CN102390926A - 一种制备结构色玻璃纤维的方法 - Google Patents

一种制备结构色玻璃纤维的方法 Download PDF

Info

Publication number
CN102390926A
CN102390926A CN2011102135315A CN201110213531A CN102390926A CN 102390926 A CN102390926 A CN 102390926A CN 2011102135315 A CN2011102135315 A CN 2011102135315A CN 201110213531 A CN201110213531 A CN 201110213531A CN 102390926 A CN102390926 A CN 102390926A
Authority
CN
China
Prior art keywords
spun glass
microchannel
schemochrome
water
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102135315A
Other languages
English (en)
Other versions
CN102390926B (zh
Inventor
李耀刚
刘志福
王宏志
张青红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201110213531.5A priority Critical patent/CN102390926B/zh
Publication of CN102390926A publication Critical patent/CN102390926A/zh
Application granted granted Critical
Publication of CN102390926B publication Critical patent/CN102390926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

本发明涉及一种制备结构色玻璃纤维的方法,包括:先用洗液对微通道和玻璃纤维进行清洗、烘干;然后将乙醇、水、氨水混合,充分搅拌均匀后,加入TEOS,调节温度,反应得到二氧化硅纳米球,并将其分散到水和乙醇的混合溶剂中;最后,以玻璃毛细管为微通道、玻璃纤维为组装基板,将分散液输送到置于烘箱中的微通道中,调节温度实现二氧化硅纳米球的热蒸发自组装,得到结构色的玻璃纤维。本发明合成工艺和所需生产设备简单,易于实现工业化生产,对于减少染料工业的环境污染有着重要的借鉴意义;制备的结构色纤维无需任何染料,具有优异的光学性能,显示绿蓝两种颜色,具有良好的应用前景。

