电场集中。图11中模式地用矩形示出了第二护圈层16的形状,但实际的结成为由于杂质的扩散而端部变圆的形状。越是较深地形成杂质,pn结面的曲率半径越大,由第二护圈层16和漂移层11构成的pn结面的端部中的电场集中越被抑制。从而,在半导体装置3b中能够提高终端区域中的耐压。
(第三实施方式的第二变形例)
图12是第三实施方式的第二变形例涉及的半导体装置的主要部分模式剖视图。
如图12所示,在半导体装置3c中,在第二护圈层16的外侧设置p型半导体的第三护圈层17。第三护圈层17设置在漂移层11的表面上。第三护圈层的侧面未与第二护圈层16接触。第三护圈层17的表面与场绝缘膜44接触,因此未与源电极33接触。从而,第三护圈层17未与任何电极接触。第三护圈层17的下表面的位置比基层12a的下表面的位置深。第三护圈层17可以是1个,也可以是多个。
由第三护圈层17进一步抑制向基层12a的端部的电场集中,可以进一步提高半导体装置3c的终端区域中的耐压。
以上参照具体例说明了本实施方式。但是,本实施方式不限定于这些具体例。即,本领域技术人员对这些具体例适当加以设计变更后形成的技术方案,只要具备本实施方式的特征,也包含在本实施方式的范围中。
例如,本实施方式中假设第一导电型为n型,第二导电型为p型进行了说明,但也可以设第一导电型为p型,第二导电型为n型来实施。
例如,MOS栅部和填充FP结构的平面图案不限于条纹状,也可以是格子状或锯齿状、蜂窝状。
此外,作为半导体装置的半导体材料,例如使用硅(Si)。但是,作为半导体材料,可以使用例如碳化硅(SiC)、氮化镓(GaN)等化合物半导体、金刚石等的宽带隙半导体。
此外,本实施方式中例示的附图是模式图或概念图。各部分的厚度与宽度的关系、部分间的大小的比率不一定限于与现实的相同,附图上用矩形表示的形状,在现实中带圆角的情况或具有角度的实施方式也包含在本实施方式中。
尽管已经描述了特定的实施方式,但仅是通过例子表现了这些实施方式,而并不是要限定本发明的范围。实际上,可以用多种其他的方式来实施本文所描述的新的实施方式。另外,采用本文所描述的实施方式形式的各种省略、替代和改变都可以在不脱离本发明精神的情况下做出。所附的权利要求书和它们的等效内容包括落入本发明的范围和精神内的这些形式或变形。

Claims (20)

