CN102353471B - 线性温度传感器及制备方法 - Google Patents

线性温度传感器及制备方法 Download PDF

Info

Publication number
CN102353471B
CN102353471B CN2011101876033A CN201110187603A CN102353471B CN 102353471 B CN102353471 B CN 102353471B CN 2011101876033 A CN2011101876033 A CN 2011101876033A CN 201110187603 A CN201110187603 A CN 201110187603A CN 102353471 B CN102353471 B CN 102353471B
Authority
CN
China
Prior art keywords
temperature sensor
steel wire
sensitive material
powder
thermo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011101876033A
Other languages
English (en)
Other versions
CN102353471A (zh
Inventor
杨建锋
韩志海
梁森
王波
杨武
柯高潮
白宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2011101876033A priority Critical patent/CN102353471B/zh
Publication of CN102353471A publication Critical patent/CN102353471A/zh
Application granted granted Critical
Publication of CN102353471B publication Critical patent/CN102353471B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明公开了一种线性温度传感器及制备方法,其特征在于,将烧结后的NiO-MnO2-MgO-Al2O3为基的负温度系数的热敏材料,采用超音速等离子喷涂(SAPS)技术,将粉体喷涂在不锈钢丝上,喷涂的陶瓷粉料厚度为20-200微米,然后再在喷涂的陶瓷粉体上喷涂10微米左右的镍铬合金层,这样钢丝和外层的镍铬合金为两极,中间的热敏材料膜层作为传感温度的功能层,整体构成了一种线性负温度传感器。常温时线性温度传感器的电阻保持一个较高的数量级,当所处的环境温度上升到200℃及以上时,电阻达到几十欧姆。用这种方法制备的线性负温度传感器能实现对温度的控制,过热保护以及温度报警作用。