Description

一种制备结构色玻璃纤维的方法
技术领域
本发明属于光子晶体纤维的制备领域,特别涉及一种制备结构色玻璃纤维的方法。
背景技术
自1987年E.Yablonovitch和S.John分别提出光子晶体和光子能带结构的概念以来,人们开始了对光子控制的研究。在过去的二十年内,光子晶体的理论研究和相关实验及其应用得到了迅速的发展。光子晶体是一种介电常数(或折射率)周期性排列的有序结构,其最根本的特征是具有光子禁带,频率处于禁带内的光子将无法传播或被反射,就像电子在半导体禁带中受到束缚一样,因此可以通过改变外界条件,如不同种类的介质、外部磁场等,以改变有序结构的周期性,从而改变反射光的波长。
自从人们发现光子晶体光纤在通信领域有着重要的应用以后,国内外学者试图将光子晶体应用在结构色纤维方面,试想如果人们穿的织物不需要化学染料,而是通过结构染色,那么将大大减少由于染整工业所带来的环境污染。目前制备结构色光子晶体的方法一般分为胶体晶体的自组装和物理刻蚀两种方法;胶体晶体的自组装指单分散胶体粒子的稀溶液在弱的离子强度情况下,颗粒在静电作用及范德华力作用下可以自发排列形成面心立方和体心立方等有序结构,由于胶体晶体的晶粒尺寸在纳米、亚微米量级,已成为制备可见光波段三维光子晶体的有效途径。国内外学者在结构色光子晶体的研究主要集中在光子晶体微球、响应型光子晶体以及光子晶体薄膜方面。Seung-Man Yang等在Advanced Materials Vol.20(2008)pp.1649-1655中报道了利用共轴的微流体技术将二氧化硅组装到ETPTA基体的表面,制备得到了一种结构色光子晶体微球,其在生物检测领域有着重要的应用。Ya-Dong Yin等在Journalof Materials Chemistry Vol.18(2008)pp.5041-5045中报道了一种磁场响应的结构色光子晶体,其通过改变外部磁场的大小可以改变溶液中四氧化三铁纳米球的组装方式,从而改变周期性的排布得到不同颜色的溶液。Li-Min Wu等在Journal of Colloid and Interface Science Vol.353(2011)pp.163-168报道了一种聚合物结构色薄膜,其在机械力的作用下,可以实现颜色改变。国内外的学者在结构色光子晶体纤维方面也做出了一定的贡献。Maksim Skorobogatiy等在Optics Letters Vol.32(2007)2882-2884中报道了一种聚合物光子晶体光纤,其在光子晶体纤维方面有着一定的应用,但是纤维表面的反射色主要来自内部反射剩余的光纤且强度较弱。
发明内容
本发明所要解决的技术问题是提供一种制备结构色玻璃纤维的方法,该方法合成工艺和所需生产设备简单,易于实现工业化生产,对于减少染料工业的环境污染有着重要的借鉴意义。
本发明的一种制备结构色玻璃纤维的方法,包括:
(1)以玻璃毛细管为微通道,玻璃纤维为组装基板,配制洗液A和洗液B,将玻璃毛细管和玻璃纤维浸泡于110~130℃的洗液A中10~30分钟,去离子水冲洗;再将玻璃毛细管和玻璃纤维浸泡于60~80℃的洗液B中10~30分钟,去离子水冲洗后烘干;
(2)在室温下,将体积百分比为75%~90%∶7%~19%∶3%~6%的乙醇、水和氨水混合,搅拌10~40分钟后加入与氨水的摩尔比为1∶1~1∶2的正硅酸四乙酯,于25~60℃反应0.5~3小时,自然冷却至室温,将产物离心分离,洗涤,得到单分散的二氧化硅纳米球,将纳米球分散到水和乙醇的混合溶剂中得到二氧化硅纳米球分散液;
(3)将玻璃纤维置于微通道中,将上述分散液输送到微通道中,调节温度至70~90℃实现二氧化硅纳米球的热蒸发自组装;当液面蒸发至微通道末端时剪断玻璃毛细管,干燥,即得结构色玻璃纤维。
所述步骤(1)中的洗液A为体积比为4∶1∶20的浓硫酸、双氧水和蒸馏水的混合溶液。
所述步骤(1)中的洗液B为体积比为1∶4∶20的氨水、双氧水和蒸馏水的混合溶液。
所述步骤(2)中的搅拌速度为300~800rpm。
所述步骤(2)中的水和乙醇的混合溶剂中水和乙醇的体积比为1∶4~4∶1。
所述步骤(2)中的二氧化硅纳米球分散液浓度为2~16mg/mL。
所述步骤(3)中的干燥条件为40~90℃烘干3~12小时。
本发明首先以正硅酸四乙酯(TEOS)、乙醇、水、氨水为起始原料,采用
Figure BDA0000079297850000021
溶胶-凝胶法制备得到二氧化硅纳米球,将其分散到水和乙醇的混合溶剂中得到分散液,所制备的二氧化硅纳米球具有良好的分散性和粒度分布;其次,以玻璃毛细管为微通道,将玻璃纤维置于微通道中,利用微注射泵将分散液输送到置于烘箱中的微通道中,采用热蒸发自组装的方法将二氧化硅纳米球组装在玻璃纤维上,得到结构色纤维。通过改变水醇的比例、热蒸发的温度,在玻璃纤维表面可获得不同二氧化硅排列层数实现结构色。
有益效果
本发明合成工艺和所需生产设备简单,易于实现工业化生产,对于减少染料工业的环境污染有着重要的借鉴意义;制备的结构色纤维无需任何染料,具有优异的光学性能,显示绿蓝两种颜色,具有良好的应用前景。