1.一种半导体装置,其特征在于,具备:
第一导电型的第一半导体层;
第二导电型的第二半导体层,设置在上述第一半导体层的上方;
第一导电型的第三半导体层,设置在上述第二半导体层的上方;
填充电极,隔着第一绝缘膜设置在从上述第三半导体层的表面贯通上述第二半导体层直至上述第一半导体层的第一沟槽内;
控制电极,在上述第一沟槽内,隔着第二绝缘膜设置在上述填充电极的上方;
第二导电型的第四半导体层,连接于从上述第三半导体层的表面贯通上述第二半导体层直至上述第一半导体层的第二沟槽的下端,选择性地设置在上述第一半导体层内;
第一主电极,与上述第一半导体层电连接;以及
第二主电极,设置在上述第二沟槽内,与上述第二半导体层、上述第三半导体层、上述第四半导体层连接,
上述填充电极与上述第二主电极或上述控制电极中的某一方电连接,
在上述第二沟槽的侧壁形成有由上述第二主电极和上述第一半导体层构成的肖特基结。
2.根据权利要求1所述的半导体装置,其特征在于,
上述填充电极与上述控制电极连接。
3.根据权利要求1所述的半导体装置,其特征在于,
上述第二沟槽的下端位于比上述控制电极的下端深的位置。
4.根据权利要求1所述的半导体装置,其特征在于,
在上述第一沟槽与上述第二沟槽之间还具备第一导电型的第五半导体层,该第五半导体层设置在上述第二半导体层的下侧,包含浓度比上述第一半导体层的杂质浓度高的杂质。
5.根据权利要求4所述的半导体装置,其特征在于,
上述第五半导体层的下端位于比上述第四半导体层的下端浅的位置。
6.根据权利要求4所述的半导体装置,其特征在于,
上述第五半导体层与上述第二沟槽接触。
7.根据权利要求4所述的半导体装置,其特征在于,
上述第五半导体层未与上述第二沟槽接触。
8.根据权利要求1所述的半导体装置,其特征在于,
在设置有上述控制电极的元件区域的周围设置的终端区域中设置有:
上述第二半导体层;
设置在上述第二沟槽内的上述第二主电极;和
与上述第二主电极连接的上述第四半导体层。
9.根据权利要求8所述的半导体装置,其特征在于,
在上述终端区域中,在上述第一半导体层的上方和上述第二半导体层的一部分的上方还设置有场绝缘膜。
10.根据权利要求8所述的半导体装置,其特征在于,
上述终端区域中的上述第二沟槽与上述终端区域中的上述第二半导体层的和上述第一半导体层接触的侧壁之间的距离,大于上述终端区域中的上述第二沟槽与上述元件区域中的第一沟槽之间的距离。
11.根据权利要求8所述的半导体装置,其特征在于,
上述终端区域中的上述第二半导体层被上述终端区域中的上述第二沟槽断开。
12.根据权利要求8所述的半导体装置,其特征在于,
上述终端区域中的上述第二沟槽的下端位于比上述终端区域中的上述第二半导体层的下表面深的位置。
13.根据权利要求8所述的半导体装置,其特征在于,
上述终端区域中的上述第二沟槽内设置的上述第二主电极与上述第一半导体层接触。
14.根据权利要求8所述的半导体装置,其特征在于,
从上述元件区域向上述终端区域延伸的上述第二半导体层的侧壁到与上述第二半导体层的上述侧壁相对置的上述第二沟槽的侧壁为止的距离,大于从上述第二半导体层的底面到上述第四半导体层的下端位置为止的距离。
15.根据权利要求8所述的半导体装置,其特征在于,
在上述第一半导体层的表面上还设置有第二导电型的第六半导体层,该第六半导体层与从上述元件区域向上述终端区域延伸的上述第二半导体层接触。
16.根据权利要求15所述的半导体装置,其特征在于,
上述第六半导体层的底面位于比上述终端区域中的上述第二半导体层的底面深的位置。
17.根据权利要求15所述的半导体装置,其特征在于,
上述第六半导体层与上述第二主电极连接。
18.根据权利要求15所述的半导体装置,其特征在于,
在上述第六半导体层的更外侧至少设置一个与上述第二主电极不接触的第二导电型的第七半导体层。
19.根据权利要求18所述的半导体装置,其特征在于,
上述第七半导体层与上述第六半导体层不接触。
20.根据权利要求18所述的半导体装置,其特征在于,
上述第七半导体层的下表面的位置位于比上述第二半导体层的下表面的位置深的位置。
CN201110066839.1A 2010-09-07 2011-03-18 半导体装置 Expired - Fee Related CN102403315B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP200251/2010 2010-09-07
JP2010200251A JP5449094B2 (ja) 2010-09-07 2010-09-07 半導体装置

Publications (2)

Publication Number Publication Date
CN102403315A true CN102403315A (zh) 2012-04-04
CN102403315B CN102403315B (zh) 2014-06-25

Family

ID=45770074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110066839.1A Expired - Fee Related CN102403315B (zh) 2010-09-07 2011-03-18 半导体装置

Country Status (4)

Country Link
US (2) US8643091B2 (zh)
JP (1) JP5449094B2 (zh)
CN (1) CN102403315B (zh)
TW (1) TWI427792B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876256A (zh) * 2017-03-31 2017-06-20 西安电子科技大学 SiC双槽UMOSFET器件及其制备方法
CN106876471A (zh) * 2017-03-31 2017-06-20 西安电子科技大学 双槽umosfet器件
CN107636836A (zh) * 2015-12-11 2018-01-26 富士电机株式会社 半导体装置
CN110073497A (zh) * 2016-12-19 2019-07-30 丰田自动车株式会社 半导体装置
CN112164718A (zh) * 2020-08-28 2021-01-01 电子科技大学 具有控制栅保护层的分离栅器件及其制造方法
CN112352319A (zh) * 2018-06-29 2021-02-09 京瓷株式会社 半导体器件以及电子装置
CN117334745A (zh) * 2023-12-01 2024-01-02 深圳天狼芯半导体有限公司 一种源极沟槽集成SBD超结SiC MOS及制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170563B2 (en) * 2009-10-30 2019-01-01 Alpha And Omega Semiconductor Incorporated Gallium nitride semiconductor device with improved termination scheme
US8692318B2 (en) * 2011-05-10 2014-04-08 Nanya Technology Corp. Trench MOS structure and method for making the same
JP5991020B2 (ja) * 2012-05-18 2016-09-14 株式会社豊田中央研究所 炭化珪素単結晶を主材料とする半導体装置
JP2014146666A (ja) * 2013-01-28 2014-08-14 Toshiba Corp 半導体装置
JP5799047B2 (ja) 2013-03-22 2015-10-21 株式会社東芝 半導体装置、及びその製造方法
JP2014216572A (ja) 2013-04-26 2014-11-17 株式会社東芝 半導体装置
JP2015076592A (ja) * 2013-10-11 2015-04-20 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
US20150118810A1 (en) * 2013-10-24 2015-04-30 Madhur Bobde Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
JP2016004847A (ja) * 2014-06-14 2016-01-12 株式会社東芝 半導体装置及びその製造方法
DE102015121566B4 (de) * 2015-12-10 2021-12-09 Infineon Technologies Ag Halbleiterbauelemente und eine Schaltung zum Steuern eines Feldeffekttransistors eines Halbleiterbauelements
JP6976858B2 (ja) * 2015-12-25 2021-12-08 出光興産株式会社 積層体
US10923562B2 (en) * 2016-08-19 2021-02-16 Rohm Co., Ltd. Semiconductor device, and method for manufacturing semicondcutor device
JP6720818B2 (ja) * 2016-10-07 2020-07-08 トヨタ自動車株式会社 半導体装置
JP6830627B2 (ja) * 2016-12-22 2021-02-17 国立研究開発法人産業技術総合研究所 半導体装置および半導体装置の製造方法
JP6555284B2 (ja) * 2017-02-23 2019-08-07 サンケン電気株式会社 半導体装置
JP6930197B2 (ja) * 2017-04-20 2021-09-01 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6866792B2 (ja) * 2017-07-21 2021-04-28 株式会社デンソー 半導体装置およびその製造方法
JP7059556B2 (ja) * 2017-10-05 2022-04-26 富士電機株式会社 半導体装置
US10439075B1 (en) 2018-06-27 2019-10-08 Semiconductor Components Industries, Llc Termination structure for insulated gate semiconductor device and method
US10566466B2 (en) 2018-06-27 2020-02-18 Semiconductor Components Industries, Llc Termination structure for insulated gate semiconductor device and method
JP7310144B2 (ja) * 2019-01-10 2023-07-19 富士電機株式会社 炭化珪素半導体装置
US20220238698A1 (en) * 2021-01-26 2022-07-28 Pakal Technologies, Inc. Mos-gated trench device using low mask count and simplified processing
JP2022148177A (ja) * 2021-03-24 2022-10-06 株式会社東芝 半導体装置
EP4131419A1 (en) * 2021-08-03 2023-02-08 Infineon Technologies Austria AG Transistor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750508B2 (en) * 2000-06-30 2004-06-15 Kabushiki Kaisha Toshiba Power semiconductor switching element provided with buried electrode
US20080135929A1 (en) * 2006-11-01 2008-06-12 Kabushiki Kaisha Toshiba Power semiconductor device
JP2008205497A (ja) * 1994-12-30 2008-09-04 Siliconix Inc デルタ層を有する低オン抵抗のトレンチ型mosfet
US20090090966A1 (en) * 2007-10-04 2009-04-09 Paul Thorup High density fet with integrated schottky

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
EP0333426B1 (en) 1988-03-15 1996-07-10 Kabushiki Kaisha Toshiba Dynamic RAM
JP2006202931A (ja) 2005-01-20 2006-08-03 Renesas Technology Corp 半導体装置およびその製造方法
JP5612256B2 (ja) 2008-10-16 2014-10-22 株式会社東芝 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205497A (ja) * 1994-12-30 2008-09-04 Siliconix Inc デルタ層を有する低オン抵抗のトレンチ型mosfet
US6750508B2 (en) * 2000-06-30 2004-06-15 Kabushiki Kaisha Toshiba Power semiconductor switching element provided with buried electrode
US20080135929A1 (en) * 2006-11-01 2008-06-12 Kabushiki Kaisha Toshiba Power semiconductor device
US20090090966A1 (en) * 2007-10-04 2009-04-09 Paul Thorup High density fet with integrated schottky

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636836A (zh) * 2015-12-11 2018-01-26 富士电机株式会社 半导体装置
US10818782B2 (en) 2015-12-11 2020-10-27 Fuji Electric Co., Ltd. Insulated-gate bipolar transistor (IGBT) including a branched gate trench
CN110073497A (zh) * 2016-12-19 2019-07-30 丰田自动车株式会社 半导体装置
CN110073497B (zh) * 2016-12-19 2022-07-08 丰田自动车株式会社 半导体装置
CN106876256A (zh) * 2017-03-31 2017-06-20 西安电子科技大学 SiC双槽UMOSFET器件及其制备方法
CN106876471A (zh) * 2017-03-31 2017-06-20 西安电子科技大学 双槽umosfet器件
CN106876471B (zh) * 2017-03-31 2019-12-17 西安电子科技大学 双槽umosfet器件
CN106876256B (zh) * 2017-03-31 2020-05-12 西安电子科技大学 SiC双槽UMOSFET器件及其制备方法
CN112352319A (zh) * 2018-06-29 2021-02-09 京瓷株式会社 半导体器件以及电子装置
CN112352319B (zh) * 2018-06-29 2023-10-10 京瓷株式会社 半导体器件以及电子装置
CN112164718A (zh) * 2020-08-28 2021-01-01 电子科技大学 具有控制栅保护层的分离栅器件及其制造方法
CN117334745A (zh) * 2023-12-01 2024-01-02 深圳天狼芯半导体有限公司 一种源极沟槽集成SBD超结SiC MOS及制备方法

Also Published As

Publication number Publication date
CN102403315B (zh) 2014-06-25
US9059284B2 (en) 2015-06-16
US8643091B2 (en) 2014-02-04
US20140103425A1 (en) 2014-04-17
JP5449094B2 (ja) 2014-03-19
TWI427792B (zh) 2014-02-21
US20120056262A1 (en) 2012-03-08
JP2012059841A (ja) 2012-03-22
TW201212233A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
CN102403315B (zh) 半导体装置
EP3257085B1 (en) High voltage semiconductor devices and methods of making the devices
JP5002148B2 (ja) 半導体装置
CN102403356B (zh) 半导体装置
JP3721172B2 (ja) 半導体装置
US9013005B2 (en) Semiconductor device and method for manufacturing same
JP2007027266A (ja) 半導体素子及びその製造方法
JP6532549B2 (ja) 半導体装置
JP2006278826A (ja) 半導体素子及びその製造方法
US8592893B2 (en) Power semiconductor device
US9048215B2 (en) Semiconductor device having a high breakdown voltage
US11581409B2 (en) Transistor device with a field electrode that includes two layers
JP3998454B2 (ja) 電力用半導体装置
US9324817B2 (en) Method for forming a transistor device having a field electrode
JP4948784B2 (ja) 半導体装置及びその製造方法
JP2008306022A (ja) 半導体装置
CN210325806U (zh) 一种具有jfet区布图设计的半导体器件
CN117650158B (zh) 一种宽禁带半导体沟槽mosfet器件及其制造方法
US9502498B2 (en) Power semiconductor device
CN106784024A (zh) 一种肖特基二极管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

Termination date: 20170318