Description

线性温度传感器及制备方法
技术领域
本发明涉及一种测温控温元件及制备方法,特别涉及一种负温度系数热敏电阻的线性温度传感器及制备方法。
背景技术
现有的测温器件有热电偶、热电阻、陶瓷热敏电阻等,均是测狭小空间的温度,无法对大面积或复杂空间进行准确控温和测温。因此,制备能测试复杂空间和大面积的温度传感器很有必要。据报道,国内外有采用冷拔技术制备线性温度传感器的方法。是将陶瓷氧化物热敏材料装入钢管内,陶瓷氧化物热敏材料中间再穿一根平行于外钢管钢丝,然后一起冷拔,钢管和内部的钢丝就是两极,这样就得到了线性温度传感器。这种线性温度传感器能用于分布式测温,用以满足狭小、复杂空间的三维测温要求,也可以在恶劣复杂环境下工作。但此种方法工艺较为复杂。因此,有必要开发工艺更加简单的线性温度传感器以适应多点大面积多维温度测试需求。
发明内容
本发明的目的是提供一种可用于多维的控温、测温、报警等功能的线性温度传感器及简易制备方法。所制得的线性温度传感器室温下电阻保持较高的数量级,当达到一定温度时,电阻急剧降低,以实现对温度的控制和报警或过热保护作用。
为达到以上目的,本发明是采取如下技术方案予以实现的:
一种线性温度传感器,包括一根不锈钢丝,其特征在于,采用超音速等离子喷涂工艺在不锈钢丝外表面喷涂一层化学分析式为Ni0.6Mn1.5-xAl0.6+xMg0.3O4的热敏材料膜,其中0≤x≤0.4,然后在热敏材料膜外表面再采用超音速等离子喷涂工艺喷涂一层Ni35Cr合金。
上述方案中,所述不锈钢丝的直径为0.2~2mm,所述热敏材料膜的厚度为20~200微米。
前述线性温度传感器的制备方法,包括以下步骤:
步骤1,按照Ni0.6Mn1.5-xAl0.6+xM0.3O4的化学分析式用分析纯的MnO2、NiO、Al2O3和MgO原料配料,其中0≤x≤0.4,将配好的粉料采用湿法球磨混合均匀,球磨时间至少12小时;得到混合物;
步骤2,将混合物烘干后在空气炉中于1200~1400℃烧结,保温1~3小时,得到NTC烧结粉;
步骤3,将NTC烧结粉再次采用湿法球磨,球磨时间为24~48小时;
步骤4,将球磨后的NTC烧结粉体烘干,然后过200~400目筛网,得到超音速等离子喷涂粉体;
步骤5,将不锈钢丝进行喷砂处理得到粗糙外表面;
步骤6,将步骤4所得的喷涂粉体装入送粉器中,采用超音速等离子喷涂工艺将喷涂粉体裹敷在不锈钢丝粗糙外表面上形成热敏材料膜;
步骤7,将Ni35Cr合金放入送粉器中,采用超音速等离子喷涂工艺将Ni35Cr合金裹敷在步骤6的热敏材料膜外表面形成镍铬合金层;
步骤8,将步骤7喷涂有有热敏材料膜、镍铬合金层的不锈钢丝于500℃的Ar气氛下退火2小时,即得线性温度传感器。
上述方法中,所述不锈钢丝的直径为0.2~2mm。所述热敏材料膜的厚度为20~200微米。所述镍铬合金层的厚度为10微米。
本发明所制备的线性温度传感器的两极分别是最内层的钢丝和外层的镍铬合金层,中间的热敏材料膜层作为传感温度的功能层,添加不同的氧化铝含量能调节Ni-Mn-Mg-Al-O热敏材料膜的室温电阻。其电阻在室温下保持较高的数量级(104-105欧姆),当探测的温度到达200℃以上时,电阻降低到(35~86欧姆)。电阻与温度呈现良好的指数函数的关系。利用电阻与温度的关系能很好的实现测温、控温及报警的作用。
附图说明
图1为本发明温度传感器的径向结构图。图中:1、不锈钢丝;2、热敏材料膜;3、镍铬合金层。
图2为本发明实施例1的线性温度传感器的阻温曲线。
具体实施方式
以下结合具体实施例对本发明作进一步的详细说明。
如图1所示,本发明线性温度传感器包括一根直径为0.2~1mm的不锈钢丝1,采用超音速等离子喷涂(SAPS)技术在不锈钢丝外表面喷涂一层化学分析式为Ni0.6Mn1.5-xAl0.6+xMg0.3O4的热敏材料膜2,厚度为20~200微米;然后在热敏材料膜外表面再采用SAPS技术喷涂一层厚度为10微米左右的镍铬(Ni35Cr)合金3。
本发明线性温度传感器的制备方法,包括以下步骤:
步骤1,按照Ni0.6Mn1.5-xAl0.6+xMg0.3O4的化学分析式用分析纯的MnO2、NiO、Al2O3和MgO原料配料,其中0≤x≤0.4,具体组成参见表1,将配好的粉料放入塑料罐中湿法球磨混合均匀,采用无水乙醇和玛瑙球作为球磨介质,原料和无水乙醇的体积比为1∶2,磨球和料的体积比为2.5∶1,球磨时间至少12小时;得到混合物;
步骤2,将混合物于烘箱中70℃烘干,在空气炉中烧结,升温速率为5℃/min,烧结温度及保温时间参见表1,得到负温度系数(NTC)烧结粉;
步骤3,将NTC烧结粉再次置于塑料罐中湿法球磨,球磨工艺参数除球磨时间为24小时以上外,其余与步骤1相同;
步骤4,将球磨后的NTC烧结粉体在烘箱中70℃烘干,然后过200~400目筛网,得到超音速等离子喷涂粉体;
步骤5,将直径为0.2~2mm(表1)的不锈钢丝进行喷砂处理得到粗糙外表面;
步骤6,将步骤4所得的喷涂粉体装入SAPS的送粉器中,采用超音速等离子喷涂工艺将喷涂粉体裹敷在不锈钢丝粗糙外表面上形成厚度为20~200微米(表1)的热敏材料膜;
步骤7,将Ni35Cr合金放入SAPS的送粉器中,采用超音速等离子喷涂工艺将Ni35Cr合金裹敷在步骤6的热敏材料膜外表面形成厚度在10微米左右的镍铬合金层;
步骤8,将步骤7喷涂有有热敏材料膜、镍铬合金层的不锈钢丝于500℃的Ar气氛下退火2小时,即得线性温度传感器。
表2列出了本发明实施例1-10的线性温度传感器的电阻性能。从表2可看出,线性温度传感器的室温电阻保持在较高的数量级(104~105欧姆),当温度升高到200℃时,电阻降到100欧姆以下。从图1也可看出用超音速等离子喷涂技术制备的线性温度传感器的电阻随温度上升而连续下降,呈现负温度系数特制。
表1本发明温度传感器的结构参数及SAPS喷涂粉体制备参数
Figure BDA0000074110240000041
表2本发明温度传感器的电阻性能
  序号   组分 室温电阻(Ω)  200℃电阻(Ω)
  1   Ni0.6Mn1.5Al0.6Mg0.3O4 30543  31
  2   Ni0.6Mn1.3Al0.8Mg0.3O4 69423  69
  3   Ni0.6Mn1.5Al0.6Mg0.3O4 35742  35
  4   Ni0.6Mn1.4Al0.7Mg0.3O4 43973  55
  5   Ni0.6Mn1.4Al0.7Mg0.3O4 45561  45
  6   Ni0.6Mn1.3Al0.8Mg0.3O4 56338  56
  7   Ni0.6Mn1.3Al0.8Mg0.3O4 57134  51
  8   Ni0.6Mn1.2Al0.9Mg0.3O4 82566  67
  9   Ni0.6Mn1.2Al0.9Mg0.3O4 137847  58
  10   Ni0.6Mn1.1Al1Mg0.3O4 196238  86

Claims (5)

1.一种线性温度传感器,包括一根不锈钢丝,其特征在于,采用超音速等离子喷涂工艺在不锈钢丝外表面喷涂一层化学分析式为Ni0.6Mn1.5-xAl0.6+xMg0.3O4的热敏材料膜,其中0≤x≤0.4,然后在热敏材料膜外表面再采用超音速等离子喷涂工艺喷涂一层Ni35Cr合金。
2.如权利要求1所述的线性温度传感器,其特征在于,所述不锈钢丝的直径为0.2~2mm,所述热敏材料膜的厚度为20~200微米。
3.一种权利要求1所述线性温度传感器的制备方法,其特征在于,包括以下步骤:
步骤1,按照Ni0.6Mn1.5-xAl0.6+xMg0.3O4的化学分析式用分析纯的MnO2、NiO、Al2O3和MgO原料配料,其中0≤x≤0.4,将配好的粉料采用湿法球磨混合均匀,球磨时间至少12小时;得到混合物;
步骤2,将混合物烘干后在空气炉中于1200~1400℃烧结,保温1~3小时,得到NTC烧结粉;
步骤3,将NTC烧结粉再次采用湿法球磨,球磨时间为24~48小时;
步骤4,将球磨后的NTC烧结粉体烘干,然后过200~400目筛网,得到超音速等离子喷涂粉体;
步骤5,将不锈钢丝进行喷砂处理得到粗糙外表面;
步骤6,将步骤4所得的喷涂粉体装入送粉器中,采用超音速等离子喷涂工艺将喷涂粉体裹敷在不锈钢丝粗糙外表面上形成热敏材料膜;
步骤7,将Ni35Cr合金放入送粉器中,采用超音速等离子喷涂工艺将Ni35Cr合金裹敷在步骤6的热敏材料膜外表面形成镍铬合金层;
步骤8,将步骤7喷涂有热敏材料膜、镍铬合金层的不锈钢丝于500℃的Ar气氛下退火2小时,即得线性温度传感器。
4.如权利要求3所述线性温度传感器的制备方法,其特征在于,所述不锈钢丝的直径为0.2~2mm;所述热敏材料膜的厚度为20~200微米。
5.如权利要求3或4所述线性温度传感器的制备方法,其特征在于,所述镍铬合金层的厚度为10微米。
CN2011101876033A 2011-07-06 2011-07-06 线性温度传感器及制备方法 Expired - Fee Related CN102353471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101876033A CN102353471B (zh) 2011-07-06 2011-07-06 线性温度传感器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101876033A CN102353471B (zh) 2011-07-06 2011-07-06 线性温度传感器及制备方法

Publications (2)

Publication Number Publication Date
CN102353471A CN102353471A (zh) 2012-02-15
CN102353471B true CN102353471B (zh) 2013-05-22

Family

ID=45577082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101876033A Expired - Fee Related CN102353471B (zh) 2011-07-06 2011-07-06 线性温度传感器及制备方法

Country Status (1)

Country Link
CN (1) CN102353471B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714206A (en) * 1996-05-06 1998-02-03 Morton International, Inc. Two component powder coating system and method for coating wood therewith
JP4445665B2 (ja) * 2000-12-21 2010-04-07 大日本印刷株式会社 感熱記録ヘッドの洗浄液
CN100485332C (zh) * 2007-04-20 2009-05-06 西安交通大学 临界负温度系数热敏电阻线状测温元件及其制备方法

Also Published As

Publication number Publication date
CN102353471A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
CN102682942B (zh) 低阻值高b值负温度系数热敏电阻
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN102568723A (zh) 负温度系数热敏电阻芯片、其电阻及其制作方法
CN103011811A (zh) 一种高温负温度系数热敏电阻材料的制备方法
CN102682944A (zh) Ntc热敏电阻材料
CN102270531A (zh) 叠层片式负温度系数热敏电阻的制备方法
CN101157550A (zh) 一种低电阻率/高b值负温度系数热敏材料及其制备方法
CN104064297A (zh) 用于超低温环境的热敏电阻材料
CN103073267B (zh) 一种低电阻率、高b值负温度系数热敏材料及其制备方法
CN102682943A (zh) 医用高精度ntc热敏电阻器的生产方法
CN102682941A (zh) 高阻值低b值负温度系数热敏电阻
CN102353471B (zh) 线性温度传感器及制备方法
KR101260048B1 (ko) 전도성 입자가 분산된 부온도계수(ntc) 필름 및 이의 제조방법
CN104193306B (zh) 一种低电阻率高b值负温度系数热敏陶瓷材料及其制备方法
CN102693795B (zh) 负温度系数热敏电阻
CN100541674C (zh) 用于热敏电阻的负温度系数的陶瓷混合物和其制备方法
CN104310984A (zh) 一种热敏陶瓷材料及其制备方法
CN102745987B (zh) 一种高居里点无铅ptc热敏陶瓷材料及其制备方法
CN107129284B (zh) 一种高性能多温区ntc热敏电阻器介质材料及其制备方法
CN104051095B (zh) 一种添加氧化钛的四元系热敏电阻材料
CN104150880A (zh) 一种锰-钴-铜热敏电阻材料
CN110317045A (zh) 一种锰镍铁钴基ntc热敏电阻材料及其制备方法
CN102693794B (zh) 超低阻值高b值ntc热敏电阻
CN104788098B (zh) 一种双参数测温复相热敏陶瓷材料及其制备方法
CN104193305B (zh) Ntc热敏电阻材料及其制备方法与ntc热敏电阻器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130522

Termination date: 20180706