附图说明
图1玻璃纤维表面二氧化硅纳米球排列的低倍(a)高倍(b)扫描电镜照片;
图2玻璃纤维表面单层二氧化硅扫描电镜照片;
图3实施例3中玻璃纤维表面多层二氧化硅纳米球扫描电镜照片(a);
图4实施例4中玻璃纤维表面多层二氧化硅纳米球扫描电镜照片(a);
图5结构色玻璃纤维表面反射光谱图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
配制洗液A,V浓硫酸∶V双氧水∶V蒸馏水=4∶1∶20和洗液B,V氨水∶V双氧水∶V蒸馏水=1∶4∶20,将微通道和玻璃纤维浸泡于洗液A中在110℃下30分钟,去离子水冲洗后,再将微通道和玻璃纤维浸泡于洗液B中在60℃下浸泡30分钟,最后去离子水冲洗后,烘干;在室温下,量取75mL的乙醇、19mL水、6mL氨水置于三口烧瓶中,在搅拌速度为300rpm下磁力搅拌40分钟,加入10mL TEOS,调节温度为25℃,反应3小时,自然冷却至室温,将产物离心分离,洗涤,得到单分散的二氧化硅纳米球,将其分散到水和乙醇体积比为1∶4的混合溶剂中得到浓度为2mg/mL分散液;先将玻璃纤维置于微通道中,利用微注射泵将得到的分散液输送到置于烘箱中的微通道中,调节温度为70℃实现二氧化硅纳米球的热蒸发自组装,并记录液面的移动速度;当液面蒸发至微通道末端时剪断玻璃毛细管,调节烘箱温度70℃烘干7小时,得到自组装的结构色玻璃纤维。图1为玻璃纤维表面二氧化硅纳米球排列的扫描电镜照片,由图可知,二氧化硅纳米球以面心立方堆积的方式组装在玻璃纤维的表面,并且分布均匀。
实施例2
配制洗液A,V浓硫酸∶V双氧水∶V蒸馏水=4∶1∶20和洗液B,V氨水∶V双氧水∶V蒸馏水=1∶4∶20,将微通道和玻璃纤维浸泡于洗液A中在120℃下20分钟,去离子水冲洗后,再将微通道和玻璃纤维浸泡于洗液B中在70℃下浸泡20分钟,最后去离子水冲洗后,烘干;在室温下,量取85mL的乙醇、10mL水、5mL氨水置于三口烧瓶中,在搅拌速度为500rpm下磁力搅拌25分钟,加入11.5mL TEOS,调节温度为40℃,反应1.5小时,自然冷却至室温,将产物离心分离,洗涤,得到单分散的二氧化硅纳米球,将其分散到水和乙醇体积比为2∶1的混合溶剂中得到浓度为8mg/mL分散液;先将玻璃纤维置于微通道中,利用微注射泵将得到的分散液输送到置于烘箱中的微通道中,调节温度为80℃实现二氧化硅纳米球的热蒸发自组装,并记录液面的移动速度;当液面蒸发至微通道末端时剪断玻璃毛细管,调节烘箱温度90℃烘干3小时,得到自组装的结构色玻璃纤维。图2玻璃纤维表面单层二氧化硅扫描电镜照片,由图可知,二氧化硅纳米球以单层的形式均匀的分布在玻璃纤维的表面上。
实施例3
配制洗液A,V浓硫酸∶V双氧水∶V蒸馏水=4∶1∶20和洗液B,V氨水∶V双氧水∶V蒸馏水=1∶4∶20,将微通道和玻璃纤维浸泡于洗液A中在130℃下10分钟,去离子水冲洗后,再将微通道和玻璃纤维浸泡于洗液B中在80℃下浸泡10分钟,最后去离子水冲洗后,烘干;在室温下,量取90mL的乙醇、7mL水、3mL氨水置于三口烧瓶中,在搅拌速度为800rpm下磁力搅拌10分钟,加入9mL TEOS,调节温度为60℃,反应0.5小时,自然冷却至室温,将产物离心分离,洗涤,得到单分散的二氧化硅纳米球,将其分散到水和乙醇体积比为4∶1的混合溶剂中得到浓度为16mg/mL分散液;先将玻璃纤维置于微通道中,利用微注射泵将得到的分散液输送到置于烘箱中的微通道中,调节温度为90℃实现二氧化硅纳米球的热蒸发自组装,并记录液面的移动速度;当液面蒸发至微通道末端时剪断玻璃毛细管,调节烘箱温度40℃烘干12小时,得到自组装的结构色玻璃纤维。图3玻璃纤维表面多层二氧化硅扫描电镜照片和与之对应的光学显微镜照片;图5玻璃纤维表面反射光谱图,本实施例对应的蓝色反射峰位于473nm处,这和图3中的光学显微镜照片是相对应的。
实施例4
配制洗液A,V浓硫酸∶V双氧水∶V蒸馏水=4∶1∶20和洗液B,V氨水∶V双氧水∶V蒸馏水=1∶4∶20,将微通道和玻璃纤维浸泡于洗液A中在125℃下10分钟,去离子水冲洗后,再将微通道和玻璃纤维浸泡于洗液B中在75℃下浸泡10分钟,最后去离子水冲洗后,烘干;在室温下,量取90mL的乙醇、10mL水、2.5mL氨水置于三口烧瓶中,在搅拌速度为600rpm下磁力搅拌30分钟,加入9mL TEOS,调节温度为25℃,反应2小时,自然冷却至室温,将产物离心分离,洗涤,得到单分散的二氧化硅纳米球,将其分散到水和乙醇体积比为3∶1的混合溶剂中得到浓度为8mg/mL分散液;先将玻璃纤维置于微通道中,利用微注射泵将得到的分散液输送到置于烘箱中的微通道中,调节温度为85℃实现二氧化硅纳米球的热蒸发自组装,并记录液面的移动速度;当液面蒸发至微通道末端时剪断玻璃毛细管,调节烘箱温度60℃烘干8小时,得到自组装的结构色玻璃纤维。图4玻璃纤维表面多层二氧化硅扫描电镜照片和与之对应的光学显微镜照片;图5玻璃纤维表面反射光谱图,本实施例对应的绿色反射峰位于520nm处,这和图4中的光学显微镜照片是相对应的。

Claims (7)

1.一种制备结构色玻璃纤维的方法,包括:
(1)以玻璃毛细管为微通道,玻璃纤维为组装基板,配制洗液A和洗液B,将玻璃毛细管和玻璃纤维浸泡于110~130℃的洗液A中10~30分钟,去离子水冲洗;再将玻璃毛细管和玻璃纤维浸泡于60~80℃的洗液B中10~30分钟,去离子水冲洗后烘干;
(2)在室温下,将体积百分比为75%~90%∶7%~19%∶3%~6%的乙醇、水和氨水混合,搅拌10~40分钟后加入与氨水的摩尔比为1∶1~1∶2的正硅酸四乙酯,于25~60℃反应0.5~3小时,自然冷却至室温,将产物离心分离,洗涤,得到单分散的二氧化硅纳米球,将纳米球分散到水和乙醇的混合溶剂中得到二氧化硅纳米球分散液;
(3)将玻璃纤维置于微通道中,将上述分散液输送到微通道中,调节温度至70~90℃实现二氧化硅纳米球的热蒸发自组装;当液面蒸发至微通道末端时剪断玻璃毛细管,干燥,即得结构色玻璃纤维。
2.根据权利要求1所述的一种制备结构色玻璃纤维的方法,其特征在于:所述步骤(1)中的洗液A为体积比为4∶1∶20的浓硫酸、双氧水和蒸馏水的混合溶液。
3.根据权利要求1所述的一种制备结构色玻璃纤维的方法,其特征在于:所述步骤(1)中的洗液B为体积比为1∶4∶20的氨水、双氧水和蒸馏水的混合溶液。
4.根据权利要求1所述的一种制备结构色玻璃纤维的方法,其特征在于:所述步骤(2)中的搅拌速度为300~800rpm。
5.根据权利要求1所述的一种制备结构色玻璃纤维的方法,其特征在于:所述步骤(2)中的水和乙醇的混合溶剂中水和乙醇的体积比为1∶4~4∶1。
6.根据权利要求1所述的一种制备结构色玻璃纤维的方法,其特征在于:所述步骤(2)中的二氧化硅纳米球分散液浓度为2~16mg/mL。
7.根据权利要求1所述的一种制备结构色玻璃纤维的方法,其特征在于:所述步骤(3)中的干燥条件为40~90℃烘干3~12小时。
CN201110213531.5A 2011-07-28 2011-07-28 一种制备结构色玻璃纤维的方法 Active CN102390926B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110213531.5A CN102390926B (zh) 2011-07-28 2011-07-28 一种制备结构色玻璃纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110213531.5A CN102390926B (zh) 2011-07-28 2011-07-28 一种制备结构色玻璃纤维的方法

Publications (2)

Publication Number Publication Date
CN102390926A true CN102390926A (zh) 2012-03-28
CN102390926B CN102390926B (zh) 2014-05-28

Family

ID=45858335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110213531.5A Active CN102390926B (zh) 2011-07-28 2011-07-28 一种制备结构色玻璃纤维的方法

Country Status (1)

Country Link
CN (1) CN102390926B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808317A (zh) * 2012-08-23 2012-12-05 东华大学 一种二氧化硅纳米球组装高分子纤维的方法
CN104213399A (zh) * 2014-08-26 2014-12-17 上海应用技术学院 一种高折射率的ZnS纳米球自组装的结构色纤维及其制备方法
CN104233787A (zh) * 2014-09-15 2014-12-24 刘鹏 纳米二氧化硅改性复合织物的制备方法
CN111574047A (zh) * 2020-05-25 2020-08-25 陕西科技大学 一种宽色域结构色玻璃及其制备方法
CN113625498A (zh) * 2021-08-13 2021-11-09 上海应用技术大学 电场可控二氧化硅胶体自组装结构变色器件的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470319A (zh) * 2003-06-25 2004-01-28 �Ϻ���ͨ��ѧ 毛细吸引下的胶体微球自组织及二维、三维胶体晶体制备方法
CN1906322A (zh) * 2003-12-24 2007-01-31 索拉尔福斯公司 用于在衬底上淀积多晶硅层的装置
CN1944709A (zh) * 2006-09-21 2007-04-11 复旦大学 在毛细管内壁沉积连续金属层的方法
CN101219862A (zh) * 2007-12-11 2008-07-16 武汉大学 用液相沉积法制备二氧化钛涂层毛细管柱的方法
CN101475206A (zh) * 2009-01-13 2009-07-08 东华大学 一种微通道中生长可控分布ZnO纳米棒的制备方法
CN101691426A (zh) * 2009-10-09 2010-04-07 河北工业大学 一种骨架为亲水结构的三维有序大孔螯合树脂的制备方法
CN101754999A (zh) * 2007-05-18 2010-06-23 荷兰联合利华有限公司 单分散颗粒
CN101993086A (zh) * 2010-12-20 2011-03-30 纪志勇 一种单分散二氧化硅微球的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470319A (zh) * 2003-06-25 2004-01-28 �Ϻ���ͨ��ѧ 毛细吸引下的胶体微球自组织及二维、三维胶体晶体制备方法
CN1906322A (zh) * 2003-12-24 2007-01-31 索拉尔福斯公司 用于在衬底上淀积多晶硅层的装置
CN1944709A (zh) * 2006-09-21 2007-04-11 复旦大学 在毛细管内壁沉积连续金属层的方法
CN101754999A (zh) * 2007-05-18 2010-06-23 荷兰联合利华有限公司 单分散颗粒
CN101219862A (zh) * 2007-12-11 2008-07-16 武汉大学 用液相沉积法制备二氧化钛涂层毛细管柱的方法
CN101475206A (zh) * 2009-01-13 2009-07-08 东华大学 一种微通道中生长可控分布ZnO纳米棒的制备方法
CN101691426A (zh) * 2009-10-09 2010-04-07 河北工业大学 一种骨架为亲水结构的三维有序大孔螯合树脂的制备方法
CN101993086A (zh) * 2010-12-20 2011-03-30 纪志勇 一种单分散二氧化硅微球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNAN XIA, BYRON GATES, YADONG YIN, AND YU LU: "Monodispersed Colloidal Spheres:Old Materials with New Applications", 《ADV.MATER》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808317A (zh) * 2012-08-23 2012-12-05 东华大学 一种二氧化硅纳米球组装高分子纤维的方法
CN104213399A (zh) * 2014-08-26 2014-12-17 上海应用技术学院 一种高折射率的ZnS纳米球自组装的结构色纤维及其制备方法
CN104233787A (zh) * 2014-09-15 2014-12-24 刘鹏 纳米二氧化硅改性复合织物的制备方法
CN111574047A (zh) * 2020-05-25 2020-08-25 陕西科技大学 一种宽色域结构色玻璃及其制备方法
CN113625498A (zh) * 2021-08-13 2021-11-09 上海应用技术大学 电场可控二氧化硅胶体自组装结构变色器件的制备方法

Also Published As

Publication number Publication date
CN102390926B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
CN102390926B (zh) 一种制备结构色玻璃纤维的方法
CN102030356B (zh) 一种制备单分散四氟钇钠多色发光纳米晶的方法
CN1588006A (zh) 一种用于荧光仪器校准测量的校准基片及其制备方法
CN112961675B (zh) 溶胶-凝胶钝化提高钙钛量子点稳定性的方法
CN100402438C (zh) 纳米氧化钛介孔薄膜的制备方法
CN113638027A (zh) 一种双模显示光子晶体/钙钛矿薄膜的制备方法
TWI428402B (zh) 雙偶氮化合物及包含其之油墨及電溼潤顯示器
CN102226084A (zh) 一种花状Y2O3:Eu3+微球的合成方法
Shi et al. The role of nanomesh fibres loaded with fluorescent materials on the electro-optical performance of PDLC devices
Lin et al. Synthesis and luminescence properties of Eu (III)-doped silica nanorods based on the sol–gel process
CN102704039A (zh) 一种聚乙二醇/ZnO/Ag纳米颗粒复合纤维材料的制备方法
CN108547009A (zh) 一种纳米荧光纤维材料及其制备方法
Cheng et al. Upconversion photoluminescence of core-shell structured SiO 2@ YVO 4: Yb 3+, Er 3+, Eu 3+ nanospheres
CN108034420A (zh) 无机纳米粒子包埋铽络合物杂化发光材料及其制备方法
CN102808317A (zh) 一种二氧化硅纳米球组装高分子纤维的方法
CN102432288A (zh) 一种无开裂锆钛酸铅镧薄膜的制备方法
Kosuge et al. Electrophoretically deposited Y2O3: Bi3+, Eu3+ nanosheet films with high transparency for near-ultraviolet to red light conversion
CN110790489A (zh) 一种低维材料掺杂的无水解凝胶玻璃的制备方法
CN101457139A (zh) 一种结构可控的高量子产率发光硅球及其制备方法
WO2017004842A1 (zh) 反蛋白石胶体晶体纤维的制备方法
CN105731370A (zh) 一种大面积的二维有序金纳米颗粒阵列及其制备方法
CN110426770A (zh) 无机亚纳米线偏光薄膜及其应用
JP5782643B2 (ja) ガラスコート金ナノ粒子及び蛍光増強金ナノ粒子とこれらの製造方法
CN114874764A (zh) 一种增强发光性能的钙钛矿薄膜的制备方法
CN107988657B (zh) 一种连续制备磁场响应性光子晶体纤维的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant