CN102371278A - 基于稳定性指标的连退平整机板形自动控制方法 - Google Patents

基于稳定性指标的连退平整机板形自动控制方法 Download PDF

Info

Publication number
CN102371278A
CN102371278A CN2010102635928A CN201010263592A CN102371278A CN 102371278 A CN102371278 A CN 102371278A CN 2010102635928 A CN2010102635928 A CN 2010102635928A CN 201010263592 A CN201010263592 A CN 201010263592A CN 102371278 A CN102371278 A CN 102371278A
Authority
CN
China
Prior art keywords
plate shape
deviation factor
gain coefficient
roller
planisher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102635928A
Other languages
English (en)
Other versions
CN102371278B (zh
Inventor
徐江华
张宝平
李山青
王挺
张剑鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN 201010263592 priority Critical patent/CN102371278B/zh
Publication of CN102371278A publication Critical patent/CN102371278A/zh
Application granted granted Critical
Publication of CN102371278B publication Critical patent/CN102371278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及板带冷轧后处理领域,尤其涉及一种连退平整机板形自动控制方法。一种基于稳定性指标的连退平整机板形自动控制方法,包括以下步骤:利用板形测量辊测量到实测板形数据,得到一、二次板形偏差系数α1、α2;通过试验得到连退平整机的基本参数;先计算得到基本增益系数和稳定性指标,然后计算增益系数,最后将增益系数乘以板形偏差系数得到连退平整机板形执行机构的调整量。本发明的板形自动控制方法中增益系数随着板形偏差的变化进行在线优化,并将稳定性指标限定在一定取值范围内,既保证连退平整机轧制稳定,又提高了带钢的板形质量。

Description

基于稳定性指标的连退平整机板形自动控制方法
技术领域
本发明涉及板带冷轧后处理领域,尤其涉及一种连退平整机板形自动控制方法。
背景技术
板形是冷轧带钢的重要质量指标,冷轧带钢的板形直接影响到汽车、家电、仪表、食品包装等下游行业的生产率、成材率和成本的高低以及产品的外观,因此,在冷轧生产中采用板形自动控制技术,从而提高带钢板形质量。
连续退火机组是冷轧生产设备中重要的关键的处理线,它将脱脂、退火炉、平整、精整等冷轧生产各主要工序组合在一起,成为一条连续、高效的薄板生产线。由于工艺的特殊性,连退机组直接决定了产品的品种和品质,是冷轧生产的核心机组。连退平整机是位于连续退火机组出口段的重要设备,它对经过再结晶退火后的带钢以较小的变形量进行轧制,以消除屈服平台、控制板形,同时达到表面质量要求的轧制设备。由于连退平整是决定成品带钢板形的最后一道工序,所以,优化连退平整机板形自动控制参数,对于提高连退平整机的板形控制能力具有非常重要的意义。
连退平整机板形自动控制原理为:首先,利用板形测量辊测量到实测板形数据,对实测板形数据和目标板形的差值进行拟合得到板形偏差方程dev(x),                                                
Figure 2010102635928100002DEST_PATH_IMAGE001
,从板形偏差方程中即可获取板形偏差系数
Figure 798157DEST_PATH_IMAGE002
,然后将板形偏差系数乘以增益系数,得到对应的板形执行机构调整量,其中一次板形偏差系数对应倾斜调整量,二次板形偏差系数对应弯辊调整量;最后,板形执行机构动作,从而达到消除板形偏差的目的。其中,板形自动控制的增益系数决定了板形执行机构消除板形偏差的动态效果。
现有的连退平整机板形自动控制方法采用在线试验的方法或者保守原则将板形自动控制的增益系数设置为某一常数。该增益系数的设定可以保证轧制过程的稳定性,但是不能获得最佳的板形控制效果。
现有的连退平整机板形自动控制方法具体流程如附图1所示包括以下步骤:
(1) 对板形偏差信号进行参数识别,将板形偏差信号分解为一次板形偏差系数
Figure 2010102635928100002DEST_PATH_IMAGE003
、二次板形偏差系数
Figure 71881DEST_PATH_IMAGE004
(2) 将一次板形偏差系数
Figure 451041DEST_PATH_IMAGE003
乘以倾斜增益系数(常数),得到倾斜调整量
Figure 549447DEST_PATH_IMAGE006
;将二次板形偏差系数
Figure 487185DEST_PATH_IMAGE004
乘以弯辊增益系数
Figure 2010102635928100002DEST_PATH_IMAGE007
(常数),得到弯辊调整量
Figure 671041DEST_PATH_IMAGE008
(3) 将调整量输出到相关的执行机构,改变连退平整机出口带钢板形。
板形控制调试工程师根据经验或者采用试验的方法整定出倾斜增益系数
Figure 853892DEST_PATH_IMAGE005
(常数)和弯辊增益系数
Figure 10067DEST_PATH_IMAGE007
(常数)后不会再去修改;增益系数固定后虽然能保证连退平整机在轧制过程中的稳定性,不会引起带钢跑偏、断带,但是,容易造成板形自动控制的动态效果欠佳,从而降低整个钢卷长度方向上成品带钢板形质量。因此,板形自动控制的关键在于如何整定增益系数,使之既满足轧制稳定性的要求,又能达到理想的动态控制效果,从而提高整个钢卷长度方向上成品带钢板形质量。
发明内容
本发明所要解决的技术问题是提供一种基于稳定性指标的连退平整机板形自动控制方法,该方法中增益系数随着板形偏差的变化进行在线优化,从而提高了整个钢卷长度方向上成品带钢的板形质量。
本发明是这样实现的:一种基于稳定性指标的连退平整机板形自动控制方法,包括以下步骤:
步骤一、利用板形测量辊测量到实测板形数据,对实测板形数据和目标板形的差值进行拟合得到二次多项式形式的板形偏差方程
           (1)
从板形偏差方程
Figure 789859DEST_PATH_IMAGE009
中获取一次板形偏差系数
Figure 760089DEST_PATH_IMAGE003
、二次板形偏差系数
Figure 770770DEST_PATH_IMAGE004
步骤二、通过对连退平整机进行试验得到该连退平整机的倾斜板形调控能力
Figure 551776DEST_PATH_IMAGE010
、弯辊板形调控能力
Figure 2010102635928100002DEST_PATH_IMAGE011
、最大可调整一次板形偏差系数、最大可调整二次板形偏差系数
Figure 2010102635928100002DEST_PATH_IMAGE013
、最大可调整一次板形偏差系数变化量
Figure 795730DEST_PATH_IMAGE014
和最大可调整二次板形偏差系数变化量,以上数值都取正值;
步骤三、根据连退平整机板形自动控制系统的布置通过公式(3)、(4)计算得到倾斜基本增益系数
Figure 739546DEST_PATH_IMAGE016
和弯辊基本增益系数
Figure 940720DEST_PATH_IMAGE018
                     (3)
  其中:T - 控制周期;
          τ - 板形测量滞后时间;
Figure 2010102635928100002DEST_PATH_IMAGE019
                         (4)
其中:l - 连退平整机到板形测量辊的水平距离;
           d - 板形测量辊的直径; 
                  v -  带钢的运动速度;
步骤四、根据公式(5)计算得到倾斜稳定性指标
Figure 632471DEST_PATH_IMAGE020
、根据公式(6)计算得到弯辊稳定性指标
Figure 2010102635928100002DEST_PATH_IMAGE021
Figure 960815DEST_PATH_IMAGE022
                 (5)
其中:
Figure 2010102635928100002DEST_PATH_IMAGE023
的倒数等于倾斜板形调控能力
Figure 8405DEST_PATH_IMAGE010
的2.5倍;
      
Figure 629748DEST_PATH_IMAGE024
的倒数等于倾斜板形调控能力
Figure 497210DEST_PATH_IMAGE010
的1.5倍;
为一次板形偏差系数变化量,即当前控制周期的一次板形偏差系数减去上一控制周期的一次板形偏差系数;
       β、γ为加权系数,该两个系数为经验参数,并有β>0,γ >0,β+γ=1.0;
      
Figure 737568DEST_PATH_IMAGE012
为最大可调整一次板形偏差系数,
Figure 639665DEST_PATH_IMAGE026
时,
Figure 2010102635928100002DEST_PATH_IMAGE027
时,
Figure 2010102635928100002DEST_PATH_IMAGE029
Figure 553711DEST_PATH_IMAGE030
时,
Figure 2010102635928100002DEST_PATH_IMAGE031
       
Figure 519131DEST_PATH_IMAGE014
为最大可调整一次板形偏差系数变化量, 
时,
Figure 2010102635928100002DEST_PATH_IMAGE033
时,
Figure 2010102635928100002DEST_PATH_IMAGE035
Figure 120683DEST_PATH_IMAGE036
时,
Figure 2010102635928100002DEST_PATH_IMAGE037
Figure 578209DEST_PATH_IMAGE038
               (6)
 其中:
Figure 2010102635928100002DEST_PATH_IMAGE039
的倒数等于弯辊板形调控能力
Figure 267948DEST_PATH_IMAGE011
的2.5倍;
       
Figure 90410DEST_PATH_IMAGE040
的倒数等于弯辊板形调控能力
Figure 669028DEST_PATH_IMAGE011
的1.5倍;
Figure 930245DEST_PATH_IMAGE042
为二次板形偏差系数变化量,即当前控制周期的二次板形偏差系数减去上一控制周期的二次板形偏差系数;
        β、γ为加权系数,该系数为经验参数根据试验数据设定,并有β>0,γ >0,β+γ=1.0;
       
Figure 599124DEST_PATH_IMAGE013
为最大可调整二次板形偏差系数,
Figure 2010102635928100002DEST_PATH_IMAGE043
时,
Figure 405537DEST_PATH_IMAGE044
Figure 2010102635928100002DEST_PATH_IMAGE045
时,
Figure 2010102635928100002DEST_PATH_IMAGE047
时,
Figure 598675DEST_PATH_IMAGE048
       
Figure 935110DEST_PATH_IMAGE015
为最大可调整二次板形偏差系数变化量, 
Figure 2010102635928100002DEST_PATH_IMAGE049
时,
Figure 161692DEST_PATH_IMAGE050
时,
Figure 714902DEST_PATH_IMAGE052
Figure 2010102635928100002DEST_PATH_IMAGE053
时,
步骤五、利用基本增益系数和稳定性指标通过公式(2)计算得到增益系数,最后将增益系数乘以板形偏差系数得到连退平整机板形执行机构的调整量;
倾斜增益系数
Figure 508863DEST_PATH_IMAGE005
和弯辊增益系数
Figure 171925DEST_PATH_IMAGE007
由公式(2)计算得到
                           
Figure 2010102635928100002DEST_PATH_IMAGE055
                     (2)
其中:
Figure 946852DEST_PATH_IMAGE016
为倾斜基本增益系数;
Figure 353563DEST_PATH_IMAGE017
为弯辊基本增益系数;
            
Figure 585961DEST_PATH_IMAGE020
为倾斜稳定性指标;
Figure 170657DEST_PATH_IMAGE021
为弯辊稳定性指标;
得到倾斜调整量
Figure 183612DEST_PATH_IMAGE056
为,
Figure 2010102635928100002DEST_PATH_IMAGE057
得到弯辊调整量为,
Figure 2010102635928100002DEST_PATH_IMAGE059
所述步骤一中,在一个控制周期内利用板形测量辊测量的五组实测板形数据,对五组实测板形数据进行滑动平均处理,得到平滑的实测板形数据。
所述步骤四中加权系数β、γ的取值为β取0.8,γ取0.2。
本发明的板形自动控制方法中增益系数设为与稳定性指标成正比,增益系数随着板形偏差的变化进行在线优化,从而提高了整个钢卷长度方向上成品带钢的板形质量。在该方法中,稳定性指标的取值控制在一定范围内,该取值范围能够保证连退平整机轧制稳定。其中,稳定性指标数值越大,系统的稳定性越差,但是,板形控制的动态响应越快。当板形偏差过大或者板形偏差有增加趋势,增大稳定性指标数值,从而能够做到快速消除板形偏差;当板形偏差较低或者板形偏差有降低趋势,降低稳定性指标数值,从而将板形偏差稳定地控制在允许范围内。采用本发明的自动控制方法,既保证连退平整机轧制稳定,又提高了带钢的板形质量。
附图说明
图1为现有的连退平整机板形自动控制流程图;
图2为本发明基于稳定性指标的连退平整机板形自动控制流程图;
图3为本发明基于稳定性指标的连退平整机板形自动控制系统的总体结构图。
图中:1板形测量辊、2板形测量计算机、3板形自动控制器、4平整机控制器、5连退平整机、6带钢。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明表述的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
如图2所示,一种基于稳定性指标的连退平整机板形自动控制方法,包括以下步骤:
步骤一、在一个控制周期内利用板形测量辊测量的五组实测板形数据,对五组实测板形数据进行滑动平均处理,得到平滑的实测板形数据。对平滑后的实测板形数据和目标板形的差值用最小二乘法进行拟合得到二次多项式形式的板形偏差方程
Figure 548101DEST_PATH_IMAGE001
                  (1)
从板形偏差方程
Figure 986035DEST_PATH_IMAGE009
中获取一次板形偏差系数、二次板形偏差系数
Figure 253123DEST_PATH_IMAGE004
步骤二、连退平整机的调控能力是有限的,当倾斜由0变化到极限值(1.0)时,此时有对应的一次板形偏差系数变化的数值,该数值为倾斜板形调控能力
Figure 366573DEST_PATH_IMAGE010
;当弯辊由0变化到极限值(1.0)时,此时有对应的二次板形偏差系数变化的数值,该数值为弯辊板形调控能力
Figure 354120DEST_PATH_IMAGE011
;在实际工程中,通过对连退平整机进行试验得到该连退平整机的倾斜板形调控能力
Figure 391478DEST_PATH_IMAGE010
、弯辊板形调控能力
Figure 718554DEST_PATH_IMAGE011
、最大可调整一次板形偏差系数
Figure 799642DEST_PATH_IMAGE012
、最大可调整二次板形偏差系数
Figure 523753DEST_PATH_IMAGE013
、最大可调整一次板形偏差系数变化量
Figure 551752DEST_PATH_IMAGE014
和最大可调整二次板形偏差系数变化量
Figure 795652DEST_PATH_IMAGE015
,以上数值都取正值;
步骤三、根据连退平整机板形自动控制系统的布置通过公式(3)、(4)计算得到倾斜基本增益系数
Figure 63953DEST_PATH_IMAGE016
和弯辊基本增益系数
Figure 698197DEST_PATH_IMAGE017
Figure 326624DEST_PATH_IMAGE018
                     (3)
  其中:T - 控制周期;
          τ - 板形测量滞后时间;
Figure 939877DEST_PATH_IMAGE019
                         (4)
其中:l - 连退平整机到板形测量辊的水平距离;
           d - 板形测量辊的直径; 
                  v -  带钢的运动速度;
步骤四、根据公式(5)计算得到倾斜稳定性指标、根据公式(6)计算得到弯辊稳定性指标
Figure 749887DEST_PATH_IMAGE021
Figure 932738DEST_PATH_IMAGE022
                 (5)
其中:
Figure 151230DEST_PATH_IMAGE023
的倒数等于倾斜板形调控能力
Figure 948285DEST_PATH_IMAGE010
的2.5倍;
      
Figure 868705DEST_PATH_IMAGE024
的倒数等于倾斜板形调控能力
Figure 838935DEST_PATH_IMAGE010
的1.5倍;
Figure 662666DEST_PATH_IMAGE025
为一次板形偏差系数变化量,即当前控制周期的一次板形偏差系数减去上一控制周期的一次板形偏差系数;
       β、γ为加权系数,该两个系数为经验参数,根据试验数据设定,并有β>0,γ >0,β+γ=1.0;在加权系数的通常取值中,一般β>γ,在本实施例中,β=0.8,γ=0.2,
      
Figure 630622DEST_PATH_IMAGE012
为最大可调整一次板形偏差系数,
Figure 789070DEST_PATH_IMAGE026
时,
Figure 812259DEST_PATH_IMAGE027
Figure 677447DEST_PATH_IMAGE028
时,
Figure 878621DEST_PATH_IMAGE029
Figure 275098DEST_PATH_IMAGE030
时,
Figure 790393DEST_PATH_IMAGE031
       为最大可调整一次板形偏差系数变化量, 
Figure 193748DEST_PATH_IMAGE032
时,
Figure 264472DEST_PATH_IMAGE033
Figure 380195DEST_PATH_IMAGE034
时,
Figure 219975DEST_PATH_IMAGE035
Figure 513685DEST_PATH_IMAGE036
时,
Figure 134022DEST_PATH_IMAGE037
Figure 725540DEST_PATH_IMAGE038
               (6)
 其中:
Figure 731411DEST_PATH_IMAGE039
的倒数等于弯辊板形调控能力的2.5倍;
       的倒数等于弯辊板形调控能力
Figure 698864DEST_PATH_IMAGE011
的1.5倍;
Figure 575553DEST_PATH_IMAGE042
为二次板形偏差系数变化量,即当前控制周期的二次板形偏差系数减去上一控制周期的二次板形偏差系数;
        β、γ为加权系数,该系数为经验参数根据试验数据设定,并有β>0,γ >0,β+γ=1.0;在加权系数的通常取值中,一般β>γ,在本实施例中,β=0.8,γ=0.2,
       为最大可调整二次板形偏差系数,
Figure 976634DEST_PATH_IMAGE043
时,
Figure 175534DEST_PATH_IMAGE044
Figure 906729DEST_PATH_IMAGE045
时,
Figure 713143DEST_PATH_IMAGE046
Figure 467472DEST_PATH_IMAGE047
时,
Figure 578385DEST_PATH_IMAGE048
       
Figure 164087DEST_PATH_IMAGE015
为最大可调整二次板形偏差系数变化量, 
Figure 406981DEST_PATH_IMAGE049
时,
Figure 648606DEST_PATH_IMAGE050
Figure 986047DEST_PATH_IMAGE051
时,
Figure 276269DEST_PATH_IMAGE053
时,
步骤五、利用基本增益系数和稳定性指标通过公式(2)计算得到增益系数,最后将增益系数乘以板形偏差系数得到连退平整机板形执行机构的调整量;
倾斜增益系数
Figure 146322DEST_PATH_IMAGE005
和弯辊增益系数
Figure 457348DEST_PATH_IMAGE007
由公式(2)计算得到
                           
Figure 291312DEST_PATH_IMAGE055
                     (2)
其中:
Figure 241951DEST_PATH_IMAGE016
为倾斜基本增益系数;
为弯辊基本增益系数;
            
Figure 874279DEST_PATH_IMAGE020
为倾斜稳定性指标;
Figure 816827DEST_PATH_IMAGE021
为弯辊稳定性指标;
得到倾斜调整量为,
Figure 550745DEST_PATH_IMAGE057
得到弯辊调整量
Figure 23314DEST_PATH_IMAGE058
为,
Figure 448348DEST_PATH_IMAGE059
通过以上板形自动控制方法得到执行机构的调整量,修正执行机构的设定值,从而达到调节带钢实际板形的目的。
如图3所示,板形测量辊1把测量得到的数据送往板形测量计算机2,板形测量计算机2把处理好的板形数据信号发送给板形自动控制器3,板形自动控制器3与平整机控制器4交换数据,最后得到的调整量由平整机控制器4控制连退平整机5完成对带钢6的板形控制作用。
为说明本技术发明的具体应用方式,下面给出本实施例的具体数据。
本实施例中连退机组上的带钢分为两大类型:软钢和高强钢;厚度规格为:0.5mm-2.3mm;宽度规格:700mm-1630mm。连退平整机类型为:UCM。连退平整机与板形测量辊的水平距离l为2.3m。板形测量辊d的直径为0.4m。带钢的运动速度v为760m/min。
在板形自动控制投入运行前,首先测试倾斜和弯辊的板形调控能力,试验得到倾斜板形调控能力
Figure 435896DEST_PATH_IMAGE010
为8、弯辊板形调控能力
Figure 660204DEST_PATH_IMAGE011
为10、a1m=a2m=10、
Figure 534750DEST_PATH_IMAGE060
计算得到稳定性指标取值范围:
Figure DEST_PATH_IMAGE061
Figure 881418DEST_PATH_IMAGE062
Figure DEST_PATH_IMAGE063
Figure 605529DEST_PATH_IMAGE064
将目标板形以及稳定性指标取值范围λLmin,λLmax,λBLmin,λBmax存储于板形控制器上的数据库中。
在以上基础上,板形自动控制程序按照控制周期(T=0.2s)进行如下计算。
板形测量计算机2接收实际板形信号,对实测的板形信号进行滑动平均处理,得到平滑的实测板形数据,这时得到平滑后的实际板形数据σp为:
   σp={ 2.1000, 1.4834, 0.9598, 0.5294, 0.1920, -0.0524, -0.2036, -0.2618, -0.2269, -0.0989,
         0.1222, 0.4363, 0.8435, 1.3438, 1.9371, 2.6235, 3.4030, 4.2756, 5.2413, 6.3000};
保存在板形控制器中的目标板形σs={ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                                 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    用实测板形数据减去目标板形,得到板形偏差
   Δσp={ 2.1000, 1.4834, 0.9598, 0.5294, 0.1920, -0.0524, -0.2036, -0.2618, -0.2269, -0.0989,
          0.1222, 0.4363, 0.8435, 1.3438, 1.9371, 2.6235, 3.4030, 4.2756, 5.2413, 6.3000};
    根据板形偏差,采用最小二乘法,得到中的系数,a0=0.0, a1=2.1,a2=4.2,保存系数a1,a,在下一控制周期使用。
计算基本增益系数,这时带钢的速度为300m/min,即5m/s,那么
Figure DEST_PATH_IMAGE065
计算倾斜稳定性指标,
提取上一控制周期保存的系数a1上=0.0,
Figure 752794DEST_PATH_IMAGE066
得到,
Figure DEST_PATH_IMAGE067
计算弯辊稳定性指标
提取上一控制周期保存的系数a2上=0.0,
Figure 254051DEST_PATH_IMAGE068
得到,
Figure DEST_PATH_IMAGE069
根据上述计算结果,分别得到倾斜的增益系数和弯辊的增益系数,
Figure 216191DEST_PATH_IMAGE070
按照公式
Figure DEST_PATH_IMAGE071
,计算出倾斜的调整量为0.033,即3.3%,修正倾斜的设定值。
按照公式
Figure 657668DEST_PATH_IMAGE072
,计算出弯辊的调整量为0.063,即6.3%,修正弯辊的设定值。
将倾斜调整量和弯辊调整量下发给平整机控制进行执行。
       下一个控制周期,重复上述过程。
实施例2
板形测量计算机2接收实际板形信号,对实测的板形信号进行滑动平均处理,得到平滑的实测板形数据,这时得到平滑后的实际板形数据σp为:
   σp={ 1.0000, 0.6970, 0.4404, 0.2305, 0.0670, -0.0499, -0.1202, -0.1440, -0.1213, -0.0521,
         0.0637, 0.2260, 0.4349, 0.6903, 0.9922, 1.3407, 1.7357, 2.1773, 2.6654, 3.2000};
保存在板形控制器中的目标板形σs={ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                                 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    用实测板形数据减去目标板形,得到板形偏差
   Δσp={ 1.0000, 0.6970, 0.4404, 0.2305, 0.0670, -0.0499, -0.1202, -0.1440, -0.1213, -0.0521,
         0.0637, 0.2260, 0.4349, 0.6903, 0.9922, 1.3407, 1.7357, 2.1773, 2.6654, 3.200};
    根据板形偏差,采用最小二乘法,得到
Figure 270920DEST_PATH_IMAGE001
中的系数,a0=0.0, a1=1.1, 
a2=2.1,保存系数a1,a,在下一控制周期使用。
计算基本增益系数,这时带钢的速度仍然为300m/min,即5m/s,那么
计算倾斜稳定性指标,
提取上一控制周期保存的系数a1上=2.1,a1=1.1,
Figure DEST_PATH_IMAGE073
得到
Figure 893980DEST_PATH_IMAGE074
计算弯辊稳定性指标
提取上一控制周期保存的系数a2上=4.2,a2=2.1,得到,
Figure 326098DEST_PATH_IMAGE076
根据上述计算结果,分别得到倾斜的增益系数和弯辊的增益系数,
按照公式
Figure 590595DEST_PATH_IMAGE078
,计算出倾斜的调整量为0.016,即1.6%,修正倾斜的设定值。
按照公式
Figure DEST_PATH_IMAGE079
,计算出弯辊的调整量为0.025,即2.5%,修正弯辊的设定值。
将倾斜调整量和弯辊调整量下发给平整机控制进行执行。
      下一个控制周期,重复上述过程。

Claims (3)

1.一种基于稳定性指标的连退平整机板形自动控制方法,其特征是,包括以下步骤:
步骤一、利用板形测量辊测量到实测板形数据,对实测板形数据和目标板形的差值进行拟合得到二次多项式形式的板形偏差方程                                                
Figure 654782DEST_PATH_IMAGE001
Figure 509605DEST_PATH_IMAGE002
           (1)
从板形偏差方程中获取一次板形偏差系数
Figure 809185DEST_PATH_IMAGE003
、二次板形偏差系数
步骤二、通过对连退平整机进行试验得到该连退平整机的倾斜板形调控能力
Figure 632971DEST_PATH_IMAGE005
、弯辊板形调控能力
Figure 837687DEST_PATH_IMAGE006
、最大可调整一次板形偏差系数
Figure 223538DEST_PATH_IMAGE007
、最大可调整二次板形偏差系数
Figure 892417DEST_PATH_IMAGE008
、最大可调整一次板形偏差系数变化量
Figure 823464DEST_PATH_IMAGE009
和最大可调整二次板形偏差系数变化量
Figure 577793DEST_PATH_IMAGE010
,以上数值都取正值;
步骤三、根据连退平整机板形自动控制系统的布置通过公式(3)、(4)计算得到倾斜基本增益系数和弯辊基本增益系数
                     (3)
  其中:T - 控制周期;
          τ - 板形测量滞后时间;
Figure 821244DEST_PATH_IMAGE014
                         (4)
其中:l - 连退平整机到板形测量辊的水平距离;
           d - 板形测量辊的直径; 
                  v -  带钢的运动速度;
步骤四、根据公式(5)计算得到倾斜稳定性指标
Figure 34051DEST_PATH_IMAGE015
、根据公式(6)计算得到弯辊稳定性指标
Figure 677522DEST_PATH_IMAGE016
Figure 199639DEST_PATH_IMAGE017
                 (5)
其中:
Figure 866244DEST_PATH_IMAGE018
的倒数等于倾斜板形调控能力
Figure 945058DEST_PATH_IMAGE005
的2.5倍;
      的倒数等于倾斜板形调控能力
Figure 401633DEST_PATH_IMAGE005
的1.5倍;
Figure 289955DEST_PATH_IMAGE021
为一次板形偏差系数变化量,即当前控制周期的一次板形偏差系数减去上一控制周期的一次板形偏差系数;
       β、γ为加权系数,该两个系数为经验参数,并有β>0,γ >0,β+γ=1.0;
      
Figure 359411DEST_PATH_IMAGE007
为最大可调整一次板形偏差系数,
时,
Figure 592126DEST_PATH_IMAGE023
Figure 217011DEST_PATH_IMAGE024
时,
Figure 637628DEST_PATH_IMAGE025
Figure 47881DEST_PATH_IMAGE026
时,
Figure 161331DEST_PATH_IMAGE027
       
Figure 273512DEST_PATH_IMAGE009
为最大可调整一次板形偏差系数变化量, 
Figure 435503DEST_PATH_IMAGE028
时,
Figure 497000DEST_PATH_IMAGE029
Figure 968301DEST_PATH_IMAGE030
时,
Figure 318511DEST_PATH_IMAGE031
时,
Figure 715043DEST_PATH_IMAGE033
Figure 842399DEST_PATH_IMAGE034
               (6)
 其中:
Figure 929173DEST_PATH_IMAGE035
的倒数等于弯辊板形调控能力
Figure 495284DEST_PATH_IMAGE006
的2.5倍;
       
