CN102401761B - 一种微型集成式紫外-热复合消解芯片 - Google Patents

一种微型集成式紫外-热复合消解芯片 Download PDF

Info

Publication number
CN102401761B
CN102401761B CN 201010282765 CN201010282765A CN102401761B CN 102401761 B CN102401761 B CN 102401761B CN 201010282765 CN201010282765 CN 201010282765 CN 201010282765 A CN201010282765 A CN 201010282765A CN 102401761 B CN102401761 B CN 102401761B
Authority
CN
China
Prior art keywords
digestion
miniature
ultraviolet
groove
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010282765
Other languages
English (en)
Other versions
CN102401761A (zh
Inventor
佟建华
王敏锐
边超
夏善红
孙楫舟
李洋
白银
卞贺明
薛茜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Institute of Electronics of CAS
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS, Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Institute of Electronics of CAS
Priority to CN 201010282765 priority Critical patent/CN102401761B/zh
Publication of CN102401761A publication Critical patent/CN102401761A/zh
Application granted granted Critical
Publication of CN102401761B publication Critical patent/CN102401761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种微型集成式紫外-热复合消解芯片,涉及微量检测技术,是基于紫外发光二极管(LED)及微流控技术。该芯片结合热消解和紫外消解技术,采用MEMS技术加工形成具有微型通道和微型消解池的微流控芯片,并把具有高密度紫外LED阵列的芯片与该微流控芯片集成为一体,实现高能量密度紫外光辅助对微量水样的热-紫外复合快速消解。本发明的芯片,可为一些需要在检测前进行消解的水质监测参数(如总磷、总氮、COD等)提供快速、高效的消解,并具有微型化的特点,易于与微型传感器集成形成便携式水质检测设备。

Description

一种微型集成式紫外-热复合消解芯片
技术领域
本发明涉及微量检测技术领域,是一种微型集成式紫外-热复合消解芯片,可针对水环境中COD、总磷、总氮含量进行快速检测,是一种基于紫外发光二极管(LED)及微流控技术的集成式快速消解芯片。
背景技术
根据中国环保部2009年6月4日发布的《2008年中国环境状况公报》显示:我国地表水污染依然严重。长江、黄河、珠江、松花江、淮河、海河和辽河等七大水系中近一半河段严重污染。水环境监测对象非常复杂,且数量众多。COD(化学需氧量)、总磷(Total Phosphorus-TP)、总氮(TotalNitrogen-TN)是水质监测的三个重要常规指标。COD是衡量水中有机物质含量多少的指标,化学需氧量越大,则水体受到有机物的污染越严重;总磷是水中各种形态的磷的总和,其主要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等;总氮指的是水中有机氮、氨氮、亚硝酸盐氮、硝酸盐氮的总和,主要来自农业生产中的化肥流失。总磷、总氮超标会引起湖泊、河流等水体污秽异臭,水体中藻类植物的过度生长,水体富营养化,水质变坏,易发生水华或者赤潮,无法饮用。
目前无论是实验室的COD、总磷、总氮国标检测方法,还是商用在线检测仪的检测方法,对COD、总磷、总氮的检测都需要通过使用强氧化剂,将未经过滤的水样消解;消解时测试溶液应密闭置于高压蒸气消毒器中加热,在一定的压力和温度下,保持一段时间,把水样中的有机物质转化成二氧化碳和水;将水样中所含的磷,包括溶解的、颗粒的、有机的和无机磷,全部氧化为正磷酸盐,同理把水样中含氮化合物完全转化为硝酸盐。在经过各自的处理之后,在一定的波长下测定吸光度,计算得到COD、总磷、总氮的含量
对于COD、总磷、总氮的消解,国标方法通常选用高压蒸气消毒器作为消解装置,尺寸较大,能耗高,很难实现便携使用,商用的分析仪器所用的消解系统也具有上述特点。随着微加工技术的不断发展,基于电化学、生物技术的微小型传感器不断涌现,亟需与之配套的微小型消解系统。目前国内外尚未见针对水环境中COD、总磷、总氮检测的微型消解系统的报道,尚未见将基于紫外LED的光学消解方法与基于微流控芯片的微型热消解方法相结合的复合消解方法。
发明内容
本发明的目的在于提供一种微型集成式紫外-热复合消解芯片,以满足水环境中COD、总磷、总氮便携式、现场、快速检测的需求。
为实现上述目的,本发明的技术解决方案是:
一种微型集成式紫外-热复合消解芯片,其包括微型紫外LED阵列发光单元、微型热消解单元;其中,
微型紫外LED阵列发光单元,包括上衬底、中间层、多个微小紫外LED发光体、两电极点;上衬底下表面中部固设有多个微小紫外LED发光体集成的阵列,阵列依上衬底长向排列,长向两端固接有两电极点,两电极点分别与LED发光体集成的阵列两端电连接;上衬底的长与中间层的宽相等,将两者长向正交后叠置,LED发光体集成的阵列位于中间层上表面中部,通过键合技术将上衬底下表面和中间层上表面牢固、永久性键合在一起;
中间层长向两端各设一通孔,通孔位于上衬底没覆盖部分,一通孔为入口,另一通孔为出口;
微型热消解单元,包括下衬底、消解单元、加热系统,
中间层的外形与下衬底的外形相同,中间层下表面和下衬底上表面牢固、永久性键合在一起;
消解单元包括消解腔、凹槽、通道;上衬底和中间层之间的LED发光体集成的阵列正对下衬底上表面中部,下衬底上表面中部设有一个微型圆型消解腔,消解腔两侧各设一凹槽,消解腔在下衬底上表面纵向上经通道分别与凹槽相通连;凹槽分别与入口、出口的位置相对、直径相同,并相通连;
下衬底的下表面设有加热系统,加热系统位于消解腔正下方,包括加热电极、隔离槽、电加热丝;盘成圆形的电加热丝位于消解腔底部下方,其两端各接有一加热电极;在圆形电加热丝的外周圆,设有多个不相连的弧状隔离槽,弧状隔离槽放射状围在圆形电加热丝的外侧,组成多个环。
所述的微型集成式紫外-热复合消解芯片,其所述消解腔、两凹槽的深度为20-200μm,消解腔的直径为50-2000μm,两凹槽的直径为50-1000μm。
所述的微型集成式紫外-热复合消解芯片,其所述LED发光体集成的阵列和两电极点的衬底与上衬底下表面键合在一起,LED发光体集成的阵列所在平面与中间层的上表面相接触;
LED发光体集成的阵列和两电极点的衬底材料是蓝宝石,或碳化硅、氮化镓材料;
LED发光体外延层发光区为InxGa1-xN或AlxInyGa1-x-yN,LED发光体的波长范围为200nm-400nm。
所述的微型集成式紫外-热复合消解芯片,其所述上衬底的材料为硅或玻璃,中间层的材料为玻璃或石英透明材料,下衬底的材料为单晶硅片。
所述的微型集成式紫外-热复合消解芯片,其工作流程是:
(1)将电极点、加热电极连接电源;
(2)待测水样和消解液经入口、凹槽、通道流入微型圆形消解腔;
(3)封闭入口和出口,形成一个微型封闭区域;
(4)接通电源,通过热消解单元下方的加热电极、圆形电加热丝对微型消解腔内的混合水样进行加热,并通过微型消解腔周围的隔离槽来减少芯片的热量损失;
(5)在加热的同时,开启紫外LED发光体集成的阵列,形成一个由上方正对圆形消解腔的高强度紫外照射,在TiO2催化剂的作用下,实现与热消解单元共同对微型消解腔内薄膜水样的高能量密度消解;
(6)消解完成后,微型消解腔内的水样通过通道、凹槽、出口(11)流出,送往后续设备进行后续检测处理;
(7)由入口通入去离子水,彻底清洗通道、凹槽及消解腔后,完成。
所述的微型集成式紫外-热复合消解芯片,其所述消解液,为过硫酸钾与二氧化钛纳米悬浮液的混合溶液。
本发明具有如下优点:
1、微型化。消解芯片厚度仅为1~2mm,长宽仅为3~5厘米,消解腔深度仅为50~200微米,内部混合水样容量为5~10微升;
2、紫外辅助消解大幅度提高消解速度和效率。通过采用紫外LED高密度发光体的集中性照射,对同时进行的热消解过程;
3、低功耗。
附图说明
图1是本发明的一种微型集成式紫外-热复合消解芯片分解图;
图2是本发明的一种微型集成式紫外-热复合消解芯片立体示意图;
图3是紫外LED消解光源阵列结构示意图;
图4是本发明的热消解单元俯视图;
图5是本发明的热消解单元仰视图。
具体实施方式
请参见图1~5,本发明的一种微型集成式紫外-热复合消解芯片,可针对水环境中COD、总磷、总氮含量进行检测,是一种基于紫外LED及微流控技术的集成式快速消解芯片。
将基于微流控芯片的热消解单元与基于紫外LED芯片光源的紫外光学消解单元相结合,形成可供水环境中COD、总磷、总氮便携式仪器使用的微小型消解系统,实现对水环境中COD、总磷、总氮的现场、快速检测。该系统包括微型紫外LED阵列发光单元1和微型热消解单元2两个功能单元。
微型发光单元1从结构上是由上衬底3和中间层4两部分组成。上衬底3下表面中部固设有多个微小紫外LED发光体12集成的阵列,阵列依上衬底3纵向排列,纵向两端固接有两电极点13。上衬底3的长(纵向)与中间层4的宽相等,将两者纵向正交后叠置,多个微小紫外LED发光体12集成的阵列位于中间层4上表面中部,通过键合技术将上衬底3下表面和中间层4上表面牢固、永久性键合在一起。
多个微小紫外LED发光体12集成的阵列和两电极点13的衬底材料可以是蓝宝石,或者是碳化硅、氮化镓材料,LED发光体12外延层发光区为InxGa1-xN或A1xInyGa1-x-yN,LED发光体12的波长范围为200nm-400nm。紫外LED发光体12集成的阵列和两电极点13的衬底与上衬底3下表面键合在一起,LED发光体阵列所在平面与中间层4的上表面相接触。
上衬底3的材料可以选用硅或玻璃,中间层4的材料为玻璃或石英等透明材料,以方便透射光。中间层4纵向两端各设一通孔,一通孔为入口6,另一通孔为出口11。
中间层4的外形与下衬底5的外形相同,中间层4下表面和下衬底5上表面牢固、永久性键合在一起。上衬底3和中间层4之间的多个微小紫外LED发光体12集成的阵列正对下衬底5上表面中部,下衬底5上表面中部设有一个微型圆型消解腔8,消解腔8两侧各设一凹槽14、17,消解腔8在下衬底5上表面纵向上经通道15、16分别与凹槽14、17相通连。凹槽14、17分别与入口6、出口11的位置相对、直径相同,并相通连。下衬底5的材料为单晶硅片。消解腔8、两凹槽14、17的深度为20-200μm,消解腔8的直径为50-2000μm。
下衬底5的下表面设有加热系统,加热系统位于消解腔8正下方,由加热电极10、隔离槽7、电加热丝9组成。盘成圆形的电加热丝9位于消解腔8底部下方,其两端各接有一加热电极10。在圆形电加热丝9的外周圆,设有多个不相连的弧状隔离槽7,弧状隔离槽7放射状围在圆形电加热丝9的外侧,组成多个环。
紫外消解过程中所用的催化剂为二氧化钛(TiO2)。
本发明的一种微型集成式紫外-热复合消解芯片,其工作过程如下:1.待测水样和消解液(过硫酸钾与二氧化钛(TiO2)纳米悬浮液的混合溶液)经入口6流入微型圆形消解腔8;2.封闭入口6和出口11,形成一个微型封闭区域,通过热消解单元1下方的加热电极10、圆形电加热丝9对微型消解腔8内的混合水样进行加热,并通过微型消解腔8周围的隔离槽7来减少芯片的热量损失;3.在加热的同时,开启紫外LED发光体12阵列,形成一个由上方正对圆形消解腔8的高强度紫外照射,在TiO2催化剂的作用下,实现与热消解单元1共同对微型消解腔8内薄膜水样的高能量密度消解;4.消解完成后,微型消解腔8内的水样通过出口11流出,送往后续设备进行后续检测处理;5.由入口6通入去离子水彻底清洗通道及消解腔8后,完成。
实施例1:
消解总磷待测水样。将待测水样和总磷消解液(含有纳米二氧化钛的过硫酸钾溶液,50g/L)经水样入口和消解液入口按照一定流速进入消解池,如水样为酸性或者碱性需先将水样调成中性,封闭出口和入口,在加热白金电极上施加3V电压,加热消解区域内水样和消解液的混合液,同时点亮消解区域正对紫外LED芯片上的LED发光点,辐照薄膜水样。在加热和点亮紫外LED阵列的同时,利用白金的温阻特性用白金电极测量加热区域温度,待温度达到120℃时,此时混合水样的相应压力为1.1kg/cm2,保持10分钟,待温度降至50℃,打开出口和入口,将消解后的混合水样泵出,总磷待测水样的消解过程结束。
实施例2:
消解总氮待测水样。将待测水样和总氮消解液(含有纳米二氧化钛的过硫酸钾和氢氧化钠混合溶液,其中过硫酸钾浓度为40g/L,氢氧化钠浓度为15g/L)经水样入口和消解液入口按照一定流速进入消解池,封闭出口和入口。在加热白金电极上施加3V电压,加热消解区域内水样和消解液的混合液,同时点亮消解区域正对紫外LED芯片上的LED发光点,辐照薄膜水样。在加热和点亮紫外LED阵列的同时,利用白金的温阻特性用白金电极测量加热区域温度,待温度达到120℃时,此时混合水样的相应压力为1.1kg/cm2,保持10分钟,待温度降至50℃,打开出口和入口,将消解后的混合水样泵出,总氮待测水样的消解过程结束。
实施例3:
消解COD值小于50mg/L的待测水样。将刚采样得到的待测水样和COD消解液(含有纳米二氧化钛的重铬酸钾和硫酸银-硫酸混合溶液,其中重铬酸钾标准溶液的浓度为C(1/6K2Cr2O7)=0.0250mol/L,硫酸银的浓度为10g/L,硫酸的密度为1.84mg/mL)经水样入口和消解液入口按照一定流速进入消解池,封闭出口和入口。在加热白金电极上施加3V电压,加热消解区域内水样和消解液的混合液,同时点亮消解区域正对紫外LED芯片上的LED发光点,辐照薄膜水样。在加热和点亮紫外LED阵列的同时,利用白金的温阻特性用白金电极测量加热区域温度,待温度达到100℃时,保持30分钟,待温度降至50℃,打开出口和入口,将消解后的混合水样泵出,COD待测水样的消解过程结束。

Claims (5)

1.一种微型集成式紫外-热复合消解芯片,其特征在于,包括微型紫外LED阵列发光单元(1)、微型热消解单元(2);其中, 
微型紫外LED阵列发光单元(1),包括上衬底(3)、中间层(4)、多个微小紫外LED发光体(12)、两电极点(13);上衬底(3)下表面中部固设有多个微小紫外LED发光体(12)集成的阵列,阵列依上衬底(3)长向排列,长向两端固接有两电极点(13),两电极点(13)分别与紫外LED发光体(12)集成的阵列两端电连接;上衬底(3)的长与中间层(4)的宽相等,将两者长向正交后叠置,紫外LED发光体(12)集成的阵列位于中间层(4)上表面中部,通过键合技术将上衬底(3)下表面和中间层(4)上表面牢固、永久性键合在一起; 
中间层(4)长向两端各设一通孔,通孔位于上衬底(3)没覆盖部分,一通孔为入口(6),另一通孔为出口(11); 
中间层(4)的外形与下衬底(5)的外形相同,中间层(4)下表面和下衬底(5)上表面牢固、永久性键合在一起; 
微型热消解单元(2),包括下衬底(5)、消解单元、加热系统, 
消解单元包括消解腔(8)、第一凹槽(14)、第二凹槽(17)、第一通道(15)、第二通道(16);上衬底(3)和中间层(4)之间的紫外LED发光体集成的阵列正对下衬底(5)上表面中部,下衬底(5)上表面中部设有一个消解腔(8);消解腔(8)两侧设第一凹槽(14)和第二凹槽(17);消解腔(8)在下衬底(5)上表面纵向上经第一通道(15)与第一凹槽(14)相通连,经第二通道(16)与第二凹槽(17)相通连;第一凹槽(14)、第二凹槽(17)分别与入口(6)、出口(11)的位置相对、直径相同,并相通连; 
下衬底(5)的下表面设有加热系统,加热系统位于消解腔(8)正下方,包括加热电极(10)、隔离槽(7)、电加热丝(9);盘成圆形的电加热丝(9)位于消解腔(8)底部下方,其两端各接有一加热电极(10);在圆形电加热丝(9)的外周圆,设有多个不相连的弧状隔离槽(7),弧状隔离槽(7)放射状围在圆形电加热丝(9)的外侧,组成多个环。 
2.如权利要求1所述的微型集成式紫外-热复合消解芯片,其特征在于,所述消解腔(8)、第一凹槽(14)、第二凹槽(17)的深度为20-200μm,消解腔(8)的直径为50-2000μm,第一凹槽(14)、第二凹槽(17)的直径为50-1000μm。 
3.如权利要求1所述的微型集成式紫外-热复合消解芯片,其特征在于,所述紫外LED发光体(12)集成的阵列和两电极点(13)的衬底与上衬底(3)下表面键合在一起,紫外LED发光体集成的阵列所在平面与中间层(4)的上表面相接触; 
紫外LED发光体(12)集成的阵列和两电极点(13)的衬底材料是蓝宝石,或碳化硅、氮化镓材料; 
紫外LED发光体(12)外延层发光区为InxGa1-xN或AlxInyGa1-x-yN,LED发光体(12)的波长范围为200nm-400nm。 
4.如权利要求1所述的微型集成式紫外-热复合消解芯片,其特征在于,所述上衬底(3)的材料为硅或玻璃,中间层(4)的材料为玻璃或石英透明材料,下衬底(5)的材料为单晶硅片。 
5.如权利要求1所述的微型集成式紫外-热复合消解芯片,其特征在于,工作流程是: 
(1)将电极点(13)、加热电极(10)连接电源; 
(2)待测水样和消解液经入口(6)、第一凹槽(14)、第一通道(15)流入消解腔(8); 
(3)封闭入口(6)和出口(11),形成一个微型封闭区域; 
(4)接通电源,通过热消解单元(2)下方的加热电极(10)、圆形电加热丝(9)对消解腔(8)内的混合水样进行加热,并通过消解腔(8)周围的隔离槽(7)来减少芯片的热量损失; 
(5)在加热的同时,开启紫外LED发光体(12)集成的阵列,形成一个由上方正对消解腔(8)的高强度紫外照射,在TiO2催化剂的作用下,实现与热消解单元(2)共同对消解腔(8)内薄膜水样的高能量密度消解; 
(6)消解完成后,消解腔(8)内的水样通过第二通道(16)、第二凹槽(17)、出口(11)流出,送往后续设备进行后续检测处理; 
(7)由入口(6)通入去离子水,彻底清洗第一通道(15)、第二通 道(16)、第一凹槽(14)、第二凹槽(17)及消解腔(8)后,完成。 
CN 201010282765 2010-09-15 2010-09-15 一种微型集成式紫外-热复合消解芯片 Active CN102401761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010282765 CN102401761B (zh) 2010-09-15 2010-09-15 一种微型集成式紫外-热复合消解芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010282765 CN102401761B (zh) 2010-09-15 2010-09-15 一种微型集成式紫外-热复合消解芯片

Publications (2)

Publication Number Publication Date
CN102401761A CN102401761A (zh) 2012-04-04
CN102401761B true CN102401761B (zh) 2013-07-24

Family

ID=45884190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010282765 Active CN102401761B (zh) 2010-09-15 2010-09-15 一种微型集成式紫外-热复合消解芯片

Country Status (1)

Country Link
CN (1) CN102401761B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969021B2 (en) 2001-10-11 2015-03-03 Aviva Biosciences Corporation Methods and compositions for detecting non-hematopoietic cells from a blood sample
US8986944B2 (en) 2001-10-11 2015-03-24 Aviva Biosciences Corporation Methods and compositions for separating rare cells from fluid samples
US8986945B2 (en) 2006-07-14 2015-03-24 Aviva Biosciences Corporation Methods and compositions for detecting rare cells from a biological sample
GB2556039A (en) * 2016-11-10 2018-05-23 Natural Environment Res Council Device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376219A (zh) * 2012-04-27 2013-10-30 中国科学院电子学研究所 集成式消解芯片系统及消解水样的方法
CN103359798A (zh) * 2013-08-01 2013-10-23 杭州绿洁水务科技有限公司 一种水体总磷消解装置
CN105879939B (zh) * 2016-04-08 2018-02-06 上海纳晶科技有限公司 一种快速化在线检测化学需氧量的微流控芯片系统
CN108072648B (zh) * 2016-11-15 2024-04-09 杭州绿洁科技股份有限公司 一种用于检测总氮总磷的微流控芯片集成系统
CN107064216B (zh) * 2017-04-19 2019-07-02 哈尔滨工业大学 一种基于微流控芯片技术的便携式cod检测装置
DE102019122163A1 (de) * 2019-08-19 2021-02-25 Endress+Hauser Conducta Gmbh+Co. Kg Messanordnung zur Messung des gesamten gebundenen Stickstoffs in einer Messflüssigkeit
CN113702317B (zh) * 2021-08-30 2023-10-27 中国农业科学院农业信息研究所 一种流域面源污染组分传感器、监测系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1506672A (zh) * 2002-12-10 2004-06-23 天津大学 紫外光氧化法间歇式在线总磷及总氮快速消解方法和装置
CN101655429A (zh) * 2009-09-21 2010-02-24 河北科技大学 一种在线紫外微波联合消解系统
CN101806715A (zh) * 2010-04-28 2010-08-18 复旦大学 用于比色法检测的容积可变微流控芯片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040255643A1 (en) * 2003-05-13 2004-12-23 Wise Kensall D. High-performance separation microcolumn assembly and method of making same
US7713496B2 (en) * 2005-12-07 2010-05-11 Crystal Clear Technologies, Inc. Water purifier with UV and adsorbent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1506672A (zh) * 2002-12-10 2004-06-23 天津大学 紫外光氧化法间歇式在线总磷及总氮快速消解方法和装置
CN101655429A (zh) * 2009-09-21 2010-02-24 河北科技大学 一种在线紫外微波联合消解系统
CN101806715A (zh) * 2010-04-28 2010-08-18 复旦大学 用于比色法检测的容积可变微流控芯片

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969021B2 (en) 2001-10-11 2015-03-03 Aviva Biosciences Corporation Methods and compositions for detecting non-hematopoietic cells from a blood sample
US8980568B2 (en) 2001-10-11 2015-03-17 Aviva Biosciences Corporation Methods and compositions for detecting non-hematopoietic cells from a blood sample
US8986944B2 (en) 2001-10-11 2015-03-24 Aviva Biosciences Corporation Methods and compositions for separating rare cells from fluid samples
US9290812B2 (en) 2001-10-11 2016-03-22 Aviva Biosciences Corporation Methods and compositions for separating rare cells from fluid samples
US9556485B2 (en) 2001-10-11 2017-01-31 Aviva Biosciences Corporation Methods and compositions for detecting non-hematopoietic cells from a blood sample
US8986945B2 (en) 2006-07-14 2015-03-24 Aviva Biosciences Corporation Methods and compositions for detecting rare cells from a biological sample
GB2556039A (en) * 2016-11-10 2018-05-23 Natural Environment Res Council Device

Also Published As

Publication number Publication date
CN102401761A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
CN102401761B (zh) 一种微型集成式紫外-热复合消解芯片
CN103376219A (zh) 集成式消解芯片系统及消解水样的方法
Zhu et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding
CN109085149A (zh) 一种基于led光源的光谱法水质监测模块及其使用方法
CN102235991B (zh) 集成式总磷总氮微传感器系统
Shah et al. In-solution multiplex miRNA detection using DNA-templated silver nanocluster probes
Berenguel-Alonso et al. An LTCC monolithic microreactor for the synthesis of carbon dots with photoluminescence imaging of the reaction progress
Lok et al. Rapid determination of vitamin B 12 concentration with a chemiluminescence lab on a chip
CN105424629A (zh) 微流控芯片及铜离子检测系统
CN102759520A (zh) 一种具有表面增强拉曼散射效应的活性基底的制备方法
KR20110033866A (ko) 증폭된 동전기 유체 펌핑 스위칭 및 담수화
CN105562131B (zh) 用于总磷检测的微流控芯片、检测系统和检测方法
CN205229048U (zh) 基于微透镜阵列的液滴微流控芯片
CN109534465B (zh) 一种基于离子浓差极化效应的并行海水淡化装置
CN101343656A (zh) 一种基于绝缘体上硅结构的细胞分离微芯片
RU2014120749A (ru) Химический сенсор, модуль химического сенсора, устройство обнаружения химического вещества и способ обнаружения химического вещества
CN102764677A (zh) 一种局域表面等离子共振微流控芯片的制备方法
CN103868904A (zh) 一种双光纤氧传感器
CN103439258A (zh) 一种基于集成阀岛装置的水体营养盐原位检测仪与检测方法
CN209014471U (zh) 一种基于led光源的光谱法水质监测模块
Al-Dasoqi et al. Use of sensors in wastewater quality monitoring—a review of available technologies
CN103983637B (zh) 一种光催化可视化现场检测水样中Hg2+方法
CN105973820B (zh) 一种总磷快速微检测系统
US20100193361A1 (en) Apparatus for concentrating dielectric microparticles
CN112461768B (zh) 海水硝酸盐检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant