CN102348678B - 新的类二十烷酸衍生物 - Google Patents

新的类二十烷酸衍生物 Download PDF

Info

Publication number
CN102348678B
CN102348678B CN201080011803.7A CN201080011803A CN102348678B CN 102348678 B CN102348678 B CN 102348678B CN 201080011803 A CN201080011803 A CN 201080011803A CN 102348678 B CN102348678 B CN 102348678B
Authority
CN
China
Prior art keywords
acid
carbon
etoac
ethyl
hexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080011803.7A
Other languages
English (en)
Other versions
CN102348678A (zh
Inventor
W-H·顺克
G·瓦卢卡特
R·菲舍尔
C·施密特
D·N·米勒
N·普利
J·R·福尔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
University of Texas System
Original Assignee
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft, University of Texas System filed Critical Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Publication of CN102348678A publication Critical patent/CN102348678A/zh
Application granted granted Critical
Publication of CN102348678B publication Critical patent/CN102348678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/42Acyclic compounds having a chain of seven or more carbon atoms, e.g. epoxidised fats
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/336Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/09Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/49Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/72Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms
    • C07C235/76Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/14Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/16Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/20Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an unsaturated carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Epoxy Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了式(I)的化合物(n-3 PUFA衍生物),其调节与心脏损伤有关的疾病状况,特别是心律失常。

Description

新的类二十烷酸衍生物
本发明涉及多不饱和脂肪酸(PUFA)类似物的化合物。本发明还涉及含有一种或多种这些化合物的组合物,以及这些化合物或组合物用于治疗或预防与炎症、增殖、高血压、凝血、免疫功能、心力衰竭和心律失常相关的疾病状况或疾病的用途。
背景技术
脂肪酸由于它们在生物学系统中的重要性而成为最广泛研究的化合物类型之一(Ferrante,A.,Hii,C.S.T.,Huang,Z.H.,Rathjen,D.A.In TheNeutrophils:New Outlook for the Old Cells.(Ed.Gabrilovich,D.)ImperialCollege Press(1999)4:79-150;Sinclair,A.,and Gibson,R.(eds)1992.Invitedpapers from the Third International Congress.American Oil Chemists′Society,Champaign,Illinois 1-482)。自然界中存在数百种不同的脂肪酸,其中,天然存在的多不饱和脂肪酸(PUFA)含有16-22个碳原子,并且具有两个或更多个亚甲基中断的双键。
PUFA根据他们所源自的母体脂肪酸可以分为四类:亚油酸(18:2n-6)、α-亚麻酸(18:3n-3)、油酸(18:1n-9)和棕榈油酸(16:1n-7)。n-6和n-3PUFA不能由哺乳动物合成,并且已知为必需脂肪酸(EFA)。它们由哺乳动物机体间接通过必须在饮食中提供的亚油酸和α-亚麻酸的去饱和或者延长获得。
EFA具有各种生物学活性,并且n-3PUFA是正常人健康所必需的(Spector,A.A.(1999)Lipids 34,1-3)。例如,膳食n-3PUFA对影响正常健康和慢性疾病的各种生理过程存在效应(综述参见,例如Jump,D.B.(2002)J.Biol.Chem.277,8755-8758),例如血脂水平调节(Rambjor,G.S.,Walen,A.I.,Windsor,S.L.,and Harris,W.S.(1996)Lipid 31,45-49;Harris,W.S.(1997)Am.J.Clin.Nutr.65,1645-1654;Harris,W.S.,Hustvedt,B-E.,Hagen,E.,Green,M.H.,Lu,G.,and Drevon,C.A.(1997)J.Lipid Res.38,503-515;Mori,T.A.,Burke,V.,Puddey,I.B.,Watts,G.F.,O′Neal,D.N.,Best,J.D.,andBeilen,L.J.(2000)Am.J.Clin.Nutr.71,1085-1094)、心血管(Nordoy,A.(1999)Lipids 34,19-22;Sellmayer,A.,Hrboticky,N.,and Weber,P.C.(1999)Lipids34,13-18;Leaf,A.(2001)J.Nutr.Health Aging 5,173-178)和免疫功能(Hwang,D.(2000)Annu.Rev.Nutr.20,431-456)、胰岛素作用(Storlien,L.,Hulbert,A.J.,and Else,P.L.(1998)Curr.Opin.Clin.Nutr.Metab.Care 1,559-563;Storlien,L.H.,Kriketos,A.D.,Calvert,G.D.,Baur,L.A.,andJenkins,A.B.(1997)Prostaglandins Leukotrienes Essent.Fatty acids 57,379-385)以及神经元发育和视觉功能(Salem,N.,Jr.,Litman,B.,Kim,H-Y.,and Gawrisch,K.(2001)Lipids 36,945-959)。n-3PUFA的摄入会使得它们几乎分布于身体的每个细胞,并且影响膜组成和功能、类二十烷酸合成和信号转导以及基因表达的调控(Salem,N.,Jr.,Litman,B.,Kim,H-Y.,andGawrisch,K.(2001)Lipids 36,945-959;Jump,D.B.,and Clarke,S.D.(1999)Annu.Rev.Nutr.19,63-90;Duplus,E.,Glorian,M.,and Forest,C.(2000)275,30749-30752;Dubois,R.N.,Abramson,S.B.,Crofford,L.,Gupta,R.A.,Simon,L.S.,Van De Putte,L.B.A.,and Lipsky,P.E.(1998)FASEB J.12,1063-1073)。
另外,n-3PUFA被认为是肿瘤发育的重要调节物,因为它们能够减小肿瘤的大小和数量以及肿瘤出现的延滞时间(Abel,S.,Gelderblom,W.C.A.,Smuts,C.M.,Kruger M.(1997)Pros.Leuko.and Essential,56(1):29-39)。n-3PUFA的吸收据发现与冠状动脉疾病降低的发生率有关,并且提出了各种n-3 PUFA发挥作用的机制(Krombout,D.(1992)Nutr.Rev.50:49-53;Kinsella,J.E.,Lokesh,B.,Stone R.A.(1990)Am.J.Clin.Nuer.52:1-28)。一些n-3PUFA还具有抗疟(Kumaratilake,L.M.,Robinson,B.S.,Ferrante,A.,Poulos A.(1992)J.Am.Soc.Clin.Investigation 89:961-967)或抗炎特性(Weber,P.C.(1990)Biochem.Soc.Trans.18:1045-1049)。
而且,EFA最重要的生物学作用之一是给可以调节许多功能的生物活性脂肪酸代谢物的产生提供前体(Arm,J.P.,and Lee,T.H.(1993)Clin.Sci.84:501-510)。例如,花生四烯酸(AA;20:4,n-6)被细胞色素P450(CYP)酶代谢为具有强力生物学活性的几种类型的氧化代谢物(Roman RJ.P-450metabolites of arachidonic acid in the control of cardiovascular function.Physiol Rev.2002;82:131-85)。主要的代谢物包括20-羟基二十碳四烯酸(20-HETE)和一系列的区域和立体异构环氧二十碳三烯酸(EET)。CYP4A和CYP4F同种型产生20-HETE和CYP2C以及CYP2J同种型EET。
已知EPA(20:5,n-3)可以充当AA代谢CYP同种型的替代底物(Theuer J,Shagdarsuren E,Muller DN,Kaergel E,Honeck H,Park JK,Fiebeler A,Dechend R,Haller H,Luft FC,Schunck WH.Inducible NOS inhibition,eicosapentaenoic acid supplementation,and angiotensin II-induced renaldamage.Kidney Int.2005;67:248-58;Schwarz D,Kisselev P,Ericksen SS,Szklarz GD,Chernogolov A,Honeck H,Schunck WH,Roots I.Arachidonic andeicosapentaenoic acid metabolism by human CYP 1A1:highly stereoselectiveformation of 17(R),18(S)-epoxyeicosatetraenoic acid.Biochem Pharmacol.2004;67:1445-57;Schwarz D,Kisselev P,Chernogolov A,Schunck WH,RootsI.Human CYP 1A1 variants lead to differential eicosapentaenoic acid metabolitepatterns.Biochem Biophys Res Commun.2005;336:779-83;Lauterbach B,Barbosa-Sicard E,Wang MH,Honeck H,Kargel E,Theuer J,Schwartzman ML,Haller H,Luft FC,Gollasch M,Schunck WH.Cytochrome P450-dependenteicosapentaenoic acid metabolites are novel BK channel activators.Hypertension.2002;39:609-13;Barbosa-Sicard E,Markovic M,Honeck H,Christ B,Muller DN,Schunck WH.Eicosapentaenoic acid metabolism bycytochrome P450 enzymes of the CYP2C subfamily.Biochem Biophys ResCommun.2005;329:1275-81)。CYP依赖性n-3PUFA代谢的重要特征是n-3双键的优选环氧化作用,其将EPA和DHA与AA区分。所得代谢物,即来自EPA的17,18-EETeTr和来自DHA的19,20-EDP独特之处在于与AA产物系列不具有同源性。
EET和20-HETE在调节各种心血管功能中起到重要作用(Roman RJ.P-450 metabolites of arachidonic acid in the control of cardiovascular function.Physiol Rev.2002;82:131-85)。据证实,在Ang II诱导的高血压和终末器官损伤的双转基因的大鼠(dTGR)模型中(Luft FC,Mervaala E,Muller DN,Gross V,Schmidt F,Park JK,Schmitz C,Lippoldt A,Breu V,Dechend R,Dragun D,Schneider W,Ganten D,Haller H.Hypertension-induced end-organdamage:A new transgenic approach to an old problem.Hypertension.1999;33:212-8),Ang II诱导的高血压与CYP依赖性AA代谢的下调有关(Kaergel E,Muller DN,Honeck H,Theuer J,Shagdarsuren E,Mullal ly A,LuftFC,Schunck WH.P450-dependent arachidonic acid metabolism andangiotensin II-induced renal damage.Hypertension.2002;40:273-9)。
转基因大鼠带有人肾素和血管紧张素原基因,局部产生Ang II并发展明显的高血压、心肌梗死和清蛋白尿。动物在80周龄前由于心肌和肾衰竭而死亡。模型表明,产生了Ang II诱导的炎症的严重特征。产生了活性氧类别,活化了转录因子NF-κB和AP-1,并且活化了这些转录因子的基因锚定位点。
最近证实,补充二十碳五烯酸(EPA)显著地降低dTGR的死亡率(TheuerJ,Shagdarsuren E,Muller DN,Kaergel E,Honeck H,Park JK,Fiebeler A,Dechend R,Haller H,Luft FC,Schunck WH.Inducible NOS inhibition,eicosapentaenoic acid supplementation,and angiotensin II-induced renaldamage.Kidney Int.2005;67:248-58)。另外,据证实,dTGR基于Ang II诱导的电重构(electrical remodeling)发展了室性心律失常(Fischer R,DechendR,Gapelyuk A,Shagdarsuren E,Gruner K,Gruner A,Gratze P,Qadri F,Wellner M,Fiebeler A,Dietz R,Luft FC,Muller DN,Schirdewan A.Angiotensin II-induced sudden arrhythmic death and electrical remodeling.AmJPhysiol Heart Circ Physiol.2007;293:H1242-1253)。用PPAR-α激活剂治疗dTGR大鼠强烈地诱导CYP2C23依赖性EET产生并保护免受高血压和终末器官损伤(Muller DN,Theuer J,Shagdarsuren E,Kaergel E,Honeck H,ParkJK,Markovic M,Barbosa-Sicard E,Dechend R,Wellner M,Kirsch T,FiebelerA,Rothe M,Haller H,Luft FC,Schunck WH.A peroxisomeproliferator-activated receptor-alpha activator induces renal CYP2C23 activityand protects from angiotensin II-induced renal injury.Am J Pathol.2004;164:521-32)。
长期用纯EPA-乙酯和DHA-乙酯的混合物饲喂dTGR(从4-7周龄)(Omacor from Solvay Arzneimittel,Hannover,Germany)改善了这种血管紧张素II-诱导的高血压模型中心脏的电重塑。特别地,EPA和DHA降低了死亡率,抑制了心律失常的诱导性并保护免于连接蛋白43-间隙连接重塑(Fischer R,Dechend R,Qadri F,Markovic M,Feldt S,Herse F,Park JK,Gapelyuk A,Schwarz I,Zacharzowsky UB,Plehm R,Safak E,Heuser A,Schirdewan A,Luft FC,Schunck WH,Muller DN.Dietary n-3 polyunsaturatedfatty acids and direct renin inhibition improve electrical remodeling in a modelof high human renin hypertension.Hypertension.2008Feb;51(2):540-6)。EPA还被证实为降低自发搏动频率以防止Ca2+诱导的心律失常及电稳定新生的大鼠心肌细胞(Leaf A,Kang JX,Xiao YF,Billman GE.Clinical prevention ofsudden cardiac death by n-3 polyunsaturated fatty acids and mechanism ofprevention of arrhythmias by n-3 fish oils.Circulation.2003;107:2646-52)。
通常,CYP依赖性类二十烷酸被视为第二信使:EET和20-HETE由CYP酶在胞外信号诱导的AA从膜磷脂释放后(通过磷脂酶A2)产生,并在调节离子转运、细胞增殖和炎症的信号转导途径中发挥它们的功能。取决于饮食,n-3 PUFA部分地在磷脂的sn2位置代替AA,并可以由此成为牵涉入随后信号转导途径中的替代分子。
对心脏中CYP依赖性类二十烷酸的生物学活性少数几个研究表明了EET和20-HETE在调节L-型Ca2+和肌膜及线粒体ATP敏感性钾(KATP)通道中的重要作用。在心肌细胞中,L-型Ca2+电流和细胞收缩(cell shorting)在EET产生的抑制时降低,并且这些效果可以通过加入11,12-EET而逆转(Xiao YF,Huang L,Morgan JP.Cytochrome P450:a novel system modulatingCa2+ channels and contraction in mammalian heart cells.J Physiol.1998;508(Pt 3):777-92)。EET还已知为激活心脏KATP通道。这种效果是高度立体选择性的:仅11,12-EET的S,R而非R,S-对映体是有效的(Lu T,VanRollins M,Lee HC.Stereospecific activation of cardiac ATP-sensitive K(+)channels byepoxyeicosatrienoic acids:a structural determinant study.Mol Pharmacol.2002;62:1076-83)。产生EET的人CYP2J2的过量表达通过KATP通道的活化导致转基因小鼠心脏改善的缺血后功能性恢复(Seubert J,Yang B,BradburyJA,Graves J,Degraff LM,Gabel S,Gooch R,Foley J,Newman J,Mao L,Rockman HA,Hammock BD,Murphy E,Zeldin DC.Enhanced postischemicfunctional recovery in CYP2J2 transgenic hearts involves mitochondrialATP-sensitive K+channels and p42/p44 MAPK pathway.Circ Res.2004;95:506-14)。20-HETE看起来通过充当内源KATP通道阻断剂而起到相反作用(Gross ER,Nithipatikom K,Hsu AK,Peart JN,Falck JR,Campbell WB,Gross GJ.Cytochrome P450 omega-hydroxylase inhibition reduces infarct sizeduring reperfusion via the sarcolemmal KATP channel.J Mol Cell Cardiol.2004;37:1245-9;Nithipatikom K,Gross ER,Endsley MP,Moore JM,Isbell MA,Falck JR,Campbell WB,Gross GJ.Inhibition of cytochromeP450omega-hydroxylase:a novel endogenous cardioprotective pathway.CircRes.2004;95:e65-71)。
尽管n-3PUFA在哺乳动物机体的生物学过程中起到重要作用,但是它们由于有限的体内可用度而未广泛地用作治疗剂。它们容易被β氧化降解,这是脂肪酸代谢中的主要氧化途径。β氧化的净过程的特征在于脂肪酸碳链两个碳原子的降解,同时产生等摩尔量的乙酰辅酶A。
为了克服β氧化的问题,WO96/11908公开了改进的PUFA,如β-氧杂及(3-硫杂PUFA)。这些化合物据证实增强对β氧化的抗性,同时仍然保留天然PUFA的某些生物学活性。
最后,用于治疗或预防与炎症、增殖、高血压、凝血、免疫功能、心力衰竭和心律失常有关的疾病状况和疾病的新物质备受关注,因为这些新疾病状况导致相当部分患者的死亡,而且许多目前使用的药物的给药与复杂的药物相互作用和许多不良副作用有关。
因此,本发明的目的在于提供n-3PUFA代谢物的新类似物,其对通过可溶性环氧化物水解酶的失活更稳定和/或较不易自动氧化,并且具有抗炎、抗增殖、抗高血压、抗凝或免疫调节活性,特别是心脏保护活性。
发明概述
本发明涉及通式(I)的化合物或其药理学可接受的盐、溶剂合物、水合物,或其药理学可接受的制剂:
其中
R1选自
R2为羟基、杂烷基、烷氧基、多烷氧基烷基、NR3R4、(NHS(O)2-m-(C6H4)N3、或Xaao
R3和R4各自且互相独立地选自氢原子、羟基、烷基、杂烷基、环烷基、烷基环烷基、杂烷基环烷基、芳烷基、或杂芳烷基;
Xaa为Gly,常见D,L-、D-或L-氨基酸,非常见D,L-、D-或L-氨基酸,或者2-至10-元肽,Xaa通过酰胺键连接至-C(O);
o为选自1-10的整数;
B为CH2、O、或S;
m为1-6的整数;
T、U、V和W各自且互相独立地选自-CH2CH2-、和顺式或反式-CH=CH-,条件是T、U、V或W中的至少一个为-CH2CH2-;
X不存在或者选自CH、CH2、和NR5,条件是如果X与Y和Z一起形成环氧基团,则X仅为CH;
Z选自CH、CH2、和NR5′,条件是如果Z与X和Y一起形成环氧基团,则Z仅为CH;
R5和R5′各自且互相独立地选自氢原子、羟基、烷基、环烷基、烷基环烷基、杂烷基环烷基、芳烷基、或杂芳烷基;
Y为-C(O)-、-C(O)-C(O)-、-O-、或-S-;以及
n为0-6的整数。
本文的化合物通常用标准命名法来描述。对于具有不对称中心的化合物,应当理解,除非另外指明,否则涵盖了所有的旋光异构体和混合物。具有两个或更多个不对称元素的化合物还可以以非对映体的混合物存在。另外,具有碳-碳双键的化合物可以以Z-和E-形式存在,除非另外指明,本发明包括所有异构形式的化合物。当化合物以各种互变异构形式存在时,所指的化合物并不限于任一具体的互变异构体,而是意图涵盖所有的互变异构形式。所指的化合物还意图涵盖其中一个或多个原子由同位素代替的化合物,所述同位素即具有相同原子数但不同质量数的原子。作为一般性的示例而非限制,氢的同位素包括氚和氘,碳的同位素包括11C、13C和14C。
具有一个或多个手性中心的本文所提供的式的化合物具有至少50%的对映体过量。例如,这样的化合物的对映体过量可以为至少60%、70%、80%、85%、90%、95%、或98%。化合物的一些实施方案的对映体过量为至少99%。明显的是,单一对映体(旋光体)可以得自不对称合成;合成自光学纯的前体;例如利用修饰的CYP102(CYP BM-3)的生物合成;或者通过外消旋物的拆分,如酶促拆分或在拆分试剂的存在下通过诸如结晶的常规方法进行的拆分;或者例如利用手性HPLC柱的层析。
本文利用包括变量如B、R1-R5、T、U、V、W、X、Y和Z的通式描述了某些化合物。除非另外指明,此类通式中的每个变量独立于其他变量定义,并且在一个通式中出现多次的任何变量在每次出现时独立地定义。因此,例如一个基团表示为由0-2个R*取代,则该基团可以为未取代的,或者由高达两个R*基团取代,并且R*在每次出现时都独立地选自R*的限定。此外,取代基和/或变量的组合也是可以的,不过仅在此类组合导致稳定的化合物时如此,即可以分离、表征并测试生物活性的化合物。
本文公开的化合物的“药学可接受的盐”为酸式或碱式盐,其在本领域通常被视为适合用于与人或动物的组织接触而无过量的毒性或致癌性,并且优选没有刺激、变应应答或其他问题或并发症。这样的盐包括诸如胺的碱性残基的无机和有机酸盐以及诸如羧酸的酸性残基的碱或有机盐。
合适的药学盐包括但不限于例如以下酸的盐:盐酸、磷酸、氢溴酸、苹果酸、乙醇酸、富马酸、硫酸、氨基磺酸、对氨基苯磺酸、甲酸、甲苯磺酸、甲磺酸、苯磺酸、乙二磺酸、2-羟乙基磺酸、硝酸、苯甲酸、2-乙酰氧基苯甲酸、柠檬酸、酒石酸、乳酸、硬脂酸、水杨酸、谷氨酸、抗坏血酸、扑酸、琥珀酸、富马酸、马来酸、丙酸、羟基马来酸、氢碘酸、苯乙酸、链烷酸,如乙酸、HOOC-(CH2)n-COOH,其中n为0-6的任何整数,即0、1、2、3、4、5或6,等。类似地,药学可接受的阳离子包括但不限于钠、钾、钙、铝、锂和铵。本领域技术人员应当知道本文提供的化合物的其他药学可接受的盐。通常,药学可接受的酸式或碱式盐可以通过任何常规化学方法合成自含有碱或酸部分的母体化合物。简言之,此类盐可以通过将游离酸或碱形式的这些化合物与化学计算量的合适碱或酸在水或有机溶剂或者在水和有机溶剂的混合物中反应来制备。通常,优选使用非水性的介质,如醚、乙酸乙酯、乙醇、异丙醇或乙腈。
明显的是,式(I)的每种化合物可以但不是必须作为水合物、溶剂合物或非共价复合物存在。此外,各种晶形和多晶型物在本发明的范围内,本文提供的式(I)的化合物的前药也是如此。
“前药”是这样的化合物,其可以不完全满足本文提供的化合物的结构要求,但是在给予个体或患者后在体内被修饰以产生本文提供的式(I)的化合物。例如,前药可以是本文提供的化合物的酰化衍生物。前药包括这样的化合物,其中羟基、羧基、胺或巯基键合至任何基团,由此当给予哺乳动物个体时,其被裂解以分别形成游离的羟基、羧基、氨基或巯基。前药的实例包括但不限于本文提供的化合物中的醇和胺官能团的乙酸酯、甲酸酯、磷酸酯和苯甲酸酯衍生物。本文提供的化合物的前药可以通过以这样的方式修饰存在于该化合物中的官能团来制备:修饰在体内被裂解以产生母体化合物。
本文所用的“取代基”指共价键合至所关注分子中的原子的分子部分。例如,“环取代基”可以是卤素、烷基、卤烷基或本文所述的其他取代基,其共价键合至环成员的原子,优选碳或氮原子。本文所用的术语“取代的”表示指定原子上的任何一个或多个氢由指定取代基的选择代替,条件是指定原子的正常价态未被超过,并且取代导致了稳定的化合物,即可以分离、表征并测试生物活性的化合物。当取代基为氧合,即=O时,则该原子上的2个氢被代替。芳香碳原子的取代基氧合基团导致-CH-转变为-C(=O)-一级芳香性的丧失。例如,由氧合取代的吡啶基为吡啶酮。
本文所用的术语“氨基酸”指含有诸如α-、β-或γ-氨基的一个或多个氨基取代基的任何有机酸、脂肪族羧酸的衍生物。在本文所用的多肽符号中,如Xaa5,即Xaa1Xaa2Xaa3Xaa4Xaa5,其中Xaa1至Xaa5各自且独立地选自限定的氨基酸,根据标准使用和方便,左手方向为氨基末端方向,右手方向为羧基末端方向。
术语“常见氨基酸”指20种天然存在的氨基酸,其选自甘氨酸、亮氨酸、异亮氨酸、缬氨酸、丙氨酸、苯基丙氨酸、酪氨酸、色氨酸、天冬氨酸、天冬酰胺、谷氨酸、谷氨酰胺、半胱氨酸、甲硫氨酸、精氨酸、赖氨酸、脯氨酸、丝氨酸、苏氨酸和组氨酸,并且包括其所有立体异构同种型,即D,L-、D-和L-氨基酸。本文的这些常见氨基酸可以通过它们的常见3字母或单字母或者按照以下常规使用的缩写来表示(参见,例如Immunology-A Synthesis,2nd Edition,E.S.Golub and D.R.Gren,Eds.,Sinauer Associates,Sunderland Mass.(1991))。
术语“非常见氨基酸”指非天然氨基酸或化学氨基酸类似物,如α,α-二取代的氨基酸、N-烷基氨基酸、高-氨基酸、脱氢氨基酸、芳香氨基酸(除了苯基丙氨酸、酪氨酸和色氨酸)以及邻-、间-或对-氨基苯甲酸。非常见氨基酸还包括在1,3或更大取代模式中具有分离的胺和羧基官能团的化合物,如β-丙氨酸、γ-氨基丁酸、Freidinger内酰胺双环二肽(BTD)氨基-甲基苯甲酸和其他本领域已知的的化合物。还可以使用Statine样等排物、羟基亚乙基等排物、还原的酰胺键等排物、硫代酰胺等排物、脲等排物、氨基甲酸酯等排物、硫醚等排物、乙烯基等排物和其他本领域已知的酰胺键等排物。
类似物或非常见氨基酸的使用可以改进加入的肽的稳定性和生物半衰期,因为它们对生理条件下的破坏更具抵抗力。本领域技术人员应当了解可以进行的类似类型的取代。
可以用作肽的合适构建块(block)的非常见氨基酸的非限制性列表及它们的标准缩写(括号中)如下:α-氨基丁酸(Abu)、L-N-甲基丙氨酸(Nmala)、α-氨基-α-甲基丁酸酯(Mgabu)、L-N-甲基精氨酸(Nmarg)、氨基环丙烷(Cpro)、L-N-甲基天冬酰胺(Nmasn)、羧基化L-N-甲基天冬氨酸(Nmasp)、氨基异丁酸(Aib)、L-N-甲基半胱氨酸(Nmcys)、氨基降冰片基(Norb)、L-N-甲基谷氨酰胺(Nmgln)、羧基化L-N-甲基谷氨酸(Nmglu)、环己基丙氨酸(Chexa)、L-N-甲基组氨酸(Nmhis)、环戊基丙氨酸(Cpen)、L-N-甲基异亮氨酸(Nmile)、L-N-甲基亮氨酸(Nmleu)、L-N-甲基赖氨酸(Nmlys)、L-N-甲基甲硫氨酸(Nmmet)、L-N-甲基正亮氨酸(Nmnle)、L-N-甲基正缬氨酸(Nmnva)、L-N-甲基鸟氨酸(Nmorn)、L-N-甲基苯基丙氨酸(Nmphe)、L-N-甲基脯氨酸(Nmpro)、L-N-甲基丝氨酸(Nmser)、L-N-甲基苏氨酸(Nmthr)、L-N-甲基色氨酸(Nmtrp)、D-鸟氨酸(Dorn)、L-N-甲基酪氨酸(Nmtyr)、L-N-甲基缬氨酸(Nmval)、L-N-甲基乙基甘氨酸(Nmetg)、L-N-甲基-叔丁基甘氨酸(Nmtbug)、L-正亮氨酸(NIe)、L-正缬氨酸(Nva)、α-甲基-氨基异丁酸酯(Maib)、α-甲基-γ-氨基丁酸酯(Mgabu)、D-α-甲基丙氨酸(Dmala)、α-甲基环己基丙氨酸(Mchexa)、D-α-甲基精氨酸(Dmarg)、α-甲基环戊基丙氨酸(Mcpen)、D-α-甲基天冬酰胺(Dmasn)、α-甲基-α-萘基丙氨酸(Manap)、D-α-甲基天冬氨酸(Dmasp)、α-甲基青霉胺(Mpen)、D-α-甲基半胱氨酸(Dmcys)、N-(4-氨基丁基)甘氨酸(NgIu)、D-α-甲基谷氨酰胺(Dmgln)、N-(2-氨基乙基)甘氨酸(Naeg)、D-α-甲基组氨酸(Dmhis)、N-(3-氨基丙基)甘氨酸(Norn)、D-α-甲基异亮氨酸(Dmile)、N-氨基-α-甲基丁酸酯(Nmaabu)、D-α-甲基亮氨酸(Dmleu)、α-萘基丙氨酸(Anap)、D-α-甲基赖氨酸(Dmlys)、N-benzyl甘氨酸(Nphe)、D-α-甲基甲硫氨酸(Dmmet)、N-(2-氨基甲酰基乙基)甘氨酸(NgIn)、D-α-甲基鸟氨酸(Dmorn)、N-(氨基甲酰基甲基)甘氨酸(Nasn)、D-α-甲基苯基丙氨酸(Dmphe)、N-(2-羧基乙基)甘氨酸(NgIu)、D-α-甲基脯氨酸(Dmpro)、N-(羧基甲基)甘氨酸(Nasp)、D-α-甲基丝氨酸(Dmser)、N-环丁基甘氨酸(Ncbut)、D-α-甲基苏氨酸(Dmthr)、N-环庚基甘氨酸(Nchep)、D-α-甲基色氨酸(Dmtrp)、N-环己基甘氨酸(Nchex)、D-α-甲基酪氨酸(Dmty)、N-环癸基甘氨酸(Ncdec)、D-α-甲基缬氨酸(Dmval)、N-环十二烷基甘氨酸(Ncdod)、D-N-甲基丙氨酸(Dnmala)、N-环辛基甘氨酸(Ncoct)、D-N-甲基精氨酸(Dnmarg)、N-环丙基甘氨酸(Ncpro)、D-N-甲基天冬酰胺(Dnmasn)、N-环十一烷基甘氨酸(Ncund)、D-N-甲基天冬氨酸(Dnmasp)、N-(2,2-二苯基乙基)甘氨酸(Nbhm)、D-N-甲基半胱氨酸(Dnmcys)、N-(3,3-二苯基丙基)甘氨酸(Nbhe)、D-N-甲基谷氨酰胺(Dnmgln)、N-(3-胍基丙基)甘氨酸(Narg)、D-N-甲基谷氨酸(Dnmglu)、N-(1-羟基乙基)甘氨酸(Ntbx)、D-N-甲基组氨酸(Dnmhis)、N-(羟基乙基))甘氨酸(Nser)、D-N-甲基异亮氨酸(Dnmile)、N-(咪唑基乙基))甘氨酸(Nhis)、D-N-甲基亮氨酸(Dnmleu)、N-(3-吲哚基乙基)甘氨酸(Nhtrp)、D-N-甲基赖氨酸(Dnnilys)、N-甲基-γ-氨基丁酸酯(Nmgabu)、N-甲基环己基丙氨酸(Nmchexa)、D-N-甲基甲硫氨酸(Dnmmet)、D-N-甲基鸟氨酸(Dnmorn)、N-甲基环戊基丙氨酸(Nmcpen)、N-甲基甘氨酸(NaIa)、D-N-甲基苯基丙氨酸(Dnmphe)、N-甲基氨基异丁酸酯(Nmaib)、D-N-甲基脯氨酸(Dnmpro)、N-(1-甲基丙基)甘氨酸(Nile)、D-N-甲基丝氨酸(Dnmser)、N-(2-甲基丙基)甘氨酸(Nleu)、D-N-甲基苏氨酸(Dnmthr)、D-N-甲基色氨酸(Dnmtrp)、N-(1-甲基乙基)甘氨酸(Nval)、D-N-甲基酪氨酸(Dnmtyr)、N-甲基a-萘基丙氨酸(Nmanap)、D-N-甲基缬氨酸(Dnmval)、N-甲基青霉胺(Nmpen)、γ-氨基丁酸(Gabu)、N-(p-羟基苯基)甘氨酸(Nhtyr)、L-/-丁基甘氨酸(Tbug)、N-(硫甲基)甘氨酸(Ncys)、L-乙基甘氨酸(Etg)、青霉胺(Pen)、L-高苯基丙氨酸(Hphe)、L-α-甲基丙氨酸(Mala)、L-α-甲基精氨酸(Marg)、L-α-甲基天冬酰胺(Masn)、L-α-甲基天冬氨酸(Masp)、L-α-甲基-叔丁基甘氨酸(Mtbug)、L-α-甲基半胱氨酸(Mcys)、L-甲基乙基甘氨酸(Metg)、L-α-甲基谷氨酰胺(MgIn)、L-α-甲基谷氨酸(MgIu)、L-α-甲基组氨酸(Mhis)、L-α-甲基高苯基丙氨酸(Mhphe)、L-α-甲基异亮氨酸(Mile)、N-(2-甲基硫乙基)甘氨酸(Nmet)、L-α-甲基亮氨酸(Mleu)、L-α-甲基赖氨酸(Mlys)、L-α-甲基甲硫氨酸(Mmet)、L-α-甲基正亮氨酸(MnIe)、L-α-甲基正缬氨酸(Mnva)、L-α-甲基鸟氨酸(Morn)、L-α-甲基苯基丙氨酸(Mphe)、L-α-甲基脯氨酸(Mpro)、L-α-甲基丝氨酸(Mser)、L-α-甲基苏氨酸(Mthr)、L-α-甲基色氨酸(Mtrp)、L-α-甲基酪氨酸(Mtyr)、L-α-甲基缬氨酸(Mval)、L-N-甲基高苯基丙氨酸(Nmhphe)、N-(N-(2,2-二苯基乙基)氨基甲酰基甲基)甘氨酸(Nnbhm)、N-(N-(3,3-二苯基丙基)氨基甲酰基甲基)甘氨酸(Nnbhe)、1-羧基-1-(2,2-二苯基-乙基氨基)环丙烷(Nmbc)、L-O-甲基丝氨酸(Omser)、L-O-甲基高丝氨酸(Omhser)。
表述烷基是指饱和的、直链或支链烃基团,其含有1-20个碳原子、优选1-10个碳原子如正辛基,特别是1-6个碳原子,即1、2、3、4、5或6个碳原子,例如甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、正己基或2,2-二甲基丁基。
表述烯基和炔基是指至少部分不饱和的直链或直链烃基团,其含有2-20个碳原子,优选2-10个碳原子,特别是2-6个碳原子,即2、3、4、5或6个碳原子,例如亚乙基(乙烯基)、丙烯基(烯丙基)、异丙烯基、丁烯基、乙炔基、丙炔基、丁炔基、乙炔基、炔丙基、异戊二烯基或己-2-烯基。优选地,烯基具有1个或2个(特别优选1个)双键,炔基具有1个或2个(特别优选1个)叁键。
而且,术语烷基、烯基和炔基指其中一个或多个氢原子被代替的基团,例如被卤素原子、优选F或Cl,例如2,2,2-三氯以及或三氟甲基。
表述杂烷基是指烷基、烯基或炔基,其中一个或多个,优选1、2或3个碳原子互相独立地由氧、氮、磷、硼、硒、硅或硫原子代替,优选由氧、硫或氮原子代替。表述杂烷基还指羧酸或衍生自羧酸的基团,例如酰基、酰基烷基、烷氧基羰基、酰氧基、酰氧基烷基、羧基烷基酰胺或烷氧基羰氧基。
优选地,杂烷基含有1-10个碳原子和1-4个选自氧、氮和硫(特别是氧和氮)的杂原子。特别优选地,杂烷基含有1-6,即1、2、3、4、5或6个碳原子,以及1、2或3,特别是1或2个选自氧、氮和硫,特别是氧和氮的杂原子。
杂烷基的实例为下式的基团:Ra-O-Ya-、Ra-S-Ya-、Ra-N(Rb)-Ya-、Ra-CO-Ya-、Ra-O-CO-Ya-、Ra-CO-O-Ya-、Ra-CO-N(Rb)-Ya-、Ra-N(Rb)-CO-Ya-、Ra-O-CO-N(Rb)-Ya-、Ra-N(Rb)-CO-O-Ya-、Ra-N(Rb)-CO-N(Rc)-Ya-、Ra-O-CO-O-Ya-、Ra-N(Rb)-C(=NRd)-N(Rc)-Ya-、Ra-CS-Ya-、Ra-O-CS-Ya-、Ra-CS-O-Ya-、Ra-CS-N(Rb)-Ya-、Ra-N(Rb)-CS-Ya-、Ra-O-CS-N(Rb)-Ya-、Ra-N(Rb)-CS-O-Ya-、Ra-N(Rb)-CS-N(Rc)-Ya-、Ra-O-CS-O-Ya-、Ra-S-CO-Ya-、Ra-CO-S-Ya-、Ra-S-CO-N(Rb)-Ya-、Ra-N(Rb)-CO-S-Ya-、Ra-S-CO-O-Ya-、Ra-O-CO-S-Ya-、Ra-S-CO-S-Ya-、Ra-S-CS-Ya-、Ra-CS-S-Ya-、Ra-S-CS-N(Rb)-Ya-、Ra-N(Rb)-CS-S-Ya-、Ra-S-CS-O-Ya-、Ra-O-CS-S-Ya-;其中Ra为氢原子、C1-C6烷基、C2-C6烯基或C2-C6炔基;Rb为氢原子、C1-C6烷基、C2-C6烯基或C2-C6炔基;Rc为氢原子、C1-C6烷基、C2-C6烯基或C2-C6炔基;Rd为氢原子、C1-C6烷基、C2-C6烯基或C2-C6炔基;以及Ya为直接的键、C1-C6亚烷基、C2-C6亚烯基或C2-C6亚炔基,其中每个杂烷基含有至少一个碳原子,并且一个或多个氢原子可以由氟或氯原子代替。
杂烷基的具体实例为甲氧基、三氟甲氧基、乙氧基、正丙氧基、异丙氧基、丁氧基、叔丁氧基、甲氧基甲基、乙氧基甲基、-CH2CH2OH、-CH2OH、甲氧基乙基、1-甲氧基乙基、1-乙氧基乙基、2-甲氧基乙基或2-乙氧基乙基、甲基氨基、乙基氨基、丙基氨基、异丙基氨基、二甲基氨基、二乙基氨基、异丙基乙基氨基、甲基氨基甲基、乙基氨基甲基、二异丙基氨基乙基、甲硫基、乙硫基、异丙基硫、烯醇醚、二甲基氨基甲基、二甲基氨基乙基、乙酰基、丙酰、丁酰氧基、乙酰氧基、甲氧基羰基、乙氧基羰基、丙酰氧基、乙酰基氨基或丙酰氨基、羧基甲基、羧基乙基或羧基丙基、N-乙基-N-甲基氨基甲酰基或N-甲基氨基甲酰基。杂烷基的其他实例为腈、异腈、氰酸酯、硫氰酸酯、异氰酸酯、异硫氰酸酯和烷基腈。
表述环烷基是指饱和或部分不饱和(例如环烯基)的环基团,其含有一个或多个环(优选1或2),并含有3-14个环原子,优选3-10个(特别是3、4、5、6或7)环碳原子。
表述环烷基还是指这样的基团,其中一个或多个氢原子由氟、氯、溴或碘原子代替,或者由OH、=O、SH、NH2、=NH、N3或NO2基团代替,例如环酮,如环己酮、2-环己烯酮或环戊酮。环烷基的其他具体实例为环丙基、环丁基、环戊基、螺[4,5]癸基、降冰片基、环己基、环戊烯基、环己二烯基、萘烷基、二环[4.3.0]壬基、四氢萘、环戊基环己基、氟环己基或环己-2-烯基。
表述杂环烷基指上文所定义的环烷基,其中一个或多个(优选1、2或3)环碳原子各自独立地由氧、氮、硅、硒、磷或硫原子代替(优选由氧、硫或氮原子)。杂环烷基优选地具有1或2个环,其含有3-10个(特别是3、4、5、6或7)个环原子(优选自C、O、N和S)。表述杂环烷基还指这样的基团,其中一个或多个氢原子由氟、氯、溴或碘原子代替,或者由OH、=O、SH、=S、NH2、=NH、N3或NO2基团代替。实例为哌啶基、脯氨酸基(prolinyl)、咪唑烷基、哌嗪基、吗啉基、环六亚甲基四胺(urotropinyl)、吡咯烷基、四氢硫苯基、四氢吡喃基、四氢呋喃基或2-吡唑啉基以及内酰胺、内酯、环状亚胺和环酐。
表述烷基环烷基是指含有上文所定义的环烷基以及烷基、烯基或炔基的基团,例如烷基环烷基、环烷基烷基、烷基环烯基、烯基环烷基和炔基环烷基。烷基环烷基优选地含有环烷基,其含有1或2个具有3-10个(特别是3、4、5、6或7)环碳原子的环体系;以及1或2个具有1或2-6个碳原子的烷基、烯基或炔基。
表述杂烷基环烷基是指上文所定义的烷基环烷基,其中一个或多个、优选1、2或3个碳原子互相独立地由氧、氮、硅、硒、磷或硫原子(优选由氧、硫或氮原子)代替。杂烷基环烷基优选地含有1或2个具有3-10个(特别是3、4、5、6或7)个环原子的环体系,以及1或2个具有1或2-6个碳原子的烷基、烯基、炔基或杂烷基。此类基团的实例为烷基杂环烷基、烷基杂环烯基、烯基杂环烷基、炔基杂环烷基、杂烷基环烷基、杂烷基杂环烷基和杂烷基杂环烯基,环基团为饱和或单、二、三不饱和的。
表述芳基或Ar是指芳香基团,其含有一个或多个含有6-14个环碳原子、优选6-10个(特别是6)环碳原子的环。表述芳基(或Ar)还指这样的基团,其中一个或多个氢原子由氟、氯、溴或碘原子代替,或者由OH、SH、NH2、N3或NO2基团代替。实例为苯基、萘基、联苯、2-氟苯基、苯胺基、3-硝基苯基或4-羟基苯基。
表述杂芳基是指芳香基团,其含有一个或多个含有5-14个环原子、优选5-10个(特别是5或6)环原子的环,并且含有一个或多个(优选1、2、3或4)个氧、氮、磷或硫环原子(优选O、S或N)。表述杂芳基还指这样的基团,其中一个或多个氢原子由氟、氯、溴或碘原子代替,或者由OH、SH、N3、NH2或NO2代替。实例为吡啶基(如4-吡啶基)、咪唑基(如2-咪唑基)、苯基吡咯基如3-苯基吡咯基)、噻唑基、异噻唑基、1,2,3-三唑基、1,2,4-三唑基、噁二唑基、噻二唑基、吲哚基、吲唑基、四唑基、吡嗪基、嘧啶基、哒嗪基、噁唑基、异噁唑基、三唑基、四唑基、异噁唑基、吲唑基、吲哚基、苯并咪唑基、苯并噁唑基、苯并异噁唑基、苯并噻唑基、哒嗪基、喹啉基、异喹啉基、吡咯基、嘌呤基、咔唑基、吖啶基、嘧啶基、2,3′-二呋喃基、吡唑基(如3-吡唑基)和异喹啉基。
表述杂芳基是指这样的基团,其含有上文所定义的芳基以及烷基、烯基、炔基和/或环烷基,例如芳基烷基、芳基烯基、芳基炔基、芳基环烷基、芳基环烯基、烷基芳基环烷基和烷基芳基环烯基。芳烷基的具体实例为甲苯、二甲苯、均三甲苯、苯乙烯、苄基氯、邻氟甲苯、1H-茚、四氢萘、二氢萘、茚满酮、苯基环戊基、异丙苯、环己基苯基、芴和茚。芳烷基优选地含有一个或多个含有6-10个碳原子的芳香环体系(1或2个环),和1或2个含有1或2-6个碳原子的烷基、烯基和/或炔基,和/或含有5或6个环碳原子的环烷基。
表述杂芳烷基是指上文所定义的芳烷基,其中一个或多个(优选1、2、4或4)碳原子各自独立地由氧、氮、硅、硒、磷、硼或硫原子(优选氧、硫或氮)代替,即这样的基团,其含有上文所定义的分别的芳基或杂芳基,以及烷基、烯基、炔基和/或杂烷基和/或环烷基和/或杂环烷基。杂芳烷基优选地含有1或2个含有5或6-10个环碳原子的芳香环体系(1或2个环),和1或2个含有1或2-6个碳原子的烷基、烯基和/或炔基,和/或含有5或6个环碳原子的环烷基,其中这些碳原子的1、2、3或4个由氧、硫或氮原子代替。
实例为芳基杂烷基、芳基杂环烷基、芳基杂环烯基、芳基烷基杂环烷基、芳基烯基杂环烷基、芳基炔基杂环烷基、芳基烷基杂环烯基、杂芳基烷基、杂芳基烯基、杂芳基炔基、杂芳基杂烷基、杂芳基环烷基、杂芳基环烯基、杂芳基杂环烷基、杂芳基杂环烯基、杂芳基烷基环烷基、杂芳基烷基杂环烯基、杂芳基杂烷基环烷基、杂芳基杂烷基环烯基和杂芳基杂烷基杂环烷基,环基团为饱和或单、二或三不饱和的。具体实例为四氢异喹啉基、苯甲酰基、2-或3-乙基吲哚基、4-甲基吡啶并、2-、3-或4-甲氧基苯基、4-乙氧基苯基、2-、3-或4-羧基苯基烷基。
如上文所示,表述环烷基、杂环烷基、烷基环烷基、杂烷基环烷基、芳基、杂芳基、芳烷基和杂芳烷基还是指这样的基团,其中这些基团的一个或多个氢原子互相独立地由氟、氯、溴或碘原子代替,或者由OH、=O、SH、=S、NH2、=NH、N3或NO2基团。
表述“任选取代”是指这样的基团,其中1、2、3个或更多个氢原子互相独立地由氟、氯、溴或碘原子代替,或者由OH、=O、SH、=S、NH2、=NH、N3或NO2基团代替。该表述还是指这样的基团,其由1、2、3个或更多个(优选未取代)的C1-C6烷基、C2-C6烯基、C2-C6炔基、C1-C6杂烷基、C3-C10环烷基、C2-C9杂环烷基、C2-C12烷基环烷基、C2-C11杂烷基环烷基C6-C10芳基、C1-C9杂芳基、C7-C12芳烷基或C2-C11杂芳烷基取代。
本文所用的表述“卤素”或“卤素原子”优选表示氟、氯、溴或碘。
如本文所用,限定长度范围的词语,如“1至5”表示1至5的任何整数,即1、2、3、4和5。换言之,由两个明确描述的整数所限定的任何范围表示包含并公开了限定该范围的任何整数以及该范围内所包含的任何整数。
优选地,本文所述的所有烷基、烯基、炔基、杂烷基、芳基、杂芳基、环烷基、杂环烷基、烷基环烷基、杂烷基环烷基、芳烷基和杂芳烷基可以是任选取代的。
优选式(I)的化合物,其中X和Z各自且互相独立地选自CH、CH2、和NR5,条件是如果X和Z与Y一起形成环氧基团,则X和Z仅为CH。
优选式(I)的化合物,其中R1为-COR2
还优选式(I)的化合物,其中R2为羟基、-O(CH2CH2O)pH、或NR3R4,其中p为1-25的整数,特别是1-3的整数。
还优选式(I)的化合物,其中m为1。
还优选式(I)的化合物,其中n为0或1。
还优选式(I)的化合物,其中X、Y、和Z一起形成环氧基团,特别是这样的环氧基团,其中X表示具有R-构型的CH-基团,并且Z表示具有S-构型的CH-基团。
还优选式(I)的化合物,其中V为-CH=CH-。
还优选式(I)的化合物,其中W为-CH=CH-。
还优选式(I)的化合物,其中T、U和W的每一个为-CH2CH2-。
特别优选式(I)的化合物,其中Y为-C(O)-或-C(O)-C(O)-。
此外,特别优选式(I)的化合物,其中X为NR5,其中R5为氢原子、甲基、乙基、丙基、或异丙基。
此外,特别优选式(I)的化合物,其中Z为NR5′,其中R5′为氢原子、甲基、乙基、丙基、或异丙基。
特别优选地,式(I)的化合物选自以下化合物:
特别优选以任何可能的方式组合式(I)的单独的一般基团的优选实施方案。
本发明的式(I)的化合物具有改进的特性,特别是低毒性、低药物药物相互作用、提高的生物利用度,特别是口服给药的生物利用度、改进的代谢稳定性以及改进的溶解性。
本文提供的化合物在Ang II诱导的高血压和终末器官损伤的双转基因大鼠模型中表现出高心脏保护活性。
式(I)的化合物的治疗用途、它们药理学可接受的盐、溶剂合物或水合物以及制剂和药物组合物在本发明的范围内。本发明还涉及式(I)的化合物作为有效成分在制备药物中的用途,并且还涉及用于它们用于治疗心脏损伤的用途。
本发明的药物组合物包含至少一种式(I)的化合物以及任选存在的一种或多种载体物质,例如环糊精如羟丙基β-环糊精、胶束或脂质体、赋形剂和/或辅助剂。药物组合物还可以包含,例如以下物质的一种或多种:水;缓冲液,如中性缓冲盐水或磷酸缓冲盐水;乙醇;矿物油;植物油;二甲亚砜;碳水化合物,如葡萄糖、甘露糖、蔗糖或葡聚糖;甘露糖醇;蛋白质;辅助剂;多肽或氨基酸,如甘氨酸;抗氧化剂;螯合剂,如EDTA或谷胱甘肽和/或防腐剂。此外,一种或多种其他有效成分可以但不是必须地包含在本文提供的药物组合物中。例如,本发明的化合物可以有利地与以下药物联合使用:抗生素、抗真菌剂或抗病毒剂、抗组胺剂、非类固醇抗炎药、疾病修饰抗风湿药、细胞生长抑制药物、具有平滑肌活性调节活性的药物或上述药物的混合物。
药物组合物可以配制为任何合适的给药途径,包括例如体表给药如透皮或眼部、口服、含服、阴道、直肠或胃肠外给药。本文所用的术语胃肠外包括皮下、皮内、血管内如静脉内、肌肉内、脊柱、颅内、鞘内、眼内、眼周、眼眶内、滑膜内核腹膜内注射以及任何类似的注射或输注技术。在某些实施方案中,口服使用形式的组合物是优选的。这样的形式包括例如片剂、糖锭剂(troche)、锭剂、水性或油性混悬剂、分散粉末或颗粒剂、乳剂、硬或软胶囊或者糖浆剂或酏剂。仍然在其他实施方案中,本文提供的组合物可以配制为冻干物。用于体表给药的制剂对于某些疾病状况是优选的,例如皮肤疾病状况的治疗,如灼伤或瘙痒。
口服使用的组合物还可以包含一种或多种组分如甜味剂、增香剂、着色剂和/或防腐剂以提供吸引人和可口的制品。片剂含有与适合于制备片剂的生理可接受的赋形剂混合的有效成分。此类赋形剂包括,例如惰性稀释剂,如碳酸钙、碳酸钠、乳糖、磷酸钙或磷酸钠;造粒和崩解剂,如玉米淀粉或藻酸;结合剂,如淀粉、明胶或阿拉伯胶;以及润滑剂,如硬脂酸镁、硬脂酸或滑石。片剂可以是未包衣的,或者它们可以通过已知技术包衣以延缓胃肠道中的崩解和吸收并由此提供较长时间段的延长作用。例如,可以使用时间延缓材料,如甘油单硬脂酸酯或甘油二硬脂酸酯。
口服使用的制剂还可以表现为硬明胶胶囊,其中将有效成分与惰性固体稀释剂如碳酸钙、磷酸钙或白陶土;或表现为软明胶胶囊,其中将有效成分与水或油介质如花生油、液状石蜡或橄榄油混合。
水性混悬剂含有与适合于制备水性混悬剂的赋形剂混合的有效成分。此类赋形剂包括悬浮剂,如羧基甲基纤维素钠、甲基纤维素、羟丙基甲基纤维素、藻酸钠、聚乙烯吡咯烷酮、黄蓍胶和阿拉伯树胶;分散或润湿剂,如天然存在的磷脂如卵磷脂;烯化氧与脂肪酸的缩合产物,如聚氧乙烯硬脂酸酯;环氧乙烷与长链脂肪族醇的缩合产物,如十七聚环氧乙烷十六烷醇(heptadecaethyleneoxycetanol);环氧乙烷与衍生自脂肪和己糖醇的偏酯的缩合产物,如聚氧乙烯山梨醇一油酸酯;环氧乙烷与衍生自脂肪酸和己糖醇酐的偏酯的缩合产物,如聚乙烯脱水山梨糖醇聚乙烯一油酸酯。水性混悬剂还可以包含一种或多种防腐剂,例如乙基或正丙基对羟基苯甲酸酯,一种或多种着色剂,一种或多种增香剂,以及一种或多种甜味剂如蔗糖或糖精。
油性混悬剂可以通过将有效成分悬浮于植物油如花生油、橄榄油、芝麻油或椰子油,或者悬浮于矿物油如液状石蜡中来配制。油性混悬剂可以含有增稠剂,如蜂蜡、硬石蜡或鲸蜡醇。可以添加诸如以上所列的甜味剂和/或增香剂以提供可口的口服制品。此类混悬剂可以通过加入抗氧化剂如抗坏血酸来保存。
适合于制备水性混悬剂的分散粉末和颗粒剂通过加入水来提供与分散或湿润剂、悬浮剂和一种或多种防腐剂混合的有效成分。合适的分散或湿润剂和悬浮剂如上文所例示。还可以存在额外的赋形剂,如甜味剂、调味和着色剂。
药物组合物可以为水包油乳剂的形式。油相可以为植物油,如橄榄油或花生油;矿物油,如液状石蜡;或其混合物。合适的乳化剂包括天然存在的树胶,如阿拉伯树胶或黄芪树胶;天然存在的磷脂,如大豆卵磷脂;和衍生自脂肪酸和己糖醇、酐的酯或偏酯,如脱水山梨糖醇一油酸酯;以及衍生自脂肪酸和己糖醇的偏酯与环氧乙烷的缩合产物,如聚氧乙烯脱水山梨糖醇一油酸酯。乳剂还可以包含一种或多种甜味和/或增香剂。
糖浆剂和酏剂可以用甜味剂如甘油、丙二醇、山梨醇或蔗糖配制。此类制剂还可以包含一种或多种缓和剂(demulcent)、防腐剂、增香剂和/或着色剂。
化合物可以配制为用于局部或体表给药,例如体表施用于皮肤或粘膜,例如眼中。用于体表给药的制剂通常包含与体表媒介物,其与活性物质组合,具有或不具有额外的任选组分。合适的体表媒介物和额外组分是本领域公知的,而且明显的是媒介物的选择取决于递送的特定物理形式和模式。体表媒介物包括水;有机溶剂,例如醇,如乙醇或异丙醇或甘油;二元醇,如丁二醇、异二醇或丙二醇;脂肪族醇,如羊毛脂;水与有机溶剂的混合物和诸如醇和甘油的有机溶剂的混合物;基于脂质的物质,如脂肪酸、酰基甘油,包括油,如矿物油和天然或合成来源的脂肪、磷酸甘油酯、鞘脂和蜡;基于蛋白的物质,如胶原和明胶;基于硅氧烷的物质,非挥发性和挥发性;以及基于烃的物质,如微海绵(microsponge)和聚合物基质。组合物还可以包含一种或多种适合于提高施用的制剂的稳定性或效果的组分,如稳定剂、悬浮剂、乳化剂、粘度调节剂、胶凝剂、防腐剂、抗氧化剂、皮肤穿透增强剂、增湿剂和缓释材料。此类组分的实例描述于Martindale--The Extra Pharmacopoeia(Pharmaceutical Press,London 1993)和Martin(ed.),Remington′s Pharmaceutical Sciences。制剂可以包括微囊剂如羟甲基纤维素或明胶-微囊剂、脂质体、白蛋白微球剂、微乳剂、纳米微粒或纳米囊。
体表制剂可以制备为各种物理形式,包括例如固体、糊剂、乳膏剂、泡沫、洗剂、凝胶、粉剂、水性液体、乳剂、喷剂和皮肤贴剂。此类形式的物理外观和粘度可以通过制剂中存在的乳化剂和粘度调节剂的量来控制。固体通常是致密且不可流动的,并且通常配制为条状或棒状;固体可以是不透明或透明的,并且可以任选地含有溶剂、乳化剂、增湿剂、软化剂、芳香剂、染料/色料、防腐剂和增加或增强最终产品的效力的其他有效成分。乳膏剂和洗剂通常互相类似,主要是它们的粘度不同;洗剂和乳膏剂可以是不透明、半透明或澄清的,并且通常含有乳化剂、溶剂和粘度调节剂以及增湿剂、软化剂、芳香剂、染料/色料、防腐剂和增加或增强最终产品的效力的其他有效成分。凝胶可以制备为各种粘度,从粘稠或高粘度至稀薄或低粘度。这些制剂和洗剂及乳膏剂一样,也可以含有溶剂、乳化剂、增湿剂、软化剂、芳香剂、染料/色料、防腐剂和增加或增强最终产品的效力的其他有效成分。液体比乳膏剂、洗剂或凝胶更稀薄,通常不含乳化剂。液体体表产品通常含有溶剂、乳化剂、增湿剂、软化剂、芳香剂、染料/色料、防腐剂和增加或增强最终产品的效力的其他有效成分。
用于体表制剂的合适乳化剂包括但不限于离子型乳化剂、鲸蜡硬脂醇、非离子型乳化如聚氧乙烯油基醚、PEG-40硬脂酸酯、鲸蜡硬脂醇醚-12、鲸蜡硬脂醇醚-20、鲸蜡硬脂醇醚-30、鲸蜡硬脂醇醚醇、PEG-100硬脂酸酯和甘油硬脂酸酯。合适的粘度调节剂包括但不限于保护胶体或非离子型树胶,如羟基乙基纤维素、黄原胶、硅酸镁铝、二氧化硅、微晶蜡、蜂蜡、石蜡和鲸蜡醇棕榈酸酯。凝胶组合物可以通过加入胶凝剂而形成,如壳聚糖、甲基纤维素、乙基纤维素、聚乙烯醇、聚季铵、羟基乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、卡波姆或氨化甘草酸盐。合适的表面活性剂包括但不限于非离子型、两性、离子型和阴离子型表面活性剂。例如聚二甲基硅氧烷共聚醇、聚山梨酯20、聚山梨酯40、聚山梨酯60、聚山梨酯80、月桂酰胺DEA、椰油酰胺DEA和椰油酰胺MEA、油基甜菜碱、亚油酰胺基丙基丙二醇磷脂二甲基氯化铵(cocamidopropyl phosphatidylPG-dimonium chloride)和月桂醇聚醚硫酸铵中的一种或多种可以用于体表制剂。
合适的防腐剂包括但不限于抗微生物剂,如羟苯甲酯、羟苯丙酯、山梨酸、苯甲酸和甲醛;以及物理稳定剂和抗氧化剂,如维生素E、抗坏血酸钠/抗坏血酸和棓酸丙酯。合适的增湿剂包括但不限于乳酸和其他羟基和它们的盐、甘油、丙二醇和丁二醇。合适的软化剂包括羊毛脂醇、羊毛脂、羊毛脂衍生物、胆固醇、凡士林、异硬脂醇新戊酸酯(isostearyl neopentanoate)和矿物油。合适的芳香剂和色料(color)包括但不限于FD&C Red No.40和FD&C Yellow No.5。可以包含于体表制剂中的其他合适的额外成分包括但不限于研磨剂;吸附剂;防结块剂;消泡剂;抗静电剂;收敛药如金缕梅、醇和草药提取物如春黄菊提取物;粘合剂/赋形剂;缓冲剂;螯合剂;成膜剂;调节剂;推进剂;乳浊剂、pH调节剂和防护剂。
用于凝胶制剂的合适体表媒介物的实例为:羟丙基纤维素(2.1%);70/30异丙基醇/水(90.9%);丙二醇(5.1%);和聚山梨酯80(1.9%)。用于泡沫制剂的合适体表媒介物的实例为:鲸蜡醇(1.1%);硬脂醇(0.5%);夸特宁52(1.0%);丙二醇(2.0%);乙醇95PGF3(61.05%);去离子水(30.05%);P75烃推进剂(4.30%)。所有的百分比为重量百分比。
体表组合物的通常递送模式包括利用手指的施用;利用物理施药器(applicator)的施用,如织物、拭子、棒或刷子;喷施,包括雾、气雾剂或泡沫喷施;滴管施用;喷洒;浸泡;和漂洗。也可以使用控释媒介物,并且组合物可以配制为作为透皮贴剂的透皮给药。
药物组合物可以配制为吸入制剂,包括喷雾、雾和气雾剂。此类制剂特别地用于治疗哮喘或其他呼吸疾病状况。对于吸入制剂,本文提供的化合物可以通过任何本领域技术人员已知的吸入方法来递送。此类吸入方法和装置包括但不限于定量雾化吸入器(metered dose inhaler),其具有诸如CFC或HFA的推进剂或者生理和环境可接受的推进剂。其他合适的装置为呼吸操作吸入器、多剂量干粉吸入器和气雾剂雾化吸入器。用于本发明方法的气雾剂制剂通常包含推进剂、表面活性剂和共溶剂,并且可以填充于通过合适的计量阀关闭的常规气雾剂容器。
吸入组合物可以包含液体或粉末组合物,其含有适合于雾化和支气管内使用的有效成分;或者包含通过气雾剂单位分配定量计量给予的气雾剂组合物。合适的液体组合物包含水性药学可接受的吸入溶剂中的有效成分,如等渗盐水或抑菌水。溶液通过泵或挤压操作喷雾分配器(squeeze-actuatednebulized spray dispenser)给予,或者通过导致或允许必要计量的液体组合物吸入患者的肺中的任何其他常规方式给予。其中载体为液体的用于例如鼻喷或鼻滴给药的合适制剂包含有效成分的水性或油性溶液。
其中载体为固体的适合于鼻给药的制剂或组合物包含粒径例如为20-500微米的粗固体,其以给予鼻吸药(snuff)的方式给予,即从装有粉末的容器通过鼻道快速吸入鼻中。作为示例,合适的粉末组合物包括有效成分的粉末制品,其与乳糖或支气管内给药可接受的其他惰性粉末完全互相混合。粉末组合物可以通过气雾剂分配器给予或装在易碎胶囊中,其可以由患者插入刺穿胶囊并将粉末吹入适合于吸入的稳定流的装置。
药物组合物还可以制备为例如用于直肠给药的栓剂形式。此类组合物可以通过将药物与合适的无刺激赋形剂混合来制备,所述无刺激赋形剂在常温下是固体但是在直肠温度下是液体,并因此在直肠中熔化以释放药物。合适的赋形剂包括例如可可脂和聚乙二醇。
药物组合物可以配制为缓释制剂,例如即在给药后产生调节剂的缓慢释放的胶囊制剂。此类制剂通常可以利用本领域已知的技术制备,并通过例如口服、直肠或皮下植入来给予,或者通过植入期望靶位点来给予。用于此类制剂中的载体是生物相容的,并且可以是生物可降解的;所述制剂优选提供调节剂释放的相对恒定的水平。缓释制剂中所含的调节剂的量取决于例如植入位点、释放的速率和预期持续时间以及要治疗或预防的疾病状况的性质。
对于心脏损伤特别是心律失常的治疗,本发明的生物学活性化合物的剂量可以在大限度内变化,并且可以调节至个体的需求。本发明的活性化合物通常以治疗有效量给予。优选的剂量为每天约0.1mg至约140mg每千克体重,每天约0.5mg至约7g每名患者。每日剂量可以作为单剂量给予,或者以多个剂量给予。可以与载体物质组合以产生单剂型的有效成分的量会根据治疗的宿主和特定给药模式而变化。剂量单位形式通常含有约1mg至约500mg的有效成分。
然而应当理解,任何特定患者的具体剂量水平会取决于各种因素,包括所用具体化合物的活性、年龄、体重、一般健康状况、性别、饮食、给药时间、给药途径、排泄速率、药物组合物即用于治疗患者的其他药物、以及进行治疗的特定疾病的严重性。
本发明的优选化合物会具有一定的药理特性。此类特性包括但不限于口服生物利用度,从而上文所讨论的优选口服剂型可以在体内提供化合物的治疗有效水平。
本文提供的n-3 PUFA衍生物优选地以口服或胃肠外给予诸如人的患者,并因此存在于患者的至少一种体液或组织中。因此,本发明还提供了用于治疗患有心脏损伤的患者的方法。本文所用的术语“治疗”涵盖疾病改善治疗和症状治疗,其任何一种都可以是预防性的,即症状发作前,以预防、延缓或降低症状的严重性;或者是治疗性的,即症状发作后,以降低症状的严重性和/或持续时间。可以使用本文所述剂量的患者可以包括但不限于灵长类特别是人,驯化的伴随动物如狗、猫、马以及家畜如牛、猪、绵羊。
本发明的式(I)的化合物可以用于治疗和/或预防与炎症、增殖、高血压、凝血、免疫功能、心力衰竭和心律失常有关的疾病状况和疾病。
与增殖有关的疾病状况和疾病的实例包括肿瘤或赘生物,其中细胞增殖是失控且进行性的。一些此类失控的增殖细胞是良性的,但是其他的则是“恶性的”,并且可能导致生物的死亡。恶性肿瘤或“癌症”与良性生长的区别在于除了表现出侵入性细胞增殖以外,它们可以侵入周围的组织并转移。而且,恶性肿瘤的特征在于它们表现出更大的分化丧失(“更大的去分化”),以及相对于彼此和它们周围组织更大的组织结构上的丧失。这种特性又称为“退行发育”。可以通过本发明治疗的肿瘤还包括实体相肿瘤/恶性肿瘤即癌,局部晚期肿瘤和人软组织肉瘤。癌包括源自上皮细胞的恶性肿瘤,其渗入(侵入)周围组织并导致包括淋巴转移在内的转移癌。腺癌是源自腺组织的癌症,或者形成可识别的腺结构。另一大类的癌症包括肉瘤,其是细胞包埋于如胚性结缔组织的原纤维或均质物质中的肿瘤。本发明还允许治疗骨髓或淋巴系统的癌症,包括白血病、淋巴瘤和通常不呈现为肿瘤块(mass)但是分布于血管或淋巴网状内皮细胞的其他癌症。可以根据本发明治疗的癌症或肿瘤细胞包括例如乳腺癌;结肠癌;肺癌和前列腺癌;胃肠癌,包括食管癌、胃癌、结肠直肠癌、与结肠直肠赘生物有关的息肉、胰腺癌和胆囊癌;肾上腺皮质癌;产生ACTH的肿瘤;膀胱癌;脑癌,包括内在脑肿瘤(intrinsic brain tumor)、成神经细胞瘤、星形细胞脑肿瘤、神经胶质瘤和中枢神经系统的转移性肿瘤细胞侵入;尤文肉瘤;头颈癌,包括口癌和喉癌;肾癌,包括肾细胞癌;肝癌;肺癌包括小细胞肺癌和非小细胞肺癌;恶性腹膜积液;恶性胸膜积液;皮肤癌,包括恶性黑素瘤、人皮肤角质形成细胞的肿瘤进展、鳞状细胞癌、基底细胞癌和血管外皮肉瘤;间皮瘤;卡波西肉瘤;骨癌,包括骨瘤和肉瘤如纤维肉瘤和骨肉瘤;女性生殖道的癌症,包括子宫癌、子宫内膜癌、卵巢癌、卵巢(生殖细胞)癌和卵泡中的实体瘤、阴道癌、外阴癌和宫颈癌;乳腺癌(小细胞和导管);阴茎癌;成视网膜细胞瘤;睾丸癌;甲状腺癌;滋养细胞肿瘤(trophoblastic neoplasm);和肾胚胎瘤。
与炎症和免疫功能有关的疾病状况和疾病的实例包括炎性病症如急性期反应、局部和全身炎症和由其他任何类型疾病导致的炎症、由以下疾病示例炎性疾病导致的病因或发病机理以及免疫病症,如感觉过敏、自身免疫病症、移植中的移植排斥、移植毒性、肉芽肿性炎症/组织重塑、重症肌无力、免疫抑制、免疫复合物病、抗体的过量产生和产生不足以及脉管炎。特别地,此类疾病状况和疾病的实例包括炎性肠疾病包括克罗恩病和溃疡性结肠炎(Stadnicki et al.,Am.J.Physiol.Gastrointest Liver Physiol.2005,289(2),G361-6;Devani et al.,Am.J.Gastroenerol 2002,97(8),2026-32;Devani et al.,Dig.Liv.Disease 2005,37(9),665-73);肠易激综合征;小肠结肠炎;肝病;胰腺炎;肾炎;膀胱炎(间质膀胱炎);葡萄膜炎(uveitis);视网膜炎;青光眼;中耳炎;牙周炎(peridontitis);炎性皮肤病症,如银屑病、湿疹、特应性疾病、皮炎、瘙痒、青少年或成人发作类风湿性关节炎和痛风性关节炎(Cassim et al.,Pharmacol.Ther.2002,94,1-34;Sharma et al.,Exp.Toxic Pathol.1994,46,421-433;Brechter et al.,Arthr.Rheum.2007,56(3),910-923);关节强硬性脊椎炎;成人发作或儿科(全身发作儿科先天关节炎)斯蒂尔病(Still′s disease);银屑病关节炎;骨关节炎和与灼伤有关的水肿;扭伤或骨折;脑水肿;闭合性脑外伤(closed head injury);血管性水肿;脉管炎;糖尿病血管病变;I型糖尿病;糖尿病肾病;糖尿病神经病;糖尿病视网膜病;后毛细血管抗性或与胰岛素(insulit)有关的糖尿病综合征(如高血糖、利尿、蛋白尿和增加的亚硝酸盐和激肽释放酶尿排泄);胆囊疾病;用于治疗胃肠道或子宫痉挛的平滑肌松弛药;多发性硬化;癫痫;肌萎缩性侧索硬化症;阿尔茨海默病;中风;帕金森病;全身炎症反应综合征(SIRS);局部缺血-再灌注损伤和动脉粥样硬化(Raidoo et al.,Immunopharmacol 1997,36(2-3),153-60;McLean et al.,Cardiovasc.Res.2000,48,194-210);败血性休克;抗低血容量和/或抗低血压剂;头痛,包括丛集性头痛;偏头痛,包括预防和急性用途;闭合性头颅伤;癌症;败血症;牙龈炎;骨质疏松;良性前列腺增生;膀胱活动过度(hyperactive bladder);纤维化疾病,如肺纤维化、肾纤维化、肝纤维化、进行性硬化和克罗恩病中的复发狭窄形成(Goldstein et al.,J.Biol.Chem.1984,259(14),9263-8;Ricupero et al.,J.Biol.Chem.2000,275(17),12475-80;Romero et al.,J.Biol.Chem.2005,15,14378-14384);哮喘中呼吸途径的病症;特应性或非特应性哮喘;职业性哮喘;运动诱发的支气管收缩;支气管炎;尘肺,包括铝尘肺、煤肺(anhracosis)、石棉肺、石末沉着病、鸵鸟毛尘肺(ptilosis)、铁沉着病、矽肺、烟尘肺和棉尘病;慢性阻塞性肺疾病,包括肺气肿、成人呼吸窘迫综合征、肺炎、过敏性鼻炎、血管舒缩鼻炎和胸膜炎;自身炎性疾病,如家族性地中海热(FMF)、肿瘤坏死因子受体相关周期综合征(TRAPS)、新生儿发病多系统炎性疾病(NOMID);家族性冷自发炎症综合征(familial cold autoinflammatorysyndrome,FCAS),包括家族性冷荨麻疹(FCU)、化脓性关节炎坏疽性脓皮病痤疮(pyogenic arthritis pyoderma gangrenosum acne,PAPA)综合征和Muckle-Wells病。
与心力衰竭和心律失常有关的疾病状况和疾病的实例包括与心脏损伤有关的疾病,包括心肌梗死后的心脏性猝死;心律失常,包括室性心动过速、恶性室性心动过速和心房纤维性颤动;基于冠状动脉疾病的心力衰竭;扩张性心肌病;心肌炎;高血压心脏病;糖尿病和炎性心肌病。
还包括在本发明的范围内的是,本发明的化合物用作或用于制备诊断剂,由此此类诊断剂用于诊断疾病和疾病状况,这可以通过用于本文公开的治疗目的的本发明的化合物来实现(address)。
对于各种应用,本发明的化合物可以用同位素、荧光或发光标记物、抗体或抗体片段、诸如纳米抗体(nanobody)的任何其他亲和力标记、适配体、肽等、酶或酶底物来标记。本发明的这些标记的化合物用于体内、离体、体外和原位定位BK受体,例如在组织切片中通过放射性自显影,以及作为正电子发射断层扫描(PET)成像、单光子发射断层扫描(SPECT)等的放射性示踪剂以在活个体或其他物质中表征那些受体。本发明的标记的化合物可以用于治疗、诊断和其他应用,特别是例如体内和体外研究工具,特别是本文公开的应用。
以下实施例用于更完整地描述使用上述发明的方式,以及示例用于实施本发明的各个方面的最佳模式。应当理解,这些实施例不意图限制本发明的范围而是用于示例性目的。
实施例1:(5Z,14Z)-16-(3-乙基环氧乙烷-2-基)十六碳-5,14-二烯酸(1)的合成
将1,4-丁二醇(32g,35.55mmol;Alfa Aesar)和aq.48%HBr(45mL)于苯(380mL)中回流加热,并利用Dean-Stark装置除去水。12h后,在真空下除去所有挥发物,并利用10-30%EtOAc/己烷的梯度作为洗脱液通过SiO2柱层析将残留物纯化以获得4-溴丁-1-醇(29.20g,68%)。TLC:30%EtOAc/己烷,Rf≈0.30;1H NMR(CDCl3,300MHz)δ3.70(t,J=6.1Hz,2H),3.45(t,J=6.1Hz,2H),1.92-2.04(m,2H),1.68-1.78(m,2H)。
将3,4-二氢-2H-吡喃(8.0g,95.36mmol)添加至4-溴丁-1-醇(12.0g,79.47mmol)在二氯甲烷(150mL)中的0℃溶液中,然后加入对甲苯磺酸(20mg)。1h后,将反应用饱和(sat.)aq.NaHCO3溶液(5mL)小心地终止,用水(100mL)、盐水(70mL)洗涤,并在真空下浓缩。将残留物利用2%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的2-(4-溴丁氧基)四氢-2H-吡喃(16.57g,88%)。TLC:10%EtOAc/己烷,Rf≈0.50;1H NMR(CDCl3,300MHz)δ4.58(t,J=2.5Hz,1H),3.90-3.72(m,2H),3.38-3.50(m,4H),1.92-2.04(m,2H),1.65-1.80(m,4H),1.60-1.50(m,4H).Lit.ref:G.L.Kad;I.Kaur;M.Bhandari;J.Singh;J.Kaur Organic Process Research &Development 2003:7,339。
在氩气气氛下,将1,7-二溴庚烷(13.5g,52.32mmol)在无水二甲亚砜(25mL)中的溶液滴加至乙炔锂乙二胺复合物(12.04g,130.8mmol)在无水二甲亚砜(125mL)的搅拌的0℃溶液中。5-8℃下搅拌2h后,将反应混合物用醚(100mL)稀释,并用水(2×40mL)洗涤。将水洗涤物(aqueous wash)用醚(2×50mL)萃取。将合并的醚部分用无水Na2SO4干燥,并在减压下浓缩。将残留物利用己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的十一碳-1,10-二炔(5.3g,68%)(lit.ref:Hellbach,Gleiter,Rolf;Rominger,Frank Synthesis 2003,2535-2541)。TLC:SiO2,己烷(100%),Rf≈0.8;1H NMR(300MHz,CDCl3)δ2.14-2.18(m,4H),1.92(t,J=2.55Hz,2H),1.50-1.53(m,4H),1.40-1.42(m,4H),1.23-1.25(m,2H)。
在氩气气氛下,将n-BuLi(4.86mL己烷中的2.5M,12.16mmol)滴加至十一碳-1,10-二炔(2.0g,13.51mmol)在无水四氢呋喃/HMPA(105mL,6∶1)中的-78℃溶液中。30min后,将反应混合物在2h内升温至-10℃,并在该温度下保持20min,然后再冷却至-75℃。向其中加入2-(4-溴丁氧基)-四氢吡喃(2.4g,10.14mmol)在无水THF(15mL)中的溶液。将所得混合物在3h内升温至室温,并在该温度下保持12h,然后用饱和aq.NH4Cl(25mL)终止。20min后,将混合物用醚萃取(2×125mL)。将合并的醚萃取物用水(2×100mL)、盐水(100mL)洗涤,用Na2SO4干燥并在减压下浓缩。将残留物利用5%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的2-(十五碳-5,14-二炔氧基)四氢吡喃(1.97g,64%)。TLC:10%EtOAc/己烷,Rf≈0.6;1H NMR(400MHz,CDCl3)δ4.58(t,J=2.5Hz,1H),3.82-3.89(m,1H),3.71-3.78(m,1H),3.43-3.53(m,1H),3.36-3.47(m,1H),2.01-2.20(m,6H),1.93(t,J=2.5Hz,1H),1.27-1.81(m,20H).Lit.ref:F.Slowinski;C.Aubert;M.Malacria Eur.J.Org.Chem.2001:3491。
反应还产生约10%的二烷基化的加合物。TLC:10%EtOAc/己烷,Rf≈0.3;1H NMR(300MHz,CDCl3)δ4.58(t,J=2.5Hz,2H),3.82-3.89(m,2H),3.71-3.78(m,2H),3.43-3.53(m,2H),3.36-3.47(m,2H),2.01-2.20(m,8H),1.27-1.81(m,30H)。
将2-(十五碳-5,14-二炔氧基)四氢吡喃(4.05g,13.27mmol)和对甲苯磺酸(42mg)在MeOH(100mL)中的溶液在室温下搅拌4h。然后在真空下除去所有挥发物,并将残留物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的十五碳-5,14-二炔-1-1醇(2.77g,95%)。TLC:30%EtOAc/己烷,Rf≈0.40;1H NMR(300MHz,CDCl3)δ3.85(t,2H,J=7.0Hz),2.03-2.30(m,6H),1.93(t,1H,J=2.6Hz),1.26-1.83(m,14H)。
将丙酮(25mL)中的琼斯试剂(10mL水中的10N溶液)添加至上述醇(1.9g,4.55mmol)在丙酮(75mL)中的搅拌的-40℃溶液中。1h后,将反应混合物升温至-10℃,并再保持2h,然后用过量(5当量)异丙醇终止。通过过滤除去绿色铬盐,并将滤饼用丙酮洗涤。将合并的滤液在真空下浓缩并将获得的残留物溶于EtOAc(100mL),用水(50mL)洗涤,并在真空下再次浓缩。将残留物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为白色固体的十五碳-5,14-二炔酸(2.42g,82%)。TLC:40%EtOAc/己烷,Rf≈0.40;1H NMR(400MHz,CDCl3)δ2.48(t,2H,J=7.3Hz),2.10-2.17(m,6H),1.93(t,1H,J=2.6Hz),1.75-1.86(m,2H),1.25-1.55(m,10H)。
在氩气气氛下,将叔丁基过氧化氢(15.72g,33mL癸烷中的5.2M溶液)添加至戊-2(Z)-烯-1-醇(5.00g,58.14mmol)和乙酰丙酮钒(III)(150mg)在无水苯(200mL)中的搅拌溶液中。初始的浅绿色溶液变成粉红。3h后,将反应用二甲硫(52g,87.33mmol,5当量)终止。额外的1h后,将反应用等体积的Et2O(250mL)稀释,用水(2×250mL)、盐水(200mL)洗涤,用Na2SO4干燥,并在真空下浓缩。将残留物利用30%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为浅黄色油的(Z)-(3-乙基环氧乙烷基)-甲醇(4.86g,82%)。TLC:40%EtOAc/己烷,Rf≈0.3;1H NMR(400MHz,CDCl3)δ3.86(dd,1H,J=12.1Hz,4.0Hz),3.67(dd,1H,J=6.8Hz,4.0Hz),3.17(ddd,1H,J=4.1Hz,4.3Hz,6.8Hz),3.01(ddd,1H,J=4.3Hz,6.4Hz,6.4Hz)1.46-1.71(m,2H),1.04(t,3H,J=7.6Hz).Lit.ref:C.Arnold;W.Stefan;Y.A.Yse;S.H.Dieter Liebigs Annalen der Chemie 1987:7,629。
在氩气气氛下,将四溴化碳(10.8g,32.64mmol)在CH2Cl2(25mL)中的溶液搅拌加入三苯基膦(8.6g,32.94mmol)和上述环氧醇(2.8g,27.45mmol)在无水CH2Cl2(100mL)中的-10℃溶液中。30min后,将反应混合物用水(75mL)、盐水(50mL)洗涤,用无水Na2SO4干燥,并在减压下除去所有挥发物。将残留物利用5%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的(Z)-2-溴甲基-3-乙基环氧乙烷(2.92g,65%)。TLC:20%EtOAc/己烷,Rf≈0.6;1H NMR(400MHz,CDCl3)δ3.49-3.53(dd,1H,J=4.9,9.3Hz),3.22-3.31(m,2H),3.01-3.06(m,1H),1.54-1.62(m,2H),1.08(t,3H,J=7.6Hz)。
在氩气气氛下,将n-BuLi(1.8mL的2.5M己烷溶液,4.48mmol)缓慢添加至十五碳-5,14-二炔酸(0.5g,2.14mmol)在无水四氢呋喃(30mL)和HMPA(8mL)中的-70℃溶液中。将所得混合物在-75℃下搅拌30min,然后在2h内升温至0℃。0℃下1h后,将反应混合物再冷却至-72℃,并引入(Z)-2-溴甲基-3-乙基环氧乙烷(0.46g,2.56mmol)在无水THF(10mL)中的溶液。将所得混合物在3h内升温至室温。在室温下搅拌12h后,将反应用饱和aq.NH4Cl(10mL)终止,搅拌20min,然后用醚(3×75mL)萃取。将合并的醚萃取物用水(2×100mL)、盐水(100mL)洗涤,用Na2SO4干燥,并在减压下浓缩。将残留物溶于5%MeOH/醚,冷却至0℃,并用过量的醚重氮甲烷处理,直至黄色持续10min。1h后,在减压下除去所有挥发物,并将残留物利用5%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5,14-二炔酸甲基酯(0.39g,56%)。TLC:10%EtOAc/己烷,Rf≈0.5;1H NMR(400MHz,CDCl3)δ3.65(s,3H),3.07-3.12(m,1H),2.88-2.92(m,1H),2.51-2.58(m,1H),2.41(t,2H,J=7.3),2.08-2.26(m,7H),1.74-1.81(m,2H),1.22-1.64(m,12H),1.05(t,3H,J=7.6Hz).Lit.ref:J.R.Falck;P.S.Kumar;Y.K.Reddy;G.Zou;J.H.Capdevila Tetrahedron Lett.2001:42,7211。
在氢气(1atm)覆盖下,将NaBH4(33mg,0.88mmol)分批加入乙酸镍(II)四水合物(190mg,0.76mmol)在无水乙醇(5mL)中的搅拌溶液中。15min后,加入新鲜蒸馏的乙二胺(200mg,3.24mmol),然后加入16-[(Z)-3-乙基环氧乙烷基]十六碳-5,14-二炔酸甲基酯(360mg,1.08mmol)在无水乙醇(5mL)中的溶液。将非均质的混合物在室温下保持90min,然后用醚(15mL)稀释,并通过硅胶短板过滤。将滤饼用醚(3×5mL)洗涤。将合并的醚滤液用无水Na2SO4干燥,并在真空下浓缩以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),14(Z)-二烯酸甲基酯(0.35g,97%),其足够纯以用于随后的步骤而无需纯化。TLC:20%EtOAc/己烷,Rf≈0.6;1H NMR(400MHz,CDCl3)δ5.24-5.54(m,4H),3.62(s,3H),2.82-2.92(m,2H),2.26-2.38(m,1H),2.29(t,2H,J=7.3Hz),2.10-2.18(m,1H),1.93-2.06(m,6H),1.60-1.69(m,2H),1.46-1.59(m,2H),1.20-1.34(m,10H),1.01(t,3H,J=7.3Hz);13C NMR(100MHz,CDCl3)δ174.24,133.12,130.16,128.62,124.12,58.6,56.8,51.96,33.72,29.91,29.84,29.58,29.46,27.54,27.48,26.84,26.43,25.06,21.21,10.08。
将LiOH(1mL,2M水溶液)添加至16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),14(Z)-二烯酸甲基酯(90mg,0.266mmol)在THF(8mL)和去离子H2O(2mL)中的0℃溶液中。室温下搅拌过夜后,将反应混合物冷却至0℃,将pH用1M aq.草酸调节至4,并用乙酸乙酯(2×20mL)萃取。将合并的萃取物用水(30mL)、盐水(25mL)洗涤,用无水Na2SO4干燥,并在真空下浓缩。将残余物利用25%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),14(Z)-二烯酸(82mg,92%)。TLC:30%EtOAc/己烷,Rf≈0.3;1H NMR(400MHz,CDCl3)δ5.26-5.51(m,4H),2.88-2.98(m,2H),2.31-2.44(m,1H),2.35(t,2H,J=7.7Hz),2.13-2.20(m,1H),1.96-2.11(m,6H),1.64-1.70(m,2H),1.48-1.61(m,2H),1.22-1.37(m,10H),1.05(t,3H,J=7.51);13C NMR(100MHz,CDCl3)δ179.96,133.02,131.87,128.40,123.97,58.85,57.73,33.86,30.04,29.96,29.94,29.88,29.81,27.64,27.42,26.81,26.24,24.86,21.28,10.81。
实施例2:(5Z,11Z)-16-(3-乙基环氧乙烷-2-基)十六碳-5,11-二烯酸(2)的合成
如上文所述,将辛-1,7-二炔(9.0g,84.9mmol;G F Smith)用2-(4-溴丁氧基)-四氢吡喃(15g,63.68mmol)烷基化以用于合成2-(十五碳-5,14-二炔氧基)四氢吡喃来获得作为无色油的2-(十二碳-5,11-二炔氧基)四氢吡喃(10.85g,65%)。TLC:10%EtOAc/己烷,Rf≈0.6;1H NMR(400MHz,CDCl3)δ4.57(t,J=2.5Hz,1H),3.82-3.87(m,1H),3.70-3.77(m,1H),3.46-3.51(m,1H),3.36-3.42(m,1H),2.14-2.20(m,6H),1.93(t,1H,J=2.5Hz),1.46-1.72(m,14H)。
在氩气气氛下,将四溴化碳(10.8g,32.94mmol)在CH2Cl2(25mL)中的搅拌加入三苯基膦(8.6g,32.94mmol)和辛-5(Z)-烯-1-醇(2.8g,14.06mmol)在无水CH2Cl2(100mL)中的0℃溶液。30min后,将反应混合物用水(75mL)、盐水(50mL)洗涤,用无水Na2SO4干燥,并在减压下除去所有挥发物。将残留物通过分级蒸馏纯化以获得作为浅黄色油的8-溴-辛-3(Z)-烯(2.01g,75%)。TLC:10%EtOAc/己烷,Rf≈0.7;1H NMR(400MHz,CDCl3)δ5.26-5.45(m,2H),3.42(t,2H,J=7.6Hz),1.98-2.22(m,4H),1.63-1.82(m,2H),1.46-1.54(m,2H),0.95(t,3H,J=7.3Hz).Lit.ref:R.M.Seifert J.Agric.Food Chem.1981:29,647。
如上文所述,将n-BuLi(己烷中的2.5M溶液,20.65mmol)、2-(十二碳-5,11-二炔氧基)四氢吡喃(4.5g,17.2mmol)和8-溴-辛-3(Z)-烯(4.1g,21.5mmol)反应以合成2-(十五碳-5,14-二炔氧基)四氢吡喃来获得作为无色油的2-[二十碳-17(Z)-烯-5,11-二炔氧基]四氢吡喃(4.15g,65%)。TLC:10%EtOAc/己烷,Rf≈0.6;1H NMR(400MHz,CDCl3)δ5.26-5.41(m,2H),4.58(t,J=2.5Hz,1H),3.82-3.87(m,1H),3.70-3.77(m,1H),3.46-3.51(m,1H),3.36-3.42(m,1H),2.11-2.20(m,8H),1.92-2.04(m,4H),1.62-1.86(m,4H),1.39-1.69(m,14H),0.94(t,3H,J=7.5Hz)。
将2-[二十碳-17(Z)-烯-5,11-二炔氧基]四氢吡喃(1.3g,3.49mmol)和对甲苯磺酸(50mg;PTSA)在MeOH(50mL)中的溶液在室温下搅拌4h,然后在真空下浓缩。将残留物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的二十碳-17(Z)-烯-5,11-二炔-1-醇(925mg,92%)。TLC:30%EtOAc/己烷,Rf≈0.35;1H NMR(400MHz,CDCl3)δ5.27-5.42(m,2H),3.66(t,2H,J=6.8Hz),2.00-2.19(m,12H),1.43-1.72(m,12H),0.95(t,3H,J=7.7Hz)。
将丙酮(10mL)中的琼斯试剂(5mL的10N aq.溶液)缓慢添加至二十碳-17(Z)-烯-5,11-二炔-1-醇(1.0g,3.47mmol)在丙酮(50mL)中的搅拌的-40℃溶液中。1h后,将反应混合物升温至-10℃,在该温度下保持3h,然后用过量的(5当量)异丙醇终止。通过过滤除去绿色的铬盐,将滤饼用丙酮洗涤,并将合并的滤液在真空下浓缩。将残留物溶于乙酸乙酯(100mL),用水(50mL)洗涤,并在真空下浓缩。将残留物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的二十碳-17(Z)-烯-5,11-二炔酸(920mg,88%)。TLC:30%EtOAc/己烷,Rf≈0.35;1H NMR(400MHz,CDCl3)δ5.24-5.41(m,2H),2.41(t,3H,J=6.9Hz),2.10-2.19(m,8H),1.98-2.09(m,4H),1.75-1.81(m,2H),0.96(t,3H,J=7.7Hz)。
将二十碳-17(Z)-烯-5,11-二炔酸(0.8g,2.63mmol)和PTSA(20mg)在MeOH(30mL)中的溶液在室温下搅拌10h,然后在真空下浓缩,并且将残留物利用3%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的甲基二十碳-17(Z)-烯-5,11-二炔酸酯(682mg,82%)。TLC:10%EtOAc/己烷,Rf≈0.60;1H NMR(400MHz,CDCl3)δ5.27-5.42(m,2H),3.67(s,3H),2.43(t,2H,J=7.6Hz),2.12-2.21(m,8H),1.99-2.09(m,4H),1.76-1.82(m,2H),1.42-1.58(m,8H),0.95(t,3H,J=7.7Hz)。
将间氯过苯甲酸(1.6g,4.76mmol;m-CPBA)添加至甲基二十碳-17(Z)-烯-5,11-二炔酸酯(1.15g,3.66mmol)在CH2Cl2(50mL)中的0℃溶液中。室温下2h后,将反应混合物用CH2Cl2(25mL)稀释,用饱和aq.NaHCO3(2×25mL)、盐水(2×25mL)、水(50mL)洗涤,用Na2SO4干燥,并在减压下浓缩。将残留物利用5%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5,11-二炔酸甲基酯(990mg,82%)。TLC:10%EtOAc/己烷,Rf≈0.3;1H NMR(400MHz,CDCl3)δ3.67(s,3H),2.84-2.94(m,2H),2.42(t,2H,J=7.3Hz),2.14-2.23(m,8H),1.74-1.83(m,2H),1.42-1.61(m,12H),1.03(t,3H,J=7.6Hz)。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-5,11-二炔酸甲基酯(250mg,0.75mmol)进行半氢化以合成16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),14(Z)-二烯酸甲基酯来获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),11(Z)-二烯酸甲基酯(246mg,98%)。TLC:20%EtOAc/己烷,Rf≈0.65;1H NMR(400MHz,CDCl3)δ5.27-5.42(m,4H),3.66(s,3H),2.83-2.93(m,2H),2.30(t,2H,J=7.3Hz),1.92-2.09(m,8H),1.63-1.72(m,2H),1.25-1.58(m,12H),1.03(t,3H,J=7.7Hz);13C NMR(100MHz,CDCl3)δ174.45,131.24,130.04,129.68,128.88,58.30,56.75,51.65,33.63,29.92,29.76,27.94,29.74,27.36,26.86,26.52,25.54,21.36,10.89.Lit.ref:J.R.Falck;L.M.Reddy;Y.K.Reddy;M.Bondlela;U.M.Krishna;Y.Ji;J.Sun.;J.K.LiaoBioorg.Med.Chem.Lett.2003:13,4011。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),11(Z)-二烯酸甲基酯(0.25g,0.74mmol)水解为16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),14(Z)-二烯酸以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),11(Z)-二烯酸(222mg,93%)。TLC:30%EtOAc/己烷,Rf≈0.3;1H NMR(400MHz,CDCl3)δ5.28-5.40(m,4H),2.87-2.97(m,2H),2.34(t,3H,J=7.0Hz),1.97-2.12(m,8H),1.63-1.74(m,2H),1.30-1.60(m,12H),1.02(t,3H,J=7.4Hz);13C NMR(300MHz,CDCl3)δ180.06,131.75,130.03,129.77,128.66,58.86,57.87,33.93,29.93,29.84,29.81,27.89,27.68,26.41,26.36,24.83,21.26,10.84。
实施例3:(8Z,14Z)-16-(3-乙基环氧乙烷-2-基)十六碳-8,14-二烯酸(3)的合成
将庚-1,7-二醇(36.0g,272mmol;Alfa Aesar)和aq.48%HBr(38mL)于苯(400mL)中回流加热,并利用Dean-Stark装置除去水。12h后,在真空下除去所有挥发物,并将残留物利用10-30%EtOAc/己烷的梯度作为洗脱液通过SiO2柱层析纯化以获得作为无色油的7-溴庚-1-醇(26.22g,62%)。TLC:50%EtOAc/己烷,Rf≈0.4;1H NMR(400MHz,CDCl3)δ3.61(t,2H,J=7.1Hz),3.39(t,2H,J=6.8Hz),1.80-1.88(m,2H),1.52-1.58(m,2H),1.30-1.46(m,6H)。
如上文所述,将上文的7-溴庚-1-醇(11.0g,56.7mmol)保护为其THP醚以获得作为无色油的2-(7-溴庚氧基)四氢-2H-吡喃(14.50g,92%)。TLC:10%EtOAc/己烷,Rf≈0.5;1H NMR(400MHz,CDCl3)δ4.58(m,J=2.5Hz,1H),3.84-3.88(m,1H),3.68-3.77(m,1H),3.46-3.3.51(m,1H),3.33-3.43(m,3H),1.80-1.81(m,2H),1.30-1.62(m,14H)。
如上文所述,将辛-1,7-二炔(6.3g,59.3mmol)用2-(7-溴庚氧基)四氢-2H-吡喃(11g,39.56mmol)以获得作为无色油的2-(十五碳-8,14-二炔氧基)四氢-2H-吡喃(7.82g,64%)。TLC:10%EtOAc/己烷,Rf≈0.6;1H NMR(400MHz,CDCl3)δ4.57(t,J=2.5Hz,1H),3.82-3.87(m,1H),3.70-3.77(m,1H),3.46-3.51(m,1H),3.36-3.42(m,1H),2.14-2.20(m,6H),1.93(t,J=2.6Hz,1H),1.46-1.72(m,20H)。
如上文所述,利用MeOH(100mL)中的对甲苯磺酸(60mg)裂解2-(十五碳-8,14-二炔氧基)四氢-2H-吡喃(5g,16.45mmol),并将产物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的十五碳-8,14-二炔-1-醇(3.26g,90%)。TLC:30%EtOAc/己烷,Rf≈0.35;1H NMR(400MHz,CDCl3)δ3.63(t,2H,J=5.5Hz),2.10-2.18(m,6H),1.93(t,1H,J=2.6Hz),1.24-1.62(m,14H)。
如上文所述,利用琼斯试剂将十五碳-8,14-二炔-1-醇(3.0g,13.69mmol)氧化,并利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的十五碳-8,14-二炔酸(2.80g,87%)。TLC:30%EtOAc/己烷,Rf≈0.33;1H NMR(400MHz,CDCl3)δ2.34(t,J=7.0Hz,2H),2.10-2.18(m,6H),1.93(t,J=2.6Hz,1H,),1.55-1.67(m,6H),1.33-1.49(m,6H)。
如上文所述,用(Z)-2-(溴甲基)-3-乙基环氧乙烷(0.74g,4.10mmol)将十五碳-8,14-二炔酸(0.80g,3.42mmol)烷基化并利用重氮甲烷酯化以获得16-[(Z)-3-乙基环氧乙烷基]十六碳-5,14-二炔酸甲基酯从而得到作为无色油的16-[(Z)-3-乙基环氧乙烷-2-基]十六碳-8,14-二炔酸甲基酯(658mg,58%)。TLC:10%EtOAc/己烷,Rf≈0.5;1H NMR(400MHz,CDCl3)δ3.65(s,3H),3.07-3.12(m,1H),2.88-2.92(m,1H),2.51-2.61(m,1H),2.32-2.50(m,1H),2.30(t,J=7.5Hz,3H),2.08-2.25(m,6H),1.25-1.65(m,14H),1.06(t,J=7.3Hz,3H)。
将16-[(Z)-3-乙基环氧乙烷基]十六碳-8,14-二炔酸甲基酯进行如上的半氢化步骤以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z),14(Z)-二烯酸甲基酯(97%)。TLC:20%EtOAc/己烷,Rf≈0.55;1H NMR(400MHz,CDCl3)δ5.31-5.56(m,4H),3.66(s,3H),2.86-2.96(m,2H),2.25-2.42(m,1H),2.28(t,2H,J=7.33Hz),2.12-2.20(m,1H),1.96-2.08(m,6H),1.52-1.64(m,4H),1.26-1.39(m,10H),1.03(t,3H,J=7.3Hz);13C NMR(100MHz,CDCl3)δ174.30,132.60,129.99,129.84,124.13,58.40,56.73,51.51,34.17,29.66,29.47,29.30,29.18,29.03,27.46,27.27,27.20,26.28,25.05,21.21,10.76。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z),14(Z)-二烯酸甲基酯水解以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z),14(Z)-二烯酸(93%)。TLC:30%EtOAc/己烷,Rf≈0.3;1H NMR(300MHz,CDCl3)δ5.31-5.53(m,4H),2.87-2.98(m,2H),2.33-2.43(m,1H),2.33(t,J=7.3Hz,2H),2.13-2.22(m,1H),1.94-2.08(m,6H),1.52-1.64(m,4H),1.30-1.38(m,10H),1.04(t,J=7.4Hz,3H);13C NMR(75MHz,CDCl3)δ180.06,132.54,130.03,130.01,125.03,58.87,57.73,34.16,29.86,29.74,29.71,29.52,29.45,27.84,27.67,27.42,26.33,24.75,21.48,10.82。
实施例4:16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸(4)、16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z)-烯酸(7)和16-[(Z)-3-乙基环氧乙烷基]十六酸(8)的合成
将干燥气流通过肼水合物(400mg,12mmol,20equiv.)、16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),11(Z)-二烯酸甲基酯(200mg,0.60mmol)和乙醇(5mL)中的CuSO4·5H2O(10mg)。将气流通过EtOH至用乙醇将其饱和并有助于保持反应体积。12h后,将反应混合物通过硅胶的短床(short pad)并将滤饼用二氯甲烷(3×10mL)洗涤。将合并的滤液用无水Na2SO4干燥,并在真空下浓缩。将残留物通过AgNO3-浸渍的PTLC利用2%CH2Cl2/苯拆分其组分:分别对于16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z),11(Z)-二烯酸甲基酯、16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸甲基酯、16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z)-烯酸甲基酯和16-[(Z)-3-乙基环氧乙烷基]十六酸甲基酯,Rf≈0.2、0.4、0.55和0.85,分离的比例分别为2∶3∶3∶2。Lit.ref:E.J.Corey;T.M.Eckrich Tetrahedron Lett.1984:25,2415.
16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z)-烯酸甲基酯:1H NMR(400MHz,CDCl3)δ5.27-5.42(m,2H),3.66(s,3H),2.84-2.92(m,2H),2.30(t,J=7.4Hz,2H),1.96-2.08(m,4H),1.64-1.71(m,2H),1.45-1.58(m,4H),1.21-1.36(m,16H),1.03(t,J=7.3Hz,3H);13C NMR(100MHz,CDCl3)δ174.45,131.88,128.63,58.64,57.87,51.96,33.88,29.99,29.86,29.74,29.46,27.98,27.76,26.88,26.72,25.88,21.32,10.48.
16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸甲基酯:1H NMR(300MHz,CDCl3)5.25-5.35(m,2H),3.61(s,3H),2.79-2.89(m,2H),2.25(t,J=7.3Hz,2H),1.93-2.04(m,4H),1.19-1.60(m,22H),1.00(t,J=7.2Hz,3H);13C NMR(100MHz,CDCl3)δ174.48,130.41,129.54,58.54,57.45,51.62,34.27,29.92,29.81,29.67,29.63,29.47,29.46,29.34,27.80,27.42,27.27,26.42,25.14,10.82.
16-[(Z)-3-乙基环氧乙烷基]十六酸甲基酯:1H NMR(400MHz,CDCl3)δ3.67(s,3H),2.84-2.94(m,2H),2.31(t,2H,J=7.4Hz),1.42-1.65(m,6H),1.22-1.34(m,24H),1.04(t,3H,J=7.3Hz).
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z)-烯酸甲基酯水解以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-5(Z)-烯酸(7,92%)。TLC:30%EtOAc/己烷,Rf≈0.3;1H NMR(300MHz,CDCl3)δ5.27-5.43(m,2H),2.85-2.93(m,2H),2.34(t,J=7.6Hz,2H),1.95-2.11(m,4H),1.64-1.72(m,2H),1.49-1.60(m,4H),1.22-1.36(m,16H),1.03(t,J=7.4Hz,3H);13C NMR(75MHz,CDCl3)δ179.42,131.54,128.40,60.08,58.75,57.73,34.59,31.86,29.86,29.74,29.71,29.45,27.84,27.42,26.81,26.64,24.85,21.28,15.47,10.81。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸甲基酯水解以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸(4,92%)。TLC:SiO2,30%EtOAc/己烷,Rf≈0.3;1H NMR(300MHz,CDCl3)δ5.28-5.40(m,2H),2.84-2.94(m,2H),2.31(t,J=7.6Hz,2H),1.96-2.04(m,4H),1.02-1.62(m,22H),1.01(t,3H,J=7.4Hz);13C NMR(75MHz,CDCl3)δ180.10,130.45,129.57,58.74,57.67,34.27,29.92,29.81,29.66,29.60,29.46,29.43,29.25,27.76,27.43,27.28,26.41,24.89,21.27,10.81。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六酸甲基酯水解以获得作为白色固体的16-[(Z)-3-乙基环氧乙烷基]十六酸(8,94%)。M.P.:62.1-62.5℃,TLC:30%EtOAc/己烷,Rf≈0.35;1H NMR(400MHz,CDCl3)δ2.86-2.94(m,2H),2.34(t,2H,J=7.3Hz),1.46-1.65(m,30H),1.04(t,3H,J=7.35Hz);13CNMR(100MHz,CDCl3)δ180.04,58.83,57.47,34.24,30.06,30.03,29.92,29.81,29.66,29.60,29.46,29.43,29.25,27.76,27.43,27.28,26.41,24.89,21.27,10.89。
通过手性HPLC对映体拆分16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸甲 基酯
利用ChiralcelOJ-H柱(250×4.6mm)进行16-[(Z)-3-乙基环氧乙烷基]十六碳-11(Z)-烯酸甲基酯的层析,己烷/iPrOH(99.7∶0.3)流速为1mL/min,uv检测器为195nm,供应(furnish)R,S-对映体(Rt=15.17min)和S,R-对映体(Rt=17.68min)。制备分离:ChiralcelOJ-H column(250×20mm),己烷/iPrOH(99.5∶0.5)流速为8mL/min,uv检测器为195nm,以流动相中的7mg/100μL进样。
实施例5:16-[(Z)-3-乙基环氧乙烷基]十六碳-14(Z)-烯酸(5)、16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z)-烯酸(6)和16-[(Z)-乙基环氧乙烷基]十六碳-14(Z)-烯酸(8)的合成
如上文所述,利用二酰亚胺将16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z),14(Z)-二烯酸甲基酯部分还原。利用2%CH2Cl2/苯的AgNO3-浸渍的PTLC:分别对于16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z),14(Z)-二烯酸甲基酯、(Z)-16-(3-乙基环氧乙烷基)十六碳-14(Z)-烯酸甲基酯、16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z)-烯酸甲基酯和16-[(Z)-3-乙基环氧乙烷基]十六酸甲基酯,Rf≈0.2,0.5,0.6,and 0.85,分离比例分别为2∶3∶3∶2。
16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z)-烯酸甲基酯:1H NMR(300MHz,CDCl3)δ5.31-5.35(m,2H),3.66(s,3H),2.84-2.91(m,2H),2.27(t,J=7.3Hz,2H,),1.97-2.08(m,4H),1.47-1.64(m,4H),1.22-1.39(m,18H),1.03(t,J=7.3Hz,3H)。
16-[(Z)-乙基环氧乙烷基]十六碳-14(Z)-烯酸甲基酯:1H NMR(300MHz,CDCl3)δ5.35-5.53(m,2H),3.63(s,3H),2.84-2.95(m,2H),2.32-2.39(m,1H),2.27(t,J=7.3Hz,2H),2.12-2.95(m,1H),1.98-2.04(m,2H),1.48-1.64(m,4H),1.20-1.34(m,18H),1.04(t,J=7.4Hz,3H);13C NMR(75MHz,CDCl3)174.62,132.86,123.86,58.84,56.92,51.76,34.48,29.96,29.89,29.84,29.79,29.74,29.68,29.66,29.59,29.57,27.76,26.36,25.17,21.33,10.07。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z)-烯酸甲基酯水解以获得作为无色油的16-[(Z)-3-乙基环氧乙烷基]十六碳-8(Z)-烯酸(6,91%)。TLC:30%EtOAc/己烷,Rf≈0.33;1H NMR(400MHz,CDCl3)δ5.34-5.40(m,2H),2.90-2.96(m,2H),2.36(t,2H,J=7.7Hz),2.01-2.05(m,4H),1.22-1.65(m,22H),1.07(t,3H,J=7.4Hz);13C NMR(75MHz,CDCl3)δ180.08,130.52,129.66,58.54,57.47,34.23,29.81,29.61,29.56,29.36,29.16,29.13,29.07,28.86,27.53,26.78,26.61,24.49,21.46,10.78。
如上文所述,将16-[(Z)-3-乙基环氧乙烷基]十六碳-14(Z)-烯酸甲基酯水解以获得16-[(Z)-3-乙基环氧乙烷基]十六碳-14(Z)-烯酸(5,90%)。TLC:30%EtOAc/己烷,Rf≈0.32;1H NMR(300MHz,CDCl3)δ5.36-5.59(m,2H),2.87-2.98(m,2H),2.34(t,J=7.6Hz,2H),2.31-2.43(m,1H),2.12-2.22(m,1H),1.99-2.06(m,2H),1.50-1.64(m,4H),1.20-1.35(m,18H),1.04(t,J=7.3Hz,3H);13C NMR(75MHz,CDCl3)δ180.04,133.06,123.96,58.46,57.42,34.12,30.04,30.01,30.00,29.98,29.84,29.96,29.92,29.89,29.87,27.88,26.38,25.01,21.27,10.92。
实施例6:16-(3-乙基脲基)十六碳-11(Z)-烯酸(11)的合成
将NaH(7.5g,60%油分散体,326mmol)逐批添加至十二碳-3-炔-1-醇(10.0g,54.95mmol;GF Smith)在乙二胺(40mL)中的搅拌的0℃溶液中。1h后,将温度升高至70℃。再过8h,将反应混合物冷却至0℃,小心地用冰冷水(100mL)终止,并用醚(3×60mL)萃取。将合并的醚萃取物用水(100mL)洗涤。将水洗涤物用醚(3×60mL)反萃取。将合并的有机萃取物在真空下浓缩,并将残留物利用10%EtOAc/己烷进行柱层析以获得被3-5%的其他区域异构体(regioisomer)所污染的十二碳-10-炔-1-醇(7.4g,74%)。TLC:30%EtOAc/己烷,Rf≈0.4;1H NMR(300MHz,CDCl3)δ3.66(t,2H,J=7.3Hz),2.14-2.21(m,2H),1.93(t,J=1.9Hz,1H),1.20-1.63(m,16H).Lit.ref:R.V.Novikov;A.A.Vasil′ev;I.A.Balova Russ.Chem.Bull.,Internat.Ed.2005:54,1043-1045。
将叔丁基二苯基甲硅烷基氯(TBDPSCl,8.70g,31.65mmol)缓慢地添加至十二碳-11-炔-1-醇(4.80g,26.37mmol)和咪唑(3.23g,47.47mmol)在无水二氯甲烷(100mL)中的0℃溶液中。在室温下搅拌3h后,将反应混合物用水(75mL)、盐水(50mL)洗涤,并在减压下浓缩。将残留物利用3%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的12-(叔丁基二苯基甲硅氧基)十二碳-1-炔(9.75g,88%)。TLC:6%EtOAc/己烷,Rf≈0.7;1HNMR(CDCl3,300MHz)δ7.65-7.68(m,4H),7.34-7.42(m,6H),3.65(t,J=7.3Hz,2H),2.18(dt,J=7.0,2.4Hz,2H),1.94(t,J=1.9Hz,1H),1.20-1.60(m,16H),1.04(s,9H)。
如上文所述,用2-(4-溴丁氧基)四氢吡喃将12-(叔丁基二苯基甲硅氧基)十二碳-1-炔烷基化以获得作为无色油的叔丁基二苯基-[16-(四氢吡喃-2-氧基)十六碳-11-炔氧基]硅烷(66%),将其用于随后的反应而无需进一步纯化。TLC:10%EtOAc/己烷,Rf≈0.5。
在氩气气氛下,将四正丁基氟化铵(3.14g,12.5mL THF中的1M溶液,12.50mmol)添加至上述粗叔丁基二苯基-[16-(四氢吡喃-2-氧基)十六碳-11-炔氧基]硅烷(6g,10.42mmol)在THF(150mL)中的溶液中。5h后,将反应混合物用饱和aq.NH4Cl(5mL)终止,用水(100mL)和盐水(75mL)洗涤。将水相用醚(2×75mL)反萃取。将合并的有机萃取物用Na2SO4干燥,在减压下浓缩,并将残余物利用5-10%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-(四氢-2H-吡喃-2-氧基)十六碳-11-炔-1-醇(3.17g,总体80%)。TLC:40%EtOAc/己烷,Rf≈0.4;1H NMR(CDCl3,300MHz)δ4.57-4.59(m,1H),3.82-3.90(m,1H),3.71-3.79(m,1H),3.64(t,2H,J=6.8Hz),3.46-3.53(m,1H),3.36-3.44(m,1H),2.10-2.22(m,4H),1.20-1.80(m,26H)。
如上文所述,16-(四氢-2H-吡喃-2-氧基)十六碳-11-炔-1-醇的半氢化获得作为无色油的16-(四氢-2H-吡喃-2-氧基)十六碳-11(Z)-烯-1-醇(99%)。TLC:20%EtOAc/己烷,Rf=0.30;1H NMR(CDCl3,300MHz)δ5.33-5.37(m,2H),4.58(m,1H),3.83-3.90(m,1H),3.73-3.77(m,1H),3.65(t,2H,J=6.7Hz),3.46-3.53(m,1H),3.34-3.44(m,1H),1.97-2.09(m,4H),1.20-1.83(m,26H)。
如上文所述,16-(四氢-2H-吡喃-2-氧基)十六碳-11(Z)-烯-1-醇的琼斯氧化获得作为无色油的16-(四氢-2H-吡喃-2-氧基)十六碳-11(Z)-烯酸(68%)。TLC:SiO2,40%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.33-5.37(m,2H),4.56-4.58(m,1H),3.83-3.88(m,1H),3.73-3.78(m,1H),3.49-3.53(m,1H),3.35-3.43(m,1H),2.34(t,J=7.0Hz,2H)1.97-2.09(m,4H),1.20-1.84(m,24H)。
将16-(四氢-2H-吡喃-2-氧基)十六碳-11(Z)-烯酸(2.1g,5.93mmol)和PTSA(50mg)在MeOH(30mL)中的溶液在室温下搅拌10h,然后在真空下浓缩,并将残留物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-羟基十六碳-11(Z)-烯酸甲基酯(1.42g,83%)。TLC:20%EtOAc/己烷,Rf≈0.35;1H NMR(CDCl3,300MHz)δ5.33-5.37(m,2H),3.65(s,3H),3.63(t,J=7.3Hz,2H),2.29(t,J=7.0Hz,2H),1.97-2.08(m,4H),1.21-1.64(m,18H)。
在氩气气氛下,将偶氮二羧酸二异丙酯(DIAD;1.15g,5.70mmol,)滴加至三苯基膦(1.49g,5.70mmol)在无水THF(30mL)中的-20℃溶液中。搅拌10min后,滴加16-羟基十六碳-11(Z)-烯酸甲基酯(1.35g,4.75mmol)在无水THF(5mL)中的溶液。-20℃下30min后,将反应混合物升温至0℃,并滴加叠氮磷酸二苯酯(DPPA,1.38g,5.70mmol)。室温下搅拌6h后,将反应用水(3mL)终止,用醚(50mL)稀释,并用盐水(40mL)洗涤。将水层用醚(2×30mL)反萃取。将合并的有机萃取物用Na2SO4干燥,并在减压下浓缩。将残留物利用5%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为浅黄色油的16-叠氮基十六碳-11(Z)-烯酸甲基酯(1,14g,78%)。TLC:10%EtOAc/己烷,Rf≈0.45;1H NMR(CDCl3,300MHz)δ5.31-5.43(m,2H),3.66(s,3H),3.26(t,J=6.7Hz,2H),2.30(t,J=7.1Hz,2H),1.97-2.10(m,4H),1.50-1.64(m,4H),1.15-1.48(m,14H).Lit.ref.:C.M.Afonso;M.T.Barros;L.S.Godinhoa;C.D.Maycock Tetrahedron 1994:50,9671。
将三苯基膦(1.15g.,4.41mmol)添加至16-叠氮基十六碳-11(Z)-烯酸甲基酯(1.05g.,3.4mmol)在THF(25mL)中的室温溶液中。2h后,添加水(200□L),并再搅拌8h。然后将反应混合物用EtOAc(20mL)稀释,用水(20mL)和盐水(25mL)洗涤。将水层用EtOAc(2×30mL)反萃取。将合并的有机提取物用Na2SO4干燥,在减压下浓缩并在高真空下进一步干燥4h。将粗16-氨基十六碳-11(Z)-烯酸甲基酯用于随后的步骤而无需额外的纯化。Lit.ref.:S.Chandrasekhar;S.S.Sultana;N.Kiranmai;Ch.Narsihmulu Tetrahedron Lett.2007:48,2373。
将异氰酸乙酯(60mg,0.85mmol)添加至上述粗16-氨基十六碳-11(Z)-烯甲基酸酯(200mg.0.71mmol)在无水THF(20mL)中的室温溶液中。6h后,将反应混合物在减压下浓缩,并将残留物利用30%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色粘稠油的16-(3-乙基脲基)十六碳-11(Z)-烯酸甲基酯(223mg,86%)。TLC:50%EtOAc/己烷,Rf≈0.40;1HNMR(CDCl3,300MHz)δ5.23-5.38(m,2H),5.08(br s,2H),3.63(s,3H),3.09-3.20(m,4H),2.27(t,J=7.1Hz,2H),1.93-2.04(m,4H),1.20-1.62(m,18H),1.08(t,J=7.3Hz,3H);13C NMR(CDCl3,75MHz)δ174.72,130.53,129.45,51.70,40.47,35.26,34.32,30.24,29.91,29.66,29.60,29.46,29.34,27.43,27.27,27.12,25.15,15.80.Lit.ref.:V.Papesch;E.F.Schroeded J.Org.Chem.1951:16,1879。
如上文所述,将16-(3-乙基脲基)十六碳-11(Z)-烯酸甲基酯水解以获得作为白色粉末的16-(3-乙基脲基)十六碳-11(Z)-烯酸(82%)。M.P.:83.1-83.3℃.TLC:SiO2,75%EtOAc/己烷,Rf≈0.3;1H NMR(CDCl3,300MHz)δ5.26-5.42(m,2H),4.89(br s,1H),3.06-3.24(m,4H),2.32(t,J=7.1Hz,2H),1.97-2.08(m,4H),1.22-1.64(m,18H),1.14(t,J=7.3Hz,3H);13C NMR(CDCl3,75MHz)δ179.72,130.79,129.35,40.99,35.66,34.45,29.70,29.67,29.24,29.12,28.99,27.26,27.14,27.04,24.97,15.50。
实施例7:16-(丁酰基氨基)十六碳-11(Z)-烯酸(12)的合成
在氩气气氛下,将丁酸(100mg,1.10mmol)、1-羟基苯并三唑(145mg,1.10mmol;HOBt)和二异丙基乙胺(150mg,1.10mmol;DIPEA)添加至前述粗16-氨基十六碳-11(Z)-烯酸甲基酯(240mg,0.85mmol)在无水DMF(20mL)中的搅拌溶液中。5min后,将1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(210mg,1.10mmol;EDCI)作为固体加入。室温下搅拌12h后,将反应混合物用EtOAc(30mL)稀释,用水(30mL)和盐水(20mL)洗涤。将合并的水层用EtOAc(3×30mL)反萃取。将合并的有机萃取物用Na2SO4干燥,在减压下浓缩,并且将残留物利用30%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为粘性油的16-(丁酰基氨基)十六碳-11(Z)-烯酸甲基酯(246mg,82%)。TLC:50%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,300MHz)δ5.58(brs,1H),5.26-5.40(m,2H),3.65(s,3H),3.19-3.26(m,2H),2.25-2.31(m,2H),2.12(t,J=7.1Hz,2H),1.95-2.08(m,4H),1.22-1.66(m,18H),0.92(t,J=7.1Hz,3H);13C NMR(CDCl3,75MHz)δ174.61,173.26,130.71,129.31,51.67,39.60,38.99,34.32,29.90,29.66,29.60,29.50,29.45,29.34,27.43,27.21,27.01,25.15,19.46,13.98.Lit.ref.:J.Cesar;M.S.Dolenc TetrahedronLett.2001,42,7099。
如上文所述,将16-(丁酰基氨基)十六碳-11(Z)-烯酸甲基酯水解以获得作为白色固体的16-(丁酰基氨基)十六碳-11(Z)-烯酸(88%)。M.P..99.2-99.6℃.TLC:75%EtOAc/己烷,Rf≈0.5;1H NMR(CD3OD,300MHz)δ5.28-5.41(m,2H),3.15(t,2H,J=7.3Hz),2.01-2.21(m,8H),1.22-1.64(m,20H),0.93(t,3H,J=7.1Hz);13C NMR(CDCl3,75MHz)δ174.89,130.10,129.17,39.07,37.88,29.67,29.55,29.49,29.20,28.89,27.00,26.95,26.66,26.52,22.96,19.31,12.85。
实施例8:16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-11(Z)-烯酸(13)的合成
在氩气气氛下,将甲胺(1.5g,23mL的1M THF溶液,48.38mmol)溶液滴加至氯氧代乙酸乙酯(5.0g,36.76mmol)和三乙胺(5.6g,7.6mL,55.44mmol)在无水THF(100mL)中的-10℃溶液。在0℃下搅拌1h后,将反应用水(5mL)终止。再过20min后,将反应混合物萃取至乙酸乙酯(2×30mL),并将合并的有机萃取物用水(2×100mL)洗涤,干燥并在真空下浓缩。将残留物利用40%EtOAc/己烷通过柱层析纯化以获得作为白色粉末的单乙基N-甲基草氨酸(oxalamic acid)(3.95g,82%)。TLC:75%EtOAc/己烷,Rf≈0.4;1H NMR(CDCl3,300MHz)δ4.35(q,2H,J=7.0Hz),2.92(d,3H,J=5.2Hz),1.37(t,3H,J=7.3Hz)。
在水性四氢呋喃中,将获得的物质(mass)(2g,15.26mmol)在氢氧化锂(2.0M)溶液的存在下水解。反应完成后(根据TLC),将整个物质用1N HCl(15mL)酸化为pH=1,然后用乙酸乙酯(50mL)稀释,并用水(50mL)洗涤。将水层用乙酸乙酯(3×40mL)反萃取。将合并的有机层用Na2SO4干燥,在减压下浓缩,并将获得的物质用己烷/醚(1/1)洗涤以获得白色固体,将其用于随后的反应而无需进一步纯化。
如上文所述,将16-氨基十六碳-11(Z)-烯酸甲基酯(180mg,0.64mmol)与2-(甲基氨基)-2-氧代乙酸(mg,0.77mmol)缩合以获得作为白色固体的16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-11(Z)-烯酸甲基酯(160mg,68%)。TLC:100%EtOAc,Rf≈0.4;1H NMR(CDCl3,300MHz)δ7.45(br s,1H),5.26-5.42(m,2H),3.66(s,3H),3.27-3.35(m,2H),2.90(d,3H,J=5.2Hz),2.30(t,2H,J=7.3Hz),1.96-2.08(m,4H),1.24-1.66(m,18H);13C NMR(CDCl3,75MHz)δ174.60,160.81,159.94,130.87,129.08,51.68,39.79,34.33,29.91,29.68,29.63,29.50,29.46,29.36,29.02,27.46,27.08,26.91,26.40,25.17。
如上文所述,利用LiOH将16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-11(Z)-烯酸甲基酯(150mg,0.40mmol)水解以获得作为白色粉末的16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-11(Z)-烯酸(126mg,89%)。M.P.:110.2-110.6℃.TLC:5%MeOH/CH2Cl2,Rf≈0.4;1H NMR(CDCl3,300MHz)δ7.80(br s,1H),7.66(br s,1H),5.26-5.42(m,2H),3.28-3.35(m,2H),2.90(s,3H),2.36(t,2H,J=7.3Hz),1.97-2.08(m,4H),1.51-1.64(m,4H),1.22-1.42(m,14H);13C NMR(CDCl3,75MHz)δ177.98,160.96,159.93,130.83,129.22,39.91,33.91,29.58,29.25,29.12,29.01,28.95,27.21,27.09,26.93,26.46,24.89。
将16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-11(Z)-烯酸(30mg)溶于去离子水(30mL),添加NaHCO3(2g.,10当量)并搅拌。室温下1h后,添加预洗涤的Bio-RadBio-Beads(SM-2,20-50目,15g)。温和搅拌1h后,将珠收集在烧结玻璃漏斗上,并用水(150mL)洗涤,然后通过用99%乙醇(200mL)洗涤来使盐从珠脱离。将乙醇洗涤物在减压下浓缩以获得作为白色无定形固体的16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-11(Z)-烯酸钠。1H NMR(CD3OD,300MHz)δ7.52-7.64(m,2H),5.27-5.38(m,2H),3.27(t,2H,J=7.4Hz),2.82(s,3H),2.25(t,2H,J=7.5Hz),1.97-2.05(m,4H),1.52-1.65(m,4H),1.20-1.41(m,14H)。
实施例9:16-(N-异丙基丁酰氨基)十六碳-11(Z)-烯酸(15)的合成
在氩气气氛下,将三苯基膦(730mg,2.78mmol)和咪唑(190mg,2.78mmol)添加至16-羟基十六碳-11(Z)-烯酸甲基酯(660mg,2.32mmol)在无水THF(50mL)中的0℃溶液中。10min后,分批加入固体碘(700mg,1.2当量)。室温下搅拌3h后,将反应混合物用饱和aq.亚硫酸氢钠溶液(10mL)终止。额外的1h后,将溶液用水(2×30mL)洗涤,在减压下浓缩,并将残留物利用10%EtOAc/己烷作为洗脱液通过快速柱层析纯化以获得16-碘十六碳-11(Z)-烯酸甲基酯(505mg,76%)。TLC:10%EtOAc/己烷,Rf≈0.55;1HNMR(CDCl3,300MHz)δ5.28-5.42(m,2H),3.66(s,3H),3.18(t,J=7.0Hz,2H),2.30(t,J=7.6Hz,2H),1.98-2.08(m,4H),1.24-1.85(m,18H)。
在氩气气氛下,于密封试管中,将异丙胺(220mg,3.8mmol)添加至上述16-碘十六碳-11(Z)-烯酸甲基酯(300mg,0.76mmol)和碳酸钾(320mg)在THF(20mL)中的溶液中。90℃下加热10h后,将反应混合物冷却至室温,用EtOAc(50mL)稀释,用水(20mL)洗涤,干燥,并在高真空下浓缩5h。将粗16-(N-异丙基氨基)十六碳-11(Z)-烯酸甲基酯用于随后的反应而无需进一步的纯化。TLC:20%MeOH/CH2Cl2,Rf≈0.20;1H NMR(CDCl3,300MHz)δ5.28-5.40(m,2H),3.66(s,3H),2.72-2.84(m,1H),2.58(t,J=7.2Hz,2H),2.29(t,J=7.6Hz,2H),1.98-2.08(m,4H),1.22-1.62(m,18H),1.05(d,6H,J=6.4Hz)。
如上文上述,将16-(N-异丙基氨基)十六碳-11(Z)-烯酸甲基酯(400mg,1.2mmol)用正丁酸(130mg,1.47mmol)酯化以获得16-(N-异丙基丁酰氨基)十六碳-11(Z)-烯酸甲基酯(348mg,74%)。TLC:50%EtOAc/己烷,Rf≈0.30;1H NMR(CDCl3,300MHz,旋转异构体)δ5.28-5.42(m,2H),4.61-4.67和3.99-4.10(m,1H两种旋转异构体60/40比例),3.66(s,3H),3.06-3.16(m,2H),2.21-2.36(m,4H),1.95-2.10(m,4H),1.20-1.72(m,20H),1.17and 1.12(d,J=6.6Hz,3H两种旋转异构体60/40比例),0.96and 0.95(t,3H,J=7.3Hz两种旋转异构体60/40比例)。
如上文上述,将16-(N-异丙基丁酰氨基)十六碳-11(Z)-烯酸甲基酯(320mg,0.81mmol)以获得作为粘稠无色油的16-(N-异丙基丁酰氨基)十六碳-11(Z)-烯酸(254mg,83%)。TLC:,75%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz,旋转异构体)δ5.26-5.41(m,2H),4.63-4.69and 4.00-4.10(m,1H两种旋转异构体60/40比例),3.06-3.17(m,2H),2.22-2.37(m,4H),1.98-2.12(m,4H),1.50-1.72(m,4H),1.22-1.40(m,16H),1.18and 1.12(d,J=7.0Hz,6H两种旋转异构体60/40比例),0.96and 0.95(t,J=7.3Hz,3H两种旋转异构体60/40比例);13C NMR(CDCl3,75MHz,旋转异构体)δ179.07,178.95,173.42,172.89,131.03,130.35,129.70,128.99,48.51,45.70,43.58,41.22,35.98,35.83,34.37,31.20,29.90,29.86,29.67,29.61,29.53,29.48,29.39,28.37,29.28,27.84,27.50,27.46,27.35,27.19,26.90,25.00,21.54,20.75,19.35,19.22,14.23;MS:m/z 380(M-H)+
实施例10:甲基16-(3-乙基-1,3-二甲基脲基)十六碳-11(Z)-烯酸(16)的合成
在氩气气氛下,于密封试管中,将甲胺(1mL的1.0M THF溶液,33mg)添加至上述16-碘十六碳-11(Z)-烯酸甲基酯(300mg,0.76mmol)和碳酸钾(320mg,2.28mmol,3当量)在THF(20mL)中的溶液中。90℃下加热12h后,将反应混合物冷却至室温,用EtOAc(50mL)稀释,用水(20mL)洗涤,干燥,并在高真空下浓缩5h。将粗16-(甲基氨基)十六碳-11(Z)-烯酸甲基酯用于随后的反应而无需进一步纯化。TLC:10%MeOH/CH2Cl2,Rf≈0.2;1HNMR(CDCl3,300MHz)δ5.28-5.40(m,2H),3.66(s,3H),2.56(t,J=6.8Hz,2H),2.42(s,3H),2.29(t,J=7.6Hz,2H),1.96-2.06(m,4H),1.24-1.64(m,18H)。
在氩气气氛下,将三乙胺(12.84g,127.11mmol)和对硝基苯基氯甲酸酯(63.56mmol,12.8g)添加至N-乙基甲胺(2.50g,42.37mmol)在无水DMF(70mL)中的室温溶液中。2h后,将反应混合物用水终止,用EtOAc(200mL)稀释,用水(2×100mL)和盐水(75mL)洗涤。在减压下除去所有挥发物,并将残留物利用10%EtOAc/己烷通过SiO2柱层析纯化以获得作为黄色油的化合物4-硝基苯基乙基(甲基)氨基甲酸酯(5.8g,76%)。TLC:20%EtOAc/己烷,Rf≈0.50;1H NMR(CDCl3,300MHz)δ8.18-8.21(m,2H),7.25-7.29(m,2H),3.37-3.46(m,2H),3.05 and 2.97(s,3H两种旋转异构体60/40比例),1.17-1.22(m,3H)。
在室温下,将上述粗16-(甲基氨基)十六碳-11(Z)-烯酸甲基酯在无水乙腈(20mL)中的溶液添加至无水乙腈(20mL)中的对硝基苯基氯甲酸酯(130mg,0.72mmol)与K2CO3(230mg,1.5mmol.)的混合物中。回流加热36h后,在减压下除去溶剂,并将残留物用水(30mL)稀释,然后萃取至EtOAc(2×30mL)中。将合并的有机萃取物用Na2SO4干燥,并在减压下浓缩。将残留物利用15%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-(3-乙基-1,3-二甲基脲基)十六碳-11(Z)-烯酸甲基酯(65mg,34%)。TLC:40%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.27-5.40(m,2H),3.66(s,3H),3.10-3.18(m,4H),2.77(s,3H),2.75(s,3H),2.29(t,J=7.2Hz,2H),1.97-2.05(m,4H),1.50-1.68(m,4H),1.20-1.42(m,14H),1.12(t,J=6.9Hz,3H)。
如上文上述,将16-(3-乙基-1,3-二甲基脲基)十六碳-11(Z)-烯酸甲基酯(30mg,0.08mmol)水解以获得作为无色油的16-(3-乙基-1,3-二甲基脲基)十六碳-11(Z)-烯酸(15mg,75%)。TLC:50%EtOAc/己烷,Rf≈0.30;1H NMR(CDCl3,400MHz)δ5.33-5.41(m,2H),3.12-3.19(m,4H),2.79(s,3H),2.76(s,3H),2.31-2.38(m,2H),1.98-2.06(m,4H),1.20-1.68(m,18H),1.13(t,J=6.9Hz,3H);13C NMR(CDCl3,75MHz)δ177.52,166.83,130.61,129.567,51.58,45.38,37.91,36.93,34.12,29.74,29.67,28.72,28.42,27.43,26.68,24.99,22.64,15.34。
实施例11:17-氧代-17-(丙基氨基)十七碳-11(Z)-烯酸钠(14)的合成
如上文所述,16-羟基十六碳-11(Z)-烯酸甲基酯(2.0g,7.04mmol)的琼斯氧化获得作为无色油的16-甲氧基-16-氧代十六碳-5(Z)-烯酸(1.72g,83%)。TLC:40%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.27-5.45(m,2H),3.66(s,3H),2.36(t,2H,J=7.7Hz),2.30(t,2H,J=7.4Hz),1.98-2.12(m,4H),1.57-1.72(m,4H),1.20-1.41(m,12H)。
在氩气气氛下,将三乙胺(122mg,1.18mmol)和氯甲酸乙酯(130mg,1.13mmol)添加至16-甲氧基-16-氧代十六碳-5(Z)-烯酸(300mg,1.06mmol)在无水THF(50mL)中的-15℃溶液中。15min后,将反应混合物升温至-5℃,缓慢加入重氮甲烷的醚溶液直至重氮甲烷的黄色持续15min。然后,将反应混合物在室温下再搅拌3h,然后将过量的重氮甲烷在氩气流下蒸发。将反应溶液用饱和aq.NaHCO3(50mL)、饱和aq.NH4Cl(50mL)、盐水(50mL)洗涤,用Na2SO4干燥,并在减压下浓缩。将残留物利用20%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为经浅黄色油的17-重氮-16-氧代十七碳-11(Z)-烯酸甲基酯(180mg,55%),将其立即用于随后的步骤。TLC:40%EtOAc/己烷,Rf≈0.40;1H NMR(C6D6,300MHz)δ5.25-5.48(m,2H),4.13(s,1H),3.32(s,3H),2.07(t,2H,J=7.4Hz),1.85-2.04(m,6H),1.44-1.61(m,4H),1.15-1.38(m,12H).Lit.ref.:J.Cesar;M.S.DolencTetrahedron Lett.2001:42,7099。
在氩气气氛下,将苯甲酸银(5mg,10mol%)在三乙胺(68mg,100μL,0.66mmol)中的溶液避光添加至17-重氮-16-氧代十七碳-11(Z)-烯酸甲基酯(70mg,0.22mmol)和正丙胺(40mg,10当量)在无水THF(20mL)中的-25℃溶液中。将反应混合物在3h内升温至室温,用醚(10mL)稀释,用0.2N HCl(5mL)终止,用盐水(30mL)、饱和aq.NaHCO3(10mL)洗涤,用Na2SO4干燥,并在减压下浓缩。将残留物利用20%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为浅黄色油的17-氧代-17-(丙基氨基)十七碳-11(Z)-烯酸甲基酯(49mg,64%)。TLC:30%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.47(br s,1H),5.27-5.40(m,2H),3.66(s,3H),3.17-3.24(m,2H),2.29(t,2H,J=7.1Hz),2.16(t,2H,J=7.1Hz),1.96-2.07(m,4H),1.24-1.67(m,20H),0.91(t,3H,J=7.3Hz);13C NMR(CDCl3,75MHz)δ174.62,173.22,130.59,129.41,51.68,41.40,37.05,34.33,29.93,29.67,29.63,29.48,29.36,27.44,27.16,25.73,25.17,23.14,11.60.Lit.ref.:J.Podlech;D.Seebach Angew.Chem.,Int.Ed.1995:34,471。
如上文所述,将17-氧代-17-(丙基氨基)十七碳-11(Z)-烯酸甲基酯(48mg,0.14mmol)转化为其钠盐以获得作为白色固体的17-氧代-17-(丙基氨基)十七碳-11(Z)-烯酸钠。M.P.:84.8-85.2℃.TLC(free acid):75%EtOAc/己烷,Rf≈0.30;1H NMR for钠salt salt(CD3OD,300MHz)δ5.30-5.42(m,2H),3.16(t,2H,J=7.0Hz),2.00-2.22(m,8H),1.22-1.68(m,20H),0.93(t,3H,J=7.2Hz);13C NMR for钠salt(CD3OD,75MHz)δ180.33,174.88,130.08,129.22,39.07,37.88,36.80,29.70,29.53,29.49,29.45,29.21,28.90,27.02,26.96,26.68,26.12,19.32,12.88。
实施例12:16-(丁基氨基)-16-氧代十六碳-11(Z)-烯酸(24)的合成
如上文所述,利用EDCI将16-甲氧基-16-氧代十六碳-5(Z)-烯酸(230mg,0.77mmol)与正丁胺(70mg,1.08mmol)缩合以获得作为无色油的16-(丁基氨基)-16-氧代十六碳-11(Z)-烯酸甲基酯(185mg,68%)。TLC:50%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.26-5.42(m,2H),3.66(s,3H),3.21-3.29(m,2H),2.30(t,2H,J=7.2Hz),2.16(t,2H,J=7.1Hz),1.97-2.08(m,4H),1.55-1.74(m,4H),1.24-1.54(m,14H),0.92(t,3H,J=7.3Hz);13CNMR(CDCl3,75MHz)δ174.60,173.1,131.18,128.83,51.67,39.42,36.44,34.32,31.98,29.91,29.66,29.60,29.49,29.45,29.34,27.47,26.87,25.95,25.15,20.30,13.98。
将16-(丁基氨基)-16-氧代十六碳-11(Z)-烯酸甲基酯(150mg,0.44mmol)水解以获得作为白色固体的16-(丁基氨基)-16-氧代十六碳-11(Z)-烯酸(114mg,82%)。M.P.:78.2-78.8℃.TLC:75%EtOAc/己烷,Rf≈0.3;1H NMR(CDCl3,300MHz)δ5.81(br s,1H),5.24-5.40(m,2H),3.18-3.24(m,2H),2.30(t,2H,J=7.3Hz),2.16(t,2H,J=7.2Hz),1.93-2.06(m,4H),1.19-1.70(m,20H),0.88(t,3H,J=7.4Hz);13C NMR(CDCl3,75MHz)δ178.98,173.78,131.19,128.74,39.54,36.36,34.37,31.84,29.84,29.56,29.53,29.40,29.38,29.22,27.42,26.85,25.99,24.98,20.26,13.96。
实施例13:2-(2-(2-羟基乙氧基)乙氧基)乙基16-(3-乙基脲基)十六碳-11(Z)-烯酸酯(18)的合成
在氩气气氛和室温下,将三甘醇(42mg,0.29mmol;在分子筛上干燥)添加至16-(3-乙基-1,3-二甲基脲基)十六碳-11(Z)-烯酸(10mg,0.029mmol)和N,N-二甲基氨基吡啶(DMAP,4.2mg,0.034mmol)在无水DMF(3mL)中的溶液中。3min后,加入固体EDCI(6.4mg,0.034mmol)。12h后,将反应混合物用EtOAc(10mL)稀释,用水(5mL)洗涤,并在真空下浓缩。将残留物利用EtOAc通过SiO2柱层析纯化以获得作为粘性无色油的16-(3-乙基脲基)十六碳-11(Z)-烯酸2-(2-(2-羟基乙氧基)乙氧基)乙基酯(11mg,85%)。TLC:,100%EtOAc,Rf≈0.20;1H NMR(CDCl3,300MHz)δ5.27-5.42(m,2H),4.34(br s,1H),4.23(t,2H,J=5.8Hz),3.59-3.74(m,10H),3.12-3.24(m,4H),2.46(br s,1H),2.33(t,2H,J=7.3Hz),1.96-2.07(m,4H),1.22-1.64(m,18H),1.13(t,3H,J=7.3Hz);13C NMR(CDCl3,75MHz)δ174.21,158.42,130.66,129.44,72.70,70.79,70.57,69.44,63.46,61.98,40.74,35.59,34.40,30.11,29.88,29.63,29.60,29.44,29.42,29.31,27.41,27.22,27.08,25.10,15.73。
实施例14:(Z)-2-(16-(3-乙基脲基)十六碳-11-烯酰氨基)乙酸钠(17)的合成
如上文所述,将16-(3-乙基-1,3-二甲基脲基)十六碳-11(Z)-烯酸(50mg,0.15mmol)与甘氨酸甲酯(96mg,0.38mmol)缩合以获得作为无色油的2-(16-(3-乙基脲基)十六碳-11(Z)-烯酰氨基)乙酸甲基酯(51mg,84%)。TLC:75%EtOAc/己烷,Rf≈0.50;1H NMR(CDCl3,300MHz)δ6.28(br s,1H),5.26-5.42(m,2H),4.89(br s,1H),4.03(d,2H,J=5.2Hz),3.10-3.22(m,4H),2.24(t,2H,J=7.1Hz),1.96-2.08(m,4H),1.22-1.67(m,18H),1.12(t,3H,J=7.3Hz);13C NMR(CDCl3,75MHz)δ173.84,170.86,158.68,130.61,129.50,52.58,41.40,40.67,36.58,35.49,30.18,29.92,29.73,29.53,29.46,29.41,29.22,27.28,27.25,27.10,25.78,15.73。
如上文所述,将2-(16-(3-乙基脲基)十六碳-11(Z)-烯酰氨基)乙酸甲基酯水解以获得作为白色固体的2-(16-(3-乙基脲基)十六碳-11(Z)-烯酰氨基)乙酸钠。M.P.:152.4-152.8℃.1H NMR(CD3OD,300MHz)δ7.57-7.65(m,1H),5.32-5.42(m,2H),3.73(s,2H),3.07-3.18(m,4H),2.36(t,2H,J=7.3Hz),1.98-2.09(m,4H),1.22-1.65(m,18H),1.08(t,3H,J=7.1Hz);13C NMR(CDCl3,75MHz)δ175.41,174.67,160.72,129.98,129.31,43.32,39.70,35.98,34.58,29.83,29.66,29.42,29.31,29.21,29.14,26.96,26.91,26.72,25.70,14.66。
实施例15:16-[(1S,2R)-3-乙基-环氧乙烷基]十六碳-11(Z)-烯酸(10)的合成
如上文所述,用(4-溴丁氧基)(叔丁基)二苯基硅烷(18.5g,47.2mmol)将2-(丙-2-炔氧基)四氢-2H-吡喃(5.6g,36.36mmol)烷基化以获得叔丁基二苯基(7-(四氢-2H-吡喃-2-氧基)庚-5-炔氧基)硅烷(10.64g,65%),将其在萃取分离后使用而无需进一步纯化。TLC:10%EtOAc/己烷,Rf≈0.5。
如上文所述,从叔丁基二苯基(7-(四氢-2H-吡喃-2-氧基)庚-5-炔氧基)硅烷(10g,22.22mmol)除去THP醚,获得作为无色油的7-(叔丁基二苯基甲硅氧基)庚-2-炔-1-醇(7.15g,88%)。TLC:30%EtOAc/己烷,Rf≈0.40;1HNMR(CDCl3,300MHz)δ7.65-7.67(m,4H),7.33-7.42(m,6H),4.22-4.26(m,2H),3.64(t,2H,J=6.4Hz),2.12-2.16(m,2H),1.40-1.46(m,4H),1.03(s,9H)。
如上文所述,7-(叔丁基二苯基甲硅氧基)庚-2-炔-1-醇(7.4g,20.22mmol)的半氢化获得作为无色油的7-(叔丁基二苯基甲硅氧基)庚-2(Z)-烯-1-醇(7.3g,98%)。TLC:30%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,400MHz)δ7.65-7.69(m,4H),7.40-7.44(m,6H),5.44-5.64(m,2H),4.16(d,2H,J=6.1Hz),3.65(t,2H,J=6.1Hz),2.03-2.10(m,2H),1.42-1.60(m,4H),1.04(s,9H)。
在氩气气氛下,将(-)-酒石酸二乙酯(570mg,DET)和四异丙氧基钛(titanium tetra(isopropoxide))(775mg)顺序添加至活化的粉末型分子筛(2g)在无水CH2Cl2(50mL)中的搅拌的-20℃悬浮液中。30min后,缓慢加入7-(叔丁基二苯基甲硅氧基)庚-2(Z)-烯-1-醇(5g,13.58mmol)在无水CH2Cl2(20mL)中的溶液,并将所得混合物在相同温度下搅拌2h。缓慢加入叔丁基过氧化氢(2.5g,5.1mL癸烷中的5.5M溶液;TBHP)。-20℃下搅拌2d后,加入水(2mL),并将混合物在0℃下搅拌1h。加入1M aq.NaOH(5mL)溶液,并搅拌30min。然后将反应混合物用水(100mL)洗涤,并在减压下浓缩。利用10%EtOAc/己烷作为洗脱液通过SiO2柱层析将残留物纯化以获得作为无色油的((2R,3S)-3-(4-(叔丁基二苯基甲硅氧基)丁基)环氧乙烷-2-基)甲醇(3.23g,62%)。如上文所述,手性HPLC分析表明样品为60%ee。TLC:30%EtOAc/己烷,Rf≈0.4;1H NMR(CDCl3,400MHz)δ7.64-7.68(m,4H),7.35-7.44(m,6H),3.79-3.88(m,1H),3.61-3.69(m,3H),3.12-3.17(m,1H),2.98-3.04(m,1H),1.53-1.65(m,4H),1.03(s,9H).Lit.ref.:T.Katsuki;K.B.Sharpless J.Am.Chem.Soc.1980:102,5974。
在氩气气氛下,将无水DMSO(114mg,0.4mmol)滴加至草酰氯(110mg,0.3mmol)在无水CH2Cl2(10mL)中的搅拌的-80℃溶液中。20min后,缓慢加入((2R,3S)-3-(4-(叔丁基二苯基甲硅氧基)丁基)环氧乙烷-2-基)甲醇(200mg,0.1mmol)在无水CH2Cl2(50mL)中的溶液。45min后,加入三乙胺(200mg,0.5mmol),并将反应混合物升温至0℃。0.5h后,将反应混合物用水(50mL)终止。将水层分离,并用CH2Cl2(2×10mL)反萃取。将合并的有机萃取物用水、盐水洗涤,用无水Na2SO4干燥,并在真空下蒸发。将残留物利用5%EtOAc/己烷通过SiO2柱层析纯化以获得(2S,3S)-3-[4-(叔丁基二苯基硅氧烷基)-丁基]-环氧乙烷-2-甲醛。将粗醛用于随后的反应而无需进一步纯化。
将双(三甲基甲硅烷基)酰胺钠(2.4g,13.08mmol,13.1mL,THF中1.0M)添加至甲基三苯基溴化鏻(4.68g,13.08mmol)在无水THF(10mL)中的搅拌的0℃溶液中。30min后,将反应混合物冷却至-50℃,并在5min内加入(2S,3S)-3-[4-(叔丁基二苯基硅氧烷基)-丁基]-环氧乙烷-2-甲醛(2.5g,6.55mmol)在THF(10mL)中的溶液。将溶液在1h内升温至室温。室温下额外的2h后,将反应混合物用水(30mL)终止,并用(2×100mL)萃取。将合并的醚萃取物用水(2×100mL)洗涤,用无水Na2SO4干燥,并在真空下浓缩。将残留物利用5%EtOAc/己烷通过SiO2柱层析纯化以获得作为无色油的(3R,4S)-叔丁基二苯基-[4-(3-乙烯基-环氧乙烷基)-丁氧基]-硅烷(1.84g,76%)。TLC:30%EtOAc/己烷,Rf≈0.4;1H NMR(CDCl3,400MHz)δ7.65-7.69(m,4H),7.35-7.44(m,6H),5.64-5.76(m,1H),5.32-5.50(m,2H),3.67(t,2H,J=7.06Hz),3.38-3.42(m,1H),3.02-3.11(m,1H),1.44-1.68(m,4H),1.05(s,9H)。
如上文所述,(3R,4S)-叔丁基二苯基-[4-(3-乙烯基-环氧乙烷基)-丁氧基]-硅烷的去甲硅烷基化获得作为无色油的(3R,4S)-4-(3-乙烯基-环氧乙烷基)-丁-1-醇(92%)。TLC:40%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,400MHz)δ5.65-5.77(m,1H),5.33-5.50(m,2H),3.65(t,2H,J=6.1Hz),3.38-3.43(m,1H),3.06-3.11(m,1H),1.44-1.66(m,6H)。
如上文所述,将4(S)-(3(R)-乙烯基环氧乙烷基)-丁-1-醇用原位产生的二酰亚胺还原以获得作为无色油的4(S)-[3(R)-乙基环氧乙烷基]丁-1-醇(92%)。TLC:40%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,400MHz)δ3.66(t,2H,J=6.1Hz),2.85-2.94(m,2H),1.49-1.65(m,8H),1.03(t,J=7.2Hz,3H)。
如上文所述,用Ph3P/CBr4处理4(S)-[3(R)-乙基环氧乙烷基]丁-1-醇以获得作为无色油的2(S)-(4-溴丁基)-3(R)-乙基环氧乙烷(64%)。TLC:10%EtOAc/己烷,Rf≈0.7。
如上文所述,十二碳-10-炔-1-醇(2.5g,13.73mmol)的琼斯氧化获得十二碳-11-炔酸(2.3g,86%)。1H NMR(CDCl3,400MHz)δ2.34(t,2H,J=7.0Hz),2.14-2.21(m,2H),1.93(t,1H,J=2.75Hz),1.21-1.64(m,22H)。
如上文所述,用2(S)-(4-溴丁基)-3(R)-乙基环氧乙烷(500mg)将十二碳-11-炔酸(580mg)烷基化以获得16(S)-[3(R)-乙基环氧乙烷基]-十六碳-11-炔酸(64%),将其用重氮甲烷酯化以获得作为无色油的16(S)-[3(R)-乙基环氧乙烷基]-十六碳-11-炔酸甲基酯。TLC:10%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,400MHz)δ3.66(s,3H),2.82-2.88(m,2H),2.29(t,2H,J=7.3Hz),2.10-2.17(m,4H),1.28-1.63(m,22H),1.03(t,3H,J=7.1Hz)。
如上文所述,16(S)-[3(R)-乙基环氧乙烷基]-十六碳-11-炔酸甲基酯的半氢化获得作为无色油的16(S)-[3(R)-乙基环氧乙烷基]-十六碳-11(Z)-烯酸甲基酯(96%)。TLC:10%EtOAc/己烷,Rf≈0.55;1H NMR(400MHz,CDCl3)δ5.31-5.36(m,2H),3.64(s,3H),2.84-2.91(m,2H),2.28(t,2H,J=7.3Hz),1.96-2.06(m,4H),1.36-1.61(m,6H),1.21-1.35(m,16H),1.03(t,3H,J=7.3Hz)。
柱:Chiracel OJ-H制备
波长:210nm
流动相:99.97:0.03(Hex/IPA)
流速8mL/min.
第1组分为:PN-III-191-18.(酸)
第2组分为:PN-III-192-13.(酸)
实施例16:16-(3-乙基脲基)十六碳-14-烯酸(21)的合成
如上文所述,用1-溴十二烷(34.0g,132.04mmol)将2-(丙-2-炔氧基)四氢-2H-吡喃(15.5g,110.71mmol)烷基化以获得2-(十五碳-2-炔氧基)四氢-2H-吡喃(27.2g,80%),其无需进一步纯化而使用。TLC:10%EtOAc/己烷,Rf≈0.5。
如上文所述,利用PTSA从粗2-(十五碳-2-炔氧基)四氢-2H-吡喃(30g)裂解THP醚以获得作为无色油的十五碳-2-炔-1-醇(18.6g,85%)。TLC:30%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ4.25(s,2H),2.17-2.23(m,2H),1.70(br s,1H),1.40-1.53(m,2H),1.20-1.48(m,18H),0.87(t,3H,J=7.3Hz)。
如上文所述,利用NaH/乙二胺将十五碳-2-炔-1-醇(12.5g,54.95mmol)异构化以获得作为白色固体的十五碳-14-炔-1-醇(9.4g,76%)。M.P.:54.2-54.8℃.TLC:30%EtOAc/己烷,Rf≈0.45;1H NMR(400MHz,CDCl3)δ3.60-3.65(m,2H),2.16(dt,2H,J=7.1Hz,2.4Hz),1.92(t,1H,J=2.4Hz),1.47-1.60(m,4H),1.22-1.35(m,18H)。
如上文所述,利用TBDPSCl(12.92g,47.14mmol)将十五碳-14-炔-1-醇(8.80g,39.28mmol)甲硅烷基化以获得作为无色油的叔丁基(十五碳-14-炔氧基)二苯基硅烷(16.7g,87%)。TLC:6%EtOAc/己烷,Rf≈0.6;1H NMR(CDCl3,300MHz)δ7.65-7.68(m,4H),7.34-7.42(m,6H),3.65(t,J=7.3Hz,2H),2.15-2.21(m,2H),1.94(t,J=1.9Hz,1H),1.20-1.60(m,22H),1.04(s,9H)。
在氩气气氛下,将n-BuLi(己烷中的2.5M溶液,1.29g,8mL,20.24mmol)添加至叔丁基(十五碳-14-炔氧基)二苯基硅烷(8.5g,18.40mmol)在THF(175mL)中的搅拌的-40℃溶液中。30min后,将反应混合物在3h内逐渐升温至-10℃,在该温度下保持20min,然后再冷却至-50℃。然后,将低聚甲醛(3.05g,92.2mmol)在THF(30mL)中的溶液用导管引入搅拌的反应混合物。30min后,将温度在3h内逐渐升温至室温。室温下1h后,将反应混合物用饱和aq.NH4Cl(10mL)终止,用醚(100mL)稀释,并用水(2×75mL)洗涤。将合并的水性洗涤物用醚(2×50mL)反萃取。将所有有机萃取物合并,用Na2SO4干燥,并在减压下浓缩。将残留物利用5%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得16-(叔丁基二苯基甲硅氧基)十六碳-2-炔-1-醇(6.12g,68%)。TLC:30%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,300MHz)δ7.70-7.74(m,4H),7.34-7.44(m,6H),4.3(t,2H,J=2.1Hz),3.65(t,2H,J=7.3Hz),2.12-2.17(m,2H),1.20-1.61(m,22H),1.04(s,9H)。
如上文所述,将16-(叔丁基二苯基甲硅氧基)十六碳-2-炔-1-醇(6.0g,12.5mmol)转化为对应的THP醚以获得叔丁基二苯基(16-(四氢-2H-吡喃-2-氧基)十六碳-14-炔氧基)硅烷(6.12g,87%)。TLC:10%EtOAc/己烷,Rf≈0.5;1H NMR(CDCl3,300MHz)δ7.70-7.73(m,4H),7.35-7.43(m,6H),4.82(t,1H,J=3.1Hz),4.16-4.32(m,2H),3.80-3.88(m,1H),3.64(t,2H,J=6.6Hz),3.50-3.56(m,1H),2.17-2.23(m,2H),1.22-1.81(m,28H),1.05(s,9H)。
如上文所述,叔丁基二苯基(16-(四氢-2H-吡喃-2-氧基)十六碳-14-炔氧基)硅烷(6.1g,10.6mmol)的去甲硅烷基化获得作为无色油的16-(四氢-2H-吡喃-2-氧基)十六碳-14-炔-1-醇(3.26g,91%)。TLC:40%EtOAc/己烷,Rf≈0.4;4.83(t,1H,J=3.0Hz),4.17-4.31(m,2H),3.82-3.87(m,1H),3.66(t,2H,J=7.2Hz),3.51-3.57(m,1H),2.18-2.24(m,2H),1.20-1.82(m,28H)。
将RuCl3(10mg)和过硫酸钾(2.8g,10.2mmol)添加至16-(四氢-2H-吡喃-2-氧基)十六碳-14-炔-1-醇(1.2g,3.55mmol)在乙腈(20mL)中的溶液中。10min后,加入KOH(30mL的2M溶液)。额外的3h后,将反应混合物中和至pH 7,用EtOAc(100mL)稀释,并用水(3×75mL)洗涤。将合并的水性萃取物用EtOAc(3×75mL)反萃取。将所有有机萃取物合并,用Na2SO4干燥,并在减压下浓缩。将残留物利用20%EtOAc/己烷作为洗脱液通过SiO2柱层析纯化以获得作为无色油的16-(四氢-2H-吡喃-2-氧基)十六碳-14-炔酸(1.05g,91%),其无需进一步纯化而使用。TLC:50%EtOAc/己烷,Rf≈0.35.Lit.ref.:R.S.Varma;M.Hogan Tetrahedron Lett.1992:33,719。
如上文所述,羧酸的伴随酯化和16-(四氢-2H-吡喃-2-氧基)十六碳-14-炔酸(1.0g,2.84mmol)中THP醚的裂解获得作为无色油的16-羟基十六碳-14-炔酸甲基酯(665mg,83%)。TLC:30%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ4.22-4.26(m,2H),3.66(s,3H),2.29(t,2H,J=7.3Hz),2.20(tt,2H,J=2.1Hz,6.8Hz),1.21-1.66(m,20H)。
如上文所述,16-羟基十六碳-14-炔酸甲基酯(650mg,2.30mmol)的半氢化获得作为无色油的16-羟基十六碳-14(Z)-烯酸甲基酯(640mg,98%)。TLC:30%EtOAc/己烷,Rf≈0.45;1H NMR(CDCl3,300MHz)δ5.49-5.62(m,2H),4.17-4.21(m,2H),3.66(s,3H),2.30(t,2H,J=7.6Hz),2.02-2.09(m,2H),1.42-1.68(m,4H),1.20-1.41(m,16H)。
如上文所述,16-羟基十六碳-14(Z)-烯酸甲基酯(0.6g,2.11mmol)转化为相应的叠氮化物获得作为白色固体的16-叠氮基十六碳-14(Z)-烯酸甲基酯(510mg,78%)。M.P.:42.5-42.8℃.TLC:10%EtOAc/己烷,Rf≈0.50;1HNMR(CDCl3,300MHz)δ5.66-5.82(m,1H),5.46-5.55(m,1H),3.80(d,2H,J=7.4Hz),3.66(s,3H),2.30(t,2H,J=7.3Hz),2.02-2.14(m,2H),1.21-1.40(m,20H)。
如上文所述,以16-叠氮基十六碳-14(Z)-烯酸甲基酯(150mg,0.48mmol)开始,将叠氮化物利用Ph3P还原,并将所得的胺与异氰酸乙酯反应以获得作为白色固体的16-(3-乙基脲基)十六碳-14(Z)-烯酸甲基酯(118mg,两个步骤总共70%)。M.P.:63.4-63.6℃.TLC:50%EtOAc/己烷,Rf≈0.30;1H NMR(CDCl3,300MHz)δ5.31-5.52(m,2H),5.08-5.22(br s,2H),3.76(t,2H,J=5.2Hz),3.63(s,3H),3.15(q,2H,J=6.7Hz),2.27(t,2H,J=7.3Hz),1.95-2.04(m,2H),1.54-1.64(m,2H),1.18-1.38(m,18H),1.07(t,3H,J=6.9Hz);13C NMR(CDCl3,75MHz)δ174.69,159.03,132.91,126.75,51.67,37.67,35.27,34.32,29.81,29.74,29.64,29.50,29.46,29.34,27.57,25.15,15.76。
如上文所述,16-(3-乙基脲基)十六碳-14(Z)-烯酸甲基酯的水解获得作为白色固体的16-(3-乙基脲基)十六碳-14(Z)-烯酸(92%)。M.P.:59-60℃.TLC:75%EtOAc/己烷,Rf≈0.30;1H NMR(CD3OD,300MHz)δ5.33-5.56(m,2H),3.74(d,2H,J=6.3Hz),3.13(q,2H,J=7.0Hz),2.26(t,2H,J=7.2Hz),1.98-2.12(m,2H),1.52-1.64(m,2H),1.18-1.38(m,18H),1.06(t,3H,J=7.0Hz);13C NMR(CD3OD,75MHz)δ176.69,159.94,132.31,126.57,36.98,34.70,33.96,29.63,29.61,29.54,29.50,29.34,29.26,29.15,27.20,24.98,14.52。
实施例17:16-丁酰氨基十六碳-14(Z)-烯酸(22)的合成
如上文所述,粗16-氨基十六碳-14(Z)-烯酸甲基酯(粗150mg)与正丁酸(48mg,0.55mmol)缩合以获得作为无色油的16-丁酰氨基十六碳-14(Z)-烯酸甲基酯(100mg,71%)。TLC:50%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.28-5.64(m,2H),3.78-3.90(m,2H),3.65(s,3H),2.30(t,2H,J=7.2Hz),2.14(t,2H,J=7.6Hz),1.97-2.08(m,2H),1.54-1.65(m,4H),1.20-1.38(m,18H),0.93(t,3H,J=7.2Hz);13C NMR(CDCl3,75MHz)δ174.62,173.18,134.12,125.84,51.67,41.65,38.94,38.88,36.82,34.32,32.45,29.79,29.72,29.65,29.46,29.36,27.58,25.16,19.40,13.99。
如上文所述,16-丁酰氨基十六碳-14(Z)-烯酸甲基酯(96mg,0.27mmol)的水解获得作为白色固体的16-丁酰氨基十六碳-14(Z)-烯酸(82mg,91%)。M.P.:72.7-73.1℃.TLC:75%EtOAc/己烷,Rf≈0.40;1H NMR(CDCl3,300MHz)δ5.28-5.70(m,4H),3.76-3.90(m,2H),2.31(t,2H,J=7.4Hz),2.15(t,2H,J=6.9Hz),1.97-2.18(m,2H),1.56-1.68(m,4H),1.20-1.40(m,18H),0.92(t,3H,J=7.3Hz);13C NMR(CDCl3,75MHz)δ179.27,173.58,134.23,125.66,41.75,38.86,38.80,36.91,34.37,32.44,29.76,29.70,29.66,29.62,29.44,29.37,29.29,24.98,19.42,13.98。
实施例18:16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-14(Z)-烯酸(23)的合成
如上文所述,16-氨基十六碳-14(Z)-烯酸甲基酯(粗140mg)与2-(甲基氨基)-2-氧代乙酸(54mg,0.52mmol)缩合获得作为白色固体的16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-14(Z)-烯酸甲基酯(92mg,72%)。M.P.:104.5-1.4.8℃.TLC:75%EtOAc/己烷,Rf≈0.40.1H NMR(CDCl3,300MHz)δδ7.80(br s,2H),5.32-5.71(m,2H),3.82-3.96(m,2H),3.62(s,3H),2.82(s,3H),2.28(t,3H,J=7.1Hz),1.93-2.08(m,2H),1.56-1.64(m,2H),1.22-1.36(m,18)。
如上文所述,16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-14(Z)-烯酸甲基酯(75mg,0.20mmol)的水解获得作为白色固体的16-(2-(甲基氨基)-2-氧代乙酰氨基)十六碳-14(Z)-烯酸(63mg,88%)。118.9-119.3℃.TLC:100%EtOAc,Rf≈0.30;1H NMR(CDCl3,300MHz)δ5.12-5.47(m,2H),3.58-3.72(m,2H),2.66(s,3H),2.05(t,3H,J=7.2Hz),1.76-1.86(m,2H),0.99-1.41(m,20H).13C NMR(CDCl3,75MHz)δ182.04,163.77,160.03,134.06,124.53,41.28,36.54,34.11,32.22,29.62,29.50,29.35,29.17,29.08,27.33,27.56,25.03。
实施例19:激动剂的鉴定
本实施例示出了化合物的鉴定,所述化合物充当EPA和17,18-EETeTr的激动剂,并因此模拟n-3PUFA及它们的CYP-依赖性ω-3环氧-代谢物的生理学效果。本实施例中确定的激动效果在于培养的新生大鼠心肌细胞(NRCM)自发搏动速率的降低。这种变时效应反应了类似物与G-蛋白偶联受体或其他初级细胞靶标相互作用并激活G-蛋白偶联受体或其他初级细胞靶标的能力,所述其他初级细胞靶标降低基础和应急诱导条件下心肌细胞的收缩性。
材料与方法
所有测试的化合物的结构示于图1。化合物包括EPA和17,18-EETeTr(化合物01和02;购自Cayman Chemical)以及如实施例1-24中所述合成的全部类似物,除了一种(化合物16)。如之前所述(Barbosa-Sicard E,MarkovicM,Honeck H,Christ B,Muller DN,Schunck WH.Biochem Biophys ResCommun.2005 Apr 22;329(4):1275-81),通过手性相HPLC拆分外消旋混合物(化合物02)制备17,18-EETeTr(化合物03和04)的R,S-和S,R-对映体。使用前,将要测试的化合物制备为乙醇中的1000倍储备液。
如之前所述进行NRCM的分离和培养(Wallukat,G;Wollenberger,A.Biomed Biochim Acta.1987;78:634-639;Wallukat G,Homuth V,Fischer T,Lindschau C,Horstkamp B,Jupner A,Baur E,Nissen E,Vetter K,Neichel D,Dudenhausen JW,Haller H,Luft FC..J Clin Invest.1999;103:945-952)。简言之,将新生Wistar大鼠(1-2天龄)根据Community of Health Service of the Cityof Berlin的推荐处死,并用0.2%的粗胰蛋白酶溶液从切碎的心室分离心肌细胞。然后将分离的细胞在用加湿空气平衡的Falcon烧瓶底部(12.5cm2),于2.5ml的Halle SM 20-I培养基中作为单层培养。培养基含有10%热失活的FCS和2μmol/l的氟脱氧尿苷(Serva,Heidelberg,Germany),后者抑制非肌肉细胞的增殖。5-7天后,NRCM形成自发搏动细胞簇。每个簇中的细胞表现出同步的收缩,搏动速率为120-140次/分钟。在实验的当天,用新鲜的含血清培养基代替培养基。两小时后,在37℃下利用装有加热台的倒置显微镜监测搏动速率。为了测定基础速率,选择6-8个单独簇并计数15sec的收缩数目。然后,向培养物中加入要测试的化合物,并在5min后再监测相同簇的搏动速率。基于单独簇的基础与化合物诱导的搏动速率之间的差异,计算变时效应(Δ搏动/min)并表示为平均值±SE值。N表示监测的簇的数目,通常来自至少三个独立的NRCM簇。
结果
这些实验的结果示于图1。向NRCM簇加入浓度高于1μM的EPA(C01)导致搏动速率的渐进降低。利用3.3μM EPA浓度和30min的孵育时间完全表现出这种效果。相比之下,17,18-EETeTr(C02)在低纳摩尔浓度范围(EC50为1-2nM,数据未显示)几乎立即和已经产生了相同的效果。为比较17,18-EETeTr与其合成类似物的活性,利用5min的孵育时间,以30nM的终浓度测试所有这些化合物。在相同条件下,媒介物对照(0.1%乙醇)对自发搏动速率没有效果。
如图1所总结的,各种合成类似物表现出与EPA和17,18-EETeTr类似的负变时效应。因此,这些类似物称为激动剂。激动剂包括:
(i)类似物,其含有11,12-处的双键以及17,18-位置处的环氧基团,由此该环氧基团是外消旋的或者是R,S-构型(C03、C2、C4和C9)
(ii)类似物,其含有11,12-双键以及17,18-环氧基团(C11、C13和C24)的合适取代
(iii)类似物,其属于(ii)类,但是在羧基(C17和C18)处被修饰
相比之下,大部分不带有11,12-双键的类似物没有表现出明显的激动效果(即,它们的加入对NRCM搏动速率的改变小于5次/min)。该组属于C1、C3、C5、C6、C7、C8、C19和C23。与C9-C5和C11-C23相比,双键从11,12-位置转移至14,15-位置消除了一些化合物的激动特性。而且,具有相同的双键转移的一些化合物,将NRCM的变时性应答从负反转为正(比较C11-C21),或者赋予主要无活性的化合物正变时效应(比较C12和C22)。
化合物C03-C04的效果比较表明,如果存在R,S-构型,则17,18-环氧基团赋予激动特性,而相应的S,R-对映体是无活性的。各自的外消旋混合物(C02)充当激动剂,表明R,S-对映体的效果是主要的。完全相同的立体化学条件应用于17,18-EETeTr类似物,其仅带有11,12-位置处的一个双键:外消旋物(C4)和R,S-对映体(C9)施加激动效应,而S,R-对映体则是无活性的。相比之下,仅含有14,15-位置处的一个双键的类似物未表现出外消旋物(C5)和S,R-对映体(C19)的效果,但是表现出R,S-对映体(C20)的激动效果。因此,在这种情况下,当S,R-对映体同时存在时,消除了R,S-对映体的激动效果。
化合物C11、C13和C24的效果证实,17,18-环氧基团可以由带有合适氧官能性的残基代替。这些类型的取代不仅保留(C24),甚至明显地增加激动效果:C11(-27.0±1.2;n=27)或C13(-33.7±1.3;n=24)与17,18-EETeTr(-22.5±0.8;n=60)和C4(-18.3±1.5;n=21)之间的激动效果的比较,p<0.05。
实施例20:拮抗剂的鉴定
本实施例示出了化合物的鉴定,所述化合物充当EPA和17,18-EETeTr的拮抗剂,并因此阻断n-3PUFA及它们的CYP依赖性ω-3环氧代谢物的生理学效果。基于这些拮抗剂的能力进行选择,所述能力消除EPA、17,18-EETeTr和它们的合成激动剂对新生大鼠心肌细胞收缩性的负变时效应。
材料与方法
测试的化合物的结构示于图2。潜在的拮抗剂包括化合物C1、C3、C5、C6、C7和C8,其如上文所述于相应实施例中合成。
如实施例25所述,用NRCM进行生物测定。在第一系列的实验中,将化合物C4用作激动剂,并在用潜在拮抗剂中的一种将培养的NRCM预孵育5min后测定其效果。以30nM的终浓度使用C4和潜在的拮抗剂。在第二系列的实验中,测试化合物C3(30nM)抗EPA(3.3μM)和17,18-EETeTr(30nM)以及抗激动类似物C2、C4和C13(各30nM)的拮抗效果。
结果
结果示于图2和3。图2中所总结的数据表明,化合物C4的激动效果被化合物C3和C5明显抑制。C3和C5的拮抗能力仅在与激动剂联合时变得明显,因为两种化合物单独加入培养的NRCM时未施加任何明显的效果(比较实施例25,图1)。其他化合物(C1、C6、C7和C8)不抑制C4的激动效果(图2),并且单独测试时也是无活性的(比较实施例25,图1)。将活性拮抗剂(C3和C5)与完全无活性类似物(C1、C6、C7和C8)区分的结构特征在于14,15-双键的存在。
图3中所总结的数据表明化合物C3不仅是C4而且是EPA、17,18-EETeTr、C2和C13的强效拮抗剂。在30nM的浓度下,C3消除了以3.3μM的浓度应用时EPA的负变时效应。当两种类似物以等摩尔浓度(30nM)存在时,即使是最强效的激动剂(C13)的效果也几乎完全被C3所阻断。
实施例21:通过相同细胞机制发挥作用的EPA及其激动剂类似物
本实施例表明,如通过对几种药理学介入相同的应答所判定的,EPA、17,18-EETeTr及它们最强效的合成激动剂(C13)共有相同的细胞作用机制。
材料与方法
如实施例25和26所述,用NRCM进行生物测定。用作激动效果的推定抑制剂的化合物是:11,12-环氧二十碳三烯酸(11,12-EET,来自CaymanChemicals;所用的终浓度为30nM)、AH6089(EP2及相关前列腺素类激素受体的非特异性拮抗剂,来自Cayman Chemical;所用的终浓度为10μM)、抑激酶素C(PKC-ε抑制剂,来自Sigma-Aldrich;所用的终浓度为100nM)、和H89(PKA-抑制剂,来自Sigma-Aldrich;所用的终浓度为1μM)。在确定以下激动剂的效果之前,将培养的NRCM不用或用图4所示的化合物之一预孵育5min:EPA(3,3μM)、17,18-EETeTr(30nM)或C13(30nM)。在一些实验中,将NRCM用选择性EP2前列腺素类激素受体激动剂(布他前列素,来自Sigma-Aldrich;所用的终浓度为100nM)以提供某些抑制剂的效果的对照。
结果
结果示于图4。EPA、17,18-EETeTr和化合物C13的负变时效应被11,12-EET、C3、AH6089和抑激酶素C强烈抑制,但不受H89影响。这些结果表明,EPA、17,18-EETeTr及它们最强效的合成类似物共有相同的抑制谱,并因此证实这些化合物通过相同的细胞机制施加生物学效果。更具体地,结果表明,这三种激动剂与11,12-EET、C3和AH6089竞争结合及激活相同的初级靶标(推定的ω-3环氧类二十烷酸受体),并且随后的信号传导途径包括作为重要组分的蛋白激酶C同种型的激活。相比之下,对于EPA、17,18-EETeTr和C3,布他前列素施加了正变时效应。布他前列素效果被AH6089和H89阻断,但不被C3和抑激酶素C阻断。因此,布他前列素(EP2受体)和布他前列素诱导的信号传导途径的初级靶标(涉及PKA而非PKC)与EPA、17,18-EETeTr及它们的合成类似物是不同的。
图4:EPA(01)、17,18-EETeTr(02)及合成激动剂C13的负变时效应被11,12-EET、化合物C3、AH6089(非前列腺素类激素受体拮抗剂)和抑激酶素C(PKC抑制剂)阻断,但不被H89(PKA抑制剂)阻断。布他前列素(EP2激动剂)的正变时效应被AH6089和H89阻断,但不被C3和抑激酶素C阻断。
实施例22:17,18-EETeTr激动剂抗钙过载和β-肾上腺素能刺激的保护
本实施例表明,心肌细胞的应激诱导的应答如增加的细胞外Ca2+或β-肾上腺素能刺激被17,18-EETeTr激动剂C11抑制。
材料与方法
如上文所述(实施例11)合成化合物C11。如实施例19所述分离并培养NRCM。培养基的基础Ca2+浓度为1.2mM。通过向培养物中加入合适量的1M CaCl2溶液来调节增加的细胞外Ca2+浓度(2.2、5.2和8.2mM)。将异丙基肾上腺素(来自Sigma-Aldrich)用作β-肾上腺素受体激动剂并加入培养物中以获得0.1、1或10μM的终浓度。以30nM的终浓度使用C11,并在改变Ca2+浓度或加入异丙基肾上腺素前5min加入培养物。在不存在C11的情况进行对照。
结果
结果示于图5。在对照实验中,NRCM以大量增加的搏动速率响应增加的细胞外Ca2+浓度。用C11预孵育明显降低NRCM在基础条件下(1.2mMCa2+)以及高达8.2mM的较高Ca2+浓度下的搏动速率(图5A)。类似地,C11降低对渐增浓度的充当肾上腺受体激动剂的异丙基肾上腺素的应答,并由此增强NRCM的收缩性和搏动速率(图5B)。
图5:合成激动剂C11抑制NRCM对β-肾上腺素能刺激(异丙基肾上腺素,图5A)和增加的细胞外Ca2+浓度(图5B)的应答。
实施例23:17,18-EETeTr激动剂在体内条件下的抗无节律效果
本实施例表明,激动剂类似物C17改善心肌梗死所诱发的心律失常。
材料与方法
研究设计:为了深入了解合成17,18-EETeTr-激动剂的体内效果,在雄性Wistar大鼠中进行心肌梗死研究。简言之,在诱发心肌梗死之前,使重220-250g的大鼠随机接受推注(bolus)i.v.化合物C17(300μl 0.9%NaCl中的100μg),或者仅接受300μl 0.9%NaCl作为媒介物对照。对于安全的推注施用,利用异氟烷(isoflorane)将动物中度麻醉。推注施用2小时后,将动物用氯胺酮与赛拉嗪的混合物(i.v.)再麻醉。开始表面ECG的连续监测(EPTracer,Netherlands),并保持至研究结束。记录基础ECG后,通过左前降动脉(LAD)的结扎来诱发心肌梗死。心肌梗死1小时后,将动物处死并收集器官。将来自尿、血液、肝、肾和心脏的样品保存用于进一步分析。
心律失常分析的方法:室性心动过速负担计算为源自心室肌的所有无节律事件的总和,这是在诱发心肌梗死后第1小时内所观察到的。为了定量室性心律失常的频率以及严重性,计算心律失常严重性分数。该分数计算为不同心律失常事件数目的总和(PVC,双重,三重,VT<1.5sec,VT>=1.5sec),每一类分解为1-5的渐增严重性指数(如PVC x 1,双重x 2,…,VT>=1,5sec x 5)。
结果
结果示于图6。合成17,18-EETeTr激动剂(化合物C17)的推注不诱发任何明显的不良副作用。冠状动脉结扎后发生室性心律失常,并且观察为单独的过早心室收缩(PVC)、非持续室性心动过速(VT)的短运行(run)以及室性心动过速/纤维性颤动。用合成17,18-EETeTr-激动剂处理的大鼠表现出与对照相比明显降低的室性心动过速负担(7526.2±5664.3比56377.4±17749.9ms/h,p<0.05,n=5每组);图6A。而且,在17,18-EETeTr-激动剂组中心律失常严重性分数较低(125±25比336±93任意单位,n=5每组);图6B。
图6:用化合物C17、17,18-EETeTr的合成激动剂处理在心肌梗死的大鼠模型中改善了心律失常的频率(A)和严重性(B)。

Claims (6)

1.通式(I)的化合物或其药理学可接受的盐或其药理学可接受的制剂:
其中
R1为-COR2
R2为羟基、-O(CH2CH2O)pH或Xaa;
Xaa为Gly或者常见D,L-、D-或L-氨基酸,其中Xaa通过酰胺键连接至-C(O);
p为1-25的整数;
其中所述氨基酸选自亮氨酸、异亮氨酸、缬氨酸、丙氨酸、苯基丙氨酸、酪氨酸、色氨酸、天冬氨酸、天冬酰胺、谷氨酸、谷氨酰胺、半胱氨酸、甲硫氨酸、精氨酸、赖氨酸、脯氨酸、丝氨酸、苏氨酸和组氨酸;
B为CH2
m为1;
T、U和W各自且互相独立地为-CH2CH2-;
V为顺式或反式-CH=CH-;
X不存在或者选自CH2和NR5
Z选自CH2和NR5'
R5和R5'各自且互相独立地选自氢原子、甲基、乙基、丙基或异丙基;
Y为-C(O)-或-C(O)-C(O)-;以及
n为0或1。
2.如权利要求1所述的化合物,其中
X为NR5,其中R5为氢原子、甲基、乙基、丙基或异丙基;并且
Z为NR5',其中R5'为氢原子、甲基、乙基、丙基或异丙基。
3.化合物,其选自:
4.药物组合物,其包含至少一种权利要求1-3中任一项所述的化合物,以及任选存在的载体物质和/或辅助剂。
5.如权利要求1-3中任一项所述的化合物或如权利要求4所述的药物组合物,其用作药物。
6.如权利要求1-3中任一项所述的化合物或如权利要求4所述的药物组合物,其用于治疗心脏损伤。
CN201080011803.7A 2009-01-13 2010-01-13 新的类二十烷酸衍生物 Active CN102348678B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09000372A EP2208720A1 (en) 2009-01-13 2009-01-13 Novel eicosanoid derivatives
EP09000372.4 2009-01-13
PCT/EP2010/000140 WO2010081683A1 (en) 2009-01-13 2010-01-13 Novel eicosanoid derivatives

Publications (2)

Publication Number Publication Date
CN102348678A CN102348678A (zh) 2012-02-08
CN102348678B true CN102348678B (zh) 2015-05-20

Family

ID=40887072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080011803.7A Active CN102348678B (zh) 2009-01-13 2010-01-13 新的类二十烷酸衍生物

Country Status (10)

Country Link
US (3) US9272991B2 (zh)
EP (3) EP2208720A1 (zh)
JP (1) JP5684726B2 (zh)
KR (1) KR101618166B1 (zh)
CN (1) CN102348678B (zh)
AU (1) AU2010205816B2 (zh)
CA (1) CA2749840C (zh)
DK (1) DK2376432T3 (zh)
ES (1) ES2633315T3 (zh)
WO (1) WO2010081683A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208720A1 (en) * 2009-01-13 2010-07-21 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Novel eicosanoid derivatives
CN102725261B (zh) * 2009-11-25 2014-07-30 赛托麦蒂克斯有限公司 花生四烯酸类似物及用其进行镇痛治疗的方法
JP5991766B2 (ja) * 2011-04-06 2016-09-14 ザ メディカル カレッジ オブ ウィスコンシン インク ポキシエイコサトリエン酸類似体およびその製造方法
WO2012170791A2 (en) 2011-06-10 2012-12-13 The Brigham And Women's Hospital, Inc. Docosahexaenoyl ethanolamides
AU2013350311B2 (en) * 2012-11-21 2018-03-22 The University Of Sydney Omega-3 analogues
BR112016016139B1 (pt) * 2014-01-22 2023-04-25 Max-Delbrück-Centrum für Molekulare Medizin Derivados de cyp-eicosanoides, seus usos, e composição farmacêutica
CN106536478A (zh) * 2014-05-22 2017-03-22 悉尼大学 ω‑3类似物
WO2016022567A2 (en) * 2014-08-04 2016-02-11 University Of Miami Methods for modulating iks channel activity
US11096910B2 (en) * 2015-07-22 2021-08-24 Max Delbruck-Centrum Fur Molekulare Medizin Metabolically robust analogs of CYP-eicosanoids for the treatment of cardiac disease
US11690825B2 (en) 2016-03-09 2023-07-04 Board Of Regents, The University Of Texas System 20-HETE receptor (GPR75) antagonists and methods of use
JP6944465B2 (ja) * 2016-04-01 2021-10-06 オメイコス セラピューティクス ゲーエムベーハー 血管新生及び/又は炎症と関連する障害の治療又は予防における使用に対するcyp−エイコサノイドの類縁体
CA3019028A1 (en) * 2016-04-01 2017-10-05 Omeicos Therapeutics Gmbh Analogs of cyp-eicosanoids for use in treating or preventing a disorder associated with neovascularization and/or inflammation
CN110845447B (zh) * 2019-11-28 2023-07-18 南京林业大学 美国白蛾性信息素组分的合成方法
WO2023094615A1 (en) 2021-11-26 2023-06-01 Omeicos Therapeutics Gmbh Synthetic eicosanoid analogues for the treatment and prevention of diseases associated with increased gdf15 plasma concentration
CN114700006B (zh) * 2022-06-07 2023-03-24 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376688B1 (en) 1994-10-13 2002-04-23 Peptide Technology Limited Modified polyunsaturated fatty acids
US5753702A (en) 1996-05-22 1998-05-19 University Of Vermont Arachidonic acid metabolite, 16-hete
US6395781B1 (en) * 1998-02-26 2002-05-28 Mcw Research Foundation 20-HETE antagonists and agonists
US6552084B2 (en) 1999-11-09 2003-04-22 Alcon Universal Ltd. Hydroxyeicosatetraenoic acid analogs and methods of their use in treating dry eye disorders
WO2002059072A2 (en) 2001-01-02 2002-08-01 New York Medical College 12-hydroxy-eicosatrienoic acid analogs and methods of use thereof
JP2005519156A (ja) * 2002-03-01 2005-06-30 ゼネラル・エレクトリック・カンパニイ 良好な延性と耐候性を有する脂肪族ポリエステル−アクリルブレンド成形用組成物
WO2004080389A2 (en) 2003-03-07 2004-09-23 Taisho Pharmaceutical Co., Ltd. Hydroxyeicosadienamide compounds
US20080306155A1 (en) 2004-09-16 2008-12-11 Roman Richard J Method for treating renal disease
US20080095711A1 (en) * 2006-08-31 2008-04-24 Falck John R Modulators of Pulmonary Hypertension
US7550617B2 (en) 2006-10-02 2009-06-23 Medical College Of Georgia Research Institute Compositions and methods for the treatment of renal and cardiovascular disease
EP2208720A1 (en) * 2009-01-13 2010-07-21 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Novel eicosanoid derivatives
CN102725261B (zh) * 2009-11-25 2014-07-30 赛托麦蒂克斯有限公司 花生四烯酸类似物及用其进行镇痛治疗的方法
US11096910B2 (en) * 2015-07-22 2021-08-24 Max Delbruck-Centrum Fur Molekulare Medizin Metabolically robust analogs of CYP-eicosanoids for the treatment of cardiac disease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Metabolism of adrenic acid to vasodilatory 1α,1β-dihomo-epoxyeicosatrienoic acids by bovine coronary arteries;Xiu-Yu Yi,et al.;《AJP-Heart Circ Physiol》;20070105;第292卷;H2265-H2274 *

Also Published As

Publication number Publication date
JP2012515177A (ja) 2012-07-05
EP2376432B1 (en) 2017-04-12
EP2376432A1 (en) 2011-10-19
EP3222612A1 (en) 2017-09-27
KR20110103471A (ko) 2011-09-20
EP2208720A1 (en) 2010-07-21
US20160326128A1 (en) 2016-11-10
CA2749840C (en) 2016-12-13
CA2749840A1 (en) 2010-07-22
US20190315701A1 (en) 2019-10-17
CN102348678A (zh) 2012-02-08
US9272991B2 (en) 2016-03-01
WO2010081683A1 (en) 2010-07-22
US10287262B2 (en) 2019-05-14
DK2376432T3 (en) 2017-07-31
JP5684726B2 (ja) 2015-03-18
US11365183B2 (en) 2022-06-21
ES2633315T3 (es) 2017-09-20
KR101618166B1 (ko) 2016-05-04
AU2010205816A1 (en) 2011-07-28
US20120122972A1 (en) 2012-05-17
AU2010205816B2 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
CN102348678B (zh) 新的类二十烷酸衍生物
CN108349880B (zh) 用于治疗心脏疾病的cyp类花生酸代谢稳健类似物
CN106061942B (zh) 新型cyp-类二十烷酸衍生物
JP7215774B2 (ja) 多機能標的免疫小分子抗癌薬のクエン酸ベスタゾミブおよびその製造方法と使用
JPWO2008093655A1 (ja) ポリアルコール化合物および医薬

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM

Effective date: 20140915

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140915

Address after: Berlin

Applicant after: Max Delbruck Center of Helmholtz Association

Applicant after: Board of Regents of The Univ. of Texas System

Address before: Berlin

Applicant before: Max Delbruck Center of Helmholtz Association

C14 Grant of patent or utility model
GR01 Patent grant