Figure 921586DEST_PATH_IMAGE036
的倒数等于弯辊板形调控能力
Figure 219843DEST_PATH_IMAGE006
的1.5倍;
Figure 606962DEST_PATH_IMAGE037
为二次板形偏差系数变化量,即当前控制周期的二次板形偏差系数减去上一控制周期的二次板形偏差系数;
        β、γ为加权系数,该系数为经验参数根据试验数据设定,并有β>0,γ >0,β+γ=1.0;
       
Figure 163714DEST_PATH_IMAGE008
为最大可调整二次板形偏差系数,
时,
Figure 789048DEST_PATH_IMAGE039
Figure 584834DEST_PATH_IMAGE040
时,时,
Figure 861598DEST_PATH_IMAGE043
       
Figure 895413DEST_PATH_IMAGE010
为最大可调整二次板形偏差系数变化量, 
Figure 607017DEST_PATH_IMAGE044
时,
Figure 659155DEST_PATH_IMAGE045
Figure 735696DEST_PATH_IMAGE046
时,
Figure 755790DEST_PATH_IMAGE048
时,
Figure 678747DEST_PATH_IMAGE049
步骤五、利用基本增益系数和稳定性指标通过公式(2)计算得到增益系数,最后将增益系数乘以板形偏差系数得到连退平整机板形执行机构的调整量;
倾斜增益系数
Figure 988505DEST_PATH_IMAGE050
和弯辊增益系数
Figure 246180DEST_PATH_IMAGE051
由公式(2)计算得到
                           
Figure 299587DEST_PATH_IMAGE052
                     (2)
其中:
Figure 77050DEST_PATH_IMAGE011
为倾斜基本增益系数;
Figure 744661DEST_PATH_IMAGE012
为弯辊基本增益系数;
            
Figure 37102DEST_PATH_IMAGE015
为倾斜稳定性指标;
为弯辊稳定性指标;
得到倾斜调整量
Figure 736557DEST_PATH_IMAGE053
为,
得到弯辊调整量
Figure 371118DEST_PATH_IMAGE055
为,
Figure 953278DEST_PATH_IMAGE056
2.如权利要求1所述的基于稳定性指标的连退平整机板形自动控制方法,其特征是:所述步骤一中,在一个控制周期内利用板形测量辊测量的五组实测板形数据,对五组实测板形数据进行滑动平均处理,得到平滑的实测板形数据。
3.如权利要求1或所述的基于稳定性指标的连退平整机板形自动控制方法,其特征是:所述步骤四中加权系数β、γ的取值为β取0.8,γ取0.2。 
CN 201010263592 2010-08-26 2010-08-26 基于稳定性指标的连退平整机板形自动控制方法 Active CN102371278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010263592 CN102371278B (zh) 2010-08-26 2010-08-26 基于稳定性指标的连退平整机板形自动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010263592 CN102371278B (zh) 2010-08-26 2010-08-26 基于稳定性指标的连退平整机板形自动控制方法

Publications (2)

Publication Number Publication Date
CN102371278A true CN102371278A (zh) 2012-03-14
CN102371278B CN102371278B (zh) 2013-06-19

Family

ID=45790826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010263592 Active CN102371278B (zh) 2010-08-26 2010-08-26 基于稳定性指标的连退平整机板形自动控制方法

Country Status (1)

Country Link
CN (1) CN102371278B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357669A (zh) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 一种板形模型预测控制方法
CN103357670A (zh) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 适用于五机架ucm机型冷连轧机组的压下规程优化方法
CN103949498A (zh) * 2014-04-17 2014-07-30 山西太钢不锈钢股份有限公司 一种平整机组板形在线测量方法
CN104070068A (zh) * 2013-03-27 2014-10-01 上海梅山钢铁股份有限公司 一种四辊平整机组湿平整快速自由变规格轧制方法
CN105522002A (zh) * 2014-09-29 2016-04-27 宝山钢铁股份有限公司 一种冷轧厚度自动控制方法
CN113850491A (zh) * 2021-09-17 2021-12-28 北京科技大学 一种连退同品规带钢排产优化方法
CN114101384A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 板带焊缝过平整机和张紧辊时的张紧力控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171211A (ja) * 1987-01-08 1988-07-15 Nippon Steel Corp 板圧延における形状制御方法
CN1179369A (zh) * 1996-10-11 1998-04-22 冶金工业部钢铁研究总院 板带轧制过程的板形测量和控制方法
JP2004042108A (ja) * 2002-07-12 2004-02-12 Hitachi Ltd 冷間圧延機の形状制御方法および装置
CN101003063A (zh) * 2006-01-18 2007-07-25 宝山钢铁股份有限公司 在平整轧制过程中带钢的延伸率、板形及综合控制方法
CN101301659A (zh) * 2008-03-15 2008-11-12 燕山大学 双ucm平整机组基于机理模型的板形参数在线设定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171211A (ja) * 1987-01-08 1988-07-15 Nippon Steel Corp 板圧延における形状制御方法
CN1179369A (zh) * 1996-10-11 1998-04-22 冶金工业部钢铁研究总院 板带轧制过程的板形测量和控制方法
JP2004042108A (ja) * 2002-07-12 2004-02-12 Hitachi Ltd 冷間圧延機の形状制御方法および装置
CN101003063A (zh) * 2006-01-18 2007-07-25 宝山钢铁股份有限公司 在平整轧制过程中带钢的延伸率、板形及综合控制方法
CN101301659A (zh) * 2008-03-15 2008-11-12 燕山大学 双ucm平整机组基于机理模型的板形参数在线设定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周莲莲: "延伸率与板形在线综合自动控制技术的研究", 《机械工程与自动化》, no. 03, 15 June 2007 (2007-06-15), pages 119 - 122 *
张宝平等: "平整机延伸率、轧制力及张力的协调控制技术", 《轧钢》, no. 06, 30 December 2005 (2005-12-30), pages 12 - 14 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357669A (zh) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 一种板形模型预测控制方法
CN103357670A (zh) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 适用于五机架ucm机型冷连轧机组的压下规程优化方法
CN103357669B (zh) * 2012-03-27 2015-04-22 上海梅山钢铁股份有限公司 一种板形模型预测控制方法
CN103357670B (zh) * 2012-03-27 2015-06-03 上海梅山钢铁股份有限公司 适用于五机架ucm机型冷连轧机组的压下规程优化方法
CN104070068A (zh) * 2013-03-27 2014-10-01 上海梅山钢铁股份有限公司 一种四辊平整机组湿平整快速自由变规格轧制方法
CN104070068B (zh) * 2013-03-27 2017-04-26 上海梅山钢铁股份有限公司 一种四辊平整机组湿平整快速自由变规格轧制方法
CN103949498A (zh) * 2014-04-17 2014-07-30 山西太钢不锈钢股份有限公司 一种平整机组板形在线测量方法
CN103949498B (zh) * 2014-04-17 2016-02-10 山西太钢不锈钢股份有限公司 一种平整机组板形在线测量方法
CN105522002A (zh) * 2014-09-29 2016-04-27 宝山钢铁股份有限公司 一种冷轧厚度自动控制方法
CN114101384A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 板带焊缝过平整机和张紧辊时的张紧力控制方法
CN114101384B (zh) * 2020-08-31 2024-01-09 宝山钢铁股份有限公司 板带焊缝过平整机和张紧辊时的张紧力控制方法
CN113850491A (zh) * 2021-09-17 2021-12-28 北京科技大学 一种连退同品规带钢排产优化方法

Also Published As

Publication number Publication date
CN102371278B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CN102371278B (zh) 基于稳定性指标的连退平整机板形自动控制方法
CN103920720B (zh) 一种基于套量偏差的带钢张力动态控制方法及其控制系统
CN103464469B (zh) 一种冷轧无取向硅钢的边缘降量控制方法
CN102029294B (zh) 冷轧带钢横向厚差控制方法
US9732396B2 (en) Method for operating a continuous annealing line for the processing of a rolled good
CN101683659A (zh) 冷轧带钢平直度横向厚差综合控制方法
CN105598180B (zh) 轧制控制装置和轧制控制方法
CN104785543B (zh) 一种基于滑动平均滤波的热轧带钢凸度反馈控制方法
CN102601125B (zh) 钢轨断面规格通长波动控制方法
CN102632085A (zh) 冷轧带钢板形控制系统及方法
CN105327949A (zh) 一种热轧带钢卷取温度的流量控制方法
CN104942019A (zh) 一种带钢冷轧过程宽度自动控制方法
CN106868440B (zh) 一种带钢连续热镀锌镀层厚度预测及其调节方法
Liu et al. Algorithm design and application of laminar cooling feedback control in hot strip mill
CN105268748A (zh) 按产品分类的热轧负荷分配方法
CN103551389B (zh) 一种冷连轧机的动态变规格控制方法
CN104338753A (zh) 一种冷连轧机的动态变规格控制方法
CN103510032B (zh) 冷轧热镀锌镀层均匀度的偏差值控制方法
CN106607460B (zh) 森吉米尔20辊轧机边部板形控制方法
CN103056169B (zh) 冷连轧机边缘降的控制方法
JP5380199B2 (ja) 圧延装置での張力制御方法及び圧延装置
Shatalov et al. SHEET MILL CONTROL IN STEEL STRIP HOT ROLLING.
JP2007007700A (ja) 設計パラメータの最適値決定方法とこの方法を用いた圧延パススケジュールの決定方法
Ji et al. Coordinate control of strip thickness-crown-tension based on inverse linear quadratic in tandem hot rolling mill
JP2007289990A (ja) 圧延装置の板厚制御方法と圧延装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant