KR101618166B1 - 신규한 아이코사노이드 유도체 - Google Patents

신규한 아이코사노이드 유도체 Download PDF

Info

Publication number
KR101618166B1
KR101618166B1 KR1020117018764A KR20117018764A KR101618166B1 KR 101618166 B1 KR101618166 B1 KR 101618166B1 KR 1020117018764 A KR1020117018764 A KR 1020117018764A KR 20117018764 A KR20117018764 A KR 20117018764A KR 101618166 B1 KR101618166 B1 KR 101618166B1
Authority
KR
South Korea
Prior art keywords
methyl
acid
etoac
nmr
hexadec
Prior art date
Application number
KR1020117018764A
Other languages
English (en)
Other versions
KR20110103471A (ko
Inventor
볼프-하겐 스쿵크
게르트 왈루캣
로베르트 피셔
코시마 슈미트
도미니크 엔. 뮬러
나렌더 풀리
존 알. 팔크
Original Assignee
막스-델부뤽-센트럼 퓌어 몰레쿨라레 메디친
보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 막스-델부뤽-센트럼 퓌어 몰레쿨라레 메디친, 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 filed Critical 막스-델부뤽-센트럼 퓌어 몰레쿨라레 메디친
Publication of KR20110103471A publication Critical patent/KR20110103471A/ko
Application granted granted Critical
Publication of KR101618166B1 publication Critical patent/KR101618166B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/42Acyclic compounds having a chain of seven or more carbon atoms, e.g. epoxidised fats
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/336Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/09Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/49Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/72Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms
    • C07C235/76Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/14Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/16Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/20Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an unsaturated carbon skeleton

Abstract

본 발명은 심장 손상, 특히 심 부정맥(cardiac arrhythmias)과 관련된 증상을 조절하는 화학식 1의 화합물(n-3 PUFA 유도체)를 제공한다.
[화학식 1]

Description

신규한 아이코사노이드 유도체{novel eicosanoid derivatives}
본 발명은 다중불포화 지방산(polyunsaturated fatty acids; PUMAs)의 유사체인 화합물에 관한 것이다. 본 발명은 나아가 이런 화합물을 1 또는 그 이상을 포함하는 조성물 및 염증(inflammation), 증식(proliferation), 고혈압(hypertension), 응고(coagulation), 면역 기능(immune function), 심부전(heart failure) 및 심 부정맥(cardiac arrythmias)과 관련된 증상 및 질환의 치료 또는 예방을 위한 이런 화합물 또는 조성물의 용도에 관한 것이다.
지방산(fatty acids)은 생물학적 시스템에서 그들의 중요한 역할 때문에 가장 광범위하게 연구되는 화합물의 종류 중 하나이다(Ferrante, A., Hii, C. S. T., Huang, Z. H., Rathjen, D. A. In The Neutrophils: New Outlook for the Old Cells. (Ed. Gabrilovich, D.) Imperial College Press (1999) 4: 79-150; Sinclair, A., and Gibson, R. (eds) 1992. Invited papers from the Third International Congress. American Oil Chemists'Society, Champaign, Illinois 1-482). 수백개의 다른 지방산이 자연 및 그들 사이에 존재한다. 자연적으로 발생하는 다중불포화 지방산(polyunsaturated fatty acids:PUMAs)은 2 또는 그 이상의 메틸렌으로 분리된 이중결합(methylene-interrupted double bond)과 함께 16 내지 22 탄소 원자(carbon atoms)를 갖는다.
PUFAs는 그들이 유래되는 모 지방산(parent fatty acids)에 근거하여 4개의 과(family)로 구분된다: 리놀레익 산(linoleic acid, 18: 2 n-6), α-리놀레익 산(18: 3 n-3), 올레익 산(oleic acid, 18: 1 n-9) 및 팔미톨레익 산(palmitoleic acid, 16: 1 n-7). n-6 및 n-3 PUFAs는 포유류에서 합성될 수 없고 필수지방산(essential fatty acid;EFAs)이라고 알려져 있다. 그들은 포유류의 몸에서 리놀레산 및 α-리놀레산의 불포화반응(desaturation) 또는 신장반응(elongation)을 통해 간접적으로 획득되는데, 이는 식이요법에서 반드시 공급되어야만 한다.
EFAs는 다양한 생물학적 활성을 갖고 n-3 PUFAs는 정상적인 인간의 건강에 필수적이다(Spector, A. A. (1999) Lipids 34, 1-3). 예를 들면, 식이 n-3 PUFAs(dietary n-3 PUFAs)는 정상적인 건강 및 만성적 질환(chronic disease) (리뷰를 위해 Jump, D. B. (2002) J. Biol . Chem . 277, 8755-8758 참조)에, 예를 들면 플라스마 지질 수준의 조절(the regulation of plasma lipid levels) (Rambjor, G. S., Walen, A. I., Windsor, S. L., and Harris, W. S. (1996) Lipid 31, 45-49; Harris, W. S. (1997) Am . J.  Clin . Nutr . 65, 1645-1654; Harris, W. S., Hustvedt, B-E., Hagen, E., Green, M. H., Lu, G., and Drevon, C. A. (1997) J. Lipid Res . 38, 503-515; Mori, T. A., Burke, V., Puddey, I. B., Watts, G. F., O'Neal, D. N., Best, J. D., and Beilen, L. J. (2000) Am . J. Clin. Nutr . 71, 1085-1094), 심혈관(cardiovascular) (Nordoy, A. (1999) Lipids 34, 19-22; Sellmayer, A., Hrboticky, N., and Weber, P. C. (1999) Lipids 34, 13-18; Leaf, A. (2001) J. Nutr . Health Aging 5, 173-178) 및 면역 기능(immune function) (Hwang, D. (2000) Annu . Rev . Nutr . 20, 431-456), 인슐린 작용(insulin action) (Storlien, L., Hulbert, A. J., and Else, P. L. (1998) Curr . Opin . Clin . Nutr . Metab. Care 1, 559-563; Storlien, L. H., Kriketos, A. D., Calvert, G. D., Baur, L. A., and Jenkins, A. B. (1997) Prostaglandins Leukotrienes Essent . Fatty Acids 57, 379-385), 및 신경 발달(neuronal development) 및 시각 기능(visual function) (Salem, N., Jr., Litman, B., Kim, H-Y., and Gawrisch, K. (2001) Lipids 36, 945-959등을 참조)과 같은, 영향을 미치는 다양한 물리적인 과정에 영향을 미친다. n-PUFA의 섭취는 몸 안에 있는 거의 모든 세포에 그들의 분배를 초래하여 유전자 발현의 조절 뿐만 아니라 세포막 구성성분 및 기능, 아이코사노이드(eicosanoid)의 합성, 및 신호전달(signaling)에 영향을 미친다(Salem, N., Jr., Litman, B., Kim, H-Y., and Gawrisch, K. (2001) Lipids 36, 945-959; Jump, D. B., and Clarke, S. D. (1999) Annu . Rev . Nutr . 19, 63-90; Duplus, E., Glorian, M., and Forest, C. (2000) 275, 30749-30752; Dubois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B. A., and Lipsky, P. E. (1998) FASEB J. 12, 1063-1073).
또한, n-3 PUFAs는 종양 발달(neoplastic development)의 중요한 조절자라는 것이 제안되었었는데 이것은 n-3 PUFAs는 종양이 나타나는 시간을 지연시킬 수 있을 뿐만 아니라 종양의 크기와 수를 감소시킬 수 있기 때문이다(Abel, S., Gelderblom, W. C. A., Smuts, C. M., Kruger M. (1997) Pros. Leuko. and Essential, 56 (1): 29-39). n-3의 흡수는 관상 동맥 질환(coronary arterial diseases) 발병의 감소, 및 n-PUFAs의 작용을 제안하는 다양한 메커니즘(mechanism)과 관련이 있다고 밝혀졌다(Krombout, D. (1992) Nutr. Rev. 50: 49-53; Kinsella, J. E., Lokesh, B., Stone R. A. (1990) Am. J. Clin. Nuer. 52: 1-28). 어떤 n-3 PUFAs는 또한 항말라리아성(antimalarial) (Kumaratilake, L. M., Robinson, B. S., Ferrante, A., Poulos A. (1992) J. Am. Soc. Clin. Investigation 89: 961-967) 및 항염증성(antiinflammaory) (Weber, P. C. (1990) Biochem. Soc. Trans. 18: 1045-1049) 특징을 갖는다.
게다가, EFAs의 가장 중요한 생물학적 역할 중 하나는 많은 기능을 조절할 수 있는 생리활성적 지방산 대사체(bioactive fatty acid metabolites)의 형성을 위한 선구체를 공급하는 것이다(Arm, J. P., and Lee, T. H. (1993) Clin. Sci. 84: 501-510). 예를 들면, 아라키도닉 산(arachidonic acid; AA; 20:4, n-6)은 시토크롬 P450(cytochrome; CYP) 효소에 의해 강력한 생물학적 활성을 갖는 산화된 대사물의 여러 종류로 대사된다(Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131-85). 주된 대사물은 20-하이드록시아이코사테트라엔산(20-hydroxyeicosatetraenoic acid:20-HETE)과 일련의 구조적(regio-) 및 입체이성질체(stereoisomeric)의 에폭시아이코사트리에노익산(epoxy eicosatrienoic acids:EETs)을 포함한다. CYP4A 및 CYP4F 아형(isoform)은 20-HETE 및 CYP2C와 CYP2J 아형 EETs를 제공한다.
EPA(20:5, n-3)는 AA를 대사하는(AA-metabolizing) CYP 아형에 대한 대체기질(alternative substrate)의 역할을 할 수 있다(Theuer J, Shagdarsuren E, Muller DN, Kaergel E, Honeck H, Park JK, Fiebeler A, Dechend R, Haller H, Luft FC, Schunck WH. Inducible NOS inhibition, eicosapentaenoic acid supplementation, and angiotensin II-induced renal damage. Kidney Int. 2005;67:248-58; Schwarz D, Kisselev P, Ericksen SS, Szklarz GD, Chernogolov A, Honeck H, Schunck WH, Roots I. Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: highly stereoselective formation of 17(R),18(S)-에폭시 eicosatetraenoic acid. Biochem Pharmacol. 2004;67:1445-57; Schwarz D, Kisselev P, Chernogolov A, Schunck WH, Roots I. Human CYP1A1 variants lead to differential eicosapentaenoic acid metabolite patterns. Biochem Biophys Res Commun. 2005;336:779-83; Lauterbach B, Barbosa-Sicard E, Wang MH, Honeck H, Kargel E, Theuer J, Schwartzman ML, Haller H, Luft FC, Gollasch M, Schunck WH. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension. 2002;39:609-13; Barbosa-Sicard E, Markovic M, Honeck H, Christ B, Muller DN, Schunck WH. Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochem Biophys Res Commun. 2005;329:1275-81). CYP에 의존적인 n-3 PUFA 대사의 괄목할만한 특징은 AA로부터 EPA 및 DHA를 구별하는 n-3 이중 결합의 우선적인 에폭시화(the preffered epoxidation)이다. 그 결과의 대사물은 -EPA로부터의 17, 18-EETeTr 및 DHA로부터의 19,20-EDP- 일련의 AA 생산물에서 동종체(homolog)를 갖지 않는다는 점에서 특별하다.
EET 및 20-HETE는 다양한 심혈관 기능(cadiovascular function)을 조절하는데 있어서 중요한 역할을 한다(Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131-85). Ang II로 유도된 고혈압은 Ang II에 의해 유도된 고혈압 및 말초기관(end-organ)의 손상의 이중-형질전환 쥐(double-transgenic rat; dTGR) 모델에서(Luft FC, Mervaala E, Muller DN, Gross V, Schmidt F, Park JK, Schmitz C, Lippoldt A, Breu V, Dechend R, Dragun D, Schneider W, Ganten D, Haller H. Hypertension-induced end-organ damage : A new transgenic approach to an old problem. Hypertension. 1999;33:212-8) CYP에 의존적인 AA 대사의 하향조절(down-regulation)과 관련이 있는 것으로 보여졌다(Kaergel E, Muller DN, Honeck H, Theuer J, Shagdarsuren E, Mullally A, Luft FC, Schunck WH. P450-dependent arachidonic acid metabolism and angiotensin II-induced renal damage. Hypertension. 2002;40:273-9). 상기형질전환 쥐는 인간의 레닌(renin) 및 안지오텐시노젠(angiotensinogen) 유전자를 갖고 있고, Ang II를 국소적으로 생성하고 유의적인 고혈압, 심근 경색(myocardial infarction) 및 단백뇨증(albuminuria)을 발달시킨다. 상기 동물은 8주가 되기 전에 심근(myocardial) 및 신장(renal) 부전증에 의해 죽는다. 상기 모델은 Ang II에 의해 유도되는 염증(inflammation)의 심각한 특징을 보여준다. 활성산소(reactive oxygen species)가 형성되고, 전사인자인 NF-κB 및 AP-1가 활성화되며, 상기 전사인자에 결합하는 부위를 갖는 유전자가 활성화된다.
최근에, 아이코사펜타에노익 산(eicosapentaenoic acid; EPA) 보조제(supplementation)가 dTGR의 사망률을 유의적으로 감소시킨 것이 보여졌다(Theuer J, Shagdarsuren E, Muller DN, Kaergel E, Honeck H, Park JK, Fiebeler A, Dechend R, Haller H, Luft FC, Schunck WH. Inducible NOS inhibition, eicosapentaenoic acid supplementation, and angiotensin II-induced renal damage. Kidney Int. 2005;67:248-58). 또한, dTGR에서 Ang II에 의해 유도되는 전기적 리모델링(electrical remodeling)에 근거한 뇌/심실 부정맥(ventricular arrhythmias)이 발달하는 것이 보여졌다(Fischer R, Dechend R, Gapelyuk A, Shagdarsuren E, Gruner K, Gruner A, Gratze P, Qadri F, Wellner M, Fiebeler A, Dietz R, Luft FC, Muller DN, Schirdewan A. Angiotensin II-induced sudden arrhythmic death and electrical remodeling. Am J Physiol Heart Circ Physiol. 2007; 293:H1242-1253). 상기 dTGR 쥐에서 PPAR-alpha 활성자의 처리는 CYP2C23에 의존하는 EET 생성을 강하게 유도하고 고혈압 및 말초기관 손상으로부터 보호한다(Muller DN, Theuer J, Shagdarsuren E, Kaergel E, Honeck H, Park JK, Markovic M, Barbosa-Sicard E, Dechend R, Wellner M, Kirsch T, Fiebeler A, Rothe M, Haller H, Luft FC, Schunck WH. A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury. Am J Pathol. 2004;164:521-32).
dTGR(4 내지 7주의 나이)에 순수 EPA- 및 DHA-에틸 에스터(ethly ester)를(Omacor from Solvay Arzneimittel, Hannover, Germany)의 혼합물을 장기간 먹이는 것은 안지오텐신 II(angiotensin II)에 의해 유도되는 고혈압 모델에서 심장의 전기적 리모델링을 개선시켰다. 특히, EPA 및 DHA는 사망률을 감소시키고, 심 부정맥(cardiac arrhythmias)의 유도를 억제하였으며 컨넥식 43(connexin 43)에 의한 협간극 결합(gap junction)의 리모델링으로부터 보호하였다(Fischer R, Dechend R, Qadri F, Markovic M, Feldt S, Herse F, Park JK, Gapelyuk A, Schwarz I, Zacharzowsky UB, Plehm R, Safak E, Heuser A, Schirdewan A, Luft FC, Schunck WH, Muller DN. Dietary n-3 polyunsaturated fatty acids and direct renin inhibition improve electrical remodeling in a model of high human renin hypertension. Hypertension. 2008 Feb;51(2):540-6). EPA는 또한 자발적인 박동률(beating rate)을 감소시키고, Ca2 +에 의해 유도되는 부정맥을 예방하고 신생쥐(neonatal rat) 심근세포(cardiomyocytes)를 전기적으로 안정시키는 것이 보여졌다(Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation. 2003;107:2646-52). 일반적으로 CYP에 의존적인 아이코사노이드(eicosanoid)는 2차 메신저(second messenger)라고 간주되어 왔다: EETs 및 20-HETE는 세포밖의 신호가 세포막의 인지질(phospholipid)로부터 AA의 분비(포스포리파아제 42; phospholipase 42에 의한)를 유도한 후에 CYP 효소에 의해 생산되고 이온 수송(ion transport), 세포 증식(cell proliferation) 및 염증을 조절하는 신호전달 경로(signaling pathway)에 있어서 그들의 기능을 나타낸다. 식이요법에 따라, n-3 PUFAs는 부분적으로 인지질의 sn2-위치에서 AA를 대체하고 따라서 대체분자(alternative molecule)로서 후에 일어나는 신호전달 경로에 관련될 수 있다.
심장에서 CYP에 의존적인 아이코사노이드의 생물학적 활성에 대한 몇몇의 연구들은 L-형태(type) Ca2 + 및 근섬유막(sarcolemmal)과 미토콘드리아의 ATP에 민감한 칼륨 채널(ATP-sensitive potassum:KATP channel)의 조절에서 EETs 및 20-HETE의 중요한 역할을 보여준다. 심근세포(cardiac myocytes)에서, L-형태 Ca2 + 전류 및 세포 쇼팅(shorting)은 EET의 형성의 억제할 때 감소되고 상기 효과들은 11,12-EET의 첨가에 의해 회복될 수 있다(Xiao YF, Huang L, Morgan JP. Cytochrome P450: a novel system modulating Ca2+ channels and contraction in mammalian heart cells. J Physiol. 1998;508 (Pt 3):777-92). EET는 또한 심장의 KATP 채널을 활성화시키는 것을 보여주었다. 상기 효과는 매우 입체선택적(stereoselective)이다: 11,12-EET의 R,S-거울상체(enantiomer)가 아닌 오직 S,R-거울상체만이 효과적이다(Lu T, VanRollins M, Lee HC. Stereospecific activation of cardiac ATP-sensitive K(+) channels by 에폭시 eicosatrienoic acids: a structural determinant study. Mol Pharmacol. 2002;62:1076-83). EET를 형성하는 인간의 CYP2J2(EET-generating human CYP2J2)의 과발현은 KATP 채널의 활성화를 통해서 상기 형질전환 쥐 심장의 허혈후(postischemic) 기능적 회복을 개선시킨다(Seubert J, Yang B, Bradbury JA, Graves J, Degraff LM, Gabel S, Gooch R, Foley J, Newman J, Mao L, Rockman HA, Hammock BD, Murphy E, Zeldin DC. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ Res. 2004;95:506-14). 20-HETE는 내인성(endogenous) KATP 채널의 차단제(blocker)로 역할을 함으로써 반대 역할을 하는 것으로 나타난다(Gross ER, Nithipatikom K, Hsu AK, Peart JN, Falck JR, Campbell WB, Gross GJ. Cytochrome P450 omega-hydroxylase inhibition reduces infarct size during reperfusion via the sarcolemmal KATP channel. J Mol Cell Cardiol. 2004;37:1245-9; Nithipatikom K, Gross ER, Endsley MP, Moore JM, Isbell MA, Falck JR, Campbell WB, Gross GJ. Inhibition of cytochrome P450omega-hydroxylase: a novel endogenous cardioprotective pathway. Circ Res. 2004;95:e65-71).
비록 n-3 PUFAs가 포유류의 몸 안의 생물학적 과정에서 중요한 역할을 하지만, 그들은 생체 내에서(in vivo) 제한된 유용성 때문에 치료제(therapeutics)로써 폭넓게 사용되지 않는다. 그들은 β-산화(oxidation)에 의해 쉽게 분해되고, 이는 지방산 대사에서 주요한 산화적 경로 이다. β-산화의 전체 과정은 아세틸-코엔자임 A(acetyl-coenzme A)의 동일한 몰 양(equimolar amount)의 수반되는 생산과 함께 2개의 탄소 원자에 의한 지방산 탄소사슬의 분해에 의해 특징된다.
β-산화의 문제를 극복하기 위해, WO96/1190는 변형된 PUFAs를, β-oxa 및 (3-thia PUFAs)와 같은, 공개한다. 상기 화합물은 native PUFAs의 특정 생물학적 활성을 유지하는 반면 β-산화에 대한 증가된 저항성을 보여주었다.
최종적으로, 염증, 증식, 고혈압, 응고(coagulation), 면역 기능(immune function), 심부전(heart failure) 및 심 부정맥(cardiac arrythmias)과 관련된 질환 및 증상의 치료 또는 예방을 위한 새로운 물질(agent)은 상당한 관심에 있는데 이는 상기 증상들은 환자들의 매우 많은 죽음을 설명하고 현재의 적용되는 많은 약의 투여가 복잡한 약의 상호작용(complex drug interaction) 및 유해한 부작용과 관련있기 때문이다.
그러므로, 본 발명에서 다루고 있는 상기 문제는 n-3 PUFA 대사물의 새로운 유사체를 제공하고, 이는 용해될 수 있는 에폭시드 가수분해효소(soluble epoxide hydrolase)에 의한 탈활성화(deactivation)에 대해 더 안정적이고/또는 자기산화(auto-oxidation)에 대해 낮은 경향이 있고, 이는 항염증(anti-infammation), 항증식(anti-proliferation), 항고혈압(anti-hypertension), 항응고(anti-coagulation), 또는 면역조절활성(immune-modulating activity), 특히 심보호활성(cardioprotective activity)을 갖는다.
[본 발명의 개요]
본 발명은 일반적인 화학식 1의 화합물:
Figure 112011062269449-pct00001
또는 약학적으로 허용가능한 염(salt), 용매화합물(solvate), 수화물(hydrate) 또는 그의 약학적으로 허용가능한 제형(formulation)에 관한 것으로, 여기서:
R1
Figure 112011062269449-pct00002
로부터 선택되는 것이고;
R2는 하이드록시(hydroxy), 헤테로알킬(heteroalkyl), 알콕시(alkoxy), 폴리알콕시알킬(polyalkoxyalkyl), NR3R4, (NHS(O)2-m-(C6H4)N3, 또는 Xaao이며;
R3 및 R4는 각각 및 서로 독립적으로 수소 원자(hydrogen atom), 하이드록시, 알킬(alkyl), 헤테로알킬, 사이클로알킬(cycloalkyl), 알킬사이클로알킬(alkylcycloalkyl), 헤테로알킬사이클로알킬(heteroalkylcycloalkyl), 아랄킬(aralkyl), 또는 헤테로아랄킬(heteroaralkyl)이고;
Xaa는 글라이신(Gly), 일반적인(conventional) D,L-, D- 또는 L-아미노산(amino acid), 비일반적인(non-conventional) D,L-, D- 또는 L-아미노산, 또는 2- 내지 10-mer 펩타이트(peptide)이고, 여기서 Xaa는 아미드 결합(amide bond)에 의해 -C(O)에 연결된 것이며;
o는 1 내지 10으로부터 선택되는 정수이고;
B는 CH2, O, 또는 S이며;
m은 1 내지 6의 정수이고;
T, U, V, 및 W는 T, U, V, 또는 W 중의 최소한 하나는 -CH2CH2-인 조건에서, 각각 및 서로 독립적으로 -CH2CH2-, 및 시스(cis) 또는 트랜스(trans) -CH=CH-로부터 선택되는 것이며;
X는, X가 Y 및 Z와 함께 에폭시기(epoxy group)를 형성할 때 X는 오직 CH라는 조건에서, 부재하거나 또는 CH, CH2, 및 NR5로부터 선택되고;
Z는, Z가 X 및 Y와 함께 에폭시기를 형성할 때 Z는 오직 CH라는 조건에서, CH, CH2, 및 NR5'로부터 선택되는 것이며;
R5 및 R5'는 각각 및 서로 독립적으로 수소 원자, 하이드록시, 알킬, 사이클로알킬, 알킬사이클로알킬, 헤테로알킬사이클로알킬, 아랄킬, 또는 헤테로아랄킬기로부터 선택되는 것이고;
Y는 -C(O)-, -C(O)-C(O)-, -O-, 또는 -S-이며; 및
n은 0 내지 6의 정수이다.
여기에서 화합물은 일반적으로 표준 명명법(standard nomenclature)을 사용하여 기술되었다. 비대칭 중심(asymmetric centers)을 갖고 있는 화합물에서, 모든 광학 이성질체(optical isomers) 및 그들의 혼합물이 구체화되지 않는 한 포함된다. 또한 2 또는 그 이상의 비대칭 원소(element)를 갖는 화합물은 편좌우이성체(diastereomer)의 혼합물로서 나타내질 수 있다. 게다가, 탄소-탄소 이중결합(carbon-carbon double bond)을 갖고 있는 화합물은, 다르게 구체화되지 않는 이상 본 발명에 포함되는 화합물의 모든 이성질체의 형태와 함께, Z- 및 E- 형태에서 일어날 수 있다. 화합물이 다양한 호변체의 형태에 존재하는 곳에서, 언급된 화합물은 단 하나의 구체적인 호변체(tautomer)로 제한되지 않고, 오히려 모든 호변체의 형태를 포함한다. 나아가 언급된 화합물은 1 또는 그 이상의 원자가 동위원소(isotope)로, 즉 같은 원자수를 갖고 다른 질량수를 갖는 원소, 치환된 것을 갖는 화합물을 포함한다. 일반적인 예로써, 그리고 제한없이, 수소의 동위원소는 트리튬(tritium)과 디테리윰(deuterium)을 포함하고 탄소의 동위원소는 11C, 13C, 및 14C를 포함한다.
여기서 제공되는 화학식에 따른, 하나 또는 그 이상의 스테레오제닉 중심(stereogenic center)을 갖는 화합물은 최소 50%의 거울상체 잉여(enantiomeric excess)를 갖는다. 예를 들면, 상기 화합물은 최소 60%, 70%, 80%, 85%, 90%, 95%, 및 98%의 거울상체 잉여를 갖을 수 있다. 상기 화합물의 어떤 실시예는 최소 99%의 거울상체 잉여를 갖는다. 단일 거울상체(광학적으로 활성화 형태; optically active form)는 비대칭 합성(asymmeteric synthesis), 광학적으로 순수한 선구체(precursor)로부터의 합성, 생합성, 예를 들면 변형된 CYP102(CYP BM-3)에 의해 또는 라세미체(racemate)의 분해에 의해, 예를 들면 효소적 분해(enzymatic resolution) 또는 분해제(resolving agent)의 존재하에 결정화(crystalization), 또는 크로마토그래피(chromatography)와, 예를 들면 키랄 HPLC 컬럼(chiral HPLC column)을 사용한, 같은 종래의 방법에 의한 분해에 의해 얻어질 수 있다는 것이 명백할 것이다.
여기서 특정 화합물은 B, R1-R5, T, U, V, W, X, Y, 및 Z와 같은 변수들을 포함하는 일반적인 화학식을 이용하여 기술된다. 다르게 구체화되지 않으면, 상기 한 화학식 안의 각 변수는 어떠한 다른 변수로 독립적으로 정의되고, 한 화학식 안에 1번 이상 나타난 어떤 변수들은 각각의 발생(occurence)에서 독립적으로 정의된다. 따라서, 예를 들면, 만약 1 기(group)가 0-2 R*로 치환되는게 보여졌다면, 상기 기(group)는 치환되지 않았거나 또는 2개까지의 R* 그룹으로 치환될 수 있고 각 발생의 R*는 R*의 정의(definition)로부터 독립적으로 선택된다. 또한, 치환기(substituent) 및/또는 변수들의 조합은 상기 조합이 안정환 화합물을, 즉 분리, 특징 그리고 생물학적 특성을 위해 시험될 수 있는 화합물, 야기하였을 때만 허용된다.
여기서 제시된 화합물의 "약학적으로 허용가능한 염(pharmaceutically acceptable salt)"은 일반적으로 당업계에서 인간 또는 동물의 조직(tissue)에서의 사용에 지나친 독성(excessive toxicity) 또는 발암성(carcinogenicity), 및 선호되게는 자극(irritation), 알러지 반응(allergic response), 또는 다른 문제들이나 합병증없이 사용되기에 적당하다고 간주되는 산성 또는 염기성 염이다. 상기 염은 카르복실산(carboxyl acid)과 같은 산성 잔기의 유기염(organic acid) 및 알칼리(alkali) 뿐만 아니라, 아민(amine)과 같은 염기성 잔기를 갖는 유기산염(organic acid salt) 및 미네랄(mineral) 을 포함한다.
적절한 약학적 염은 하이드로클로라이드(hydrochloric), 포스포릭(phosphoric), 하이드로브로믹(hydrobromic), 말릭(malic), 글리코릭(glycolic), 푸라믹(fumaric), 술푸릭(sulfuric), 술파믹(sulfamic), 술파닐릭(sulfanilic), 포르믹(formic), 톨루엔술포닉(toluenesulfonic), 메탄술포닉(methanesulfonic), 벤젠술포닉(bensenesulfonic), 에탄디술포닉(ethane disulfonic), 2-하이드록시에틸술포닉(2-hydroxyethylsulfonic), 니트릭(nitric), 벤조익(benzoic), 2-아세콕실벤조익(2-acetoxybenzoic), 시르릭(citric), 타르타릭(tartaric), 락틱(lactic), 스테아릭(stearic), 살리사이클릭(salicylic), 글루타믹(glutamic), 아스코르빅(ascorbic), 파모익(pamoic), 숙시닉(succinic), 푸마릭(fumaric), 말레익(maleic), 프로피오닉(propionic), 하이드록시말레익(hydroxymaleic), 하이드로이오딕(hydroiodic), 페닐아세틱(phenylacetic), 아세틱(acetic)과 같은 알카노익(alkanoic), HOOC-(CH2)n-COOH 및 그의 동종과 같은 산의 염을 n이 0 내지 6, 즉 0, 1, 2, 3, 4, 5 또는 6,의 정수인 곳에서 포함하지만, 이것으로 제한하지는 않는다. 유사하게, 약학적으로 허용가능한 양이온(cation)은 나트륨(sodium), 칼륨(potassium), 칼슘(calcium), 알루미늄(aluminum), 리튬(lithium) 및 암모늄(ammonium)을 포함하지만, 이것으로 제한되지는 않는다. 나아가 당업계에서 일반적인 기술을 가진 당업자는 여기서 제공하는 화합물의 약학적으로 허용가능한 염을 인지할 것이다. 일반적으로, 약학적으로 허용가능한 산성 또는 염기성 염은 종래 일반적인 화학적 방법으로 염기성 또는 산성 모이어티(moiety)를 갖고 있는 모 화합물(parent compound)로부터 합성될 수 있다. 간략하게, 상기 염은 물 또는 유기용매, 또는 그 2가지 혼합물에서의 적절한 염기 또는 산의 많은 화학량(stoichiometric)을 갖는 상기 화합물의 유리(free) 산 또는 염기 형태의 반응에 의해 제조될 수 있다. 일반적으로, 에테르(ether), 에틸아세테이트(ethyl acetate), 에탄올(ethanol), 이소프로판올(isopropanol) 또는 아세토니트릴(acetonitrile)과 같은 비수용성 매질(nonaqueous media)의 사용이 선호된다.
화학식 1의 각 화합물은 수화물(hydrate), 용매 화합물(solvate) 또는 비공유 복합체(non-covalent complex)로 존재할 수 있지만, 필요로 하지는 않는다. 게다가, 여기서 제공된 화학식 1 화합물의 전구약물(prodrug)이 포함되었던 것처럼, 다양한 결정형(crystal form) 및 동소체(polymorph)는 본 발명의 범위에 포함된다.
"전구약물(prodrug)"은 여기에서 제공된 화합물의 구조적 필수요건(requirement)를 완벽하게 만족시키지 않을 수 있는 화합물이지만, 개체(subject) 또는 환자에게 투여되고, 여기에서 제시되는 화학식 1의 화합물을 형성하기 위해 생체 내에서 변형된다. 예를 들면, 전구약물는 여기서 제시된 것처럼 화합물의 아실화된 유도체(acylated derivative)일 수 있다. 전구약물는 하이드록시, 카르복시(carboxy), 아민(amine) 또는 술프하이드릴(sulfhydryl) 기가 포유류 개체(mammailian subject)에 투여되었을 때, 유리(free) 하이드록시, 카르복시, 아민, 또는 술프하이드릴 기를 각각 형성하기 위해 잘리는 어떤 다른 기와 연결되는 것을 특징으로 하는 화합물을 포함한다. 전구약물의 예는 아세테이트(acetate), 포르메이트(formate), 포스페이트(phosphate) 및 알코올(alcohol)의 벤조에이트 유도체(benzoate derivatives) 및 여기서 제시되는 화합물에 있는 아민 기능기(functional group)를 포함하지만, 이것으로 제한되지는 않는다. 여기서 제시되는 화합물의 전구약물은 모 화합물을 생산하기 위해 생체 내에서 변형이 잘리는(cleave) 방법으로 화합물에 있는 기능기를 변형시킴으로써 제조될 수 있다.
여기서 사용된 "치환기(substituent)"는 목적분자(molecule of interest)에 있는 원자에 공유결합을 한 분자 모이어티(molevular moiety)를 의미한다. 예를 들면, "링치환기(ring substutuent)"는 할로겐(halogen), 알킬기, 할로알킬(haloalkyl)기 또는 링 멤버(ring member)인 원자에, 선호되게는 탄소 또는 질소 원자에, 공유결합한 여기에서 기술된 다른 치환기와 같은 모이어티가 될 수 있다. 여기서 사용되는, "치환된(subsitituted)"이라는 용어는 지정된 원자(designated atom)에서 하나 또는 그 이상의 수소(hydrogens)가 명시된 치환기로부터 선택된 것으로 치환된 것과 지정된 원자의 정상 원자가(normal valence)를 초과하지 않는 조건에서, 그 치환이 안정한 화합물을, 즉 분리, 특징 및 생물학적 활성을 위해 검사 될 수 있는 화합물을, 초래하는 것을 의미한다. 치환기가 옥소(oxo), 즉 =0, 일 때, 원자에 있는 2개의 수소는 치환된다. 아로마틱(aromatic) 탄소 원자의 치환기인 옥소기는 -CH-에서 -C(=O)-로의 전환 및 아로마성(aromaticity)의 손실을 초래한다. 예를 들면 옥소로 치환된 피리딜(pyridyl)기는 피리돈(pyridone)이다.
여기서 사용된 것과 같이, "아미노산(amino acid)"이란 용어는 1 또는 그 이상의 아미노 치환기, 예를 들면 α-, β- 또는 γ- 아미노, 지방족(aliphatic) 카르복실산의 유도체를 포함한 유기산을 의미한다. 여기서 사용되는 폴리펩타이드 표기법(notation)에서, 예를 들면 Xaa5, 즉 Xaa1Xaa2Xaa3Xaa4Xaa5, 여기서 Xaa1 내지 Xaa5는 각각 및 독립적으로 정의된 것과 같은 아미노산으로부터 선택되고, 표준 사용 및 관습에 따라, 왼손방향이 아미노 말단(amino terminal)방향이고 오른손 방향이 카르복실 말단(carboxyl terminal) 방향이다. "일반적인 아미노산(conventional amino acid)"이라는 용어는 20개의 자연적으로 발생한 아미노산을 의미하고, 이것은 글라이신(glycine), 루신(leucine), 이소루신(isoleucine), 발린(valine), 알라닌(alanine), 페닐알라닌(phenylalanine), 티로신(tyrosine), 트립토판(tryptophan), 아스팔산(aspartic acid), 아스파라진(asparagine), 글루탐산(glutamic acid), 글루타민(glutamine), 시스테인(cysteine), 메티오닌(methionine), 아르기닌(arginine), 리신(lysine), 프롤린(proline), 세린(serine), 트레오닌(threonine) 및 히스티딘(histidine)으로 구성된 그룹에서 선택되고, 모든 입체이성질체 아형(stereomeric isoforms)을, 즉 그들의 D,L-, D- 및 L-아미노산을, 포함한다. 이러한 일반적인(conventional) 아미노산은 그들의 일반적인(conventional) 3- 문자(letter) 또는 1-문자의 약자로 표현될 수 있고 그들의 약자는 일반적인 사용(conventional usage)에 따른다(참조, 예를들면, Immunology -A Synthesis , 2nd Edition, E. S. Golub and D. R. Gren, Eds., Sinauer Associates, Sunderland Mass. (1991)). "비일반적인 아미노산(non-conventional amino aicd)"이라는 용어는 자연스러운 것이 아닌 아미노산 또는 화학적 아미노산 유사체를, 예를 들면 α,α-2기 치환의(disubstituted) 아미노산, N-알킬 아미노산(N-alkyl amino acid), 호모(homo)-아미노산, 디하이드로아미노산(dehydroamino acid), 아로마틱 아미노산(페닐알라닌, 티로신 및 트립토판을 제외), 및 오르소(ortho)-, 메타(meta)-, 또는 파라(para)-아미노벤조익 산(aminobenzoic acid)을, 의미한다. 비일반적인(non-conventional) 아미노산은 또한 1, 3 또는 더 큰 치환방식으로 분리된, 예를 들면 β-알라닌, γ-아미노 부티릭산(amino butyric acid), 프리딘저 락탐(Freidinger lactam), 바이사이클릭 디펩타이드(bicyclic diepetide:BTD), 아미노-메틸 벤조익산(amino-methyl benzoic acid) 및 당업계에서 잘 알려진 다른 것과 같은, 아민 및 카르복실기능적 그룹을 갖고 있는 화합물을 포함한다. 스타틴(statin)-같은 등배(isosteres), 하이드록시에틸렌(hydroxyethylene) 등배, 환원된 아미드 결합(redueced amide bond) 등배, 티오아미드(thioamide) 등배, 유레아(urea) 등배, 카르바메이트(carbamate) 등배, 티오에테르(thioether) 등배, 비닐(vinyl) 등배 및 당업계에 알려진 다른 아미드 결합 등배가 사용될 수 있다.
유사체 또는 비일반적인(non-conventional) 아미노산의 사용은 첨가한 펩타이드의 안정성 및 생물학적 반감기(biological half-life)를 개선시킬 수 있는데 이는 그들이 물리학적 조건에서 분해(breakdown)에 더 잘 견디기 때문이다. 당업자는 만들어질 수 있는 치환기의 유사한 종류를 알고 있을 것이다.
펩타이드의 적절한 구성요소(building block)로써 사용될 수 있는 비일반적인(non-conventional) 아미노산의 제한되지 않은 리스트 및 그들의 표준 약어(괄호 안에)가 하기에 있다: α-아미노부티릭산(α-aminobutyric acid; Abu), L-N-메틸알라닌(L-N-methylalanine; Nmala), α-아미노-α-메틸부티레이트(α-amino-α-methylbutyrate; Mgabu), L-N-메틸아르기닌(L-N-methylarginine; Nmarg), 아미노사이클로프로판(aminocyclopropane; Cpro), L-N-메틸아스파라긴(L-N-methylasparagine; Nmasn), 카르복실레이트 L-N-메틸아스팔틱산(carboxylate L-N-methylaspartic acid; Nmasp), 아니노이소부티릭(aniinoisobutyric acid; Aib), L-N-메틸시스테인(methylcysteine; Nmcys), 아미노노르보르닐(aminonorbornyl; Norb), L-N-메틸글루타민(L-N-methylglutamine; Nmgln), 카르복실레이트 L-N-메틸글루타믹산(carboxylate L-N-methylglutamic acid; Nmglu), 사이클로헥실알라닌(cyclohexylalanine; Chexa), L-N-메틸히스티딘(methylhistidine; Nmhis), 사이클로펜틸알라닌(cyclopentylalanine; Cpen), L-N-메틸이소루신(L-N-methylisolleucine; Nmile), L-N-메틸루신(L-N-methylleucine; Nmleu), L-N-메틸리신(L-N-methyllysine; Nmlys), L-N-메틸메티오닌(L-N-methylmethionine; Nmmet), L-N-메틸노르루신(L-N-methylnorleucine; Nmnle), L-N-메틸노르발린(L-N-methylnorvaline; Nmnva), L-N-메틸오르니틴(L-N-methylornithine; Nmorn), L-N-메틸페닐알라닌(L-N-methylphenylalanine; Nmphe), L-N-메틸피롤린(L-N-methylproline; Nmpro), L-N-메틸세린(L-N-methylserine; Nmser), L-N-메틸트레오닌(L-N-methylthreonine; Nmthr), L-N-메틸트립토판(L-N-methyltryptophan; Nmtrp), D-오르니틴(D-ornithine; Dorn), L-N-메틸티로신(L-N-methyltyrosine; Nmtyr), L-N-메틸발린(L-N-methylvaline; Nmval), L-N-메틸에틸글리신(L-N-methylethylglycine; Nmetg), L-N-메틸-t-부틸글리신(L-N-methyl-t-butylglycine; Nmtbug), L-노르루신(L-norleucine; NIe), L-노르발린(L-norvaline; Nva), α-메틸-아미노이소부티레이트(α-methyl-aminoisobutyrate; Maib), α-메틸-α-아미노부티레이트(α-methyl-α-aminobutyrate; Mgabu), D-α-메틸알라닌(D-α-methylalanine; Dmala), α-메틸사이클로헥실알라닌(α-methylcyclohexylalanine; Mchexa), D-α-메틸아르기닌(D-α-methylarginine; Dmarg), α-메틸사이클로펜틸알라닌(α-methylcylcopentylalanine; Mcpen), D-α-메틸아스파라긴(methylasparagine; Dmasn), α-메틸-α-나프틸알라닌(α-methyl-α-napthylalanine; Manap), D-α-메틸아스팔테이트(D-α-methylaspartate; Dmasp), α-메틸페니실아민(α-methylpenicillamine; Mpen), D-α-메틸시스테인(D-α-methylcysteine; Dmcys), N-(4-아미노부틸)글리신(N-(4-aminobuyl)glycine; NgIu), D-α-메틸글루타민(D-α-methylglutamine; Dmgln), N-(2-아미노에틸)글리신(N-(2-aminoethyl)glycine; Naeg), D-α-메틸히스티딘(D-α-methylhistidine; Dmhis), N-(3-아미노프로필)글리신(N-(3-aminopropyl)glycine; Norn), D-α-메틸이소루신(D-α-methylisoleucine; Dmile), N-아미노-α-메틸부티레이트(N-amino-α-methylbutyrate; Nmaabu), D-α-메틸루신(D-α-methylleucine; Dmleu), α-나프틸알라닌(α-napthylalanine; Anap), D-α-메틸리신((D-α-methyllysine; Dmlys), N-벤질글리신(N-benzylglycine; Nphe), D-α-메틸메티오닌(D-α-methylmethionine; Dmmet), N-(2-카르바밀에틸)글리신(N-(2-carbamylethyl)glycine; NgIn), D-α-메틸오르니틴(D-α-methylornithine; Dmorn), N-(카르바밀메틸)글리신(N-(carbamylmethyl)glycine; Nasn), D-α-메틸페닐알라닌(D-α-methylphenylalanine; Dmphe), N-(2-카르복시에틸)글리신(N-(2-carboxyethyl)glycine; NgIu), D-α-메틸프롤린(D-α-methylproline; Dmpro), N-(카르복시메틸)글리신(N-(carboxymethyl)glycine; Nasp), D-α-메틸세린(D-α-methylserine; Dmser), N-사이클로부틸글리신(N-cyclobutylglycine; Ncbut), D-α-메틸트레오닌(D-α-methylthreonine; Dmthr), N-사이클로헵틸글리신(N-cycloheptylglycine; Nchep), D-α-메틸트립토판(D-α-methyltryptophan; Dmtrp), N-사이클로헥실글리신(N-cyclohexylglycine; Nchex), D-α-메틸티로신(D-α-methyltyrosine; Dmty), N-사이클로덱실글리신(N-cyclodecylglycine; Ncdec), D-α-메틸발린(D-α-methylvaline; Dmval), N-사이클로덱실글리신(N-cylcododecylglycine; Ncdod), D-N-메틸알라닌(D-N-methylalanine; Dnmala), N-사이클로옥틸글리신(N-cyclooctylglycine; Ncoct), D-N-메틸아르기닌(D-N-methylarginine; Dnmarg), N-사이클로프로필글리신(N-cyclopropylglycine; Ncpro), D-N-메틸아스파라긴(D-N-methylasparagine; Dnmasn), N-사이클로운덱실글리신(N-cycloundecylglycine; Ncund), D-N-메틸아스팔테이트(D-N-methylaspartate; Dnmasp), N-(2,2-디페닐에틸)글리신(N-(2,2-diphenylethyl)glycine; Nbhm), D-N-메틸시스테인(D-N-methylcysteine; Dnmcys), N-(3,3-디페닐프로필)글리신(N-(3,3-diphenylpropyl)glycine; Nbhe), D-N-메틸글루타민(D-N-methylglutamine; Dnmgln), N-(3 -구아니디노프로필)글리신(N-(3-guanidinopropyl)glycine; Narg), D-N-메틸글루타메이트(D-N-methylglutamate; Dnmglu), N-(1-하이드록시에틸)글리신(N-(1-hydroxyethyl)glycine; Ntbx), D-N-메틸히스티딘(D-N-methylhistidine; Dnmhis), N-(하이드록시에틸)글리신(N-(hydroxyethyl)glycine; Nser), D-N-메틸이소루신(D-N-methylisoleucine; Dnmile), N-(이미다졸릴에틸)글리신(N-(imidazolylethyl)glycine; Nhis), D-N-메틸루신(D-N-methylleucine; Dnmleu), N-(3-인돌일에틸)글리신(N-(3-indolylyethyl)glycine; Nhtrp), D-N-메틸리신(D-N-methyllysine; Dnnilys), N-메틸-α-아미노부티레이트(N-methyl-α-aminobutyrate (Nmgabu), N-메틸사이클로헥실알리닌(N-methylcyclohexylalanine; Nmchexa), D-N-메틸메티오닌(D-N-methylmethionine; Dnmmet), D-N-메틸오르니틴(D-N-methylornithine; Dnmorn), N-메틸사이클로펜틸알라닌(N-methylcyclopentylalanine; Nmcpen), N-메틸글리신(N-methylglycine; NaIa), D-N-메틸페닐알라닌(D-N-methylphenylalanine; Dnmphe), N-메틸아미노이소부티레이트(N-methylaminoisobutyrate; Nmaib), D-N-메틸프롤린(D-N-methylproline; Dnmpro), N-(1-메틸프로필)글리신(N-(1-methylpropyl)glycine; Nile), D-N-메틸세린(D-N-methylserine; Dnmser), N-(2-메틸프로필)글리신(N-(2-methylpropyl)glycine; Nleu), D-N-메틸트레오닌(D-N-methylthreonine; Dnmthr), D-N-메틸트립토판(D-N-methyltryptophan; Dnmtrp), N-(1-메틸에틸)글리신(N-(1-methylethyl)glycine; Nval), D-N-메틸티로신(D-N-methyltyrosine; Dnmtyr), N-메틸아-나프틸알라닌(N-methyla-napthylalanine; Nmanap), D-N-메틸발린(D-N-methylvaline; Dnmval), N-메틸페니실아민(N-methylpenicillamine; Nmpen), α-아미노부티릭 산(α-aminobutyric acid; Gabu), N-(p-하이드록시페닐)글리신(N-(p-hydroxyphenyl)glycine; Nhtyr), L-/-부틸글리신(L-/-butylglycine; Tbug), N-(티오메틸)글리신(N-(thiomethyl)glycine; Ncys), L-에틸글리신(L-ethylglycine; Etg), 페니실아민(penicillamine; Pen), L-호모페닐알라닌(L-homophenylalanine; Hphe), L-α-메틸알라닌(L-α-methylalanine; Mala), L-α-메틸아르기닌(L-α-methylarginine; Marg), L-α-메틸아스파라긴(L-α-methylasparagine; Masn), L-α-메틸아스팔테이트(L-α-methylaspartate; Masp), L-α-메틸-t-부틸글리신(L-α-methyl-t-butylglycine; Mtbug), L-α-메틸시스테인(L-α-methylcysteine; Mcys), L-메틸에틸글리신(L-methylethylglycine; Metg), L-α-메틸글루타민(L-α-methylglutamine; MgIn), L-α-메틸글루타메이트(L-α-methylglutamate; MgIu), L-α-메틸히스티딘(L-α-methylhistidine; Mhis), L-α-메틸호모페닐알라닌(L-α-methylhomophenylalanine; Mhphe), L-α-메틸이소루신(L-α-methylisoleucine; Mile), N-(2-메틸티오에틸)글리신(N-(2-methylthioethyl)glycine; Nmet), L-α-메틸루신(L-α-methylleucine; Mleu), L-α-메틸리신(L-α-methyllysine; Mlys), L-α-메틸메티오닌(L-α-methylmethionine; Mmet), L-α-메틸노르루신(L-α-methylnorleucine; MnIe), L-α-메틸노르발린(L-α-methylnorvaline; Mnva), L-α-메틸오르니틴(L-α-methylornithine; Morn), L-α-메틸페닐알라닌(L-α-methylphenylalanine; Mphe), L-α-메틸프롤린(L-α-methylproline; Mpro), L-α-메틸세린(L-α-methylserine; Mser), L-α-메틸트레오닌(L-α-methylthreonine; Mthr), L-α-메틸트립토판(L-α-methyltryptophan; Mtrp), L-α-메틸티로신(L-α-methyltyrosine; Mtyr), L-α-메틸발린(L-α-methylvaline; Mval), L-N-메틸호모페닐알라닌(L-N-methylhomophenylalanine; Nmhphe), N-(N-(2,2-디페닐에틸)카르바밀메틸)글리신(N-(N-(2,2-diphenylethyl)carbamylmethyl)glycine; Nnbhm), N-(N-(3,3-디페닐프로필)카르바밀메틸)글리신(N-(N-(3,3-diphenylpropyl)carbamylmethyl)glycine; Nnbhe), 1-카르복시-1-(2,2-디페닐-에틸아미노)사이클로프로판(1-carboxy-1-(2,2-diphenyl-ethylamino)cyclopropane; Nmbc), L-O-메틸 세린(L-O-methyl serine; Omser), L-O-메틸 호모세린(L-O-methyl homoserine; Omhser).
알킬(alkyl)의 표현은 포화된, 1 내지 20개의 탄소 원자, 선호되게는 1 내지 10개의 탄소 원자, 예를 들면 n-옥틸기(n-octyl group), 특히 1 내지 6개의, 즉 1, 2, 3, 4, 5, 또는 6, 탄소 원자를 포함한, 예를 들면 메틸(methyl), 에틸(ethyl), 프로필(provyl), 이소-프로필(iso-propyl), n-부틸(n-butyl), 이소-부틸(iso-butyl), 섹-부틸(sec-butyl), 털트-부틸(tert-butyl), n-펜틸(n-pentyl), 이소-펜틸(iso-pentyl), n-헥실(n-hexyl), 또는 2,2-디메틸부틸(2,2-dimethylbutyl)를 포함하는 직쇄(straight-chain) 또는 가지 달린 탄화수소(branched hydrocarbon)기를 의미한다.
알케닐(alkenyl) 및 알키닐(alkynyl)의 표현은 2 내지 20개의 탄소 원자를 포함하는,선호되게는 2 내지 10 탄소 원자, 특히 2 내지 6, 즉 2, 3, 4, 5 또는 6, 탄소 원자, 예를 들면 에테닐(ethenyl; vinyl), 프로페닐(propenyl; allyl), 이소-프로페닐(iso-propenyl), 부테닐(butenyl), 에티닐(ethinyl), 프로피닐(propinyl), 부티닐(butinyl), 아세틸레닐(acetylenyl), 프로파르길(propargyl), 이소프레닐(isoprenyl) 또는 헥스-2-에닐(hex-2-enyl)기를 포함하는, 최소한 부분적으로 포화되지 않은, 직쇄 또는 가지 달린 탄화수소기를 의미한다. 선호되게는, 알케닐기는 1 또는 2개(특히 선호되게는 1개)의 이중결합을 갖고, 알키닐기는 1 또는 2개(특히 선호되게는 1개)의 삼중결합을 갖는다.
게다가, 알킬, 알케닐 및 알키닐이라는 용어는, 예를 들면 할로겐 원자에 의해, 선호되게는 F 또는 Cl에, 치환된 1 또는 그 이상의 수소 원자를 갖는 기(group), 예를 들면 2,2,2-트리클로로에틸(2,2,2-trichloroethyl) 또는 트리플루오르메틸(trifluoromethyl)와 같은 것을 의미한다.
헤테로알킬(heteroalkyl)이란 표현은 1 또는 그 이상의, 선호되게는 1, 2 또는 3, 탄소 원자가, 서로에게 독립적으로 산소(oxygen), 질소(nitrogen) 인(phosphorus), 붕소, 셀레늄(selenium), 실리콘(silicon) 또는 황(sulfur) 원자에 의해서, 선호되게는 산소, 황 또는 질소 원자에 의해서 치환된 알킬, 알케닐 또는 알키닐기를 의미한다. 또한 헤테로알킬이란 표현은 카르복실산 또는 카르복실산으로부터 유도된 기(group), 예를 들면 아실(acyl), 아실알킬(acylakyl), 알콕시카르보닐(alkoxycarbonyl), 아실옥시(acyloxy), 아실올시알킬(acyloxyalkyl), 카르복시알킬아미드(carboxyalkylamide) 또는 알콕시카르보닐옥시(alkoxycarbonyl)와 같은 것을 의미할 수 있다.
선호되게는, 헤테로알킬기는 1 내지 10개의 탄소 원자 및 산소, 질소 및 황(특히 산소 및 질소)으로 부터 선택된 1 내지 4개의 헤테로 원자를 갖고 있다. 특히 선호되게는, 헤테로알킬기는 1 내지 6개, 즉 1, 2, 3, 4, 5 또는 6개의 탄소 원자 및 산소, 질소 및 황, 특히 산소와 질소로부터 선택된 1, 2 또는 3, 특히 1 또는 2, 헤테로 원자를 포함한다.
헤테로알킬기의 예는 하기의 군(groups of formulae)에 있다: Ra-O-Ya-, Ra-S-Ya-, Ra-N(Rb)-Ya-, Ra-CO-Ya-, Ra-O-CO-Ya-, Ra-CO-O-Ya-, Ra-CO-N(Rb)-Ya-, Ra-N(Rb)-CO-Ya-, Ra-O-CO-N(Rb)-Ya-, Ra-N(Rb)-CO-O-Ya-, Ra-N(Rb)-CO-N(Rc)-Ya-, Ra-O-CO-O-Ya-, Ra-N(Rb)-C(=NRd)-N(Rc)-Ya-, Ra-CS-Ya-, Ra-O-CS-Ya-, Ra-CS-O-Ya-, Ra-CS-N(Rb)-Ya-, Ra-N(Rb)-CS-Ya-, Ra-O-CS-N(Rb)-Ya-, Ra-N(Rb)-CS-O-Ya-, Ra-N(Rb)-CS-N(Rc)-Ya-, Ra-O-CS-O-Ya-, Ra-S-CO-Ya-, Ra-CO-S-Ya-, Ra-S-CO-N(Rb)-Ya-, Ra-N(Rb)-CO-S-Ya-, Ra-S-CO-O-Ya-, Ra-O-CO-S-Ya-, Ra-S-CO-S-Ya-, Ra-S-CS-Ya-, Ra-CS-S-Ya-, Ra-S-CS-N(Rb)-Ya-, Ra-N(Rb)-CS-S-Ya-, Ra-S-CS-O-Ya-, Ra-O-CS-S-Ya-, 여기서 Ra는 수소 원자(hydrogen atom), C1-C6알킬(alkyl), C2-C6알케닐(alkenyl) 또는 C2-C6 알키닐(alkynyl)기; Rb는 수소 원자, C1-C6알킬, C2-C6알케닐 또는 C2-C6 알키닐기; Rc는 수소 원자, C1-C6알킬, C2-C6알케닐 또는 C2-C6알키닐기; Rd는 수소 원자, C1-C6알킬, C2-C6알케닐 또는 C2-C6알키닐기이고 Ya는 다이렉트결합(direct bond)의, C1 -C6알킬렌(alkylene), C2-C6알케닐렌(alkenylene) 또는 C2-C6알키닐렌(alkynylene)기이고, 여기서 각각의 헤테로알킬기는 최소한 1개의 탄소 원자를 포함하고 및 1 또는 그 이상의 수소 원자가 플루오린(fluorine) 또는 염소(chlorine) 원자로 치환될 수 있다.
헤테로알킬기의 특별한 예는 메톡시(methoxy), 트리플루오르메톡시, 에톡시(ethoxy), n-프로필옥시(n-propyloxy), 이소프로필옥시(isopropyloxy), 부톡시(butoxy), 털트-부틸옥시(tert-butyloxy), 메톡시메틸(methoxymethyl), 에톡시메틸(ethoxymethyl), -CH2CH2OH, -CH2OH, 메톡시에틸(methoxyethyl), 1-메톡시에틸(1-methoxyethyl), 1-에톡시에틸(1-ethoxyethyl), 2-메톡시에틸(2-methoxyethyl) 또는 2-에톡시에틸(2-ethoxyethyl), 메틸아미노(methylamino), 에틸아미노(ethylamino), 프로필아미노(propylamino), 이소프로필아미노(isopropylamino), 디메틸아미노(dimethylamino), 디에틸아미노(diethylamino), 이소프로필-에틸 아미노(isopropyl-ethylamino), 메틸아미노 메틸(methylamino methyl), 에틸아미노 메틸(ethylamino methyl), 디소-프로필아미노에틸(diiso-propylamino ethyl), 메틸티오(methylthio), 에틸티오(ethylthio), 이소프로필티오(isopropylthio), 에놀 에테르(enol ether), 디메틸아미노 메틸(dimethylamino methyl), 디메틸아미노 에틸(dimethylamino ethyl), 아세틸(acetyl), 프로피오닐(propionyl), 부티릴옥시(butyryloxy), 아세틸옥시(acetyloxy), 메톡시카르보닐(methoxycarbonyl), 에톡시카르보닐(ethoxycarbonyl), 프로피오닐옥시(propionyloxy), 아세틸아미노(acetylamino) 또는 프로피오닐아미노(propionylamino), 카르복시메틸(carboxymethyl), 카르복시에틸(carboxyethyl) 또는 카르복시프로필(carboxypropyl), N-에틸-N-메틸카르바모일(N-ethyl-N-methylcarbamoyl) 또는 N-메틸카르바모일(N-methylcarbamoyl)이다. 헤테로알킬 그룹의 또다른 예는 니트릴(nitrile), 이소니트릴(isonitrile), 시아네이트(cyanate), 티오-시아네이트(thio-cyanate), 이소시아네이트(isocyanate), 이소티오시아네이트(isothiocyanate) 및 알킬니트릴(alkylnitrile)기가 있다.
사이클로알킬(cycloalkyl)의 표현은 포화되거나 또는 부분적으로 불포화된(예를 들면, 사이클로알케닐기) 사이클릭기(cyclic group)을 의미하는데 이는 1 또는 그 이상의 링(선호되게는 1 또는 2)을 포함하고, 3 내지 15개의 링 탄소 원자를, 선호되게는 3 내지 10(특히 3, 4, 5, 6 또는 7) 링 탄소 원자를 포함한다. 나아가 사이클로알킬의 표현은 하나 또는 그 이상의 수소 원자가 플루오린, 염소, 브롬(bromine) 또는 요오드(iodine) 원자에 의해 또는 OH, =O, SH, NH2, =NH, N3 또는 NO2 그룹에 의해 치환된 그룹을 의미하므로, 따라서, 예를 들면 사이클릭 켄톤(cyclic kentones), 예를 들면 사이클로헥사논(cyclohexanone), 2-사이클로헥세논(2-cyclohexenone) 또는 사이클로펜타논(cyclopentanone)과 같은 것들이 있다. 더 구체적인 사이클로알킬 그룹의 예는 사이클로-프로필(cyclo-propyl), 사이클로부틸(cyclobutyl), 사이클로펜틸(cyclopentyl), 스피로[4,5]디카닐(spiro[4,5]decanyl), 노르보르닐(norbornyl), 사이클로헥실(cyclohexyl), 사이클로펜테닐(cyclopentenyl), 사이클로헥사디닐(cyclohexadienyl), 디카리닐(decalinyl), 바이사이클로-[4.3.0]노닐(bicyclo-[4.3.0]nonyl), 테트라린(tetraline), 사이클로펜틸사이클로헥실(cyclopentylcyclohexyl), 플루오르사이클로헥실(fluorocyclohexyl) 또는 사이클로헥스-2-에닐(cyclohex-2-enyl)기가 있다.
헤테로사이클로알킬(heterocycloalkyl)의 표현은 상기에 정의된 것과 같이 하나 또는 그 이상의(선호되게는 1, 2 또는 3) 링 탄소 원자, 각각 독립적으로, 산소(oxygen), 질소(nitrogen), 실리콘(silicon), 셀레늄(selenium), 인(phosphorus) 또는 황(sulfur) 원자(선호되게는 산소, 황 또는 질소 원자)에 의해 치환된 사이클로알킬기를 의미한다. 헤테로사이클로알킬기는 우선적으로 3 내지 10개의 (특히 3, 4, 5, 6 또는 7) 링 원자(선호되게는 C, O, N 및 S로부터 선택된)를 포함하는 1 또는 2개의 링이다. 나아가 헤테로-사이클로-일킬이란 표현은 1 또는 그 이상의 수소 원자가 플루오린, 염소, 브롬 또는 요오드 원자에 의해 또는 OH, =O, SH, =S, NH2, =NH, N3 또는 NO2에 의해 치환된 기를 의미한다. 그 예로는 피페리딜(piperidyl), 프로리닐(prolinyl), 이미다졸리디닐(imidazolidinyl), 피페라지닐(piperazinyl), 모르포리닐(morpholinyl), 우로트로-피닐(urotro-pinyl), 피롤리디닐(pyrrolidinyl), 테트라-하이드로-티오페닐(tetra-hydro-thiophenyl), 테트라하이드로피라닐(tetrahydropyranyl), 테트라하이드로푸릴(tetrahydrofuryl) 또는 2-피라졸리닐(2-pyrazolinyl) 그룹이 있고 또한 락탐(lactames), 락톤(lactones), 사이클릭 이미드(cyclic imides) 및 사이클릭 안하이드리드(cyclic anhydrides)가 있다.
알킬사이클로알킬(alkylcycloalkyl)의 표현은 상기의 정의와 같이 사이클로알킬 및 또한 알킬, 알케닐 또는 알키닐기를 포함하는 기를 의미하는데, 예를들면 알킬사이클로-알킬(alkylcyclo-alkyl), 사이클로알킬알킬(cycloalkylalkyl), 알킬사이클로알케닐(alkylcycloalkenyl), 알케닐사이클로알킬(alkenylcycloalkyl) 및 알키닐-사이클로-알킬(alkynyl-cyclo-alkyl)기가 있다. 알킬사이클로알킬기는 3 내지 10개의(특히, 3, 4, 5, 6 또는 7) 링 탄소 원자, 및 1 또는 2 내지 6개의 탄소 원자를 갖는 1 또는 2개의 알킬, 알케닐 또는 알키닐 그룹을 갖는 1 또는 2개의 링 시스템을 포함하는 사이클로알킬기를 선호적으로 포함한다.
헤테로알킬사이클로알킬(heteroalkylcycloalkyl)은 상기 정의한 것과 같이 1 또는 그 이상, 선호되게는 1, 2 또는 3개의, 탄소 원자가 산소, 질소, 실리콘, 셀레늄, 인 또는 황 원자에 의해 (선호되게는 산소, 황 또는 질소 원자에 의해) 서로 독립적으로 치환된 알킬사이클로알킬(alkylcycloalkyl)기를 의미한다. 헤테로알킬사이클로알킬기는 선호되게는 3 내지 10개의(특히 3, 4, 5, 6 또는 7)링 원자, 및 1 또는 2 내지 6개의 탄소 원자를 갖는 1 또는 2개의 알킬, 알케닐, 알키닐 또는 헤테로알킬기를 갖는 1 또는 2개의 링 시스템을 포함한다. 상기 그룹의 예는 알킬헤테로사이클로알킬(alkylheterocycloalkyl), 알킬헤테오사이클로케닐(alkylheterocycloalkenyl), 알케닐헤테로사이클로알킬(alkenylheterocycloalkyl), 알키닐헤테로사이클로알킬(alkynylheterocycloalkyl), 헤테로알킬사이클로알킬(heteroalkylcycloalkyl), 헤테로알킬헤티로사이클로알킬(heteroalkylheterocycloalkyl) 및 헤테로알킬헤테로사이클로알케닐(heteroalkylheterocycloalkenyl), 포화된 또는 모노-(mono-), 디(di-), 또는 트리-(tri-) 불포화된 사이클릭기가 있다.
아릴(aryl) 또는 Ar의 표현은 6 내지 14개의 링 탄소 원자, 선호되게는 6 내지 10(특히 6)개의 링 탄소 원자를 포함하는 1 또는 그 이상의 링을 포함하는 아로마틱기를 의미한다. 나아가 아릴 표현(또는 Ar, 각각)은 1 또는 그 이상의 수소 원자가 플루오린, 염소, 브롬 또는 요오드 원자에 의해 또는 OH, SH, NH2, N3 또는 NO2 그룹에 의해 치환된 기를 의미한다. 예로는 페닐(phenyl), 나프틸(naphthyl), 바이-페닐(bi-phenyl), 2-플루오르페닐(2-fluorophenyl), 아닐리닐(anilinyl), 3-니트로-페닐(3-nitro-phenyl) 또는 4-하이드록시페닐(4-hydroxyphenyl)기가 있다.
헤테로아릴(heteroaryl) 표현은 5 내지 14개의 링 원자를, 선호되게는 5 내지 10개의(특히 5 또는 6) 링 원자를, 포함하고, 1 또는 그 이상(선호되게는 1, 2, 3 또는 4) 산소, 질소, 인 또는 황 링 원자(선호되게는 O, S 또는 N)을 포함한다. 1 또는 그 이상의 링을 포함하는 아로마틱기를 의미한다. 나아가 헤테로아릴 표현은 1 또는 그 이상의 수소 원자가 플루오린, 염소, 브롬 또는 요오드 원자에 의해 또는 OH, SH, N3, NH2 또는 NO2 그룹에 의해 치환된 기를 의미한다. 예로는 피리딜(pyridyl (예 4-pyridyl)), 이미다졸릴(imidazolyl (예 2-imidazolyl)), 페닐프롤릴(phenylpyr-rolyl (예 3-phenylpyr-rolyl)), 티아졸릴(thiazolyl), 이소티아졸릴(isothiazolyl), 1,2,3-트리아졸릴(1,2,3-triazolyl), 1,2,4-트리아졸릴, 옥사디아졸릴(oxadiazolyl), 티아디아졸릴(thiadiazolyl), 인돌릴(indolyl), 인다졸릴(indazolyl), 테트라졸릴(tetrazolyl), 피라지닐(pyrazinyl), 피리미디닐(pyrimidinyl), 피리다지닐(pyridazinyl), 옥사졸릴(oxazolyl), 이속사졸릴(isoxazolyl), 트리아졸릴(triazolyl), 테트라졸릴(tetrazolyl), 이속사졸릴(isoxazolyl), 인다졸릴(indazolyl), 인돌릴(indolyl), 벤지미다졸릴(benzimidazolyl), 벤족사졸릴(benzoxazolyl), 벤지속사졸릴(benzisoxazolyl), 벤즈디라졸릴(benzthiazolyl), 피리다지닐(pyridazinyl), 퀴놀리닐(quinolinyl), 이소퀴놀릴(isoquinolinyl), 피롤릴(pyrrolyl), 퓨리닐(purinyl), 카르바졸릴(carbazolyl), 아크리디닐(acridinyl), 피리미딜(pyrimi-dyl), 2,3'-바이푸릴(2,3'-bifuryl), 피라졸릴(pyrazolyl (예 3-pyrazolyl)) 및 이소퀴놀리닐(isoquino-linyl)기가 있다.
아랄킬(aralkyl)이란 표현은 상기 정의에 따라 아릴(aryl) 및 또는 알킬(alkyl), 알케닐(alkenyl), 알키닐(alkynyl) 및/또는 사이클로알킬기를 포함하는 기(group)를, 예를 들면 아릴알킬(arylalkyl), 아릴알케닐(arylalkenyl), 아릴알키닐(arylalkynyl), 아릴사이클로알킬(arylcycloalkyl), 아릴사이클로알케닐(arylcycloalkenyl), 알킬아릴사이클로알킬(alkylarylcycloalkyl) 및 알킬아릴사이클로알케닐(alkylarylcycloalkenyl)기와 같은 것을 의미한다. 아랄킬의 특별한 예는 톨루엔(toluene), 자일렌(xylene), 메시틸렌(mesitylene), 스티렌(styrene), 벤질 클로라이드(benzyl chloride), o-플루오로톨루엔(o-fluorotoluene), 1H-인덴(1H-indene), 테트라린(tetraline), 디하이드로나프틸렌(dihydronaphthalene), 인다논(indanone), 페닐사이클로펜틸(phenylcyclopentyl), 큐멘(cumene), 사이클로헥실페닐(cyclohexylphenyl), 플루오렌(fluorene) 및 인데인(indane). 선호되게는 아랄킬기는 6 내지 10개의 탄소 원자를 포함하고 6 내지 10개의 탄소 원자를 포함하는 1 또는 2개의 알킬, 알케닐, 및/또는 알키닐기 및/또는 5 또는 6개의 링 탄소 원자를 포함하는 사이클로알킬기를 포함하는 1 또는 2 개의 아로마틱 링 시스템(1 또는 2 링)을 포함한다.
헤테로아랄킬(heteroaralkyl)이란 표현은 상기 정의한 것과 같이 1 또는 그 이상의(선호되게는 1, 2, 3 또는 4) 탄소 원자, 서로 독립적으로, 산소, 질소, 실리콘, 셀레늄, 인, 붕소, 및 황 원자(선호되게는 산소, 황 또는 질소)에 의해 치환된 아랄킬기이고, 그것은 아릴 또는 헤테로아릴을 각각 포함하는 기이고, 또한 상기 정의에 따라 알킬, 알케닐, 알키닐 및/또는 헤테로알킬 및/또는 사이클로 알킬 및/또는 헤테로사이클로알킬기를 포함한다. 헤테로아랄킬기는 선호적되게는 5 또는 6 내지 10개의 링 탄소 원자 및 1 또는 2 내지 6개의 탄소 원자를 포함하는 1 또는 2개의 알킬, 알케닐 및/또는 알키닐기 및/또는 5 또는 6개의 링 탄소 원자를 포함하는 사이클로 알킬기를 포함하는 1 또는 2개의 아로마틱 링 시스템(1 또는 2 링)을 포함하는데, 여기서 1, 2, 3 또는 4개의 상기 탄소 원자는 산소, 황 또는 질소 원자로 치환된다.
그 예로는 아릴헤테로알킬(arylheteroalkyl), 아릴헤테로사이클로알킬(arylheterocycloalkyl), 아릴헤테로사이클로알케닐(arylheterocycloalkenyl), 아릴알키닐헤테로사이클로알킬(arylalkylheterocycloalkyl), 아릴알케닐헤테로사이클로알킬(arylalkenylheterocycloalkyl), 아릴알키닐헤테로사이클로알킬(arylalkynylheterocycloalkyl), 아릴알킬헤테로사이클로알케닐(arylalkylheterocycloalkenyl), 헤테로아릴알킬(heteroarylalkyl), 헤테로아릴알케닐(heteroarylalkenyl), 헤테로아릴알키닐(heteroarylalkynyl), 헤테로아릴헤테로알킬(heteroarylheteroalkyl), 헤테로아릴사이클로알킬(heteroarylcycloalkyl), 헤테로아릴사이클로알케닐(heteroarylcycloalkenyl), 헤테로아릴헤테로사이클로알킬(heteroarylheterocycloalkyl), 헤테로아릴헤테로사이클로알케닐(heteroarylheterocycloalkenyl), 헤테로아릴알킬사이클로알킬(heteroarylalkylcycloalkyl), 헤테로아릴알킬헤테로사이클로알케닐(heteroarylalkylheterocycloalkenyl), 헤테로아릴헤테로알킬사이클로알킬(heteroarylheteroalkylcycloalkyl), 헤테로아릴헤테로알킬사이클로알케닐(heteroarylheteroalkylcycloalkenyl) 및 헤테로아릴헤테로알킬헤테로사이클로알킬(hetero-arylheteroalkylhetero-cycloalkyl)기가 있고, 포화된 또는 모노-(mono-), 디-(di-), 또는 트리-(tri-) 불포화된 사이클릭기(cyclic gtoup)가 있다. 특별한 예에는 테트라하이드로이소퀴놀리닐(tetrahydroisoquinolinyl), 벤조일(benzoyl), 2- 또는 3-에틸인돌일(2- or 3-ethylindolyl), 4-메틸피리디노(4-methylpyridino), 2-, 3- 또는 4-메톡시페닐(2-, 3- or 4-methoxyphenyl), 4-에톡시페닐(4-ethoxyphenyl), 2-, 3-, 또는 4-카르복시페닐알킬기(2-, 3- or 4-carboxy-phenylalkyl group)가 있다.
이미 상기된 것과 같이, 사이클로알킬, 헤테로사이클로알킬, 알킬사이클로알킬, 헤테로알킬사이클로알킬, 아릴, 헤테로아릴, 아랄킬 및 헤테로아랄킬은 또한 상기 기의 1 또는 그 이상의 수소 원자 서로에게 독립적으로 플루오린, 염소, 브롬 또는 요오드 원자에 의해 또는 by OH, =O, SH, =S, NH2, =NH, N3 또는 NO2기에 의해 치환된 기를 의미한다.
"선택적으로 치환된(optionally substituted)"이란 표현은 1, 2, 3 또는 그 이상의 수소 원자가 서로에게 독립적으로 플루오린, 염소, 브롬 또는 요오드 원자에 의해 또는 OH, =O, SH, =S, NH2, =NH, N3 또는 NO2기에 의해 치환된 기를 의미한다. 상기 표현은 나아가 1, 2, 3 또는 그 이상(선호되게는 비치환의) C1-C6알킬(alkyl), C2-C6알케닐(alkenyl), C2-C6알키닐(alkynyl), C1-C6헤테로알킬(heteroalkyl), C3-C10사이클로알킬(cycloalkyl), C2-C9헤테로사이클로알킬(heterocycloalkyl), C2-C12알킬사이클로알킬(alkylcycloalkyl), C2-C11헤테로알킬사이클로알킬(heteroalkylcycloalkyl) C6-C10아릴(aryl), C1-C9헤테로아릴(heteroaryl), C7-C12아랄킬(aralkyl) 또는 C2-C11헤테로아랄킬(heteroaralkyl)기에 의해 치환된 기를 의미한다.
"할로겐(halogen)" 또는 "할로겐 원자(halogen atom)" 표현은 여기서 우선적으로 사용되는 것과 같이 플루오린, 염소, 브롬 또는 요오드를 의미한다.
여기서 사용되는 것과 같이 길이 범위의 제한을 정의하는 단어는, 예를 들면 "1 내지 5"와 같은, 1 내지 5의 모든 숫자를, 즉 1, 2, 3, 4 및 5를, 의미한다. 다시 말해서, 명백하게 언급된 2개의 정수에 의해 정의된 모든 범위는 언급된 범위를 구성하는 모든 정수 및 언급된 제한으로 정의되는 모든 정수로 구성되고 그것을 밝히는 것을 의미한다.
선호되게는, 여기서 기재된 모든 알킬, 알케닐, 알키닐, 헤테로알킬, 아릴, 헤테로아릴, 사이클로알킬, 헤테로사이클로알킬, 알킬사리클로알킬, 헤테로알킬사이클로알킬, 아랄킬 및 헤테로아릴킬기는 선택적으로 치환될 수 있다.
X 및 Z가 각각 그리고 서로에게 독립적으로, X 및 Z가 Y와 함께 에폭시기를 형성할 때 X 및 Z는 오직 CH인 것을 조건으로, CH, CH2, 및 NR5으로부터 선택된 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
R1이 -COR2인 것을 특징으로 하는 화합식 1의 화합물이 선호된다.
또한 R2는 하이드록시(hydroxy), -O(CH2CH2O)pH, 또는 NR3R4인 것을 특징으로 하는 화학식 1의 화합물이 선호되고, 여기서 p는 1 내지 25의 정수이고, 특히 1 내지 3의 정수이다.
또한 m은 1인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한 n이 0 또는 1인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한 X, Y 및 Z가 함께 에폭시기를, 특히 X가 R-형태(configuration)의 CH-그룹을 나타내고 Z가 S-형태(configuration)을 나타내는 에폭시기를, 형성하는 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한 V는 -CH=CH-인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한 W는 -CH=CH-인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한 T, U 및 W 각각은 -CH2CH2-인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
특히 Y는 -C(O)- 또는 -C(O)-C(O)-인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한, 특히 X가 R5는 수소 원자, 메틸, 에틸, 프로필 또는 이소-프로필기 인 NR5 인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
또한, 특히 Z가 R5'는 수소 원자, 메틸, 에틸, 프로필 또는 이소-프로필 그룹인 것과 함께 NR5'인 것을 특징으로 하는 화학식 1의 화합물이 선호된다.
특히 선호되게는, 화학식 1의 화합물은 하기로부터 선택된다:
Figure 112011062269449-pct00003
.
특히 화학식 1의 각각의 제너릭기(generic group)의 선호되는 실시예를 가능한 모든 방법으로 결합시키는 것이 선호된다.
본 발명에 따라서 화학식 1의 화합물은 개선된 특성을, 특히 낮은 독성(toxicity), 낮은 약물간의 상호결합(drug drug interaction), 특히 구강 투여(oral administration)에 있어서 개선된 생물학적 이용가능성(bioavailability) , 개선된 대사 안정성(metabolic stability), 및 개선된 용해성(solubility)을 갖는다.
여기서 제공되는 화합물은 Ang II로 유도된 고혈압(hypertension) 및 말초기관(end-organ)의 손상의 이중 형질전환 쥐 모델(double transgenic mice model)에서 높은 심보호 활성(cardioprotective activity)을 보인다.
화학식 1의 화합물의 치료적 사용, 그들의 약학적으로 허용가능한 염, 용매화합물 또는 수화물 및 제형(formulation) 및 약학적 조성물은 본 발명의 범위에 있다. 본 발명은 또한 약의 제조에서 화학적 1의 유효 성분(active ingredient)으로써 그 화합물의 사용에 관한 것이고 또한 심장 손상(cardiac damage)의 치료를 위한 그들의 사용에 관한 것이다.
본 발명에 따른 약학적 조성물은 최소한 화학식 1의 1 화합물로 구성되고, 선택적으로, 1 또는 그 이상의 전달체 물질(carrier substances), 예를 들면 하이드로프로필 β-사이클로덱스트린(hydropropyl β-cyclodextrin), 미셀(michelle) 또는 리포좀(liposome) 같은 사이클로덱스트린(cyclodextrine), 첨가제(excipient) 및/또는 보조제(adjuvant)로 구성된다. 게다가 약학적 조성물은, 예를 들면, 1 또는 그 이상의 물, 버퍼, 예를 들면 중성 버퍼화된 살린(neutral buffered saline) 또는 인 버퍼화된 살린(phosphate buffered saline:PBS)와 같은, 에탄올(ethanol), 미네랄 오일(mineral oil), 식물성 오일(vegetable oil), 디메틸술폭시드(dimethylsulfoxide), 탄수화물(carbohydrate), 예를 들면 글루코오즈(glucose), 만노오즈(mannose), 수크로오즈(sucrose) 또는 덱스트란(dextran)과 같은, 만니톨(mannitol), 단백질(protein), 보조제, 폴리펩타이드(polypeptide) 또는 글라이신(glycine)과 같은 아미노산(amino acid), 항산화제(antioxidant), EDTA 및 글루타치온(glutathione)과 같은 킬레이팅제(chelating agent) 및/또는 보존제(preservative)로 구성될 수 있다. 뿐만 아니라, 1 또는 그 이상의 다른 유효 성분은 여기에서 제공된 약학적 조성물에서 포함될 수 있으나 필요로 하지는 않는다. 예를 들면, 본 발명의 화합물은 유리하게 항생(antibiotic), 항균(antifungal), 또는 항바이어스성(anti-viral) 물질(agent), 항히스타민(anti-histamine), 비스테로이드성 항염증 약(non-steroidal anti-inflammatory drug), 항류머티즘성 질환(disease modifying anti-rheumatic drug), 세포분열억제 약(cytostatic drig), 평활근활성 조절활성 약(drug with smooth muscle activity modulatory activity) 또는 상기의 혼합물과의 결합에 적용될 수 있다.
약학적 조성물은 투여, 예를 들면, 국부, 예를 들면 경피(transdermal) 또는 안구(ocular)와 같은, 구강의(oral), 입의(buccal), 비의(nasal), 질의(vaginal), 직장의(rectal) 또는 비경구의(parenteral) 투여를 포함하는 모든 적절한 투여 루트(route of administration)를 위해 제조될 수 있다. 여기서 사용되는 비경구의 용어는 피하의(subcutaneous), 피내의(intradermal), 혈관 내의 예를 들면 정맥의(intravenous), 근육내의(intramuscular), 척추의(spinal), 두개내의(intracranial), 척추강내의(intrathecal), 안내의(intraocular), 안주위의(periocular), 안구내의(intraorbital), 관절시노비알내의(intrasynovial) 및 복강내의(intraperitoneal) 주입(injection), 및 모든 비슷한 주입 및 투입기술(infusion)을 포함한다. 일부 실시예에서, 구강사용을 위한 적절한 형태에서 조성물이 선호된다. 상기 형태는, 예를 들면 타블렛(tablet), 정제(troch), 캔디(lozenge), 수용성 또는 오일성 서스펜션, 분산가능한 파우더(dispersible powder) 또는 작은 알갱이(granule), 유제(emulsion), 딱딱한 또는 부드러운 캡슐(capsule), 또는 시럽(syrup) 및 영약제(elixirs)를 포함한다. 다른 일부 실시예에서는, 여기서 제공되는 조성물이 동결건조제(lyophilizate)로서 제조될 수 있다. 국부투여를 위한 제조는 특정 조건에서, 예를 들면 화상을 입거나 가려운 피부의 치료에서와 같은 조건에서, 선호될 수 있다.
구강사용을 위해 고안된 조성물은 나아가 매력적이고 맛있게 조제하기 위해 1 또는 그 이상의 감미료(sweetening agent), 착향료(flavoring agent), 착색제(coloring agent) 및/또는 방부제(preserving agent)와 같은 구성물(component)로 구성될 수 있다. 타블렛은 타블렛의 제조에 적절한 물리적으로 가능한 첨가제와의 혼합하에 유효 성분을 포함한다. 상기 첨가제는, 예를 들면, 탄산 칼슘(calcium carbonate), 탄산 나트륨(sodium carbonate), 락토오즈(lactose), 인산칼슘(calcium phosphate) 또는 인산 나트륨(sodium phosphate)와 같은 비활성 희석제, 입화(granulating) 및 붕해(disintegrating) 제(agent), 예를 들면 옥수수전분(corn starch) 또는 알긴산(alginic acid)와 같은, 결합제(binding agent), 예를 들면 전분(starch), 젤라틴(gelatin) 또는 아카시아(acacia), 및 윤활제(lubricating agent)를, 예를 들면 스테아린 마그네슘(magnesium stearate), 스테아릭산(stearic acid) 또는 탈크(talc)와 같은, 포함한다. 타블렛은 코팅이 안 될 수도 있거나 위장 트랙(gastrointestinal tract)에서 분해(disintergration) 및 흡수(absorption)를 지연시키기 위해서 알려진기술에 의해 코팅될 수도 있으므로 더 오랜기간 동안 지속적인 활동을 제공한다. 예를 들면, 글리세릴 모노스테레이트(glyceryl monosterate) 또는 글리세릴 디스티아레이트(glyceryl distearate)와 같은 시간 지연물질이 적용 될 수도 있다.
구강 사용을 위한 제조는 활성물질이 비활성 고체젤라틴과, 예를 들면 탄산칼슘, 인산칼슘(calcium phosphate) 또는 카올린(kaolin)과 같은 것과, 혼합되었을 때 딱딱한 젤라틴 캡슐로서 나타내질 수 있고, 또는 활성물질이 물이나 오일미디아(oil medium)와, 예를 들면 땅콩오일(peanut oil), 액체 파라핀(liqiuid paraffin) 또는 올리브 오일(olive oil)과 같은 것과, 혼합되었을 때.부드러운 젤라틴 캡슐로서 나타내질 수 있다.
수용성 서스펜션은 수용성 서스펜션의 제조에 적합한 첨가제와 함께 혼합되어 활성물질을 포함한다. 상기 첨가제는 세스펜딩제(suspending agent), 예를 들면 나트륨 카르복실메틸셀룰로오즈(sodium carboxymethylcellulose), 메틸셀룰로오즈(methylcellulose), 하이드로프로필메틸셀룰로오즈(hydropropylmethylcellulose), 나트륨 알기네이트(sodium alginate), 폴리비닐피롤리돈(polyvinylpyrrolidone), 검 트라가칸트(gun tragacanth) 및검 아카시아(gum acacia)를 포함한다; 그리고 붕산(dispersing) 또는 습윤(wetting) 제(agent), 예를 들면 레시틴(lecithin)과 같은 자연적으로 일어난 포스파타이드(phosphatide)와 같은, 폴리옥시에틸렌 스테아르산염(polyoxyethylene stearate)과 같은 지방산(fatty acid)과 함께 알킬렌 옥사이드(alkylene oxide)의 축합체(condensation product), 헵타디카에틸옥시세탄올(heptadecaethyleneoxycetanol)과 같은 긴 사슬 지방족의 알코올과 함께 에틸렌 옥사이드(ethylene oxide)의 축합체, 지방산에서 유래된 부분적 에스테르(ester)와 함께 에틸렌 옥사이드의 축합체 및 폴리에틸렌 소르비탄 모노올리에이트(polyethylene sorbitan monooleate)와 같은 헥시톨 안하이드이드(hexitol anhydride)를 포함한다. 수용성 서스펜션은 또한 1 또는 그 이상의 방부제, 예를 들면 에틸, 또는 n-프로필 p-하이드록시벤조네일트(n-propyl p-hydroxybenzonate), 1 또는 그 이상의 착색제(coloring agent), 1 또는 그 이상의 착향료, 및 1 또는 그 이상의 감미료로, 수크로오즈(sucrose) 또는 사카린(saccharin)과 같은 것으로, 구성될 수 있다.
오일성 서스펜션(oily suspension)은 활성물질을 식물성 오일에, 예를 들면 아라키스 오일(arachis oil), 올리브 오일(olive oil), 깨오일(sesame oil) 또는 코코넛 오일(coconut oil)과 같은 것에, 또는 액체파리핀과 같은 미네랄 오일에 서스펜딩하여 제조될 수 있다. 오일성 서스펜션은 비즈왁스, 딱딱한 파라핀 또는 세틸 알코올(cetyl alcohol)과 같은 농조화제(thinkening agent)를 포함할 수 있다. 상기 정의된 것과 같은 감미료, 및/또는 착향료는 맛이 좋은 구강 제조(palatable oral preparations)를 제공하기 위해 첨가될 수 있다. 상기 서스펜션은 아스코르빅산(ascorbic acid)와 같은 항산화제의 첨가에 의해 보존될 수 있다.
물의 첨가에 의한 수용성 서스펜션의 제조에 적절한 분산될 수 있는 파우더 및 작은 알갱이는 붕산제 또는 습윤제, 서스펜딩제 및 1 또는 그 이상의 방부제와 혼합되어 활성물질을 제공한다. 알맞은 붕산제 또는 습윤제 및 서스펜딩제는 상기의 것들에 의해 이미 구체화되었다. 감미료, 착향료 및 착색료와 같은 추가 첨가제 또한 있을 수 있다.
약학적 조성물 또한 수중 유적형 유제(oil-in-water emulsion)의 형태에 있을 수 있다. 오일층(oily phase)는 올리브 오일이나 아라키스오일과 같은 식물성 오일, 액체 파라핀 같은 미네랄 오일, 또는 그들의 혼합물이 될 수 있다. 적절한 유화제(emulsifying agent)는 자연적으로 발생한 고무, 예를 들면 고무 아카시아(gum acacia) 또는 고무 트래거캔스(gum tragacanth)와 같은, 자연적으로 발생한 인지질(phosphatides), 예를 들면 콩 래시틴(soy bean lecithin), 및 지방산이나 헥시톨(hexitol)으로부터 유도된 에스테르 또는 부분적 에스테르, 무수물(anhydride), 예를 들면 소르비탄 모노리에이트(sorbitan monoleate), 및 예를 들면 폴리에틸렌 소르비탄 모노리에이트와 같은 에틸렌 옥사이드와 함께 지방산 및 헥시톨으로부터 유도된 부분적 에스테르의 축합제(condensation products)를 포함한다. 유화액(emulsion)은 또한 1 또는 그 이상의 감미료 및/또는 착항료로 구성될 수 있다.
시럽(syrup) 및 영약(elixir)은 글리세롤(glycerol), 프로필렌 글리콜(propylene glycol), 소르비톨(sorbitol) 또는 수크로즈(sucrose)와 함께 제조될 수 있다. 이와 같은 제조는 또한 1 또는 그 이상의 완화제(demulcent), 방부제, 착향료 및/또는 착색제로 구성될 수 있다.
화합물은 신체 일부의(local) 또는 국부의(topical) 투여를 위해, 예를 들면 피부 또는, 눈과 같은, 점막에 대한 국부 적용을 위해 제조될 수 있다. 국부 투여를 위한 제조는 일반적으로 활성제와 결합한 국부성 운반체(topical vehicle)로, 첨가적인 선택적 구성성분과 함께 또는 없이, 구성된다. 적절한 국부성 운반체 및 첨가적 구성성분은 당업계에 잘 알려져 있고, 운반체의 선택은 특정 물질적 형태 및 운반의 수단에 의해 결정된다는 것이 명백하다. 국부성 운반체는 물을 포함한다; 알코올과 같은 유기용매, 예를 들면 에탄올 또는 이소프로필 알코올 또는 글리세린과 같은; 예를 들면 부틸렌(butylene), 이소프렌(isoprene) 또는 프로필렌 글리콜(propylene glycol)과 같은 글리콜(glycol); 라놀린(lanolin)과 같은 지방족 알코올; 물 및 유기용매의 혼합물 및 알코올 및 글리세린과 같은 유기용매의 혼합물; 지방산, 미네랄 오일과 같은 오일을 포함하는 아실글리세롤(acylglycerol), 및 자연 또는 합성기원의 지방과 같은 지질-기반의 물질(lipid-based material), 포스포글리세리드(phosphoglyceride), 스핑고리피드(sphingolipid) 및왁스(wax); 콜라겐 및 젤라틴과 같은 단백질-기반의 물질(protein-based material); 실리콘-기반의 물질; 비휘발성(non-volatile) 및 휘발성(volatile)의 물질; 및 마이크로스폰지(microsponge) 및 폴리머 매트릭스(olymer matrices)와 같은 탄화수소-기반의 물질. 조성물은 나아가 적용된 제조의 안정성 또는 효과성을 개선시키기 위해 적합한 1 또는 그 이상의 구성성분, 예를 들면 안정제, 서스펜딩제, 유화제, 점도 조절제(viscosity adjuster), 고형제(gelling agent), 방부제, 항산화제, 피부 투과 촉진제(skin penetration enhancer), 보습제(moisturizer) 및 지속 방출 물질(sustained release material)을 포함할 수도 있다. 그와 같은 구성성분의 예는 Martindale--The Extra Pharmacopoeia (Pharmaceutical Press, London 1993) and Martin (ed.), Remington's Pharmaceutical Sciences에 기술되어 있다. 제조는 하이드록시메틸셀룰로오즈(hydromethylcellulose) 또는 젤라틴-마이크로캡슐(gelatin-microcapsule)과 같은 마이크로 캡슐(microcapsule), 리포좀(liposome), 알부민 마이크로스페어(albumin micropheres), 마이크로에멀젼(microemulsion), 나노물질(nanoparticles) 또는 나노 캡슐(nanocapsule)로 구성되었을 수도 있다.
국부 제조(topical formulation)은 예를 들면 고체, 페이스트(paste), 크립(cream), 거품(foam), 로션(lotion), 젤gel), 파우더(powder), 수분성 액체(aqueous liquid), 에멀젼(emulsion), 스프레이(spray) 및 스킨패치(skin patch)를 포함하는 다양한 물리적 형태로 준비될 수 있다. 그러함 형태의 점성 및 물리적 출현(appearance)은 제조에서 존재하는 유화제(emulsifier) 및 점성 조절제의 존재 및 그 양에 따라 결정될 수 있다. 고체는 일반적으로 단단하고 부을 수 없고 흔히 바(bar) 또는 스틱(stick), 또는 특정형태로 제조될 수 있다; 고체가 불투명 또는 투명할 수 있고, 선택적으로 용매, 유화제, 보습제, 진정제(emollient), 향수(fragrance), 염료/색료(dye/colorant), 방부제 및 최종 생성물의 효과를 증가 또는 개선시키는 다른 유효 성분을 포함할 수 있다. 크림 및 로션은 종종 서로 비슷하지만, 주로 그들의 점성에서 다르다; 로션 및 크림은 불투명, 반투명 또는 투명할 수도 있고, 보습제, 진정제, 향수, 염료/색료, 방부제 뿐만 아니라 유화제, 용매, 및 점성 조절제 및 최종 생성물의 효과를 증가 또는 개선시키는 다른 유효 성분을 포함할 수 있다. 젤(gel)은 점성의 범위에서, 두껍거나 또는 높은 점성부터 얇거나 또는 낮은 점성으로, 제조될 수 있다. 로션 및 크림의 것과 같은 이러한 제조는 용매, 유화제, 보습제, 진정제, 향수, 염료/색료, 방부제 및 최종 생성물의 효과를 증가 또는 개선시키는 다른 유효 성분을 포함할 수 있다. 액체는 크림, 로션, 또는 젤보다 더 얇고 종종 유화제를 포함하지 않는다. 액체 국부 생산물은 용매, 유화제, 보습제, 진정제, 향수, 염료/색료, 방부제 및 최종 생성물의 효과를 증가 또는 개선시키는 다른 유효 성분을 포함한다.
국부 제조(topical formulation)에서 사용을 위한 적절한 유화제(emulsifier)는 이온성 유화제(ionic emulsifier), 세테아릴 알코올(cetearyl alcohol), 폴리옥시에틸렌 오레일 에테르(polyoxyethylene oleyl ether)와 같은 비이온성 유화제, PEG-40 스테아레이트(stearate), 세테아레트-12(ceteareth-12), 세테아레트-20, 세테아레트-30, 세테아레트 알코올, PEG-100 세테아레트 및 글리세릴 스테아레트(glyceryl stearate)를 포함하지만 상기의 것으로 제한되지는 않는다. 적절한 점성 조절제(viscosity adjusting agent)는 보호 콜로이드(protective colloids) 또는 하이드록시에틸셀룰로오즈(hydroxyethylcellulose), 잔탄 고무(xanthan gum), 마그네슘 알루미늄 실리케이트(magnesium aluminum silicate), 실리카(silica), 마이크로크리스탈린 왁스(microcrystalline wax), 비왁스(beewax), 파라핀, 및 세틸 팔미테이트(cetyl palmitate)와 같은 비 이온성 고무를 포함하지만 상기의 것으로 제한되지는 않는다. 젤 조성물(gel composition)은 키토산(chitosan), 메틸 셀룰로오즈(methyl cellulose), 에틸 셀룰로오즈(ethyl cellulose), 폴리비닐알코올(polyvinyl alcohol), 폴리쿼터니엄(polyquaternium) 하이드록시에틸셀룰로오즈, 하이드록시프로필셀룰로오즈, 하이드록시프로필메틸셀룰로오즈, 카르보머(carbomer) 또는 암모니아와 화합한 글리세리진산(ammoniated glycyrrhizinate)와 같은 고형제의 첨가에 의해 형성될 수 있다. 적절한 계면 활성제(surfactant)는 비이온성, 암포테릭(amphoteric), 이온성 및 음이온성 계면 활성제를 포함하지만 상기의 것으로 제한되지는 않는다. 예를 들면, 1 또는 그 이상의 디메티콘 코폴리올(dimethicone copolyol), 폴리소르베이트(polysorbate) 20, 폴리소르베이트 40, 폴리소르베이트 60, 폴리소르베이트 80, 라우라미드(lauramide) DEA, 코카미드(cocamide) DEA, 및 코카미드 MEA, 올에일 베타인(oleyl betaine), 코카미도프로필 포스파티딜 PG-디모니윰 틀로라이드(cocamidopropyl phosphatidyl PG-dimonium chloride), 및 암모니윰 라우레트 설페이트(ammonium laureth sulfate)가 국부 제조에서 사용될 수 있다.
적절한 방부제는 비타민 E, 소듐 아스코르베이트/아스코르빅 산(vitamin E, sodium ascorbate/ascorbic acid) 및 프로필 갤라이트(propyl gallate)와 같은 항산화제 및 물질적 안정제(physical stabilizer) 뿐만 아니라 메틸파라벤(methylparaben), 프로필파라벤(propylparaben), 소르빅 산(sorbic acid), 벤조익 산(benzoic acid), 및 포름알데히드(formaldehyde)와 같은 항미생물제를 포함하지만, 상기의 것으로 제한되지는 않는다. 적절한 보습제는 락틱 산(lactic acid) 및 다른 하이드록시 산(hydroxy acids) 및 그들의 염, 글리세린(glycerin), 프로필렌 글리콜(propylene glycol), 및 부틸렌 글리콜(butylene glycol)을 포함하지만, 상기의 것으로 제한되지는 않는다. 적절한 진정제는 라놀린 알코올(lanolin alcohol), 라놀린(lanolin), 라놀린 유도체(lanolin derivatives), 콜레스테롤(cholesterol), 페트로라튬(petrolatum), 이소스테아릴 네오펜타노에이트(isostearyl neopentanoate) 및 미네랄 오일(mineral oil)을 포함하지만, 상기의 것으로 제한되지는 않는다. 적절한 향 및 색은 FD&C Red No. 40 및 FD&C Yellow No. 5를 포함하지만, 상기의 것으로 제한되지는 않는다. 국부 제조에서 첨가될 수 있는 다른 적절한 첨가 성분은 연마제(abrasives), 흡수제(absorbents), 고결방지제(anti-caking agents), 항기포제(anti-foaming agents), 대전방지제(anti-static agents), 예를 들면, 하마메리스(witch hazel), 알코올(alcohol) 및 케모마일 추출액(chamomile extract)과 같은 허브 추출액(herbal extracts)와 같은 수렴제(astringents), 결합제/첨가제(binders/excipients), 완충제(buffering agents), 킬레이팅제(chelating agents), 피막제(film forming agents), 조절제(conditioning agents), 압축가스(propellants), 불투명제(opacifying agents), pH 조절제(pH adjusters) 및 보호제(protectants)를 포함하지만, 상기의 것으로 제한되지는 않는다.
젤의 제조를 위한 적절한 국부성 수단(topical vehicle)의 예는 하기와 같다: 하이드록시프로필셀룰로오즈(hydroxypropylcellulose) (2.1%); 70/30 이소프로필 알코올/물(isopropyl alcohol/water) (90.9%); 프로필렌 글리콜(propylene glycol) (5.1%); 및 폴리소르베이트 80(polysorbate 80) (1.9%). 거품(foam)으로서 제조를 위한 적절한 국부성 수단의 예는 하기와 같다: 세틸 알코올(cetyl alcohol) (1.1%); 스테아릴 알코올(stearyl alcohol) (0.5%); 쿼터늄 62(Quaternium 52) (1.0%); 프로필렌 글리콜(propylene glycol) (2.0%); 에탄올 95 PGF3(Ethanol 95 PGF3) (61.05%); 탈이온화된 물(deionized water) (30.05%); P75 탄화수소 압축기체(P75 hydrocarbon propellant) (4.30%). 모든 퍼센트(percent)는 무게(weight)에 의해 나타낸 것이다.
국부 조성물(topical compositions)을 위한 운반의 전형적인 모드(mode)는 손가락을 사용하는 적용; 첨(cloth), 조직(tissue), 면봉(swab), 스틱(stick) 또는 브러쉬(brush)와 같은 물리적 작은 도구(applicator)를 이용하는 적용; 미스트(mist), 애로졸(aerosol) 또는 거품 스프레이(foamspraying)를 포함하는 스프레이(spraying); 소킹(soaking); 및 린스(rinsing)를 포함한다. 통제된 분비 수단(controlled release vehicle) 또한 사용 될 수 있고, 조성물은 경피성 패치(transdermal patch)로써 경피성 투여(transdermal administration)를 위해 제조될 수 있다.
약학적 조성물은 스프레이(spray), 미스트(mist), 또는 애로솔(aerosol)을 포함하는 흡입되는 제형(inhaled formulation) 될 수 있다. 상기 제형는 특별히 천식(asthma) 또는 다른 호흡기 증상(respiratory)의 치료에 유용하다. 흡입 제형(inhalation formulation)을 위해, 여기서 제공되는 화합물은 당업자에게 알려진 모든 흡입 방법을 통해서 운반될 수 있다. 상기 흡입 방법 및 수단은 CFC 또는 HFA와 같은 압축가스(propellant)와 함께 또는 물리적으로 및 환경적으로 허용가능한 압축가스(propellant)와 함께 계량된 용량 흡입기(metered dose inhaler)포함하지만, 그것으로 제한되지는 않는다. 다른 적절한 장치는 브레스 오페레이티드 흡입기(breath operated inhalers), 다용량 드라이 파우더 흡입기(multidose dry powder inhalers) 및 애로솔 분무기(aerosol neBuLizers)가 있다. 서브젝트 방법(subject method)을 위한 애로솔 제형은 일반적으로 압축가스, 계면 활성제(surfactant) 및 코-솔벤트(co-solvent)를 포함하고 적절한 미터링 밸브(metering valve)에 의해 닫혀지는 일반적인 애로솔 용기로 채워질 수 있다.
흡입 조성물(inhalant composition)은 분부기 및 기관지내 사용(intrabronchial use)에 적절한 활성화된 성분을 포함하는 액체 또는 파우더 조성물, 또는 계량된 용량을 제조하는 애로솔 유닛을 통해 투여된 애로솔 조성물으로 구성된다. 적절한 액체 조성물은 수용성의 약학적으로 허용가능한 흡입 용제(inhalant solvent), 예를 들면 등장액의 살린(isotonic saline) 또는 세균성장 억제액(bacteriostatic water)과 같은, 에서 활성화된 성분으로 구성된다. 상기 용액은 펌프 또는 압착으로 작동되는 분부기 스프레이 기계(squeeze-actuated neBuLized spray dispenser)에 의해, 또는 환자의 폐에 흡입되는 액체 조성물의 필수적인 복용량(requisite dosage)을 초래하거나 가능하게 하는 모든 다른 일반적인 수단에 의해 투여된다. 투여를 위한 적절한 제형은, 여기서 전달체(carrier)는 액체이고, 예를 들면 비스프레이(nasal spary) 또는 비드롭(nasal drop)으로써, 유효 성분의 수용성 또는 오일성 용액을 포함한다.
비투여(nasal administration)에 적절한 제형 또는 조성물은, 여기에서 전달체는 고체이고, 파티클 사이즈(particle size)를 갖는, 예를 들면 코로 주입되는 방법으로 토여되는, 즉 코에 가까이에 있는 파우더 용기로부터 비강(nasal passage)을 통한 빠른 흡입(rapid inhalation) 20 내지 500마이크론(microns), 거친 파우더를 포함한다. 적절한 파우더 조성물은, 실시예에 의해, 전적으로 락토오즈(lactose) 또는 기관지내에 허용가능한 다른 비활성 파우더와 섞여진(intermixed) 유효 성분의 파우더 조제 포함한다. 파우더 조성물은 애로솔 기계에 의해 투여될 수 있고 또는 환자에 의해 캡슐을 뚫고 흡입에 적절한 꾸준한 스팀(steady steam)에서 파우더를 날리는 장치에 삽입된 깨질 수 있는 캡슐(breakable capsule)에 둘러싸여 질 수 있다.
약학적 조성물은 또한 좌약(suppository)의 형태로, 예를 들면 직장 투여를 위한, 제조될 수 있다. 상기 조성물은 약을 보통의 온도에서 고체이지만 직장의 온도(rectal temperature)에서는 액체이고 따라서 직장(rectal)에서는 녹아서 약이 분비될 적절한 자극적이지 않은 첨가제(non-irritating excipient)와 혼합하여 제조될 수 있다. 적절한 첨가제는 예를 들면, 코코아 버터(cocoabutter) 및 폴리에틸렌 글리콜(polyethylene glycol)을 포함한다.
약학적 조성물은 지속적인 분비 예를 들면, 즉 투여 후 조절제(modulator)의 느린 분비를 제공하는 캡슐과 같은 제형으로 제조될 수 있다. 상기 제형은 일반적으로 잘 알려진 기술을 이용하여 제조될 수 있고 예를 들면 구강(oral), 직장(rectal) 또는 피하 주입(subcutaneous implantation), 또는 바람직한 타겟 부위(desirable target site)에 주입을 통해 투여될 수 있다. 상기 제형에서 사용하기 위한 전달체는 생체에 적합해야 하고, 또한 생체내에서 분해될 수 있어야 한다; 선호되게는 상기 제형이 상대적으로 일정한 수준의 조절제 분비를 제공해야 한다. 지속적인 분비 제형에 포함된 조절제의 양은 예를 들면, 주입부위, 분비율, 분비 시간 및 치료 또는 예방되어야 할 증상의 특성에 의존한다.
심장 손상(cardiac damage)의, 특히 심 부정맥(cardiac arrhythmias), 치료를 위해, 본 발명에 따른 생물학적 활성 화합물의 용량은 넓은 제한에서 다양할 수 있고 개인의 요구에 따라 조절될 수 있다. 본 발명에 따른 활성 화합물은 일반적으로 치료적으로 효과적인 양이 투여된다. 선호되는 용량은 하루에 몸무게 1kg당 약 0.1mg 내지 140mg 의 범위이다. 일일량(daily dose)은 일회량(single dose)로서 또는 다용량(plurality of doses)으로서 투여될 수 있다. 일회 복용량 형태를 생산하기 위해 전달체 물질과 결합할 수 있는 유효 성분의 양은 치료될 숙주(host) 및 특정 투여 방식에 따라 다양하다. 용량 유닛(dosage unit)의 형태는 일반적으로 유효 성분의 약 1mg 내지 약 500mg 사이를 포함한다.
하지만, 어떠한 특정 환자에 대한 특별 용량 수준은 적용되는 특별한 화합물의 활성, 나이, 몸무게, 일반적 건강상태, 성, 식이요법(diet), 투여 시간, 투여 경로, 및 분비율, 약의 조합, 즉 환자를 치료하기 위해 사용되는 다른 약, 및 치료가 시행되고 있는 특정 질환의 심각성(severity)을 포함하는 다른 다양한 요소에 의존한다는 것은 이해될 것이다.
본 발명의 선호되는 화합물은 특정 약학적 특징을 갖는다. 상기 특징은 구강 생물학적 이용가능성(oral bioavailability), 선호되는 구강 용량 형태는 생체내에서 치료적으로 효과적인 화합물의 레벨을 제공하는 것을 포함하지만, 이것으로 제한되지 않는다.
여기에서 제공된 n-3 PUFA 유도체는 선호되게는 환자에게, 예를 들면 인간과 같은, 구강으로(orally) 또는 비경구적으로(parenterally) 투여되고, 최소한 1 체액 또는 환자의 조직(tissue)에 존재한다. 따라서, 본 발명은 나아가 심장 손상을 겪는 환자를 치료하기 위한 방법을 제공한다. 여기서 사용되는 것처럼, "치료(treatment)"라는 용어는 질환을 변형하는 치료(disease-modifying treatment) 및 증상의 치료(symptomatic treatment) 둘 모두 포함하고, 그 중 하나는, 예방(prophylactic)될 수 있고, 즉 증상이 나타나기 전에, 예방, 지연 또는 증상의 심각성을 감소시키기거나, 또는 치료될, 즉 증상이 나타난 후에, 증상의 심각성 및/또는 기간을 경감시키기 위해, 수 있다. 환자는 여기서 기술된것과 같은 용량과 함께 영장류, 특히 인간, 개, 고양이, 말과 같은 길들여진 동반 동물(domesticated companion animals), 및 소(cattle), 돼지, 양과 같은 가축을 포함하지만, 그것으로 제한되지는 않는다.
본 발명의 화학식 1의 화합물은 염증(inflammation), 증식(proliferation), 고혈압(hypertension), 응고(coagulation), 면역 기능(immune function), 심부전(heart failure) 및 심 부정맥(cardiac arrhythmias)와 관련된 증상 및 질환을 치료 및/또는 예방사용될 수 있다.
증식과 관련된 증상 및 질환의 예는 종양(tumor) 또는 신생종양(neoplasm)을 포함하는데, 여기서 세포의 증식이 조절되지 않고 꾸준히 진행중(progressive) 이다. 어떤 통제되지 않은 세포 증식은 양성(benign)이지만, 다른 것들은 "악성(malignant)"이고 생물의 죽음을 초래할 수 있다. 악성 신생종양(malignant neoplasm) 또는 "암(cancer)"은, 공격적인(aggressive) 세포 증식을 나타내는 것과 함께, 그들은 조직주위를 침입하고 전이한다는 점에서 양성 성장(benign grotwth)과 구별된다. 게다가, 악성 신생종양은 그들이 분화의 더 큰 손실(더 큰 "탈분화; dedifferentiation", 및 서로 관련되는 및 조직을 둘러싸는 그들 구조(organization)의 더 큰 손실을 나타낸다는 점에서 특징화된다. 상기 특징은 또한 "퇴화(anaplasia)"라고도 불린다. 본 발명에 의해 치료될 수 있는 신생종양은 고체 단계 종양/악성종양(tumor/malignancy)을, 즉 상피성 암(carcinomas), 국소적으로 진행된 암 및 인간의 부드러운 조직 근육종(soft tissue sarcoma)을, 포함한다. 상피성 암(carcinoma)은 주변 조직에 침투(침입)하고 전이되는 암(metastastic cancers)을 초래하는, 림프성 전이(metastastic cancer)를 포함하는, 상피세포(epithelial cell)로부터 유래된 상기 악성 신생종양을 포함한다. 선암(Adenocarcinoma)은 분비선 조직(glandular tissue)으로부터 유래된, 또는 인지될만한 분비선 구조를 형성하는 상피성 암이다. 또 다른 넓은 카테고리 또는 암은 근육종(sarcoma)을, 그 세포가 미소섬유의 또는 동종의 물질과 같은 배아 결합 조직(embryonic connective tissue)에 침입하는 암을, 포함한다. 본 발명은 골수성(myeloid) 또는 림프성(lymphoid) 시스템의 암의, 백혈병(leukemia), 림프종(lymphoma) 및 일반적으로 암 덩어리로 나타나지 않지만, 관(vascular) 또는 림프세망(lymphoreticular) 시스템에 분포하는 다른 암을 포함하는 암의, 치료를 가능하게 한다. 본 발명에 따라 치료에 잘 따르는 암 또는 종양의 종류는, 예를 들면 유방(breast), 결장(colon), 폐(lung), 및 전립선 암(prostate tumor), 식도암(esophageal cancer), 위암(stomach cancer), 결장암(colorectal cancer), 결장 신생 종양과 관련된 폴립(polyp), 췌장암(pancreatic cancer) 및 쓸개암(gallbladder cancer)을 포함하는 위장암(gastrointestinal cancer), 부신피질 암(cancer of adrenal cortex), ACTH를 생산하는 종양(ACTH-producing tumor), 방광암(bladder cancer), 내뇌 종양(intrinsic tumor), 신경아 세포종(neuroblastoma), 뇌성상세포 종양(astrocytic brain tumor), 글리오마(glioma), 및 중추신경계로의 전이성 종양 세포 침입(metastatic tumor cell invasion of the central nervous system), 이윙 근육종(Ewing's sarcoma), 입 암(mouth cancer) 및 후두암(larynx cancer)을 포함하는 머리 및 목 암(head and neck cancer), 신세포암(renal cell carcinoma)를 포함하는 신장암(kidney cancer), 간암 (liver cancer), 작은 및 작지 않은 폐세포 암(small and non-small cell lung cancers)을 포함하는 폐암(lung cancer), 악성 복막 유출(malignant peritoneal effusion), 악성 늑막 유출(malignant pleural effusion), 악성 흑색종(malignant melanoma)을 포함하는 피부암, 인간 피부케라티노사이트의 암 발전(tumor progression of human skin keratinocytes), 편평 상피 세포 상피성암(squamous cell carcinoma), 기저세포 암(basal cell carcinoma), 및 형관주위세포종(hemangiopericytoma), 중피종(mesothelioma), 카포시 근육종(Kaposi's sarcoma), 골종(osteoma)을 포함하는 뼈암(bone cancer) 및 섬유육종(fibrosarcoma) 및 골육종과 같은 근육종(sarcoma), 자궁암(uterine cancer), 자궁내막암(endometrial cancer), 난소(생식세포; germ cell) 암(ovarian cancer) 및 난소여포(ovarian follicle)의 고체 종양을 포함하는 자성 생식관(female reproductive tract)의 암, 질암(vaginal cancer), ; 유방암(breast cancer) (작은 세포 및 관의), 음경암(penile cancer), 망막아종(retinoblastoma), 고환암(testicular cancer), 갑상선 암(thyroid cancer), 융모성 신생종양(trophoblastic neoplasma), 및 윌름스 종양(Wilms' tumor)을 포함한다.
염증 및 면역 기능과 관련된 증상 및 질환의 예는 급성기(acute-phase)의 반응, 국지(local) 및 전신(systemic) 염증 및 어떤 종류든지 다른 질환에 의해 야기되는 염증, 병리(etiology) 또는 발병(pathogenesis) 및 하기에 예시된 염증성 질환(inflammatory disorder)에 의해 일어나는 염증성 장애, 및 지각과민(hyperesthesia), 자가면역 질환(autoimmune disorders), 이식(transplantation)에서 이식 거부(graft rejection), 이식 독성(transplant toxicity), 육아종성 염증/조직 리모델링(granulomatous inflammation/tissue remodelling), 중증 근무력증(myasthenia gravis), 면역억제(immunosuppression), 면역-복합체 질환(immune-complex diseases), 항체의 과- 및 저보호(over- and underproduction of antibodies), 및 맥관염(vasculitis)와 같은 면역학적 장애(immunological disorders)를 포함한다. 특히, 상기 증상 및 질환의 예는 크론 질환(Crohn's disease) 및 궤양성 대장염(ulcerative colitis) (Stadnicki et al., Am . J. Physiol. Gastrointest Liver Physiol . 2005, 289(2), G361-6; Devani et al., Am . J. Gastroenerol 2002, 97(8), 2026-32; Devani et al., Dig . Liv . Disease 2005, 37(9), 665-73)을 포함하는 염증성 장 질환(inflammatory bowel disease), 과민성 대장 증후군(irritable bowel syndrome), 전장염(enterocolitis), 간 질환(liver diseases), 췌장염(pancreatitis), 신염(nephritis), 방광염(cystitis) (간질성 발광염; interstitial cystitis), 포도막염(uveitis), 망막염(retinitis), 녹내장(glaucoma), 중이염(otitis media), 치주염(peridontitis), 건선(psoriasis)과 같은 염증성 피부 질환(inflammatory skin disorders), 습진(eczema), 아토피 질환(atopic diseases), 피부염(dermatitis), 간지러움(itching), 류머티즘 관절염(rheumatoid arthritis) 및 통풍 관절염(gouty arthritis)의 청소년기성 또는 성인성 발병(juvenile or adult onset) (Cassim et al., Pharmacol. Ther . 2002, 94, 1-34; Sharma et al., Exp . Toxic Pathol . 1994, 46, 421-433; Brechter et al., Arthr . Rheum . 2007, 56(3), 910-923), 강직성 척수염(ankylosing spondylitis), 성인성 발병(adult onset) 또는 소아기성 스틸 질환(pediatric Still's disease) (전신적 발병 청소년기 특발성 관절염; systemic onset juvenile idiopathic arthritis), 건선성 관절염(psoriatic arthritis), 골관절염(osteoarthritis) 및 화상(burn)과 염좌(sprains) 또는 골절(fracture)관련된 부종(edema), 뇌수종(cerebral edema), 닫혀진 머리 손상(closed head injury), 혈관부종(angioedema), 맥관염(vasculitis), 당뇨병성 맥관장애(diabetic vasculopathy), 타입 I 당뇨병(type I diabetes), 당뇨병성 신증(diabetic nephropathy), 당뇨병성 신경병(diabetic neuropathy), 당뇨병성 망막증(diabetic retinopathy), 후모세혈관 저항(post capillary resistance) 또는 insulits 과 관련된 당뇨병성 신드롬(diabetic syndromes) (예를 들면 과혈당; hyperglycemia, 이뇨; diuresis, 단백뇨; proteinuria 및 증가된 아질산염 및 칼리크레인 요배출; increased nitrite and kallikrein urinary excretion), 쓸개 질환(gall bladder diseases), 위장관 또는 자궁의 경련 치료를 위한 평활근 이완작용제(smooth muscle relaxants for the treatment of spasms of the gastrointestinal tract or uterus), 다발성 경화증(multiple sclerosis), 간질(epilepsy), 루게릭병(amyotrophic lateral sclerosis), 알츠하이머 질환(Alzheimer's disease), 뇌졸중(stroke), 파킨슨 질환(Parkinson's disease), 전신 염증 반성 신드롬(systemic inflammatory response syndrome; SIRS), 국소성 빈혈-재관류 손상(ischemia-reperfusion injury) 및 아테롬성 동백 경화증(atherosclerosis) (Raidoo et al., Immunopharmacol 1997, 36(2-3), 153-60; McLean et al., Cardiovasc . Res . 2000, 48, 194-210), 패혈증성 쇼크(septic shock), 항저혈량 및/또는 항저혈압제(antihypovolemic and/or anti-hypotensive agents), 군발성 두통(cluster headache)을 포함하는 두통(headache), 예방 또는 급성 사용(prophylactic and acute use)을 포함하는 편두통(migraine), 닫혀진 머리 외상(closed head trauma), 암(cancer), 패혈증(sepsis), 치은염(gingivitis), 골다공증(osteoporosis), 양성 전립선 비후(benign prostatic hyperplasia), 과활성 방광(hyperactive bladder), 폐 섬유증(pulmonary fibrosis)을 포함하는 섬유증 질환(fibrotic diseases), 신장 섬유증(renal fibrosis), 간 섬유증(liver fibrosis), 진행성 경화증(progressive sclerosis) 및 크론 질환에서 재발성 스트릭져 형성(recurrent stricture formation in Crohn's disease) (Goldstein et al., J. Biol . Chem . 1984, 259(14), 9263-8; Ricupero et al., J. Biol . Chem . 2000, 275(17), 12475-80; Romero et al., J. Biol . Chem . 2005, 15, 14378-14384), 천식에서 호흡기 경로의 장애(disorders of the respiratory pathways in asthma), 아토피 또는 비아토피 천식(atopic or non-atopic asthma), 직업성 천식(occupational asthma), 운동에 의해 유도된 기관시 수축(exercise-induced bronchoconstriction), 기관지염(bronchitis), 알류미늄증(aluminosis), 안라코시스(anhracosis), 석면증(asbestosis), 석폐증(chalicosis), 첩모탈락증(ptilosis), 철분진폐증(siderosis), 규폐증(silicosis), 타바코시스(tabaccosis) 및 면폐증(byssinosis)을 포함하는 진폐증(pneumoconiosis), 기종(emphysema), 성인 호흡기 스트레스 신트롬(adult respiratory distress syndrome), 폐렴(pneumonia), 알러지성 비염(allergic rhinitis), 혈관신경성 비염(vasomotor rhinitis) 및 흉막염(pleurisy)을 포함하는 만성 폐쇄성 폐 질환(chronic obstructive pulmonary disease), 가족성 지중해 열(familial Mediterranean fever; FMF), 종양-괴사 인자 수용체와 연관된 주기적 신드롬(tumor-necrosis factor receptor associated periodic syndrome; TRAPS), 신생아 발병 다발성 염증 질환(neonatal onset multisystem inflammatory disease; NOMID), 가족성 차가운 두드러기(familial cold urticaria ; FCU), 가족성 차가운 자가 염증 신드롬(familial cold autoinflammatory syndrome; FCAS), 화농성 관절염 농피 괴저성 여드름(pyogenic arthritis pyoderma gangrenosum acne; PAPA) 신드롬 및 머클-웰 질환(Muckle-Wells disease)와 같은 자가-염증성 질환(auto-inflammatory diseases)을 포함한다.
심부전 및 심장의 부정맥과 연관된 증상 및 질환의 예는 심근경색(myocardial infarction) 후 급성 심장사(sudden cardiac death), 심실빈박(ventricular tachycardia)을 포함하는 심장의 부정맥(cardiac arrhythmias), 악성(malignant) 심실빈박 및 심방세동, 관상동맥 질환에 근거한 심부전, 확장성 심근증(dilatative cardiomyopathy), 심근염(myocarditis), 고혈압성 심장질환(hypertensive heart disease), 당뇨병(dianetes) 및 염증성 심근증(cardiomyopathy)을 포함하는 심장 손상과 연관된 질환을 포함한다.
또한 본 발명은 본 발명에 따른 화합물을 진단제(diagnostic agent)의 제조를 위해 또는 로써 사용될 것을 포함한다.
본 발명에서는 또한 본 발명에 따른 화합물이 진단제로써 또는 진단제의 제조를 위해 사용될 수 있다는 것을 포함하는데, 여기서 상기 진단제는 여기서 공개되는 치료상의 목적을 위해 본 발명의 화합물에 의해 다루어지는 질환 및 증상의 진단을 위한 것이다.
다양한 적용을 위해서, 본 발명의 화합물에 동위원소, 형광 마커(fluorescence marker) 또는 발광 마커(luminescence marker), 항체(antibody) 또는 항체 조각(antibody fragment), 나노물질(nanobody)같은 어떤 다른 친화성(affinity) 표지, 앱타머(aptamer), 펩타이트등, 효소 또는 효소기질을 사용하여 표지할 수 있다. 본 발명의 표지된 화합물은 생체내(in vivo ), 생체외(ex vivo ), 시험관내(in vitro ) 및 인 시투(in situ)에서, 예를 들면 방사능 사진촬영(autoradiography) 을 통해서 조직 단면에서와 같은 BK 수용체의 위치를 지도화((mapping)하는데 유용하고 양전자 방사 단층 촬영(positron emission tomography; PET) 이미지화, 단일 양자 방사 컴퓨터 단층촬영(single photon emission computerized tomography;SPECT) 및 그와 같은 것을 위해 살아있는 개체나 다른 물질에서 상기 수용체를 특징화하기 위해 방사능트레이서(radiotracer)로써 유용하다. 본 발명에 따른 상기 표지된 화합물은 치료, 진단 및 생체 내 및 시험관 내에서 연구의 도구와 같은 다른 적용에서, 특히 여기서 공개된 적용에서, 사용될 수 있다.
하기의 예는 본 발명의 다양한 측면을 수행하기 위해 고려되어야 할 최상의 방식을 제공하기 위할 뿐 아니라 상기 발명의 사용에 대해 더 완전히 기술하기 위해 제공된다. 하기의 예는 실시예를 위해 제시되는 것일 뿐, 본 발명을 한정하지는 않는다.
실시예 1
(5 Z , 14 Z )-16-(3- 에틸옥시란 -2-일) 헥사디카 -5,14- 디에노익 산{(5Z,14Z)-16-(3-Ethyloxirane-2-yl)hexadeca-5,14-dienoic acid } (1)의 합성
Figure 112011062269449-pct00004
1,4-부타네디올(1,4-butanediol, 32g, 35.55mmol; Alfa Aesar) 및 Hbr 48% 수용액(45mL)을 벤젠(benzene, 380mL)에서 환류하에 Dean-Stark기계(apparatus)를 이용하여 물을 제거하면서 열을 가한다. 12시간 후에, 모든 휘발물을 진공(in vacuo)에서 제거하고 그 잔여물을 10-30% EtOAc/헥산(hexane)의 기울기(gradient)를 용리액(diluent)으로써 이용하여 SiO2 컬럼 크로마토그래피(column chromatography)에 의해 정제하여 4-브로모부탄-1-올(4-bromobutan-1-ol, 29.20g, 68%)을 제공한다. TLC: 30% EtOAc/hex, Rf=0.30; 1H NMR(CDCl3, 300MHz) δ3.70(t, J=6.1Hz, 2H), 3.45(t, J=6.1Hz, 2H), 1.92-2.04(m, 2H), 1.68-1.78(m, 2H).
Figure 112011062269449-pct00005
3,4-디하이드로-2H-피란(3,4-dihydro-2H-pyran, 8.0g, 95.36mmol)을 0℃의 4-브로모부탄-1-올(8.0g, 95.36mmol)의 디클로로메탄(dichloromethane, 150mL) 용액에 첨가하고 p-토우렌술포닉산(p-toulenesulphonic acid, 20mg)을 첨가한다. 1시간 후, 상기 반응을 조심스럽게 포화된 NaHCO3 수용액(5mL)으로 quench하고, 물(100mL), 브라인(brine, 70mL)으로 씻어주고, 진공에서 농축시킨다. 잔여물을 2% EtOAc/헥산을 용리액으로써 이용하여 SiO2 컬럼 크로마토그래피에 의해 정제하여 2-(4-브로모부톡시)테트라하이드로-2H-피란{2-(4-bromobutoxy)tetrahydro-2H-pyran} (16.57 g, 88%)을 무색 오일의 제공한다. TLC: 10% EtOAc/헥산, Rf=0.50; 1H NMR(CDCl3, 300MHz) δ4.58(t, J=2.5Hz, 1H), 3.90-3.72(m, 2H), 3.38-3.50(m, 4H), 1.92-2.04(m, 2H), 1.65-1.80(m, 4H), 1.60-1.50(m, 4H). Lit. ref: G. L. Kad; I. Kaur; M. Bhandari; J. Singh; J. Kaur Organic Process Research & Development 2003: 7, 339.
Figure 112011062269449-pct00006

무수의 디메틸술폭시드(anhydrous dimethylsulfoxide, 25mL)의 1,7-디브로모햅탄 용액(13.5g, 52.32mmol)를 무수의 디메틸술폭시드(125mL)에 있는 리튬 아세틸리드 에틸렌디아민 복합체(lithium acetylide ethylenediamine complex, 12.04g, 130.8mmol) 0℃용액에 저어주며 떨어뜨리는 방식으로 아르곤 기체(argon atmosphere)하에 첨가한다. 5-8℃에서 2시간 동안 저어준 후, 상기 반응 혼합물을 에테르(ether, 100mL)을 이용하여 희석하고 물(2x40mL)로 씻어준다. 상기 수용성 세척은 에테르를 이용하여 추출한다(2x50mL). 상기 반응의 에테르 부분(ethereal fraction)은 무수의 Na2SO4에서 건조시키고 환산압력(reduced pressure) 농축시킨다. 그 잔여물을 용리액으로써 헥산을 사용하여 SiO2 컬럼크로마토 그래피를 이용하여 정제하여 무색 오일의 운덱-1,10-다인(undec-1,10-diyne)을 제공한다(5.3g, 68%) (lit. ref: Hellbach, Bjorn; Gleiter, Rolf; Rominger, Frank Synthesis 2003, 2535-2541). TLC: SiO2, hexane(100%), Rf=0.8; 1H NMR(300MHz, CDCl3) δ2.14-2.18(m, 4H), 1.92(t, J=2.55Hz, 2H), 1.50-1.53(m, 4H), 1.40-1.42(m, 4H), 1.23-1.25(m, 2H).
Figure 112011062269449-pct00007

n-BuLi(헥산에서 2.5M의 4.86mL, 12.16 mmol)을 드라이 테트라하이드로푸란/HMPA(dry tetrahydrofuran/HMPA, 105mL, 6:1)의 -78℃ 용액 undec-1,10-diyne(2.0g, 13.51mmol)에 떨어뜨리는 방식으로 아르곤 기체하에 첨가한다. 30분 후에, 상기 반응 혼합물을 -10℃로 2시간에 거쳐 따뜻하게 해주고 그 온도에서 20분 동안 유지시킨 후, -75℃로 다시 차갑게 한다. 드라이 THF(15mL)의 2-(4-bromobutoxy)-tetrahydropyran(2.4g, 10.14mmol)의 용액을 첨가한다. 상기 결과 혼합물을 상온으로 3시간에 걸쳐 따뜻하게 해주고, 12시간 동안 이 온도에서 유지시킨 후, 포화된 NH4Cl 수용액(25mL)으로 quench. 20분 후에, 상기 혼합물을 에테르로 추출한다(2x125mL). 그 결합된 에테르성 추출액(ethereal extract)을 물(2x125mL) 및 브라인으로(100mL) 씻어주고, Na2SO4에서 건조시켜 환산압력하에서 농축시킨다. 그 잔여물을 용리액으로써 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 2-(펜타데카-5,14-디이닐록시)테트라하이드로피란{2-(pentadeca-5,14-diynyloxy)tetrahydropyran} (1.97 g, 64%)를 제공한다. TLC: 10% EtOAc/헥산, Rf=0.6; 1H NMR(400MHz, CDCl3) δ4.58(t, J=2.5Hz, 1H), 3.82-3.89(m, 1H), 3.71-3.78(m, 1H), 3.43-3.53(m, 1H), 3.36-3.47(m, 1H), 2.01-2.20(m, 6H), 1.93(t, J=2.5Hz, 1H), 1.27-1.81(m, 20H). Lit. ref: F. Slowinski; C. Aubert; M. Malacria Eur . J. Org . Chem. 2001: 3491.
상기 반응은 또한 디알킬레이티드 부가물의 약 10%을 생산한다. TLC: 10% EtOAc/헥산, Rf=0.3; 1H NMR(300MHz, CDCl3) δ4.58(t, J=2.5Hz, 2H), 3.82-3.89(m, 2H), 3.71-3.78(m, 2H), 3.43-3.53(m, 2H), 3.36-3.47(m, 2H), 2.01-2.20(m, 8H), 1.27-1.81(m, 30H).
Figure 112011062269449-pct00008
MeOH(100mL)의 2-(펜타데카-5,14-디이닐록시)테트라하이드로피란{2-(pentadeca-5,14-diynyloxy)tetrahydropyran} (4.05g, 13.27mmol) 및 p-톨루엔술포닉산(p-toluenesulphonic acid, 42mg)를 상온에서 4시간 동안 저어준다. 그 후 모든 휘발성 물질을 진공에서 제거하고, 그 잔여물을 용리액으로써 15% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 펜타데카-5,14-디이인-1-ol(pentadeca-5,14-diyn-1-ol) (2.77g, 95%)를 제공한다. TLC: 30% EtOAc/헥산, Rf=0.40; 1H NMR(300MHz, CDCl3) δ3.85(t, 2H, J=7.0Hz), 2.03-2.30(m, 6H), 1.93(t, 1H, J=2.6Hz), 1.26-1.83(m, 14H).
아세톤에 있는 존스 시약(jones reagent, 물에서 10N 용액의 10mL) (25 mL)을 스터링 되고 있는(stirring), 아세톤에 있는(75 mL) -40℃의 상기 알코올 용액(1.9 g, 4.55 mmol)에 첨가한다. 1시간 후에, 상기 반응 혼합물을 -10℃로 따뜻하게 하고 2시간 동안 유지한 후, 이소프로판올(isopropanol)의 초과량(5 등가량)으로 quench한다. 상기 녹색 크롬 염(chromium salt)을 여과하여 제거하고 상기 필터 케이크(filter cake)를 아세톤으로 씻어준다. 상기 결합한 여과물을 진공에서 농축하고 그 얻은 잔여물을 EtOAc(100mL)에 용해시키고, 물(50mL)로 씻어주고 다시 진공에서 농축시킨다. 그 잔여물을 15% EtOAc/헥산을 용리액으로써 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 백색 가루의 펜타데카-5,14-디이노익 산(pentadeca-5,14-diynoic acid) (2.42 g, 82%)를 제공한다. TLC: 40% EtOAc/헥산, Rf=0.40; 1H NMR(400MHz, CDCl3) δ2.48(t, 2H, J=7.3Hz), 2.10-2.17(m, 6H), 1.93(t, 1H, J=2.6Hz), 1.75-1.86(m, 2H), 1.25-1.55(m, 10H).
Figure 112011062269449-pct00009

털트-부틸 하이드로펄옥사이드(tert-Butyl hydroperoxide) (15.72g, 데케인에서 5.2M 용액의 33mL)을 스터링 되고 있는 드라이 벤젠(200mL)에서의 펜트-2(Z)-엔-1-올(pent-2(Z)-en-1-ol) (5.00 g, 58.14 mmol) 및 바나듐(III) 아세틸아세토네이트(vanadium(III) acetylacetonate, 150 mg) 용액에 아르곤 기체하에서 첨가한다. 그 초기 담록색(pale green) 용액이 분홍(pink)색으로 된다. 3시간 후, 상기 반응을 디메틸술피드(dimethylsulfide, 52g, 87.33mmol, 5등가량)으로 quench한다. 1시간 후에, 상기 반응을 동등한 부피의 Et2O(250 mL)로 희석하고, 물(2x250mL), 브라인(200mL)으로 씻어주고, Na2SO4에서 건조시켜, 진공에서 농축시킨다. 상기 잔여물을 용리액으로써 30% EtOAc/헥산을 사용하여 옅은 노랑(pale yellow) 오일의 (Z)-(3-에틸옥시라닐)-메탄올{(Z)-(3-ethyloxiranyl)-methanol} (4.86g, 82%)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.3; 1H NMR(400MHz, CDCl3) δ3.86(dd, 1H, J=12.1Hz, 4.0Hz), 3.67 (dd, 1H, J=6.8Hz, 4.0Hz), 3.17(ddd, 1H, J=4.1Hz, 4.3Hz, 6.8Hz),3.01(ddd, 1H, J=4.3Hz, 6.4Hz, 6.4Hz) 1.46-1.71(m, 2H), 1.04(t, 3H, J=7.6Hz). Lit. ref: C. Arnold; W. Stefan; Y. A. Yse; S. H. Dieter Liebigs Annalen der Chemie 1987: 7, 629.
Figure 112011062269449-pct00010

CH2Cl2(25 mL)에서의 사브롬화탄소(carbon tetrabromide, 10.8g, 32.64mmol)를 트리페닐포스핀(triphenylphosphine, 8.6g 32,94mmol) 및 드라이 CH2Cl2(100mL)에서의 상기 에폭시 알코올(2.8g, 27.45mmol)의 -10℃ 용액으로 아르곤 기체하에서 저어준다. 30분 후에, 상기 반응 혼합물을 물(75mL), 브라인(50mL)으로 씻어주고, 무수의 Na2SO4에서 건조시키고, 모든 휘발성 물질을 환산 압력하에서 제거한다. 그 잔여물을 용리액으로써 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 (Z)-2-브로모메틸-3-에틸옥시란{(Z)-2-bromomethyl-3-ethyloxirane} (2.92g, 65%)을 제공한다. TLC: 20% EtOAc/헥산, Rf=0.6; 1H NMR(400MHz, CDCl3) δ3.49-3.53(dd, 1H, J=4.9, 9.3Hz), 3.22-3.31(m, 2H), 3.01-3.06(m, 1H), 1.54-1.62(m, 2H), 1.08(t, 3H, J=7.6Hz).
Figure 112011062269449-pct00011
n-BuLi (2.5M 헥산의 1.8mL 용액, 4.48mmol)을 아르곤 기체하에서 드라이 테트라하이드로푸란(30mL) 및 HMPA(8mL)에서 펜타데카-5,14-디이노익 산(pentadeca-5,14-diynoic acid) (0.5g, 2.14mmol)의 -70℃ 용액에 천천히 첨가한다. 상기 결과 혼합물을 30분 동안 -75℃에서 저어준 후, 2시간에 걸쳐 0℃로 따뜻하게 해준다. 0℃에서 1시간 후, 상기 반응 혼합물을 다시 -72℃로 차갑게 해주고 드라이 THF(10mL)에서의 (Z)-2-브로모메틸-3-에틸옥시란{(Z)-2-bromomethyl-3-ethyloxirane} (0.46g, 2.56mmol) 용액을 넣어준다. 상기 결과 혼합물을 3시간에 걸쳐 상온으로 따뜻하게 해준다. 12시간 동안 상온에서 저어준 후, 상기 반응을 포화된 NH4Cl 수용액(10mL)으로 quench하고, 20분 동안 저어준 후, 에테르로 추출한다(3x75mL). 그 결합한 에테르성 추출액을 물(2x100mL), 브라인(100mL)으로 씻어주고, Na2SO4에서 건조시켜 환산 압력하에서 농축시킨다. 그 잔여물을 5% MeOH/에테르에서 용해시키고, 0℃로 차갑게 식힌 후, 노란색이 10분 동안 지속될 때까지 에테르성 디아조메탄(ethereal diazomethane)의 초과량과 함께 처리한다. 1시간 후에, 모든 휘발성 물질을 환산 압력하에 제거하고 그 잔여물을 용리액으로써 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5,14-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5,14-diynoate} (0.39g, 56%)를 제공한다. TLC: 10% EtOAc/헥산, Rf=0.5; 1H NMR(400MHz, CDCl3) δ3.65(s, 3H), 3.07-3.12(m, 1H), 2.88-2.92(m, 1H), 2.51-2.58(m, 1H), 2.41(t, 2H, J=7.3), 2.08-2.26(m, 7H), 1.74-1.81(m, 2H), 1.22-1.64(m, 12H), 1.05(t, 3H, J=7.6Hz). Lit. ref: J. R. Falck; P. S. Kumar; Y. K. Reddy; G. Zou; J. H. Capdevila Tetrahedron Lett. 2001: 42, 7211.
Figure 112011062269449-pct00012

NaBH4(33mg, 0.88mmol)를 폴션와이즈로(portionwise) 순수에탄올(absolute ethanol, 5mL)에서 스터링 되고 있는 니켈(II) 아세테이트 테트라 하이드레이트(nickel(II) acetate tetrahydrate, 190mg, 0.76mmol) 용액에 수소 블랑켓(hydrogen blanket, 1atm)하에 첨가한다. 15분 후에, 새로운 증류된 에틸렌디아민(200mg, 3.24mmol)을 첨가하고 순수에탄올(5mL)에 있는 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5,14-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5,14-diynoate} (360mg, 1.08mmol)를 첨가한다. 상기 이종 혼합물(heterogeneous mixture)를 상온에서 90분 동안 유지하고, 그 후 에테르(15mL)로 증류하고, 실리카 젤(silica gel)의 짧은 패드(short pad)를 통해 여과한다. 그 필터케이크를 에테르(3x5mL)로 씻어준다. 상기 혼합된 에테르성 여과물을 무수의 Na2SO4에서 건조시키고 진공에서 농축시켜 다음 단계에서 정제과전 없이 사용될 수 있도록 충분히 순수한 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5,14-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),14(Z)-dienoate} (0.35g, 97%)를 제공한다. TLC: 20% EtOAc/헥산, Rf=0.6; 1H NMR(400MHz, CDCl3) δ5.24-5.54(m, 4H), 3.62(s, 3H), 2.82-2.92(m, 2H), 2.26-2.38(m, 1H), 2.29(t, 2 H, J=7.3Hz), 2.10-2.18(m, 1H), 1.93-2.06(m, 6H), 1.60-1.69(m, 2H), 1.46-1.59(m, 2H), 1.20-1.34(m, 10H), 1.01(t, 3H, J=7.3Hz); 13C NMR(100MHz, CDCl3) δ174.24, 133.12, 130.16, 128.62, 124.12, 58.6, 56.8, 51.96, 33.72, 29.91, 29.84, 29.58, 29.46, 27.54, 27.48, 26.84, 26.43, 25.06, 21.21, 10.08.
Figure 112011062269449-pct00013

LiOH(1mL, 2M 수용액:aqueous solution)을 THF(8mL) 및 탈이온화된 H2O(2mL)에 있는 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),14(Z)-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),14(Z)-dienoate} (90mg, 0.266mmol)의 0℃용액에 첨가한다. 상온에서 하룻밤 동안 저은 후, 상기 반응 혼합물을 0℃로 차갑게 해준 후, 상기 pH를 1M 옥살릭 산 수용액(aq. oxalic acid)을 사용하여 4로 조절하고, 에틸 아세테이트(ethyl acetate)로 추출한다(2x20mL). 상기 결합된 추출물을 물(30mL), 브라인(25mL)로 씻어주고, 무수의 Na2SO4에서 건조시키고, 진공에서 농축시킨다. 그 잔여물을 용리액으로써 25% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),14(Z)-디에노익 산{16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),14(Z)-dienoic acid} (82mg, 92%)를 제공한다. TLC: 30% EtOAc/헥산, Rf=0.3; 1H NMR(400MHz, CDCl3) δ5.26-5.51(m, 4H), 2.88-2.98(m, 2H), 2.31-2.44(m, 1H), 2.35(t, 2H, J=7.7Hz), 2.13-2.20(m, 1H), 1.96-2.11(m, 6 H), 1.64-1.70(m, 2H), 1.48-1.61(m, 2H), 1.22-1.37(m, 10H), 1.05(t, 3H, J=7.51); 13C NMR(100MHz, CDCl3) δ179.96, 133.02, 131.87, 128.40, 123.97, 58.85, 57.73, 33.86, 30.04, 29.96, 29.94, 29.88, 29.81, 27.64, 27.42, 26.81, 26.24, 24.86, 21.28, 10.81.
실시예 2
(5 Z ,11 Z )-16-(3- 에틸옥시란 -2-일) 헥사데카 -5,11- 디에노익 산{(5 Z ,11 Z )-16-(3-Ethyloxirane-2-yl)hexadeca-5,11-dienoic acid } (2)의 합성
Figure 112011062269449-pct00014

무색 오일의 2-(도데카-5,11-디이닐록시)테트라하이드로피란{2-(dodeca-5,11-diynyloxy)tetrahydropyran} (10.85g, 65%)를 제공하기 위해, 상기에 2-(펜타데카-5,14-디이닐록시)테트라하이드로피란{2-(pentadeca-5,14-diynyloxy)tetrahydropyran} 합성을 위한 묘사와 같이 옥트-1,7-디인(oct-1,7-diyne) (9.0g, 84.9mmol; G F Smith)를 2-(4-브로모부톡시)-테트라하이드로피란{2-(4-bromobutoxy)-tetrahydropyran} (15g, 63.68 mmol)과 함께 알킬화한다. TLC: 10% EtOAc/헥산, Rf=0.6; 1H NMR(400MHz, CDCl3) δ4.57(t, J=2.5Hz, 1H), 3.82-3.87(m, 1H), 3.70-3.77(m, 1H), 3.46-3.51(m, 1H), 3.36-3.42(m, 1H), 2.14-2.20(m, 6H), 1.93(t, 1H, J=2.5Hz), 1.46-1.72(m, 14 H).
Figure 112011062269449-pct00015

CH2Cl2(25mL)에서의 사브롬화탄소(carbon tetrabromide, 10.8g, 32.94mmol) 용액을 CH2Cl2(100mL)에서 트리페닐포스핀(triphenylphosphine, 8.6g, 32.94mmol) 및 옥트-5(Z)-엔-1-올{oct-5(Z)-en-1-ol} (2.8g, 14.06mmol)의 0℃ 용액으로 아르곤 기체하에 저어준다. 30분 후에, 상기 반응 혼합물을 물(75mL), 브라인(50mL)으로 씻어주고, 무수의 Na2SO4에서 건조시키고, 모든 휘발성 물질을 환산 압력하에 제거한다. 밝은 노랑(light yellow) 오일의 8-bromo-oct-3(Z)-ene (2.01 g, 75%)을 제공하기 위해 그 잔여물을 분별증류(fractional distillation)에 의해 정제한다. TLC: 10% EtOAc/헥산, Rf=0.7; 1H NMR(400MHz, CDCl3) δ5.26-5.45(m, 2H), 3.42(t, 2H, J=7.6Hz), 1.98-2.22(m, 4H), 1.63-1.82(m, 2H), 1.46-1.54(m, 2H), 0.95(t, 3H, J=7.3Hz). Lit. ref: R. M. Seifert J. Agric . Food Chem. 1981: 29, 647.
Figure 112011062269449-pct00016

무색 오일의 2-[아이코스-17(Z)-엔-5,11-디이닐록시]테트라하이드로피란{2-[eicos-17(Z)-ene-5,11-diynyloxy]tetrahydropyran} (4.15g, 65%)를 제공하기 위해, n-BuLi (헥산에서의 2.5M 용액. 20.65mmol), 2-(도데카-5,11-디이닐록시)테트라하이드로피란{2-(dodeca-5,11-diynyloxy)tetrahydropyran} (4.5g, 17.2mmol), 및 8-브로모-옥트-3(Z)-엔(8-bromo-oct-3(Z)-ene) (4.1g, 21.5mmol)를 2-(펜타데카-5,14-디이닐록시)테트라하이드로피란{2-(pentadeca-5,14-diynyloxy)tetrahydropyran}합성을 위한 상기 기술한 것과 같이 반응시킨다. TLC: 10% EtOAc/헥산, Rf=0.6; 1H NMR(400MHz, CDCl3) δ5.26-5.41(m, 2H), 4.58(t, J=2.5Hz, 1H), 3.82-3.87(m, 1H), 3.70-3.77(m, 1H), 3.46-3.51(m, 1H), 3.36-3.42(m, 1H), 2.11-2.20(m, 8H), 1.92-2.04(m, 4H), 1.62-1.86(m, 4H), 1.39-1.69(m, 14H), 0.94(t, 3H, J=7.5Hz).
Figure 112011062269449-pct00017

MeOH(50mL)에서 2-[아이코스-17(Z)-엔-5,11-디이닐옥시]테트라하이드로피란{2-[eicos-17(Z)-ene-5,11-diynyloxy]tetrahydropyran} (1.3g, 3.49mmol) 및 p-톨루엔술포닉산(50mg; PTSA)를 4시간 동안 상온에서 저어준 후, 진공에서 농축시킨다. 무색 오일의 아이코사-17(Z)-엔-5,11-디인-1-올{eicosa-17(Z)-ene-5,11-diyn-1-ol} (925mg, 92%)를 제공하기 위해, 그 잔여물을 용리액으로써 15% EtOAc/헥산를 사용하여 SiO2 컬럼 크로마토그래피로 정제한다. TLC: 30% EtOAc/헥산, Rf=0.35; 1H NMR(400MHz, CDCl3) δ5.27-5.42(m, 2H), 3.66(t, 2H, J=6.8Hz), 2.00-2.19(m, 12H), 1.43-1.72(m, 12H), 0.95(t, 3H, J=7.7Hz).
아세톤에(acetone, 10mL) 있는 존스 시약(jones reagent, 10N 수용액의 5mL)을 천천히 스터링 되고 있는 아세톤에서의(50mL) 아이코사-17(Z)-엔-5,11-디인-1-올{eicosa-17(Z)-ene-5,11-diyn-1-ol} (1.0g, 3.47mmol)의 -40℃ 용액에 첨가한다. 1시간 후에, 상기 반응 혼합물을 -10℃로 따뜻하게 해주고, 이 온도에서 3시간 동안 유지하고 난 후, 이소프로판올(isopropanol) 초과량(5 등가량)으로 quench해준다. 녹색 크롬 염(green chromium salt)을 여과에 의해 제거하고, 그 필터케이크를 아세톤으로 씻어주고, 상기 혼합된 여과물을 진공에서 농축시킨다. 상기 잔여물을 에틸 아세테이트(100mL)에서 용해시키고, 물(50mL)로 씻어주고, 진공에서 농축시킨다. 무색 오일의 아이코사-17(Z)-엔-5,11-디이노익 산 {eicosa-17(Z)-ene-5,11-diynoic acid} (920mg, 88%)을 제공하기 위해, 상기 잔여물을 용리액으로써 15% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제한다. TLC: 30% EtOAc/헥산, Rf=0.35; 1H NMR(400MHz, CDCl3) δ5.24-5.41(m, 2H), 2.41(t, 3H, J=6.9Hz), 2.10-2.19(m, 8H), 1.98-2.09(m, 4H), 1.75-1.81(m, 2H), 0.96(t, 3H, J=7.7Hz).
Figure 112011062269449-pct00018

MeOH(30mL)에서의 아이코사-17(Z)-엔-5,11-디이노익 산{eicosa-17(Z)-ene-5,11-diynoic acid} (0.8g, 2.63mmol) 및 PTSA(20mg)를 상온에서 10시간 동안 저어준 후, 무색오일의 메틸 아이코사-17(Z)-엔-5,11디이노에이트{methyl eicos-17(Z)-ene-5,11-diynoate} (682mg, 82%)를 제공하기 위하여, 진공에서 농축하고 그 잔여물을 용리액으로써 3% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제한다. TLC: 10% EtOAc/헥산, Rf=0.60; 1H NMR(400MHz, CDCl3) δ5.27-5.42(m, 2H), 3.67(s, 3H), 2.43(t, 2H, J=7.6Hz), 2.12-2.21(m, 8H), 1.99-2.09(m, 4H), 1.76-1.82(m, 2H), 1.42-1.58(m, 8H), 0.95(t, 3H, J=7.7Hz).
Figure 112011062269449-pct00019

m-클로로페르벤조익 산(m-Chloroperbenzoic acid,1.6 g, 4.76 mmol; m-CPBA)을 CH2Cl2(50mL)에서의 메틸 아이코사-17(Z)-엔-5,11디이노에이트{methyl eicosa-17(Z)-ene-5,11-diynoate} (1.15g, 3.66mmol) 0℃ 용액에 첨가한다. 상온에서 2시간 후에, 상기 반응 혼합물을 CH2Cl2(25mL)로 희석하고, 포화된 NaHCO3 수용액(2x25mL), 브라인(2x25mL), 물(50mL)에 씻어주고, Na2SO4에서 건조시키고, 환산 압력하에서 농축한다. 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5,11-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5,11-diynoate} (990mg, 82%)을 제공하기 위해, 그 잔여물을 용리액으로써 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제한다. TLC: 10% EtOAc/헥산, Rf=0.3; 1H NMR(400MHz, CDCl3) δ3.67(s, 3H), 2.84-2.94(m, 2H), 2.42(t, 2H, J=7.3Hz), 2.14-2.23(m, 8H), 1.74-1.83(m, 2H), 1.42-1.61(m, 12H), 1.03(t, 3H, J=7.6Hz).
Figure 112011062269449-pct00020
메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5,11-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5,11-diynoate} (250mg, 0.75mmol)을 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),11(Z)-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),11(Z)-dienoate} (246mg, 98%)을 제공하기 위해, methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),14(Z)-dienoate 합성을 위해 상기 기술한 것과 같이 세미-수소첨가(semi-hydrogenation)를 수행한다. TLC: 20% EtOAc/헥산, Rf=0.65; 1H NMR(400MHz, CDCl3) δ5.27-5.42(m, 4H), 3.66(s, 3H), 2.83-2.93(m, 2H), 2.30(t, 2H, J=7.3Hz), 1.92-2.09(m, 8H), 1.63-1.72(m, 2H), 1.25-1.58(m, 12H), 1.03(t, 3H, J=7.7Hz); 13C NMR(100MHz, CDCl3) δ174.45, 131.24, 130.04, 129.68, 128.88, 58.30, 56.75, 51.65, 33.63, 29.92, 29.76, 27.94, 29.74, 27.36, 26.86, 26.52, 25.54, 21.36, 10.89. Lit. ref: J. R. Falck; L. M. Reddy; Y. K. Reddy; M. Bondlela; U. M. Krishna; Y. Ji; J. Sun.; J. K. Liao Bioorg . Med . Chem . Lett. 2003: 13, 4011.
Figure 112011062269449-pct00021

메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),11(Z)-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),11(Z)-dienoate} (0.25g, 0.74mmol)를 무색 오일의 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),11(Z)-디이노익 산{16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),11(Z)-dienoic acid} (222mg, 93%)을 제공하기 위해, 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),11(Z)-디이노익 산{16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),14(Z)-dienoic acid}을 위한 상기 묘사와 같이 가수분해한다. TLC: 30% EtOAc/헥산, Rf=0.3; 1H NMR(400MHz, CDCl3) δ5.28-5.40(m, 4H), 2.87-2.97(m, 2H), 2.34(t, 3H, J=7.0Hz), 1.97-2.12(m, 8H), 1.63-1.74(m, 2H), 1.30-1.60(m, 12H), 1.02(t, 3H, J=7.4Hz); 13C NMR(300MHz, CDCl3) δ180.06, 131.75, 130.03, 129.77, 128.66, 58.86, 57.87, 33.93, 29.93, 29.84, 29.81, 27.89, 27.68, 26.41, 26.36, 24.83, 21.26, 10.84.
실시예 3
(8 Z ,14 Z )-16-(3- 에틸옥시란 -2-일) 헥사데카 -8,14- 디에노익 { (8 Z ,14 Z )-16-(3- e thyloxirane-2-yl)hexadeca-8,14-dienoic acid } (3)의 합성
Figure 112011062269449-pct00022

헵탄-1,7-디올(heptane-1,7-diol) (36.0g, 272mmol; Alfa Aesar) 및 48% HBr 수용액(38mL)을 Dean-Stark 기계(apparatus)를 이용해서 물을 제거하는 것과 함께 벤젠(400mL)에서 환류하에 열을 가한다. 12시간 후에, 모든 휘발성 물질을 진공에서 제거하고 무색 오일의 7-브로모헵탄-1-올(7-bromo-heptan-1-ol) (26.22g, 62%)을 제공하기 위해, 그 잔여물을 용리액으로써 10-30% EtOAc/헥산의 기울기를 사용하여 SiO2 컬럼 크로마토그래피로 정제한다. TLC: 50% EtOAc/헥산, Rf=0.4; 1H NMR(400MHz, CDCl3) δ3.61(t, 2H, J=7.1Hz), 3.39(t, 2H, J=6.8Hz), 1.80-1.88(m, 2H), 1.52-1.58(m, 2H), 1.30-1.46(m, 6H).
Figure 112011062269449-pct00023
상기로부터 7-브로모헵탄-1-올(7-bromoheptane-1-ol) (11.0g, 56.7mmol)를 무색 오일의 2-(7-브로모헵틸록시)테트라하이드로-2H-피란{2-(7-bromoheptyloxy)tetrahydro-2H-pyran} (14.50g, 92%)을 제공하기 위해, 그것의 THP 에테르(ether)로써 먼저 기술한 것과 같이 보호한다. TLC: 10% EtOAc/헥산, Rf=0.5; 1H NMR (400MHz, CDCl3) δ4.58(m, J=2.5Hz, 1H), 3.84-3.88(m, 1H), 3.68-3.77(m, 1H), 3.46-3.3.51(m, 1H), 3.33-3.43(m, 3H), 1.80-1.81(m, 2H), 1.30-1.62(m, 14 H).
Figure 112011062269449-pct00024
옥트-1,7-디인(oct-1,7-diyne) (6.3g, 59.3mmol)을 무색 오일의 2-(펜타데카-8,14-디이닐록시)테트라하이드로-2H-피란{2-(pentadeca-8,14-diynyloxy)tetrahydro-2H-pyran} (7.82 g, 64%)을 제공하기 위해, 상기에 기술한 것과 같이 2-(7-브로모헵틸록시)테트라하이드로-2H-피란{2-(7-bromoheptyloxy)tetrahydro-2H-pyran} (11g, 39.56mmol)과 함께 알킬화한다. TLC: 10% EtOAc/헥산, Rf=0.6; 1H NMR(400MHz, CDCl3) δ4.57(t, J=2.5Hz, 1H), 3.82-3.87(m, 1H), 3.70-3.77(m, 1H), 3.46-3.51(m, 1H), 3.36-3.42(m, 1H), 2.14-2.20(m, 6H), 1.93(t, J=2.6Hz, 1H), 1.46-1.72(m, 20H)
Figure 112011062269449-pct00025
2-(펜타데카-8,14-디이닐록시)테트라하이드로-2H-피란{2-(pentadeca-8,14-diynyloxy)tetrahydro-2H-pyran} (5g, 16.45mmol)을 상기 기술한 것과 같이 MeOH(100mL)에 있는 p-톨루엔술포닉산을 사용하여 자르고(cleave) 무색 오일의 펜타데카-8,14-디인-1-올(pentadeca-8,14-diyn-1-ol) (3.26 g, 90%)을 제공하기 위해, 상기 생산물을 용리액으로써 15% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제한다. TLC: 30% EtOAc/헥산, Rf=0.35; 1H NMR(400MHz, CDCl3) δ3.63(t, 2H, J=5.5Hz), 2.10-2.18(m, 6H), 1.93(t, 1H, J=2.6Hz), 1.24-1.62(m, 14 H).
Figure 112011062269449-pct00026

펜타데카-8,14-디인-1-올(pentadeca-8,14-diyn-1-ol) (3.0g, 13.69mmol)를 존스 시약을 사용하여 상기에 기술한 것과 같이 산화하고 용리액으로써 15% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 펜타데카-8,14-디이노익 산(pentadeca-8,14-diynoic acid) (2.80g, 87%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.33; 1H NMR(400MHz, CDCl3) δ2.34(t, J=7.0Hz, 2H), 2.10-2.18(m, 6H), 1.93(t, J=2.6Hz, 1H), 1.55-1.67(m, 6H), 1.33-1.49(m, 6H).
Figure 112011062269449-pct00027
펜타데카-8,14-디이노익 산(pentadeca-8,14-diynoic acid) (0.80g, 3.42mmol)을 (Z)-2-(브로모메틸)-3-에틸옥시란{(Z)-2-(bromomethyl)-3-ethyloxirane} (0.74g, 4.10mmol)과 함께 알킬화하고 무색 오일의 methyl 16-[(Z)-3-ethyloxiran-2-yl]hexadeca-8,14-diynoate (658 mg, 58%)를 제공하기 위해, 디아조메탄(diazomethane)을 사용하여 methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5,14-diynoate 제공하기 위해 상기 기술한 것과 같이 에스테르화한다. TLC: 10% EtOAc/헥산, Rf=0.5; 1H NMR(400MHz, CDCl3) δ3.65(s, 3H), 3.07-3.12(m, 1H), 2.88-2.92(m, 1H), 2.51-2.61(m, 1H), 2.32-2.50(m, 1H), 2.30(t, J=7.5Hz, 3H), 2.08-2.25(m, 6 H), 1.25-1.65(m, 14H), 1.06(t, J=7.3Hz, 3H)
Figure 112011062269449-pct00028

메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-8,14-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-8,14-diynoate}를 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-8(Z),14(Z)-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-8(Z),14(Z)-dienoate} (97%)를 제공하기 위해, 상기의 세미-수소첨가 과정을 수행한다. TLC: 20% EtOAc/헥산, Rf=0.55; 1H NMR(400MHz, CDCl3) δ5.31-5.56(m, 4H), 3.66(s, 3H), 2.86-2.96(m, 2H), 2.25-2.42(m, 1H), 2.28(t, 2H, J=7.33Hz), 2.12-2.20(m, 1H), 1.96-2.08(m, 6H), 1.52-1.64(m, 4H), 1.26-1.39(m, 10H), 1.03(t, 3H, J=7.3Hz); 13C NMR(100MHz, CDCl3) δ174.30, 132.60, 129.99, 129.84, 124.13, 58.40, 56.73, 51.51, 34.17, 29.66, 29.47, 29.30, 29.18, 29.03, 27.46, 27.27, 27.20, 26.28, 25.05, 21.21, 10.76.
Figure 112011062269449-pct00029

메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-8(Z),14(Z)-디이노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-8(Z),14(Z)-dienoate}를 무색 오일의 16-[(Z)-3-에틸옥시라닐]헥사데카-8(Z),14(Z)-디이노익 산{16-[(Z)-3-ethyloxiranyl]hexadeca-8(Z),14(Z)-dienoic acid} (93%)을 제공하기 위해, 상기 기술한 것과 같이 가수분해한다. TLC: 30% EtOAc/헥산, Rf=0.3; 1H NMR(300MHz, CDCl3) δ5.31-5.53(m, 4H), 2.87-2.98(m, 2H), 2.33-2.43(m, 1H), 2.33(t, J=7.3Hz, 2H), 2.13-2.22(m, 1H), 1.94-2.08(m, 6H), 1.52-1.64(m, 4H), 1.30-1.38(m, 10H), 1.04(t, J=7.4Hz, 3H); 13C NMR(75MHz, CDCl3) δ180.06, 132.54, 130.03, 130.01, 125.03, 58.87, 57.73, 34.16, 29.86, 29.74, 29.71, 29.52, 29.45, 27.84, 27.67, 27.42, 26.33, 24.75, 21.48, 10.82.
실시예 4
16-[( Z )-3- 에틸옥시라닐 ] 헥사덱 -11( Z )- 엔노익 산 (4), 16-[( Z )-3- 에틸옥시라닐 ] 헥사덱 -5( Z )- 에노익산 {{16-[( Z )-3- ethyloxiranyl ] hexadec -11( Z )- enoic acid (4), 16-[( Z )-3-ethyloxiranyl]hexadec-5( Z )-enoic acid } (7), 및 16-[( Z )-3- 에틸옥시라닐 ]헥사데카노익 산{16-[( Z )-3- ethyloxiranyl ] hexadecanoic acid }의 합성 (8)
Figure 112011062269449-pct00030

드라이 공기의 줄기를 하이드라진 수화물(hydrazine hydrate, 400mg, 12mmol, 20equiv), 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z),11(Z)-디에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),11(Z)-dienoate} (200 mg, 0.60 mmol), 및 에탄올(5mL)에 있는 CuSO4 H2O(10mg)의 스터링 되고 있는 용액으로 통과시킨다. 공기 줄기는 에탄올을 통과하여 에탄올과 함께 그것을 포화시키고 반응 부피를 유지하도록 돕는다. 12시간 후에, 상기 반응 혼합물을 실리카 젤(silica gel)의 짧은 패드(short pad)에 통과시키고 그 필터 케이크를 디클로로메탄으로 닦는다(3x10mL). 상기 혼합된 여과물을 무수의 Na2SO4에서 건조시키고, 진공에서 농축시킨다. 그 잔여물을 2% CH2Cl2/벤젠을 사용하여 AgNO3-impregnated PTLC에 의해 그것의 구성물로 분해한다: Rf=0.2, 0.4, 0.55, 및 0.85 for methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-5(Z),11(Z)-dienoate, methyl 16-[(Z)-3-ethyloxiranyl]hexadec-11(Z)-enoate, methyl 16-[(Z)-3-ethyloxiranyl]hexadec-5(Z)-enoate, and methyl 16-[(Z)-3-ethyloxiranyl]hexadecanoate, respectively, isolated in a ratio of 2:3:3:2, respectively. Lit. ref: E. J. Corey; T. M. Eckrich Tetrahedron Lett. 1984: 25, 2415.
메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-5(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-5(Z)-enoate}:1H NMR(400MHz, CDCl3) δ5.27-5.42(m, 2H), 3.66(s, 3H), 2.84-2.92(m, 2H), 2.30(t, J=7.4Hz, 2H), 1.96-2.08(m, 4H), 1.64-1.71(m, 2H), 1.45-1.58(m, 4H), 1.21-1.36(m, 16H), 1.03(t, J=7.3Hz, 3H); 13 C NMR(100MHz, CDCl3) δ174.45, 131.88, 128.63, 58.64, 57.87, 51.96, 33.88, 29.99, 29.86, 29.74, 29.46, 27.98, 27.76, 26.88, 26.72, 25.88, 21.32, 10.48.
메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-11(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-11(Z)-enoate}: 1H NMR(300MHz, CDCl3) 5.25-5.35(m, 2H), 3.61(s, 3H), 2.79-2.89(m, 2H), 2.25(t, J=7.3Hz, 2H), 1.93-2.04(m, 4H), 1.19-1.60(m, 22H), 1.00(t, J=7.2Hz, 3H); 13 C NMR(100MHz, CDCl3) δ174.48, 130.41, 129.54, 58.54, 57.45, 51.62, 34.27, 29.92, 29.81, 29.67, 29.63, 29.47, 29.46, 29.34, 27.80, 27.42, 27.27, 26.42, 25.14, 10.82.
메틸 16-[(Z)-3-에틸옥시라닐]헥사데카노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadecanoate}: 1H NMR(400MHz, CDCl3) δ3.67(s, 3H), 2.84-2.94(m, 2H), 2.31(t, 2H, J=7.4Hz), 1.42-1.65(m, 6H), 1.22-1.34(m, 24H), 1.04(t, 3H, J=7.3Hz).
Figure 112011062269449-pct00031

메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-5(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-5(Z)-enoate}를 상기에 묘사된 것처럼 가수분해하여 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-5(Z)-에노익 산{16-[(Z)-3-ethyloxiranyl]hexadec-5(Z)-enoic acid} (7, 92%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.3; 1H NMR(300MHz, CDCl3) δ5.27-5.43(m, 2H), 2.85-2.93(m, 2H), 2.34(t, J=7.6Hz, 2H), 1.95-2.11(m, 4H), 1.64-1.72(m, 2H), 1.49-1.60(m, 4H), 1.22-1.36(m, 16H), 1.03(t, J=7.4Hz, 3H); 13C NMR(75MHz, CDCl3) δ179.42, 131.54, 128.40, 60.08, 58.75, 57.73, 34.59, 31.86, 29.86, 29.74, 29.71, 29.45, 27.84, 27.42, 26.81, 26.64, 24.85, 21.28, 15.47, 10.81.
Figure 112011062269449-pct00032

메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-11(Z)-에노에이트를 상기에 기술한 것과 같이 가수분해 하여 무색 오일의 메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-11(Z)-에노익 산{16-[(Z)-3-ethyloxiranyl]hexadec-11(Z)-enoic acid} (4, 92%)을 제공한다. TLC: SiO2 , 30% EtOAc/헥산, Rf=0.3; 1H NMR(300MHz, CDCl3) δ5.28-5.40(m, 2H), 2.84-2.94(m, 2H), 2.31(t, J=7.6Hz, 2H), 1.96-2.04(m, 4H), 1.02-1.62(m, 22H), 1.01(t, 3H, J=7.4Hz); 13C NMR(75MHz, CDCl3) δ180.10, 130.45, 129.57, 58.74, 57.67, 34.27, 29.92, 29.81, 29.66, 29.60, 29.46, 29.43, 29.25, 27.76, 27.43, 27.28, 26.41, 24.89, 21.27, 10.81.
Figure 112011062269449-pct00033

메틸 16-[(Z)-3-에틸옥시라닐]헥사데카노에이트{methyl 16-[(Z)-3-ethyloxiranyl] hexadecanoate}를 상기에 기술한 것과 같이 가수분해하고 백색 고체의 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카노익 산{16-[(Z)-3-ethyloxiranyl]hexadecanoic acid} (8, 94%)을 제공한다. M.P.: 62.1-62.5℃, TLC: 30% EtOAc/헥산, Rf=0.35; 1H NMR(400MHz, CDCl3) δ2.86-2.94(m, 2H), 2.34(t, 2H, J=7.3Hz), 1.46-1.65(m, 30H), 1.04(t, 3H, J=7.35Hz); 13C NMR(100MHz, CDCl3) δ180.04, 58.83, 57.47, 34.24, 30.06, 30.03, 29.92, 29.81, 29.66, 29.60, 29.46, 29.43, 29.25, 27.76, 27.43, 27.28, 26.41, 24.89, 21.27, 10.89.
키랄 HPLC 에 의한 메틸 16-[( Z )-3- 에틸옥시라닐 ] 헥사덱 -11( Z )-에노에이트{ methyl 16-[( Z )-3- ethyloxiranyl ] hexadec -11( Z )- enoate }의 거울상체 해상도( enantiomeric resolution )
Chiralcel? OJ-H 컬럼(250x4.6mm)을 유동률(flow rate)은 1mL/min인 hexane/iPrOH (99.7:0.3)와 함께, uv 탐지기(detector)는 195nm의 조건에서 사용하여 메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-11(Z)-에노에이트의 크로마토그래피는 R,S-거울상체(enantiomer) (Rt =15.17 min) 및 S,R-거울상체 (Rt =17.68 min)를 제공한다. 제조 분리(preparative seperation): Chiralcel? OJ-H 컬럼(250x20mm) 유동률(flow rate)은 8mL/min에서 hexane/iPrOH (99.7:0.3)와 함께, uv 탐지기(detector)는 195nm, 이동상(mobile phase)에서 7mg/100μL 주입.
실시예 5
16-[( Z )-3- 에틸옥시라닐 ] 헥사덱 -14( Z )- 에노익 산(5), 16-[( Z )-3- 에틸옥시라닐 ] 헥사덱 -8( Z )- 에노익 산(6) and 16-[( Z )- 에틸옥시라닐 ] 헥사덱 -14( Z )- 에노익 산(8)의 합성{ Synthesis of 16-[( Z )-3- ethyloxiranyl ] hexadec -14( Z )- enoic Acid (5), 16-[( Z )-3-ethyloxiranyl]hexadec-8( Z )-enoic Acid (6) and 16-[( Z )-ethyloxiranyl]hexadec-14( Z )-enoic Acid (8)}
Figure 112011062269449-pct00034

메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-8(Z),14(Z)-디에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-8(Z),14(Z)-dienoate}를 디이미드(diimide)를 사용하여 상기 기술한 것처럼 부분적으로 환원시킨다. 2% CH2Cl2/벤젠을 사용하여 AgNO3-흡착 PTLC(AgNO3-impregnated PTLC): 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카-8(Z),14(Z)-디에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadeca-8(Z),14(Z)-dienoate}, 메틸 (Z)-16-(3-에틸옥시라닐)헥사덱-14(Z)-에노에이트{methyl (Z)-16-(3-ethyloxiranyl)hexadec-14(Z)-enoate}, 메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-8(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-8(Z)-enoate}, 및 메틸 16-[(Z)-3-에틸옥시라닐]헥사데카노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadecanoate}를 위해 각각 Rf=0.2, 0.5, 0.6, 및 0.85, 각각 2:3:3:2의 비율(ratio)에서 분리되었다.
메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-8(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-8(Z)-enoate}: 1H NMR(300MHz, CDCl3) δ5.31-5.35(m, 2H), 3.66(s, 3H), 2.84-2.91(m, 2H), 2.27(t, J=7.3Hz, 2H,), 1.97-2.08(m, 4H), 1.47-1.64(m, 4H), 1.22-1.39(m, 18H), 1.03(t, J=7.3Hz, 3H).
메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-14(Z)-에노에이트{methyl 16-[(Z)-ethyloxiranyl]hexadec-14(Z)-enoate}: 1H NMR(300MHz, CDCl3) δ5.35-5.53(m, 2H), 3.63(s, 3H), 2.84-2.95(m, 2H), 2.32-2.39(m, 1H), 2.27(t, J=7.3Hz, 2H), 2.12-2.95(m, 1H), 1.98-2.04(m, 2H), 1.48-1.64(m, 4H), 1.20-1.34(m, 18H), 1.04(t, J=7.4Hz, 3H); 13C NMR(75MHz, CDCl3) 174.62, 132.86, 123.86, 58.84, 56.92, 51.76, 34.48, 29.96, 29.89, 29.84, 29.79, 29.74, 29.68, 29.66, 29.59, 29.57, 27.76, 26.36, 25.17, 21.33, 10.07.
Figure 112011062269449-pct00035

메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-8(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-8(Z)-enoate}를 위에서 뵤사한 것과 같이 가수분해하여 무색의 16-[(Z)-3-에틸옥시라닐]헥사덱-8(Z)-에노익 산{16-[(Z)-3-ethyloxiranyl]hexadec-8(Z)-enoic acid} (6, 91%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.33; 1H NMR(400MHz, CDCl3) δ5.34-5.40(m, 2H), 2.90-2.96(m, 2H), 2.36(t, 2H, J=7.7Hz), 2.01-2.05(m, 4H), 1.22-1.65(m, 22H), 1.07(t, 3H, J=7.4Hz); 13C NMR(75MHz, CDCl3) δ180.08, 130.52, 129.66, 58.54, 57.47, 34.23, 29.81, 29.61, 29.56, 29.36, 29.16, 29.13, 29.07, 28.86, 27.53, 26.78, 26.61, 24.49, 21.46, 10.78.
Figure 112011062269449-pct00036

메틸 16-[(Z)-3-에틸옥시라닐]헥사덱-14(Z)-에노에이트{methyl 16-[(Z)-3-ethyloxiranyl]hexadec-14(Z)-enoate}를 위에서 기술한 것과 같이 가수분해하여 16-[(Z)-3-에틸옥시라닐]헥사덱-14(Z)-에노익 산{16-[(Z)-3-ethyloxiranyl] hexadec-14(Z)-enoic acid} (5, 90%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.32; 1H NMR(300MHz, CDCl3) δ5.36-5.59(m, 2H), 2.87-2.98(m, 2H), 2.34(t, J=7.6Hz, 2H), 2.31-2.43(m, 1H), 2.12-2.22(m, 1H), 1.99-2.06(m, 2H), 1.50-1.64(m, 4H), 1.20-1.35(m, 18H), 1.04(t, J=7.3Hz, 3H); 13C NMR(75MHz, CDCl3) δ180.04, 133.06, 123.96, 58.46, 57.42, 34.12, 30.04, 30.01, 30.00, 29.98, 29.84, 29.96, 29.92, 29.89, 29.87, 27.88, 26.38, 25.01, 21.27, 10.92.
실시예 6
16-(3- 에틸우레이도 ) 헥사덱 -11( Z )- 에노익 산{16-(3- ethylureido ) hexadec -11( Z )-enoic acid } (11)의 합성
Figure 112011062269449-pct00037

NaH(7.5g, 60% oil dispersion, 326mmol)를 에틸렌디아민(40mL)의 스터링 되고 있는, 0℃ 도덱-3-인-1-올(dodec-3-yn-1-ol) (10.0g, 54.95mmol; GF Smith)의 용액에 portionwise로 첨가한다. 1시간 후에, 그 온도를 70℃로 올린다. 8시간 후에, 상기 반응 혼합물을 0℃까지 낮추고, 조심스럽게 얼음처럼 차가운 물(100mL)로 반응을 종결하고, 에테르(3x60mL)로 추출한다. 상기 혼합된 에테르성 추출물을 물(100mL)로 씻어준다. 상기 물의 세척을 다시 에테르(3x60mL)로 추출한다. 상기 혼합된 유기성 추출액을 진공에서 농축하고 10% EtOAc/헥산를 사용하여 컬럼 크로마토그래피를 수행한 그 잔여물은 3-5%의 다른 구조이성질체(regioisomer)가 섞인 도덱-10-인-1-올(dodec-10-yn-1-ol) (7.4g, 74%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.4; 1H NMR(300MHz, CDCl3) δ3.66(t, 2H, J=7.3Hz), 2.14-2.21(m, 2H), 1.93(t, J=1.9Hz, 1H), 1.20-1.63(m, 16H). Lit. ref: R. V. Novikov; A. A. Vasil'ev; I. A. Balova Russ . Chem . Bull ., Internat . Ed . 2005: 54, 1043-1045.
Figure 112011062269449-pct00038

털트-부틸디페닐실릴 클로라이드(tert-butyldiphenylsilyl chloride) (TBDPSCl, 8.70g, 31.65mmol)를 무수의 디클로로메탄(100mL)에 있는 덱-11-인-1-올(dodec-11-yn-1-ol) (4.80g, 26.37mmol) 및 이디마졸(imidazole, 3.23g, 47.47mmol)의 0℃ 용액에 천천히 첨가한다. 3시간 동안 상온에서 저어준 후, 상기 반응 혼합물을 물(75mL), 브라인(50mL)으로 씻어주고 환산 압력하에서 농축시킨다. 그 잔여물을 용리액으로써 3% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 12-(털트-부틸디페닐실릴옥시)도덱-1-인{12-(tert-butyldiphenylsilyloxy)dodec-1-yne} (9.75g, 88%)을 제공한다. TLC: 6% EtOAc/헥산, Rf=0.7; 1H NMR(CDCl3, 300MHz) δ7.65-7.68(m, 4H), 7.34-7.42(m, 6H), 3.65(t, J=7.3Hz, 2H), 2.18(dt, J=7.0, 2.4Hz, 2H), 1.94(t, J=1.9Hz, 1H), 1.20-1.60(m, 16H), 1.04(s, 9H).
Figure 112011062269449-pct00039

12-(털트-부틸디페닐실릴옥시)도덱-1-인{12-(tert-butyldiphenylsilyloxy)dodec-1-yne}을 상기에 기술한 것과 같이 2-(4-브로모부톡시)테트라하이드로피란{2-(4-bromobutoxy)tetrahydropyran}와 함께 알킬화(alkylation)하여 다음 반응에 더 이상의 정제과정 없이 사용되는 무색 오일의 털트-부틸디페닐-[16-(테트라하이드로피란-2-일옥시)헥사덱-11-인일옥시]실란{tert-butyldiphenyl-[16-(tetrahydropyran-2-yloxy)hexadec-11-ynyloxy]silane} (66%)을 제공한다. TLC: 10% EtOAc/헥산, Rf=0.5.
Figure 112011062269449-pct00040

테트라-n-부틸암모늄 플루오라이드(tetra-n-butylammonium fluoride) (3.14g, 12.5mL of a 1M soln in THF, 12.50mmol)를 THF(150mL)의 상기 크루드(crude) 털트-부틸디페닐-[16-(테트라하이드로피란-2-일옥시)헥사덱-11-인일옥시]실란{tert-butyldiphenyl-[16-(tetrahydropyran-2-yloxy)hexadec-11-ynyloxy]silane{(6g, 10.42mmol)의 용액에 아르곤 기체하에 첨가한다. 5시간 후에, 상기 반응 혼합물을 포화된 NH4Cl 수용액(5mL)으로 반응을 종결시키고, 물(100mL), 및 브라인(75ml)으로 씻어준다. 상기 수용층(aqueous layer)를 다시 에테르(2x75mL)로 다시 추출한다. 상기 혼합된 유기성 추출물을 Na2SO4에서 건조시켜, 환산 압력하에서 농축시키고, 그 잔여물을 용리액으로써 5-10% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-11-인-1-올{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-11-yn-1-ol} (3.17g, 80% overall)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.4; 1H NMR (CDCl3, 300MHz) δ4.57-4.59(m, 1H), 3.82-3.90(m, 1H), 3.71-3.79(m, 1H), 3.64(t, 2H, J=6.8Hz), 3.46-3.53(m, 1H), 3.36-3.44(m, 1H), 2.10-2.22(m, 4H), 1.20-1.80(m, 26H).
Figure 112011062269449-pct00041

상기된 것과 같은 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-11-인-1-올{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-11-yn-1-ol}의 세미-수소첨가(hydrogenation)는 무색 오일의 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-11(Z)-엔-1-올{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-11(Z)-en-1-ol} (99%)을 제공한다. TLC: 20% EtOAc/헥산, Rf=0.30; 1H NMR(CDCl3 300MHz) δ5.33-5.37(m, 2H), 4.58(m, 1H), 3.83-3.90(m, 1H), 3.73-3.77(m, 1H), 3.65(t, 2H, J=6.7Hz), 3.46-3.53(m, 1H), 3.34-3.44(m, 1H), 1.97-2.09(m, 4H), 1.20-1.83(m, 26H).
Figure 112011062269449-pct00042

상기 묘사된 것과 같은 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-11(Z)-엔-1-올{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-11(Z)-en-1-ol}의 존스 산화(jones oxidation)는 무색 오일의 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-11(Z)-에노익 산{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-11(Z)-enoic acid}(68%)를 제공한다. TLC: SiO2 , 40% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.33-5.37(m, 2H), 4.56-4.58(m, 1H), 3.83-3.88(m, 1H), 3.73-3.78(m, 1H), 3.49-3.53(m, 1H), 3.35-3.43(m, 1H), 2.34(t, J=7.0Hz, 2H) 1.97-2.09(m, 4H), 1.20-1.84(m, 24H).
Figure 112011062269449-pct00043

MeOH(30mL)의 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-11(Z)-에노익 산{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-11(Z)-enoic acid} (2.1g, 5.93mmol) 및 PTSA(50mg) 용액을 상온에서 10시간 동안 저어준 후, 진공에서 농축하고 그 잔여물을 용리액으로써 15% EtOAc/헥산를 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 메틸 16-하이드록시헥사덱-11(Z)-에노에이트{methyl 16-hydroxyhexadec-11(Z)-enoate} (1.42 g, 83%)를 제공한다. TLC: 20% EtOAc/헥산, Rf=0.35; 1H NMR(CDCl3, 300MHz) δ5.33-5.37(m, 2H), 3.65(s, 3H), 3.63(t, J=7.3Hz, 2H), 2.29(t, J=7.0Hz, 2H), 1.97-2.08(m, 4H), 1.21-1.64(m, 18H).
Figure 112011062269449-pct00044

디이소프로필 아조디카르복실레이트(diisopropyl azodicarboxylate; DIAD; 1.15g, 5.70mmol)를 드라이 THF(30mL) 안의 트리페닐포스핀(triphenylphosphine, 1.49g, 5.70mmol)의 -20℃ 용액에 떨어뜨리는 방식(dropwise)으로 아르곤 기체하에서 첨가한다. 10분 동안 저어준 후, 무수의 THF(5mL)의 메틸 16-하이드록시헥사덱-11(Z)-에노에이트 (1.35g, 4.75mmol)를 떨어뜨리는 방식으로 첨가한다. -20℃에서 30분 후에, 상기 반응 혼합물을 0℃로 따뜻하게 해주고 디페닐포스포릴 아자이드(diphenylphosphoryl azide;DPPA, 1.38g, 5.70mmol)를 떨어뜨리는 방식으로 첨가한다. 상온에서 6시간 동안 저어준 후, 그 반응을 물(3mL)로 종결시키고, 에테르(50mL)로 희석시키고, 브라인(40mL)으로 씻어준다. 그 수용성 층을 다시 에테르로 추출한다(2x30mL). 상기 혼합된 유기성 추출물을 Na2SO4에서 건조시켜 환산 압력하게 농축시킨다. 그 잔여물을 용리액으로써 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 밝은 노란색 오일의 메틸 16-아지도헥사덱-11(Z)-에노에이트(methyl 16-azidohexadec-11(Z)-enoate) (1.14g, 78%) (약간의 DIAD 불순물로 오염되어 있음)을 제공한다. TLC: 10% EtOAc/헥산, Rf=0.45; 1H NMR (CDCl3, 300MHz) δ5.31-5.43(m, 2H), 3.66(s, 3H), 3.26(t, J=6.7Hz, 2H), 2.30(t, J=7.1Hz, 2H), 1.97-2.10(m, 4H), 1.50-1.64(m, 4H), 1.15-1.48(m, 14H). Lit. ref.: C. M. Afonso; M. T. Barros; L. S. Godinhoa; C. D. Maycock Tetrahedron 1994: 50, 9671.
Figure 112011062269449-pct00045

트리페닐포스핀(triphenylphosphine, 1.15g, 4.41mmol)을 THF(25mL) 안의 메틸 16-아지도헥사덱-11(Z)-에노에이트(methyl 16-azidohexadec-11(Z)-enoate) (1.05g, 3.4mmol)의 상온 용액에 첨가한다. 2시간 후에, 물 (200□L)을 첨가하고 8시간 동안 스터링을 계속해준다. 그 후 상기 반응 혼합물을 EtOAc(20mL)로 희석하고, 물(20mL) 및 브라인(25mL)로 씻어준다. 수용성 층을 다시 EtOAc로 추출한다(2x30mL). 혼합된 유기성 추출물을 Na2SO4에서 건조시켜, 환산 압력하에서 농축시키고 나아가 4시간 동안 고진공(high vaccum)에서 건조시킨다. 상기 크루드 메틸 16-아미노헥사덱-11(Z)-에노에이트{methyl 16-aminohexadec-11(Z)-enoate}는 다음 과정에서 추가의 정제과정 없이 사용된다. Lit. ref.: S. Chandrasekhar; S. S. Sultana; N. Kiranmai; Ch. Narsihmulu Tetrahedron Lett . 2007 : 48, 2373.
에틸 이소시아네이트(ethyl isocyanate, 60mg, 0.85mmol)를 드라이 THF(20mL) 안의 상기 크루드 메틸 16-아미노헥사덱-11(Z)-에노에이트{methyl 16-aminohexadec-11(Z)-enoate} (200mg. 0.71mmol)의 상온 용액에 첨가한다. 6시간 후에, 반응 혼합물을 환산 압력하에서 농축시키고 그 잔여물을 용리액으로써 30% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색의, 걸쭉한(thick) 오일의 메틸 16-(3-에틸우레이도)헥사덱-11(Z)-에노에이트{methyl 16-(3-ethylureido)hexadec-11(Z)-enoate}(223mg, 86%)를 제공한다. TLC: 50% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.23-5.38(m, 2H), 5.08(br s, 2H), 3.63(s, 3H), 3.09-3.20(m, 4H), 2.27(t, J=7.1Hz, 2H), 1.93-2.04(m, 4H), 1.20-1.62(m, 18H), 1.08(t, J=7.3Hz, 3H); 13C NMR(CDCl3, 75MHz) δ174.72, 130.53, 129.45, 51.70, 40.47, 35.26, 34.32, 30.24, 29.91, 29.66, 29.60, 29.46, 29.34, 27.43, 27.27, 27.12, 25.15, 15.80. Lit. ref.: V. Papesch; E. F. Schroeded J. Org . Chem . 1951: 16, 1879.
Figure 112011062269449-pct00046

메틸 16-(3-에틸우레이도)헥사덱-11(Z)-에노에이트{methyl 16-(3-ethylureido)hexadec-11(Z)-enoate}를 상기 기술한 것과 같이 가수분해하여 백색 파우더의 16-(3-에틸우레이도)헥사덱-11(Z)-에노익 산{16-(3-ethylureido)hexadec-11(Z)-enoic acid} (82%)을 제공한다. M.P.: 83.1-83.3℃. TLC: SiO2 , 75% EtOAc/헥산, Rf=0.3; 1H NMR(CDCl3, 300MHz) δ5.26-5.42(m, 2H), 4.89(br s, 1H), 3.06-3.24(m, 4H), 2.32(t, J=7.1Hz, 2H), 1.97-2.08(m, 4H), 1.22-1.64(m, 18H), 1.14(t, J=7.3Hz, 3H); 13C NMR(CDCl3, 75MHz) δ179.72, 130.79, 129.35, 40.99, 35.66, 34.45, 29.70, 29.67, 29.24, 29.12, 28.99, 27.26, 27.14, 27.04, 24.97, 15.50.
실시예 7
16-( 부티릴아미노 ) 헥사덱 -11( Z )- 에노익 산{6-( butyrylamino ) hexadec -11( Z )- enoic acid} (12)의 합성
Figure 112011062269449-pct00047

부티릭 산(butyric acid, 100mg, 1.10mmol), 1-하이드록시벤조트리아졸 (1-hydroxybenzotriazole, 145mg, 1.10mmol; HOBt) 및 디이소프로필에틸아민(diisopropylethylamine, 150mg, 1.10mmol; DIPEA)를 앞서 기술한 무수의 DMF(20mL) 안의 크루드 메틸 16-아미노헥사덱-11(Z)-에노에이트{methyl 16-aminohexadec-11(Z)-enoate} (240mg, 0.85mmol)의 스터링 되고 있는 용액에 아르곤 기체하에서 첨가한다. 5분 후에, 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드{1-ethyl-3-(3-dimethylaminopropyl)carbodiimide} (210mg, 1.10mmol; EDCI)를 고체로 첨가한다. 12시간 동안 상온에서 저어준 후, 상기 반응 혼합물을 EtOAc(30mL)로 희석하고, 물(30mL), 및 브라인(20mL)으로 씻어준다. 상기 혼합된 수용성 층을 다시 EtOAc로 추출한다(3x30mL). 상기 혼합된 유기성 추출물은 Na2SO4에서 건조시켜, 환산 압력하에서 농축시키고, 그 잔여물을 용리액으로써 30% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 점성의 오일(viscous oil)의 메틸 16-(부티릴아미노)헥사덱-11(Z)-에노에이트{methyl 16-(butyrylamino)hexadec-11(Z)-enoate} (246 mg, 82%)를 제공한다. TLC: 50% EtOAc/헥산, Rf=0.5; 1H NMR(CDCl3, 300MHz) δ5.58 (br s, 1H), 5.26-5.40(m, 2H), 3.65(s, 3H), 3.19-3.26(m, 2H), 2.25-2.31(m, 2H), 2.12(t, J=7.1Hz, 2H), 1.95-2.08(m, 4H), 1.22-1.66(m, 18H), 0.92(t, J=7.1Hz, 3H); 13C NMR(CDCl3, 75MHz) δ174.61, 173.26, 130.71, 129.31, 51.67, 39.60, 38.99, 34.32, 29.90, 29.66, 29.60, 29.50, 29.45, 29.34, 27.43, 27.21, 27.01, 25.15, 19.46, 13.98. Lit. ref.: J. Cesar; M. S. Dolenc Tetrahedron Lett . 2001, 42, 7099.
Figure 112011062269449-pct00048

메틸 16-(부티릴아미노)헥사덱-11(Z)-에노에이트{methyl 16-(butyrylamino)hexadec-11(Z)-enoate}를 상기 기술한 것과 같이 가수분해하여 백색고체의 16-(부티릴아미노)헥사덱-11(Z)-에노익 산{16-(butyrylamino)hexadec-11(Z)-enoic acid} (88%)을 제공한다. M.P. 99.2-99.6℃. TLC: 75% EtOAc/헥산, Rf=0.5; 1H NMR(CD3OD, 300MHz) δ5.28-5.41(m, 2H), 3.15(t, 2H, J=7.3Hz), 2.01-2.21(m, 8H), 1.22-1.64(m, 20H), 0.93(t, 3H, J=7.1Hz); 13C NMR(CDCl3, 75MHz) δ174.89, 130.10, 129.17, 39.07, 37.88, 29.67, 29.55, 29.49, 29.20, 28.89, 27.00, 26.95, 26.66, 26.52, 22.96, 19.31, 12.85.
실시예 8
16-(2-( 메틸아미노 )-2- 옥소아세타미도 ) 헥사덱 -11( Z )- 에노익 산{16-(2-(methylamino)-2-oxoacetamido)hexadec-11( Z )-enoic acid } (13)의 합성
Figure 112011062269449-pct00049

메틸아민(methylamine, 1.5g, 1M THF 용액의 23mL, 48.38mmol) 용액을 드라이 THF(100mL) 안의 에틸 클로로옥소아세테이트 (ethyl chlorooxoacetate, 5.0g, 36.76mmol) 및 트리에틸아민(triethylamine, 5.6g, 7.6mL, 55.44mmol)의 -10℃ 용액에 떨어뜨리는 방식으로 아르곤 기체하에서 첨가한다. 0℃에서 1시간 동안 저어준 후, 상기 반응을 물(5mL)로 종결시킨다. 20분 후에, 상기 반응 혼합물을 에틸아세테이트로 추출하고(2x30mL) 상기 혼합된 유기성 추출물을 물로 씻어주고(2x100mL), 진공에서 건조시키고 농축시킨다. 그 잔여물을 40% EtOAc/헥산를 사용하여 컬럼 크로마토그래피에 의해 정제하여 백색 파우더의 모노에틸 N-메틸옥살라믹 산(monoethyl N-methyloxalamic acid) (3.95g, 82%)를 제공한다. TLC: 75% EtOAc/헥산, Rf=0.4; 1H NMR(CDCl3, 300MHz) δ4.35(q, 2H, J=7.0Hz), 2.92(d, 3H, J=5.2Hz), 1.37(t, 3H, J=7.3Hz).
Figure 112011062269449-pct00050

상기 얻은 질량(2g, 15.26mmol)을 수용성 테트라하이드로푸란의 리튬 하이드록시드(2.0M) 용액의 존재하에 가수분해( hydolize )한다. 상기 반응(as per TLC)의 완료후에, 상기 전체 질량을 1N HCl(15mL)을 사용하여 산성화하여 PH= 1를 제공한 후 아텔 아세테이트(50mL)을 사용하여 희석한다. 상기 수용성 층은 다시 에틸아세테이트로 추출한다(3x40mL). 상기 혼합된 유기성 층은 Na2SO4에서 건조시켜 환산 압력하에서 농축시키고 상기 얻은 질량을 헥산/에테르(hexanes/ether, 1/1)로 씻어 다음 반응에서 더 이상의 정제과정 없이 사용되는 백색의 고체를 제공한다.
Figure 112011062269449-pct00051

메틸 16-아미노헥사덱-11(Z)-에노에이트{methyl 16-aminohexadec-11(Z)-enoate} (180mg, 0.64mmol)를 2-(메틸아미노)-2-옥소아세틱 산{2-methylamino)-2-oxoacetic acid}( mg, 0.77mmol)을 사용하여 상기 기술한 것과 같이 응축시켜서 백색 고체의 메틸 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-11(Z)-에노에니트{methyl 16-(2-(methylamino)-2-oxoacetamido)hexadec-11(Z)-enoate} (160mg, 68%)를 제공한다. TLC: 100% EtOAc, Rf=0.4; 1H NMR(CDCl3, 300MHz) δ7.45(br s, 1H), 5.26-5.42(m, 2H), 3.66(s, 3H), 3.27-3.35(m, 2H), 2.90(d, 3H, J=5.2Hz), 2.30(t, 2H, J=7.3Hz), 1.96-2.08(m, 4H), 1.24-1.66(m, 18H) 13C NMR(CDC13, 75MHz) δ174.60, 160.81, 159.94, 130.87, 129.08, 51.68, 39.79, 34.33, 29.91, 29.68, 29.63, 29.50, 29.46, 29.36, 29.02, 27.46, 27.08, 26.91, 26.40, 25.17.
Figure 112011062269449-pct00052

메틸 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-11(Z)-에노에이트{methyl 16-(2-(methylamino)-2-oxoacetamido)hexadec-11(Z)-enoate} (150mg, 0.40mmol)를 LiOH를 사용하여 상기 기술한 것과 같이 가수분해하여 백색 파우더의 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-11(Z)-에노익 산{16-(2-(methylamino)-2-oxoacetamido)hexadec-11(Z)-enoic acid} (126mg, 89%) M.P.: 110.2-110.6℃. TLC: 5% MeOH/CH2Cl2, Rf=0.4; 1H NMR(CDCl3, 300MHz) δ7.80(br s, 1H), 7.66(br s, 1H), 5.26-5.42(m, 2H), 3.28-3.35(m, 2H), 2.90(s, 3H), 2.36(t, 2H, J=7.3Hz), 1.97-2.08(m, 4H), 1.51-1.64(m, 4H), 1.22-1.42(m, 14H); 13C NMR(CDCl3, 75MHz) δ177.98, 160.96, 159.93, 130.83, 129.22, 39.91, 33.91, 29.58, 29.25, 29.12, 29.01, 28.95, 27.21, 27.09, 26.93, 26.46, 24.89.
Figure 112011062269449-pct00053

16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-11(Z)-에노익 산{16-(2-(methylamino)-2-oxoacetamido)hexadec-11(Z)-enoic acid} (30mg)을 탈이온화된 물(deionized water, 30mL)에 용해시키고 NaHCO3(2g, 10등가량)를 저어주며 첨가한다. 상온에서 1시간 후에, 미리 씻어둔 Bio-Rad? Bio-Beads(SM-2, 20-50mesh, 15g)를 첨가한다. 1시간 동안 부드럽게 저어준 후, 상기 비드(beads)를 sintered 유리깔때기를 이용하여 모으고 물(150mL)로 씻어주고, 그 후 상기 염을 99% 에탄올(ethanol, 200mL)을 사용하여 씻어내어 비드로부터 떼어낸다. 상기 에탄올 세정물(ethanol washings)을 환산 압력하에서 농축시켜 백색 무형 고체(white amorphos solid)의 나트륨 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-11(Z)-에노에이트{sodium 16-(2-(Methylamino)-2-oxoacetamido)hexadec-11(Z)-enoate}를 제공한다. 1H NMR(CD3OD, 300MHz) δ7.52-7.64(m, 2H), 5.27-5.38(m, 2H), 3.27(t, 2H, J=7.4Hz), 2.82(s, 3H), 2.25(t, 2H, J=7.5Hz), 1.97-2.05(m, 4H), 1.52-1.65(m, 4H), 1.20-1.41(m, 14H);
실시예 9
16-(N- 이소프로필부티라미도 ) 헥사덱 -11( Z )- 에노익 산{16-(N-isopropylbutyramido)hexadec-11( Z )-enoic acid }의 합성 (15)
Figure 112011062269449-pct00054

트리페닐포스핀(triphenylphosphine, 730mg, 2.78mmol) 및 이미다졸(190mg, 2.78mmol)을 드라이 THF(50mL) 안의 메틸 16-하이드록시헥사덱-11(Z)-에노에이트{methyl 16-hydroxyhexadec-11(Z)-enoate} (660mg, 2.32mmol) 0℃ 용액에 아르곤 기체하에서 첨가한다. 10분 후에, 고체 이오딘(solid iodine, 700mg, 1.2등가량)을 portionwise로 첨가한다. 상온에서 3시간 동안 저어준 후, 상기 반응 혼합물을 포화된 아황산수소나트륨 수용액(sat. aq. sodium bisulfite solution, 10mL)으로 종결시킨다. 1시간 후에, 상기 용액을 물로 씻어주고(2x30mL), 환산 압력하에서 농축시키고, 그 잔여물을 용리액으로써 10% EtOAc/헥산를 사용하여 플라스크(flask) 컬럼 크로마토그래피에 의해 정제하여 메틸 16-이오도헥사덱-11(Z)-이노에이트{methyl 16-iodohexadec-11(Z)-enoate} (505mg, 76%)를 제공한다. TLC: 10% EtOAc/헥산, Rf=0.55; 1H NMR(CDCl3, 300MHz) δ5.28-5.42(m, 2H), 3.66(s, 3H), 3.18(t, J=7.0Hz, 2H), 2.30(t, J=7.6Hz, 2H), 1.98-2.08(m, 4H), 1.24-1.85(m, 18H).
Figure 112011062269449-pct00055

이소프로필아민(isopropylamine, 220mg, 3.8mmol)을 THF(20mL) 안의 상기로부터의 메틸 16-이오도헥사덱-11(Z)-이노에이트{methyl 16-iodohexadec-11(Z)-enoate} (300mg, 0.76mmol) 및 탄산칼륨(potassium carbonate, 320mg)의 용액에 동봉된 튜브에서(sealed tube) 아르곤 기체하에 첨가한다. 10시간 동안 90℃에서 가열한 후, 상기 반응 혼합물을 상온으로 식힌 후, EtOAc(50mL)로 희석하고, 물(20mL)로 씻어주고, 건조시키고, 5시간 동안 고진공하에서 농축시킨다. 상기 크루드 메틸 16-(N-이소프로필아미노)헥사덱-11(Z)-에노에이트{methyl 16-(N-isopropylamino) hexadec-11(Z)-enoate}을 더 이상의 정제과정 없이 다음 반응에서 사용한다. TLC: 20% MeOH/CH2Cl2, Rf=0.20; 1H NMR(CDCl3, 300MHz) δ5.28-5.40(m, 2H), 3.66(s, 3H), 2.72-2.84(m, 1H), 2.58(t, J=7.2Hz, 2H), 2.29(t, J=7.6Hz, 2H), 1.98-2.08(m, 4H), 1.22-1.62(m, 18H), 1.05(d, 6H, J=6.4Hz).
Figure 112011062269449-pct00056

메틸 16-(N-이소프로필아미노)헥사덱-11(Z)-에노에이트{methyl 16-(N-isopropylamino)hexadec-11(Z)-enoate}(400mg, 1.2mmol)을 상기 기술한 것과 같이 n-부티릭 산(n-butyric acid, 130mg, 1.47mmol)과 함께 아실화하여 메틸 16-(N-이소프로필부티라미도)헥사덱-11(Z)-에노에이트{methyl 16-(N-isopropylbutyramido)hexadec-11(Z)-enoate} (348mg, 74%)를 제공한다. TLC: 50% EtOAc/헥산, Rf=0.30; 1H NMR(CDCl3, 300MHz, rotamers) δ5.28-5.42(m, 2H), 4.61-4.67 및 3.99-4.10(m, 1H 60/40 ratio에서 2개의 로타머;rotamer에 대해), 3.66(s, 3H), 3.06-3.16(m, 2H), 2.21-2.36(m, 4H), 1.95-2.10(m, 4H), 1.20-1.72(m, 20H), 1.17 및 1.12(d, J=6.6Hz, 3H 60/40 ratio에서 2개의 로타머에 대해), 0.96 및 0.95(t, 3H, J=7.3Hz 60/40 ratio에서 2개의 로타머에 대해).
Figure 112011062269449-pct00057

메틸 16-(N-이소프로필부티라미도)헥사덱-11(Z)-에노에이트{methyl 16-(N-isopropylbutyramido)hexadec-11(Z)-enoate} (320mg, 0.81mmol)를 상기 기술한 것과 같이 가수분해하여 걸쭉한, 무색 오일의 16-(N-이소프로필부티라미도)헥사덱-에노익 산{16-(N-isopropylbutyramido)hexadec-11(Z)-enoic acid} (254 mg, 83%)을 제공한다. TLC:, 75% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz, 로타머) δ5.26-5.41(m, 2H), 4.63-4.69 및 4.00-4.10(m, 1H 60/40 ratio에서 2개의 로타머에 대해), 3.06-3.17(m, 2H), 2.22-2.37(m, 4H), 1.98-2.12(m, 4H), 1.50-1.72(m, 4H), 1.22-1.40(m,16H), 1.18 및 1.12(d, J=7.0Hz, 6H 60/40 ratio에서 2개의 로타머에 대해), 0.96 및 0.95(t, J=7.3Hz, 3H 60/40 ratio에서 2개의 로타머에 대해); 13C NMR(CDCl3, 75MHz, rotamers) δ179.07, 178.95, 173.42, 172.89, 131.03, 130.35, 129.70, 128.99, 48.51, 45.70, 43.58, 41.22, 35.98, 35.83, 34.37, 31.20, 29.90, 29.86, 29.67, 29.61, 29.53, 29.48, 29.39, 28.37, 29.28, 27.84, 27.50, 27.46, 27.35, 27.19, 26.90, 25.00, 21.54, 20.75, 19.35, 19.22, 14.23; MS: m/z 380(M-H)+.
실시예 10
메틸 16-(3-에틸-1,3- 디메틸우레이도 ) 헥사덱 -11(Z)- 에노익 산{ methyl 16-(3- ethyl -1,3-dimethylureido)hexadec-11(Z)-enoic Acid } (16)의 합성
Figure 112011062269449-pct00058

메틸아민(methylamine, 1.0M THF 용액의 1mL, 33mg)을 THF(20mL) 안의 상기로부터의 메틸 16-이오도헥사덱-11(Z)-에노에이트{methyl 16-iodohexadec-11(Z)-enoate} (300mg, 0.76mmol) 및 탄산칼륨(320mg, 2.28mmol, 3등가량) 용액에 아르곤 기체하에 동봉된 튜브에서 첨가한다. 12시간 동안 90℃에서 가열한 후, 상기 반응 혼합물을 상온으로 식히고, EtOAc(50mL)로 희석하고, 물(20mL)로 씻어주고, 건조시키고, 5시간 동안 고진공하에서 농축시킨다. 크루드 메틸 16-(메틸아미노)헥사덱-11(Z)-에노에이트{methyl 16-(methylamino)hexadec-11(Z)-enoate}는 더 이상의 정제과정 없이 다음 반응에서 사용된다. TLC: 10% MeOH/CH2Cl2, Rf=0.2; 1H NMR(CDCl3, 300MHz) δ5.28-5.40(m, 2H), 3.66(s, 3H), 2.56(t, J=6.8Hz, 2H), 2.42(s, 3H), 2.29(t, J=7.6Hz, 2H), 1.96-2.06(m, 4H), 1.24-1.64(m, 18H).
Figure 112011062269449-pct00059

트리에틸아민(triethylamine, 12.84g, 127.11mmol) 및 p-니트로페닐 클로로포르메이트(p-nitrophenyl chloroformate, 63.56mmol, 12.8g)을 드라이 DMF(70mL) 안의 N-에틸메틸아민(N-ethylmethylamine, 2.50g, 42.37mmol)의 상온 용액에 아르곤 기체하에서 첨가한다. 2시간 후에, 상기 반응 혼합물을 물로 종결시키고, EtOAc(200mL)를 이용하여 희석하고, 물(2x100mL), 및 브라인(75mL)으로 씻어준다. 모든 휘발성 물질을 환산 압력하에서 제거하고, 상기 잔여물을 10% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 노란색 오일의 화합물 4-니트로페닐 에틸(메틸)카르바메이트{4-nitrophenyl ethyl(methyl)carbamate} (5.8g, 76%)를 제공한다. TLC: 20% EtOAc/헥산, Rf=0.50; 1H NMR(CDCl3, 300MHz) δ8.18-8.21(m, 2H), 7.25-7.29(m, 2H), 3.37-3.46(m, 2H), 3.05 및 2.97(s, 3H 60/40 ratio에서 2개의 로타머에 대해), 1.17-1.22(m, 3H).
Figure 112011062269449-pct00060

무수의 아세토니트릴(acetonitrile, 20mL) 안의 상기로부터 크루드 메틸 16-(메틸아미노)헥사덱-11(Z)-에노에이트{methyl 16-(methylamino)hexadec-11(Z)-enoate} (150mg, 0.51mmol)을 드라이 아세토니트릴(20mL) 안의 p-니트로페닐 클로로포르메이트(p-nitrophenyl chloroformate, 130mg, 0.72mmol) 및 K2CO3(230mg, 1.5mmol)의 혼합물에 상온에서 첨가한다. 36시간 동안 환휴하에서 열을 가한 후, 상기 용매를 환산 압력하에서 제거하고 그 잔여물을 물(30mL)로 희석하고 난 후 EtOAc(2x30mL)으로 추출한다. 상기 혼합된 유기성 추출물을 Na2SO4에서 건조시켜 환산 압력하에서 농축시킨다. 그 잔여물을 용리액으로써 15% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의 메틸 16-(3-에틸-1,3-디메틸우레이도)헥사덱-11(Z)-에노에이트{methyl 16-(3-ethyl-1,3-dimethylureido)hexadec-11(Z)-enoate} (65mg, 34%)를 제공한다. TLC: 40% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.27-5.40(m, 2H), 3.66(s, 3H), 3.10-3.18(m, 4H), 2.77(s, 3H), 2.75(s, 3H), 2.29(t, J=7.2Hz, 2H), 1.97-2.05(m, 4H), 1.50-1.68(m, 4H), 1.20-1.42(m, 14H), 1.12(t, J=6.9Hz, 3H).
Figure 112011062269449-pct00061

메틸 16-(3-에틸-1,3-디메틸우레이도)헥사덱-11(Z)-에노에이트{methyl 16-(3-ethyl-1,3-dimethylureido)hexadec-11(Z)-enoate} (30mg, 0.08mmol)를 상기에 기술한 것과 같이 가수분해하여 무색 오일의 16-(3-에틸-1,3-디메틸우레이도)헥사덱-11(Z)-에노익 산{16-(3-ethyl-1,3-dimethylureido)hexadec-11(Z)-enoic acid} (15mg, 75%)를 제공한다. TLC: 50% EtOAc/헥산, Rf=0.30; 1H NMR(CDCl3, 400MHz) δ5.33-5.41(m, 2H), 3.12-3.19(m, 4H), 2.79(s, 3H), 2.76(s, 3H), 2.31-2.38(m, 2H), 1.98-2.06(m, 4H), 1.20-1.68(m, 18H), 1.13(t, J=6.9Hz, 3H); 13C NMR(CDCl3, 75MHz) δ177.52, 166.83, 130.61, 129.567, 51.58, 45.38, 37.91, 36.93, 34.12, 29.74, 29.67, 28.72, 28.42, 27.43, 26.68, 24.99, 22.64, 15.34.
실시예 11
나트륨 17-옥소-17-( 프로필아미노 ) 헵타덱 -11( Z )-에노에이트{ sodium 17- oxo -17-(propylamino)heptadec-11( Z )-enoate} (14)의 합성
Figure 112011062269449-pct00062

상기에 기술한 것과 같이 메틸 16-하이드록시헥사덱-11(Z)-에노에이트{methyl 16-hydroxyhexadec-11(Z)-enoate} (2.0 g, 7.04 mmol)의 존스 산화(Jones oxidation)는 무색 오일의 16-메톡시-16-옥소헥사덱-5(Z)-에노익 산{16-methoxy-16-oxohexadec-5(Z)-enoic acid} (1.72g, 83%)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.27-5.45(m, 2H), 3.66(s, 3H), 2.36(t, 2H, J=7.7Hz), 2.30(t, 2H, J=7.4Hz), 1.98-2.12(m, 4H), 1.57-1.72(m, 4H), 1.20-1.41(m, 12H).
Figure 112011062269449-pct00063

트리에틸아민(triethylamine, 122mg, 1.18mmol) 및 에틸 클로로포르메이트(ethyl chloroformate, 130mg, 1.13mmol)을 드라이 THF(50mL) 안의 16-메톡시-16-옥소헥사덱-5(Z)-에노익 산{16-methoxy-16-oxohexadec-5(Z)-enoic acid} (300mg, 1.06mmol)의 -15℃ 용액에 아르곤 기체하에서 첨가한다. 15분 후에, 상기 반응 혼합물을 -5℃까지 따뜻하게 하고 디아조메탄(diazomethane)의 에테르성 용액을 15분 동안 디아조메탄의 노란색이 지속될 때까지 천천히 첨가한다. 그 후에, 상기 반응 혼합물을 상온에서 3시간 동안 저어준 후, 그 초과 디아조메탄을 아르곤 증기(steam of argon)하에서 증발시킨다. 상기 반응 용액을 포화된 NaHCO3 수용액(50mL), 브라인(50mL)으로 씻어주고, Na2SO4에서 건조시키고, 환산 압력하에서 농축시킨다. 그 잔여물을 급속하게 용리액으로써 20% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 다음 반응에서 즉시 사용되는 밝은 노란 오일의 메틸 17-디아조-16-옥소헵타덱-11(Z)-에노에이트{methyl 17-diazo-16-oxoheptadec-11(Z)-enoate} (180mg, 55%)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.40; 1H NMR(C6D6, 300MHz) δ5.25-5.48(m, 2H), 4.13(s, 1H), 3.32(s, 3H), 2.07(t, 2H, J=7.4Hz), 1.85-2.04(m, 6H), 1.44-1.61(m, 4H), 1.15-1.38(m, 12H). Lit. ref.: J. Cesar; M. S. Dolenc Tetrahedron Lett. 2001: 42, 7099.
트리에틸아민(68mg, 100mL, 0.66mmol) 안의 실버 벤조에이트(silver benzoate, 5mg, 10mol %)의 용액을 드라이 THF(20mL) 안의 메틸 17-디아조-16-옥소헵타덱-11(Z)-에노에이트{methyl 17-diazo-16-oxoheptadec-11(Z)-enoate} (70mg, 0.22mmol) 및 n-프로필아민(n-propylamine, 40mg, 10등가량)의 -25℃ 용액에 빛이 차단된 곳에서 아르곤 기체하에 첨가한다. 상기 반응 혼합물을 상온에서 3시간 동안 따뜻하게 하고, 에테르(10mL)로 희석하고, 0.2N HCl(5mL)로 반응을 종결시키고, 브라인(30mL), 포화된 NaHCO3 수용액(10mL)으로 씻어주고, Na2SO4에서 건조시키고, 환산 압력하에서 농축시킨다. 그 잔여물을 용리액으로써 20% EtOAc/헥산을 이용하여 SiO2 컬럼 크로마토그래피로 정제하여 옅은 노랑 오일의 메틸 17-옥소-17-(프로필아미노)헵타덱-11(Z)-에노에이트{methyl 17-oxo-17-(propylamino) heptadec-11(Z)-enoate} (49mg, 64%)를 제공한다. TLC: 30% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.47(br s, 1H), 5.27-5.40(m, 2H), 3.66(s, 3H), 3.17-3.24(m, 2H), 2.29(t, 2H, J=7.1Hz), 2.16(t, 2H, J=7.1Hz), 1.96-2.07(m, 4H), 1.24-1.67(m, 20H), 0.91(t, 3H, J=7.3Hz); 13C NMR(CDCl3, 75MHz) δ174.62, 173.22, 130.59, 129.41, 51.68, 41.40, 37.05, 34.33, 29.93, 29.67, 29.63, 29.48, 29.36, 27.44, 27.16, 25.73, 25.17, 23.14, 11.60. Lit. ref.: J. Podlech; D. Seebach Angew . Chem ., Int . Ed . 1995: 34, 471.
Figure 112011062269449-pct00064

메틸 17-옥소-17-(프로필아미노)헵타덱-11(Z)-에노에이트{methyl 17-oxo-17-(propylamino)heptadec-11(Z)-enoate} (48mg, 0.14mmol)을 상기에 기술한 것과 같이 그것의 나트륨 염(sodium salt)으로 전환하여 백색 고체의 나트륨 17-옥소-17-(프로필아미노)헵타덱-11(Z)-에노에이트{sodium 17-oxo-17-(propylamino)heptadec-11(Z)-enoate}을 제공한다. M.P.: 84.8-85.2℃. TLC (유리산; free acid): 75% EtOAc/헥산, Rf=0.30; 나트륨 염에 대한 1H NMR 염(CD3OD, 300MHz) δ5.30-5.42(m, 2H), 3.16(t, 2H, J=7.0Hz), 2.00-2.22(m, 8H), 1.22-1.68(m, 20H), 0.93(t, 3H, J=7.2Hz); 나트륨 염에 대한 13C NMR(CD3OD, 75MHz) δ180.33, 174.88, 130.08, 129.22, 39.07, 37.88, 36.80, 29.70, 29.53, 29.49, 29.45, 29.21, 28.90, 27.02, 26.96, 26.68, 26.12, 19.32, 12.88.
실시예 12
16-( 부틸아미노 )-16- 옥소헥사덱 -11(Z)- 에노익 산{16-( Butylamino )-16- oxohexadec -11( Z )-enoic acid } (24)의 합성
Figure 112011062269449-pct00065

16-메톡시-16-옥소헥사덱-5(Z)-에노익 산{16-methoxy-16-oxohexadec-5(Z)-enoic acid} (230mg, 0.77mmol)을 n-부틸아민(n-butylamine, 70mg, 1.08mmol)과 함께 EDCI를 사용하여 기술한 것과 같이 응축시켜 무색 오일의 메틸 16-(부틸아미노)-16-옥소헥사덱-11(Z)-에노에이트{methyl 16-(butylamino)-16-oxohexadec-11(Z)-enoate} (185mg, 68%)를 제공한다. TLC: 50% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.26-5.42(m, 2H), 3.66(s, 3H), 3.21-3.29(m, 2H), 2.30(t, 2H, J=7.2Hz), 2.16(t, 2H, J=7.1Hz), 1.97-2.08(m, 4H), 1.55-1.74(m, 4H), 1.24-1.54(m, 14H), 0.92(t, 3H, J=7.3Hz); 13C NMR(CDCl3, 75MHz) δ174.60, 173.1, 131.18, 128.83, 51.67, 39.42, 36.44, 34.32, 31.98, 29.91, 29.66, 29.60, 29.49, 29.45, 29.34, 27.47, 26.87, 25.95, 25.15, 20.30, 13.98.
Figure 112011062269449-pct00066

메틸 16-(부틸아미노)-16-옥소헥사덱-11(Z)-에노에이트{methyl 16-(butylamino)-16-oxohexadec-11(Z)-enoate (150mg, 0.44mmol)를 가수분해하여 백색 고체의 16-(부틸아미노)-16-옥소헥사덱-11(Z)-에노익 산 {16-(butylamino)-16-oxohexadec-11(Z)-enoic acid} (114mg, 82%)을 제공한다. M.P.: 78.2-78.8℃. TLC: 75% EtOAc/헥산, Rf=0.3; 1H NMR(CDCl3, 300MHz) δ5.81(br s, 1H), 5.24-5.40(m, 2H), 3.18-3.24(m, 2H), 2.30(t, 2H, J=7.3Hz), 2.16(t, 2H, J=7.2Hz), 1.93-2.06(m, 4H), 1.19-1.70(m, 20H), 0.88(t, 3H, J=7.4Hz); 13C NMR(CDCl3, 75MHz) δ178.98, 173.78, 131.19, 128.74, 39.54, 36.36, 34.37, 31.84, 29.84, 29.56, 29.53, 29.40, 29.38, 29.22, 27.42, 26.85, 25.99, 24.98, 20.26, 13.96.
실시예 13
2-(2-(2- 하이드록시에톡시 ) 에톡시 )에틸 16-(3- 에틸우레이도 ) 헥사덱 -11( Z )-에노에이트{2-(2-(2- Hydroxyethoxy ) ethoxy ) ethyl 16-(3- ethylureido ) hexadec -11( Z )- enoate } (18)의 합성
Figure 112011062269449-pct00067

트리에틸렌글리콜(triethyleneglycol, 42mg, 0.29mmol; 분자 여과기;molecular sieves에서 건조시킴)을 무수의 DMF(3mL) 안의 16-(3-에틸-1,3-디메틸우레이도)헥사덱-11(Z)-에노익 산{16-(3-ethyl-1,3-dimethylureido)hexadec-11(Z)-enoic acid} (10mg, 0.029mmol) 및 N,N-디메틸아미노피리딘(N,N-dimethylaminopyridine;DMAP, 4.2 mg, 0.034 mmol)의 용액에 상온에서 아르곤 기체하에 첨가한다. 3분 후에, 고체 EDCI (6.4mg, 0.034mmol)를 첨가한다. 12시간 후에, 상기 반응 혼합물을 EtOAc(10mL)로 희석하고, 물(5mL)로 씻어내고, 진공에서 농축시킨다. 그 잔여물을 EtOAc를 이용하여 SiO2 컬럼 크로마토그래피로 정제하여 점성의, 무색 오일의 2-(2-(2-하이드록시에톡시)에톡시)에틸 16-(3-에틸우레이도)헥사덱-11(Z)-에노에이트{2-(2-(2-hydroxyethoxy)ethoxy)ethyl 16-(3-ethylureido)hexadec-11(Z)-enoate} (11mg, 85%)를 제공한다. TLC:, 100% EtOAc, Rf=0.20; 1H NMR(CDCl3, 300MHz) δ5.27-5.42(m, 2H), 4.34(br s, 1H), 4.23(t, 2H, J=5.8Hz), 3.59-3.74(m, 10H), 3.12-3.24(m, 4H), 2.46(br s, 1H), 2.33(t, 2H, J=7.3Hz), 1.96-2.07(m, 4H), 1.22-1.64(m, 18H), 1.13(t, 3H, J=7.3Hz); 13C NMR(CDCl3, 75MHz) δ174.21, 158.42, 130.66, 129.44, 72.70, 70.79, 70.57, 69.44, 63.46, 61.98, 40.74, 35.59, 34.40, 30.11, 29.88, 29.63, 29.60, 29.44, 29.42, 29.31, 27.41, 27.22, 27.08, 25.10, 15.73.
실시예 14
나트륨 ( Z )-2-(16-(3- 에틸우레이도 ) 헥사덱 -11- 엔아미도 )아세테이트{ sodium ( Z )-2-(16-(3-ethylureido)hexadec-11-enamido)acetate} (17)의 합성
Figure 112011062269449-pct00068

16-(3-에틸-1,3-디메틸우레이도)헥사덱-11(Z)-에노익 산{16-(3-ethyl-1,3-dimethylureido)hexadec-11(Z)-enoic acid} (50mg, 0.15mmol)을 상기에 기술한 것과 같이 글리신 메틸 에스터(glycine methyl ester, 96mg, 0.38mmol)와 함께 응축하여 무색오일의 메틸 2-(16-3-에틸우레이도)헥사덱-11(Z)-엔아미도)아세테이트{methyl 2-(16-(3-ethylureido)hexadec-11(Z)-enamido)acetate} (51mg, 84%)를 제공한다. TLC: 75% EtOAc/헥산, Rf=0.50; 1H NMR(CDCl3, 300MHz) δ6.28(br s, 1H), 5.26-5.42(m, 2H), 4.89(br s, 1H), 4.03(d, 2H, J=5.2Hz), 3.10-3.22(m, 4H), 2.24(t, 2H, J=7.1Hz), 1.96-2.08(m, 4H), 1.22-1.67(m, 18H), 1.12(t, 3H, J=7.3Hz); 13C NMR(CDCl3, 75MHz) δ173.84, 170.86, 158.68, 130.61, 129.50, 52.58, 41.40, 40.67, 36.58, 35.49, 30.18, 29.92, 29.73, 29.53, 29.46, 29.41, 29.22, 27.28, 27.25, 27.10, 25.78, 15.73.
Figure 112011062269449-pct00069

메틸 2-(16-3-에틸우레이도)헥사덱-11(Z)-엔아미도)아세테이트{methyl 2-(16-(3-ethylureido)hexadec-11(Z)-enamido)acetate}를 상기 기술한 것과 같이 가수분해 하여 백색 고체의 나트륨 2-(16-(3-에틸우레이도)헥사덱-11(Z)-엔아미도)아세테이트{sodium 2-(16-(3-ethylureido)hexadec-11(Z)-enamido)acetate}를 제공한다. M.P.: 152.4-152.8℃. 1H NMR(CD3OD, 300MHz) δ7.57-7.65(m, 1H), 5.32-5.42(m, 2H), 3.73(s, 2H), 3.07-3.18(m, 4H), 2.36(t, 2H, J=7.3Hz), 1.98-2.09(m, 4H), 1.22-1.65(m, 18H), 1.08(t, 3H, J=7.1Hz); 13C NMR(CDCl3, 75MHz) δ175.41, 174.67, 160.72, 129.98, 129.31, 43.32, 39.70, 35.98, 34.58, 29.83, 29.66, 29.42, 29.31, 29.21, 29.14, 26.96, 26.91, 26.72, 25.70, 14.66.
실시예 15
16-[(1S,2R)-3-에틸- 옥시라닐 ] 헥사덱 -11( Z )- 에노익 산{ Synthesis of 16-[(1S,2R)-3-Ethyl-oxiranyl]hexadec-11( Z )-enoic acid } (10)의 합성
Figure 112011062269449-pct00070

2-(프로프-2-인일옥시)테트라하이드로-2H-피란{2-(prop-2-ynyloxy)tetrahydro-2H-pyran} (5.6g, 36.36mmol)를 상기에 기술한 것과 같이 (4-브로모부톡시)(털트-부틸)디페닐실란{(4-bromobutoxy)(tert-butyl)diphenylsilane} (18.5g, 47.2mmol)과 함께 알킬화하여 털트-부틸디페닐(7-테트라하이드로-2H-피란-2-일옥시)헵트-5-인일옥시)실란{tert-butyldiphenyl(7-(tetrahydro-2H-pyran-2-yloxy)hept-5-ynyloxy)silane} (10.64g, 65%)을 제공하고 추출 분리 후에 더 이상의 정제 과정 없이 사용된다. TLC: 10% EtOAc/헥산, Rf =0.5.
털트-부틸디페닐(7-테트라하이드로-2H-피란-2-일옥시)헵트-5-인일옥시)실란{tert-butyldiphenyl(7-(tetrahydro-2H-pyran-2-yloxy)hept-5-ynyloxy)silane} (10g, 22.22mmol)으로부터 THP 에테르의 제거는 상기 묘사된 것과 같이 무색 오일의 7-(털트-부틸디페닐실릴옥시)헵트-2-인-1-올{7-(tert-butyldiphenylsilyloxy)hept-2-yn-1-ol} (7.15g, 88%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ7.65-7.67(m, 4H), 7.33-7.42(m, 6H), 4.22-4.26(m, 2H), 3.64(t, 2H, J=6.4Hz), 2.12-2.16(m, 2H), 1.40-1.46(m, 4H), 1.03(s, 9H).
Figure 112011062269449-pct00071

상기 묘사된 것과 같은 7-(털트-부틸디페닐실릴옥시)헵트-2-인-1-올{7-(tert-butyldiphenylsilyloxy)hept-2-yn-1-ol} (7.4g, 20.22mmol)의 세미-수소첨가(semi-hydrogenation) 무색 오일의 7-(털트-부틸디페닐실릴옥시)헵트-2(Z)-엔-1-올{7-(tert-butyldiphenylsilyloxy)hept-2(Z)-en-1-ol} (7.3g, 98%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.5; 1H NMR(CDCl3, 400MHz) δ7.65-7.69(m, 4H), 7.40-7.44(m, 6H), 5.44-5.64(m, 2H), 4.16(d, 2H, J=6.1Hz), 3.65(t, 2H, J=6.1Hz), 2.03-2.10(m, 2H), 1.42-1.60(m, 4H), 1.04(s, 9H).
Figure 112011062269449-pct00072

(-)-디에틸 타르트레이트{(-)-diethyl tartrate} (570mg, DET) 및 티타늄 테트라(titanium tetra, isopropoxide, 775mg)를 CH2Cl2(50mL)에서 스터링 되고 있는 활성화된 파우더 타입 4 분자체(activated and powdered type 4 molecular sieves, 2g)의 -20℃ 서스펜젼에 아르곤 기체하에서 순차적으로 첨가한다. 30분 후에, 드라이 CH2Cl2(20mL)안의 7-(털트-부틸디페닐실릴옥시)헵트-2(Z)-엔-1-올{7-(tert-butyldiphenylsilyloxy)hept-2(Z)-en-1-ol} (5g, 13.58mmol) 용액을 천천히 첨가하고 그 결과 혼합물을 2시간 동안 동일한 온도에서 저어준다. 털트-부틸 하이드로퍼옥시드(tert-butyl hydroperoxide, 2.5g, 5.5M 데케인; decane 용액의 5.1mL; TBHP)을 매우 천천히 첨가한다. -20℃에서 2일 동안 저어준 후, 물(2mL)을 첨가하고 그 혼합물을 1시간 동안 0℃에서 저어준다. 1M NaOH 수용액(5mL)을 첨가하고 30분 동안 저어준다. 그 후 상기 반응 혼합물을 물(100mL)로 씻어주고 환산 압력하에서 농축시킨다. 용리액으로써 10% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피에 의한 잔여물 정제는 무색 오일의 ((2R,3S)-3-(4-(털트-부틸디페닐실릴옥시)부틸)옥시란-2-일)메탄올{((2R,3S)-3-(4-(tert-butyldiphenylsilyloxy)butyl)oxiran-2-yl)methanol} (3.23g, 62%)을 제공한다. 상기 묘사된 것과 같이 키랄(chiral) HPLC 분석은 샘플이 60% ee라는 것을 나타낸다. TLC: 30% EtOAc/헥산, Rf=0.4; 1H NMR(CDCl3, 400MHz) δ7.64-7.68(m, 4H), 7.35-7.44(m, 6H), 3.79-3.88(m, 1H), 3.61-3.69(m, 3H), 3.12-3.17(m, 1H), 2.98-3.04(m, 1H), 1.53-1.65(m, 4H), 1.03(s, 9H). Lit. ref.: T. Katsuki; K. B. Sharpless J. Am . Chem . Soc . 1980: 102, 5974.
Figure 112011062269449-pct00073

드라이 DMSO(114mg, 0.4mmol)을 드라이 CH2Cl2(10mL)에서 스터링 되고 있는 옥살릴 클로라이드(oxalyl chloride, 110mg, 0.3mmol)의 -80℃ 용액에 떨어뜨리는 방식으로 아르곤 기체하에서 첨가한다. 20분 후에, 드라이 CH2Cl2 (50 mL) 안의 ((2R,3S)-3-(4-(털트-부틸디페닐실릴옥시)부틸)옥시란-2-일)메탄올{((2R,3S)-3-(4-(tert-butyldiphenylsilyloxy)butyl)oxiran-2-yl)methanol} (200mg, 0.1mmol)용액을 천천히 첨가한다. 45분 후에, 트리에틸아민(triethylamine, 200mg, 0.1mmol)을 첨가하고 그 반응 혼합물을 0℃로 따뜻하게 한다. 0.5시간 후에, 상기 반응 혼합물을 물(50mL)로 종결시킨다. 그 수용성 층을 분리하고 CH2Cl2로 다시 추출한다(2x10mL). 혼합된 유기성 추출물은 물, 브라인으로 씻어주고, 무수의 Na2SO4에서 건조시키고, 진공에서 증발시킨다. 그 잔여물을 5% EtOAc/헥산를 이용하여 SiO2 컬럼 크로마토그래피를 통해 정제하여 (2S,3S)-3-[4-(털트-부틸디페닐실란일옥시)-부틸]-옥시란-2-카르발데히드{(2S,3S)-3-[4-(tert-butyldiphenylsilanyloxy)-butyl]-oxirane-2-carbaldehyde}를 제공한다. 상기 크루드 알데히드는 더 이상의 정제 과정 없이 다음 반응을 위해 사용된다.
Figure 112011062269449-pct00074

나트륨 비스(트리베킬실릴)아미드{sodium bis(trimethylsilyl)amide} (2.4g, 13.08mmol, 13.1mL, THF의 1.0M)을 스터링 되고 있는 드라이 THF(10mL) 안의 메틸 트리페닐포스포늄 브로마이드{methyl triphenylphosphonium bromide} (4.68g, 13.08mmol)의 0℃ 용액에 첨가한다. 30분 후에, 상기 반응 혼합물을 -50℃로 차갑게 하고 THF(10mL) 안의 (2S,3S)-3-[4-(털트-부틸디페닐실란일옥시)-부틸]-옥시란-2-카르발데히드{(2S,3S)-3-[4-(tert-butyldiphenylsilanyloxy)-butyl]-oxirane-2-carbaldehyde} (2.5g, 6.55mmol)의 용액을 5분에 걸쳐 첨가한다. 상기 용액을 상온으로 1시간에 걸쳐 따뜻하게 해준다. 상온에서 2시간 후에, 그 반응 혼합물을 물(30mL)로 종결하고 에테르로 추출한다(3x60mL). 혼합된 에테르성 추출물을 물로 씻어주고(2x100mL), 무수의 Na2SO4에서 건조시키고, 진공에서 농축시킨다. 그 잔여물을 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 무색 오일의
(3R,4S)-털트-부틸디페닐-[4-(3-비닐-옥시라닐)-부톡시]-실란{(3R,4S)-tert-butyldiphenyl-[4-(3-vinyl-oxiranyl)-butoxy]-silane} (1.84g, 76%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.4; 1H NMR(CDCl3, 400MHz) δ7.65-7.69(m, 4H), 7.35-7.44(m, 6H), 5.64-5.76(m, 1H), 5.32-5.50(m, 2H), 3.67(t, 2H, J=7.06Hz), 3.38-3.42(m, 1H), 3.02-3.11(m, 1H), 1.44-1.68(m, 4H), 1.05(s, 9H).
Figure 112011062269449-pct00075

상기 묘사된 것과 같은 (3R,4S)-털트-부틸디페닐-[4-(3-비닐-옥시라닐)-부톡시]-실란{(3R,4S)-tert-butyldiphenyl-[4-(3-vinyl-oxiranyl)-butoxy]-silane}의 탈실릴화(desilylstion)는 무색 오일의 (3R,4S)-4-(3-비닐-옥시라닐)-부탄-1-올{(3R,4S)-4-(3-vinyl-oxiranyl)-butan-1-ol} (92%)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.5; 1H NMR(CDCl3, 400MHz) δ5.65-5.77(m, 1H), 5.33-5.50(m, 2H), 3.65(t, 2H, J=6.1Hz), 3.38-3.43(m, 1H), 3.06-3.11(m, 1H), 1.44-1.66(m, 6H).
Figure 112011062269449-pct00076

4(S)-(3(R)-비닐옥시라닐)-부탄-1-올{4(S)-(3(R)-vinyloxiranyl)-butan-1-ol}을 상기 묘사된 것과 같이 in situ 생성된 디이미드(diimide)와 함께 환원시켜 무색 오일의 4(S)-[3(R)-에틸옥시라닐]부탄-1-올{4(S)-[3(R)-ethyloxiranyl]butan-1-ol} (92%)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.5; 1H NMR(CDCl3, 400MHz) δ3.66(t, 2H, J=6.1Hz), 2.85-2.94(m, 2H), 1.49-1.65(m, 8H), 1.03(t, J=7.2Hz, 3H).
Figure 112011062269449-pct00077

상기 기술한 것과 같이 Ph3P/CBr4와 함께 4(S)-[3(R)-에틸옥시라닐]부탄-1-올{4(S)-[3(R)-ethyloxiranyl]butan-1-ol}의 처리는 무색 오일의 2(S)-(4-브로모부틸)-3(R)-에틸옥시란{2(S)-(4-bromobutyl)-3(R)-ethyloxirane} (64%)을 제공한다. TLC: 10% EtOAc/헥산, Rf=0.7.
Figure 112011062269449-pct00078

상기 기술한 것과 같이 도덱-10-인-1-올(dodec-10-yn-1-ol) (2.5g, 13.73mmol)의 존스 산화(Jones oxidation)는 도덱-11-이노익 산(dodec-11-ynoic acid) (2.3g, 86%)을 제공한다. 1H NMR(CDCl3, 400MHz) δ2.34(t, 2H, J=7.0Hz), 2.14-2.21(m, 2H), 1.93(t, 1H, J=2.75Hz), 1.21-1.64(m, 22H).
Figure 112011062269449-pct00079

상기에 기술한 것과 같이 2(S)-(4-브로모부틸)-3(R)-에틸옥시란{2(S)-(4-bromobutyl)-3(R)-ethyloxirane} (500mg)과 함께 도덱-11-이노익 산(dodec-11-ynoic acid) (580mg)의 알킬화는 디아조메탄(diazomethane)과 함께 에스테르화된(esterified) 16(S)-[3(R)-에틸옥시라닐]-헥사덱-11-이노익 산{16(S)-[3(R)-ethyloxiranyl]-hexadec-11-ynoic acid} (64%)을 제공하는데 이는 무색 오일의 메틸 16(S)-[3(R)-에틸옥시라닐]-헥사덱-11-이노에이트{methyl 16(S)-[3(R)-ethyloxiranyl]-hexadec-11-ynoate}를 제공하기 위한 것이다. TLC: 10% EtOAc/헥산, Rf=0.5; 1H NMR(CDCl3, 400MHz) δ3.66(s, 3H), 2.82-2.88(m, 2H), 2.29(t, 2H, J=7.3Hz), 2.10-2.17(m, 4H), 1.28-1.63(m, 22H), 1.03(t, 3H, J=7.1Hz).
Figure 112011062269449-pct00080

상기 기술한 것과 같이 메틸 16(S)-[3(R)-에틸옥시라닐]-헥사덱-11-이노에이트{methyl 16(S)-[3(R)-ethyloxiranyl]-hexadec-11-ynoate}의 세미-수소첨가(semi-hydrogenation)는 무색 오일의 메틸 16(S)-[3(R)-에틸옥시라닐]-헥사덱-11(Z)-에노에이트{methyl 16(S)-[3(R)-ethyloxiranyl]-hexadec-11(Z)-enoate} (96%)를 제공한다. TLC: 10% EtOAc/헥산, Rf=0.55; 1H NMR(400MHz, CDCl3) δ5.31-5.36(m, 2H), 3.64 (s, 3H), 2.84-2.91(m, 2H), 2.28(t, 2 H, J=7.3Hz), 1.96-2.06(m, 4 H), 1.36-1.61(m, 6 H), 1.21-1.35(m, 16H), 1.03(t, 3H, J=7.3Hz).
Figure 112011062269449-pct00081

컬럼(column): Chiracel OJ-H preparative.
파장(wavelength): 210nm
이동상(mobile phase): 99.97:0.03(Hex/IPA)
유동률(flow rate): 8mL/min.
첫번째 분획은 PN-III-191-18(산)이다.
두번째 분획은 PN-III-192-13(산)이다.
실시예 16
16-(3- 에틸우레이도 ) 헥사덱 -14- 에노익 산{16-(3- ethylureido ) hexadec -14- enoic acid} (21)의 합성
Figure 112011062269449-pct00082

상기 기술한 것과 같이 1-브로모도데케인(1-bromododecane) (34.0g, 132.04 mmol)와 함께 2-(프로프-2-인일옥시)테트라하이드로-2H-피란{2-(prop-2-ynyloxy)tetrahydro-2H-pyran} (15.5g, 110.71mmol)의 알킬화는 더 이상의 정제 과정 없이 사용되는 2-(펜타덱-2-인일옥시)테트라하이드로-2H-피란{2-(pentadec-2-ynyloxy)tetrahydro-2H-pyran} (27.2g, 80%)을 제공한다. TLC: 10% EtOAc/헥산, Rf=0.5.
상기 기술된 것과 같은 크루드 2-(펜타덱-2-인일옥시)테트라하이드로-2H-피란(30g)으로부터 PTSA를 사용한 THP 에테르의 절단은 무색 오일의 펜타덱-2-인-1-올(pentadec-2-yn-1-ol) (18.6g, 85%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ4.25(s, 2H), 2.17-2.23(m, 2H), 1.70(br s, 1H), 1.40-1.53(m, 2H), 1.20-1.48(m, 18H), 0.87(t, 3H, J=7.3Hz).
Figure 112011062269449-pct00083

상기에 기술한 것과 같은 펜타덱-2-인-1-올(pentadec-2-yn-1-ol) (12.5g, 54.95mmol)의 NaH/에틸렌디아민(ethylenediamine)을 사용한 이성질화(isomerization)는 백색 고체의 펜타덱-14-인-1-올(pentadec-14-yn-1-ol) (9.4g, 76%)를 제공한다. M.P.: 54.2-54.8℃. TLC: 30% EtOAc/헥산, Rf=0.45; 1H NMR(400MHz, CDCl3) δ3.60-3.65(m, 2H), 2.16(dt, 2H, J=7.1Hz, 2.4Hz), 1.92(t, 1H, J=2.4Hz), 1.47-1.60(m, 4H), 1.22-1.35(m, 18H).
Figure 112011062269449-pct00084

상기 기술된 것과 같은 펜타덱-14-인-1-올(pentadec-14-yn-1-ol) (8.80g, 39.28mmol)의 BDPSCl(12.92g, 47.14mmol)를 이용한 실릴화(silylation)는 무색 오일의 털트-부틸(펜타덱-14-인일옥시)디페닐실란{tert-butyl(pentadec-14-ynyloxy)diphenylsilane} (16.7g, 87%)을 제공한다. TLC: 6% EtOAc/헥산, Rf=0.6; 1H NMR (CDCl3, 300MHz) δ7.65-7.68(m, 4H), 7.34-7.42(m, 6H), 3.65(t, J=7.3Hz, 2H), 2.15-2.21(m, 2H), 1.94(t, J=1.9Hz, 1H), 1.20-1.60(m, 22H), 1.04(s, 9H).
Figure 112011062269449-pct00085

n-BuLi(헥산에서의 2.5M 용액, 1.29g, 8mL, 20.24mmol)을 스터링 되고 있는 THF(175mL)에서의 털트-부틸(펜타덱-14-인일옥시)디페닐실란{tert-butyl(pentadec-14-ynyloxy)diphenylsilane} (8.5g, 18.40mmol)의 -40℃ 용액에 아르곤 기체하에서 첨가한다. 30분 후에, 상기 반응 혼합물을 점차적으로 3시간에 걸쳐 -10℃로 따뜻하게 하고, 이 온도에서 20분 동안 유지한 후, 다시 -50℃로 차갑게 한다. 그리고 난 후, THF(30mL)의 파라포름알데히드(paraformaldehyde, 3.05g, 92.2mmol) 용액을 스터링 되고 있는 반응 혼합물에 캐뉼러를 삽입한다(cannulate). 30분 후에, 상기 온도는 3시간에 걸쳐 점차적으로 상온으로 따뜻하게 한다. 상온에서 1시간 후, 상기 반응 혼합물을 포화된 NH4Cl 수용액(10mL)으로 종결시키고, 에테르(100mL)로 희석하고, 물로 씻어준다(2x75mL). 상기 혼합된 수용성 세척물은 다시 에테르로 추출한다(2x50mL). 상기 혼합된 유기성 추출물의 모든 것은 혼합되어, Na2SO4에서 건조시키고, 환산 압력하에서 농축시킨다. 그 잔여물을 용리액으로써 5% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피로 정제하여 16-(털트-부틸디페닐실릴옥시) 헥사덱-2-인-1-올{16-(tert-butyldiphenylsilyloxy) hexadec-2-yn-1-ol} (6.12g, 68%)을 제공한다. TLC: 30% EtOAc/헥산, Rf=0.5; 1H NMR(CDCl3, 300MHz) δ7.70-7.74(m, 4H), 7.34-7.44(m, 6H), 4.3(t, 2H, J=2.1Hz), 3.65(t, 2H, J=7.3Hz), 2.12-2.17(m, 2H), 1.20-1.61(m, 22H), 1.04(s, 9H).
Figure 112011062269449-pct00086

16--(털트-부틸디페닐실릴옥시) 헥사덱-2-인-1-올{16-(tert-butyldiphenylsilyloxy) hexadec-2-yn-1-ol} (6.0g, 12.5mmol)을 그에 상응하는 THP 에테르로 상기 기술한 것과 같이 바꾸어 털트-부틸디페닐(16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-14-인일옥시)실란{tert-butyldiphenyl(16-(tetrahydro-2H-pyran-2-yloxy)hexadec-14-ynyloxy)silane} (6.12g, 87%)을 제공한다. TLC: 10% EtOAc/헥산, Rf=0.5; 1H NMR (CDCl3, 300MHz) δ7.70-7.73(m, 4H), 7.35-7.43(m, 6H), 4.82(t, 1H, J=3.1Hz), 4.16-4.32(m, 2H), 3.80-3.88(m, 1H), 3.64(t, 2H, J=6.6Hz), 3.50-3.56(m, 1H), 2.17-2.23(m, 2H), 1.22-1.81(m, 28H), 1.05(s, 9H).
Figure 112011062269449-pct00087

상기 기술한 것과 같이 털트-부틸디페닐 (16-(테트라하이드로-2H-피란-2-일옥시) 헥사덱-14-인일옥시) 실란{tert-butyldiphenyl (16-(tetrahydro-2H-pyran-2-yloxy) hexadec-14-ynyloxy) silane} (6.1g, 10.6mmol)의 탈실릴화(desilylation)는 무색 오일의 16-(테트라하이드로-2H-피란-2-일옥시) 헥사덱-14-인-1-올{16-(tetrahydro-2H-pyran-2-yloxy) hexadec-14-yn-1-ol} (3.26g, 91%)을 제공한다. TLC: 40% EtOAc/헥산, Rf=0.4; 4.83(t, 1H, J=3.0Hz), 4.17-4.31(m, 2H), 3.82-3.87(m, 1H), 3.66(t, 2H, J=7.2Hz), 3.51-3.57(m, 1H), 2.18-2.24(m, 2H), 1.20-1.82(m, 28H).
Figure 112011062269449-pct00088

RuCl3(10mg) 및 포타슘 펄술페이트(potassium persulphate, 2.8g, 10.2mmol)를 아세토니트릴(acetonitrile, 20mL) 안의 16-(테트라하이드로-2H-피란-2-일옥시) 헥사덱-14-인-1-올{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-14-yn-1-ol} (1.2g, 3.55mmol)의 용액에 첨가한다. 10분 후에, KOH(2M 용액의 30mL)을 첨가한다. 3시간 후에, 상기 반응 혼합물을 pH7로 중화시키고, EtOAc(100mL)로 희석하고, 물로 씻어준다(3x5mL). 상기 혼합된 수용성 추출물은 다시 EtOAc로 추출한다(3x75mL). 상기 유기성 추출물의 모든 것을 혼합하여, Na2SO4에서 건조시켜, 환산 압력하에서 농축시킨다. 그 잔여물을 용리액으로써 20% EtOAc/헥산을 사용하여 SiO2 컬럼 크로마토그래피에 의해 정제하여 더 이상의 정제과정 없이 사용되는 무색 오일의 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-14-이노익 산{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-14-ynoic acid} (1.05g, 91%)을 제공한다. TLC: 50% EtOAc/헥산, Rf=0.35. Lit. ref.: R. S. Varma; M. Hogan Tetrahedron Lett. 1992: 33, 719.
상기 기술한 것과 같이 16-(테트라하이드로-2H-피란-2-일옥시)헥사덱-14-이노익 산{16-(tetrahydro-2H-pyran-2-yloxy)hexadec-14-ynoic acid} (1.0g, 2.84 mmol)에서 카르복실산(carboxyl acid)의 수반되는 에스테르화(esterification) 및 THP 에테르의 절단은 무색 오일의 메틸 16-하이드록시헥사덱-14-이노에이트{methyl 16-hydroxyhexadec-14-ynoate} (665mg, 83%)를 제공한다. TLC: 30% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ4.22-4.26(m, 2H), 3.66 (s, 3H), 2.29(t, 2H, J=7.3Hz), 2.20(tt, 2H, J=2.1Hz, 6.8Hz), 1.21-1.66(m, 20H).
Figure 112011062269449-pct00089

상기 기술한 것과 같이 메틸 16-하이드록시헥사덱-14-이노에이트{methyl 16-hydroxyhexadec-14-ynoate} (650mg, 2.30mmol)의 세미-수소첨가(semi-hydrogenation)은 메틸 16-하이드록시헥사덱-14(Z)-이노에이트{methyl 16-hydroxyhexadec-14(Z)-enoate} (640mg, 98%)를 제공한다. TLC: 30% EtOAc/헥산, Rf=0.45; 1H NMR(CDCl3, 300MHz) δ5.49-5.62(m, 2H), 4.17-4.21(m, 2H), 3.66(s, 3H), 2.30(t, 2H, J=7.6Hz), 2.02-2.09(m, 2H), 1.42-1.68(m, 4H), 1.20-1.41(m, 16H).
Figure 112011062269449-pct00090

상기 기술한 것과 같이 메틸 16-하이드록시헥사덱-14(Z)-에노에이트{methyl 16-hydroxyhexadec-14(Z)-enoate} (0.6g, 2.11mmol)의 상응하는 아자이드(azide)로의 전환은 백색 고체의 메틸 16-아지도헥사덱-14(Z)-에노에이트{methyl 16-azidohexadec-14(Z)-enoate} (510mg, 78%)를 제공한다. M.P.: 42.5-42.8℃. TLC: 10% EtOAc/헥산, Rf=0.50; 1H NMR(CDCl3, 300MHz) δ5.66-5.82(m, 1H), 5.46-5.55(m,1H), 3.80(d, 2H, J=7.4Hz), 3.66(s, 3H), 2.30(t, 2H, J=7.3Hz), 2.02-2.14(m, 2H), 1.21-1.40(m, 20H).
Figure 112011062269449-pct00091

메틸 16-아지도헥사덱-14(Z)-에노에이트{methyl 16-azidohexadec-14(Z)-enoate} (150mg, 0.48mmol)로 시작하여, 상기 아자이드(azide)를 Ph3P를 이용하여 환원시키고 그 결과물인 아민은 상기에 기술한 것과 같이 에틸 이소시아네이트(ethyl isocyanate)와 반응하여 백색 고체의 메틸 16-(3-에틸우레이도)헥사덱-14(Z)-에노에이트{methyl 16-(3-ethylureido)hexadec-14(Z)-enoate} (118mg, 두 단계에 걸쳐 70%)를 제공한다. M.P.: 63.4-63.6℃. TLC: 50% EtOAc/헥산, Rf=0.30; 1H NMR(CDCl3, 300MHz) δ5.31-5.52(m, 2H), 5.08-5.22 (br s, 2H), 3.76(t, 2H, J=5.2Hz), 3.63 (s, 3H), 3.15 (q, 2H, J=6.7Hz), 2.27(t, 2H, J=7.3Hz), 1.95-2.04(m, 2H), 1.54-1.64(m, 2H), 1.18-1.38(m, 18H), 1.07(t, 3H, J=6.9Hz); 13C NMR(CDCl3, 75MHz) δ174.69, 159.03, 132.91, 126.75, 51.67, 37.67, 35.27, 34.32, 29.81, 29.74, 29.64, 29.50, 29.46, 29.34, 27.57, 25.15, 15.76.
Figure 112011062269449-pct00092

상기 기술한 것과 같은 메틸 16-(3-에틸우레이도)헥사덱-14(Z)-에노에이트{methyl 16-(3-ethylureido)hexadec-14(Z)-enoate}의 가수분해는 백색 고체의 16-(3-에틸우레이도)헥사덱-14(Z)-에노익 산{16-(3-ethylureido)hexadec-14(Z)-enoic acid} (92%)을 제공한다. M.P.: 59-60℃. TLC: 75% EtOAc/헥산, Rf=0.30; 1H NMR(CD3OD, 300MHz) δ5.33-5.56(m, 2H), 3.74(d, 2H, J=6.3Hz), 3.13(q, 2H, J=7.0Hz), 2.26(t, 2H, J=7.2Hz), 1.98-2.12(m, 2H), 1.52-1.64(m, 2H), 1.18-1.38(m, 18H), 1.06(t, 3H, J=7.0Hz); 13C NMR(CD3OD, 75MHz) δ176.69, 159.94, 132.31, 126.57, 36.98, 34.70, 33.96, 29.63, 29.61, 29.54, 29.50, 29.34, 29.26, 29.15, 27.20, 24.98, 14.52.
실시예 17
16- 부티라미도헥사덱 -14( Z )- 에노익 산{16- butyramidohexadec -14( Z )- enoic acid } (22)의 합성
Figure 112011062269449-pct00093

크루드 메틸 16-아미노헥사덱-14(Z)-에노에이트(크루그 150mg)를 상기 기술한 것과 같이 n-부티릭산(n-butyric acid, 48mg, 0.55mmol)과 함께 응축시켜 무색 오일의 메틸 16-부티라미도헥사덱-14(Z)-에노에이트{methyl 16-butyramidohexadec-14(Z)-enoate} (100mg, 71%)를 제공한다. TLC: 50% EtOAc/헥산, Rf=0.40; 1H NMR(CDCl3, 300MHz) δ5.28-5.64(m, 2H), 3.78-3.90(m, 2H), 3.65(s, 3H), 2.30(t, 2H, J=7.2Hz), 2.14(t, 2H, J=7.6Hz), 1.97-2.08(m, 2H), 1.54-1.65(m, 4H), 1.20-1.38(m, 18H), 0.93(t, 3H, J=7.2Hz); 13C NMR(CDCl3, 75MHz) δ174.62, 173.18, 134.12, 125.84, 51.67, 41.65, 38.94, 38.88, 36.82, 34.32, 32.45, 29.79, 29.72, 29.65, 29.46, 29.36, 27.58, 25.16, 19.40, 13.99.
Figure 112011062269449-pct00094

상기에 기술된 것과 같은 메틸 16-부티라미도헥사덱-14(Z)-에노에이트{methyl 16-butyramidohexadec-14(Z)-enoate} (96mg, 0.27mmol)의 가수분해는 백색 고체의 16-부티라미도헥사덱-14(Z)-에노익 산{16-butyramidohexadec-14(Z)-enoic acid} (82mg, 91%)을 제공한다. M.P.: 72.7-73.1℃. TLC: 75% EtOAc/헥산, Rf=0.40; 1H NMR (CDCl3, 300MHz) δ5.28-5.70(m, 4H), 3.76-3.90(m, 2H), 2.31(t, 2H, J=7.4Hz), 2.15(t, 2H, J=6.9Hz), 1.97-2.18(m, 2H), 1.56-1.68(m, 4H), 1.20-1.40(m, 18H), 0.92(t, 3H, J=7.3Hz); 13C NMR(CDCl3, 75MHz) δ179.27, 173.58, 134.23, 125.66, 41.75, 38.86, 38.80, 36.91, 34.37, 32.44, 29.76, 29.70, 29.66, 29.62, 29.44, 29.37, 29.29, 24.98, 19.42, 13.98.
실시예 18
16-(2-( 메틸아미노 )-2- 옥소아세타미도 ) 헥사덱 -14( Z )- 에노익 산{16-(2-(methylamino)-2-oxoacetamido)hexadec-14( Z )-enoic acid } (23)의 합성
Figure 112011062269449-pct00095

상기 기술된 것과 같이 메틸 16-아미노헥사덱-14(Z)-에노에이트{methyl 16-aminohexadec-14(Z)-enoate} (크루드 140mg)를 2-(메틸아미노)-2-옥소아세틱 산{2-(methylamino)-2-oxoacetic acid} (54mg, 0.52mmol)과 함께 응축하여 백색 고체의 메틸 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-14(Z)-에노에이트{methyl 16-(2-(methylamino)-2-oxoacetamido)hexadec-14(Z)-enoate} (92mg, 72%)를 제공한다. M.P.: 104.5-1.4.8℃. TLC: 75% EtOAc/헥산, Rf=0.40. 1H NMR(CDCl3, 300MHz) δδ7.80(br s, 2H), 5.32-5.71(m, 2H), 3.82-3.96(m, 2H), 3.62(s, 3H), 2.82(s, 3H), 2.28(t, 3H, J=7.1Hz), 1.93-2.08(m, 2H), 1.56-1.64(m, 2H), 1.22-1.36(m, 18).

상기 기술된 것과 같은 메틸 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-14(Z)-에노에이트{methyl 16-(2-(methylamino)-2-oxoacetamido)hexadec-14(Z)-enoate} (75mg, 0.20mmol)의 가수분해는 백색 고체의 16-(2-(메틸아미노)-2-옥소아세타미도)헥사덱-14(Z)-에노익 산{16-(2-(methylamino)-2-oxoacetamido)hexadec-14(Z)-enoic acid} (63mg, 88%)을 제공한다. 118.9-119.3℃. TLC: 100% EtOAc, Rf=0.30; 1H NMR(CDCl3, 300MHz) δ5.12-5.47(m, 2H), 3.58-3.72(m, 2H), 2.66(s, 3H), 2.05(t, 3H, J=7.2Hz), 1.76-1.86(m, 2H), 0.99-1.41(m, 20H). 13C NMR(CDCl3, 75MHz) δ182.04, 163.77, 160.03, 134.06, 124.53, 41.28, 36.54, 34.11, 32.22, 29.62, 29.50, 29.35, 29.17, 29.08, 27.33, 27.56, 25.03.
실시예 19
작용제( agonist )의 식별
본 실시예는 EPA 및 17,18-EETeTr의 작용제로써 작용하는 화합물의 식별을 보여주고 따라서 n-3 PUFAs 및 그들의 CYP-의존적 오메가-3 에폭시-대사체(omega-3 epoxy-metabolites)의 물리학적 효과를 모방한다. 본 실시예에서 결정된 작용 효과(agonistic effect)는 배양된 신생 쥐 심근세포(cultured neonatal rat cardiomyocytes; NRCMs)의 자발적 박동률(spontaneous beating rate)의 감소에 있다. 이 부정적 변시성 효과(negative chronotropic effect)는 유사체(analogs)의 상호작용을 할 수 있는 능력 및 G-단백 결합된 수용체 또는 기초 및 스트레스가 유도한 상황(basal and stress-induced condition)에서 심근세포의 수축성(contractility)을 감소시키는 다른 1차 세포 타겟(primary cellular target)을 활성화시키는 능력을 반영한다.
재료 및 방법
검사된 모든 화합물의 구조는 도 1에서 주어진다. 상기 화합물은 실시예 1-24에서 묘사된 것과 같이 합성된 유사체 중 1개(화합물 16)를 제외한 모든 화합물 뿐만 아니라 EPA 및 17,18-EEteTr을 포함한다(화합물 01 및 02; Cayman Chemical에서 구입). 앞서 기술된 것과 같이 키랄-상 HPLC(chiral-phase HPLC)에 의해 라세믹 혼합물(화합물 02)를 분해하여(resolving) 17,18-EETeTr(화합물 03 및 04)의 R,S- 및 S,R-거울상체(enantiomer)을 제조한다(Barbosa-Sicard E, Markovic M, Honeck H, Christ B, Muller DN, Schunck WH. Biochem Biophys Res Commun. 2005 Apr 22;329(4):1275-81). 사용하기 전에, 에탄올(ethanol)에 1000배(1000-fold) 보관 용액(stock solution)으로 검사될 화합물은 준비된다.
NRCMs의 분리 및 배양은 상기 묘사된 것과 같이 수행된다 (Wallukat, G; Wollenberger, A. Biomed Biochim Acta . 1987;78:634-39; Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jupner A, Baur E, Nissen E, Vetter K, Neichel D, Dudenhausen JW, Haller H, Luft FC.. J Clin Invest . 1999;103: 945 952). 간단하게, 신생 위스터 쥐(neonatal Wistar rats, 1-2 days old)를 베를린 건강 서비스 커뮤니티(community of health service of the city of Berlin)의 권고에 따라 쥐를 죽였고 심근세포는 썰어진 심실(ventricle)으로부터 0.2% 크루드 트립신(crude trypsin) 용액을 사용하여 분리되었다. 분리된 세포는 배양되었다. 공기 습도와 평형화된 할레 SM 20-I 배지(Halle SM 20-I medium)의 2.5mL에서 팔콘 플라스크(flacon flask)의 바닥(12.5cm2)에서 단일층(monolayer)으로 배양되었다. 상기 배지는 10% 열에 의해 비활성화된 FCS(heat-inactivated FCS) 및 2μmol/l 플루오로-디옥시우리딘(2μmol/l fluoro-deoxyuridine, Serva, Heidelberg, Germany)을 포함하고 있는데, 후자는 비근육세포(non-muscle cell)의 증식을 막기 위한 것이다. NRCMs(2.4 x 106 cells/flask)는 37℃ 배양기(incubator)에서 배양되었다. 5-7일 후, NRCM은 자발적으로 박동 세포 무리(beating cell cluester)를 형성한다. 각각 무리의 세포는 1분에 120 내지 140 비트(beat)의 박동률과 함께 일치된 수축을 보여준다. 실험하는 날, 상기 배양 배지는 2.0ml 세럼(serum)을 포함하는 새로운 배지로 대체되었다. 2시간 후에, 박동률은 열적 단계(heating stage)가 장착된도립 현미경(inverted microscope)을 사용하여 37℃에서 모니터되었다. 기초율을 결정하기 위해, 6 내지 8 각각의 무리를 선택하고, 15초 동안 수축하는 수를 세었다. 그 후에, 검사하고자 할 화합물을 세포배양에 첨가하고 동일한 무리의 박동률을 5분 후에 다시 모니터하였다. 각각 무리의 기초 및 화합물로 유도된 박동률 사이의 차이를 바탕으로, 변시성 효과(△ beats/min)를 계산하였고 평균(mean)±SE 값(value)으로써 주어졌다. N은 일반적으로 최소한 3번의 독립적인 NRCM 배양으로부터 유래되어 관찰된 무리의 수를 의미한다.
결과
상기 실험들의 결과는 도 1에 나타낸다. NRCM 배양에서 상기 1μM 농도의 EPA 첨가(C01)는 박동률의 점진적 감소를 야기한다. 상기 효과는 EPA 3.3μM 및 30분의 배양 시간을 사용하여 전체적으로 나타난다. 대조적으로, 17,18-EETeTr(C02)는 동일한 효과를 낮은 나노몰 범위에서 거의 즉각적으로 이미 형성한다 (1-2nM의 EC50, 데이터는 보여지지 않음). 17,18-EETeTr의 활성을 그것의 합성 유사체의 것과 비교하기 위해, 모든 상기 화합물을 최종 농도 30nM에서 배양시간 5분을 사용하여 검사했다. 동일한 조건하에서, 대조군(vehicle control, 0.1% ethanol)은 자발적인 박동률에서 아무런 효과가 없었음을 보여준다.
도 1에서 요약된 것과 같이, 다양한 합성 유사체(analog)는 EPA 및 17,18-EETeTr의 것과 유사하게 부정적인 변사성 효과를 보여준다. 그러므로 상기 유사체는 작용제(agonist)로써 고안되었다. 작용제는 포함한다:
(i) 에폭시기(epoxy group)가 라세믹(racemic) 또는 R,S-형태(configuration, C03, C2, C4, 및 C9)인 곳에서, 17,18-위치(position)의 에폭시기와의 결합과 함께 11, 12-위치에서 이중결합을 포함하는 유사체
(ii) 17, 18-에폭시-기(C11, C13 및 C24)의 적절한 치환기와의 결합과 함께 11, 12-이중결합을 포함하는 유사체
(iii) 카르복시-기(carboxy-group, C17 및 C18)에서 변형되었지만 카테고리 ii에 속하는 유사체
대조적으로, 11, 12-이중결합을 갖고 있지 않은 대부분의 유사체는 유의적인 작용 효과(agonistic effects)를 보이지 않는다(즉 그들의 첨가는 NRCM의 박동률을 1분에 5 비트보다 적게 바꾼다). C1, C3, C5, C6, C7, C8, C19 및 C23는 이 그룹에 속한다. 11, 12- 내지 14, 15-위치로부터 이중결합의 이동(shift)은 어떤 화합물의 작용제적 특성을 폐지시킨다; C9-C5 및 C11-C23을 비교. 게다가, 어떤 화합물과 함께 이중결합의 동일한 이동은 효과를 부정적인(negative) 것에서 긍정적인(positive) NRCM의 변시성 반응으로 역전되거나 또는 매우 비활성적인(C12 및 C22를 비교) 화학물에 긍정적인 변시성 효과를 수여한다.
화합물 C03-C04의 효과에 대한 비교는 R, S-형태에 있고 반면에 상응하는 S, R-거울상체가 비활성적이라면 17, 18-에폭시-기(epoxy-group)가 작용 특성(agonistic properties)를 부여하는 것임을 나타낸다. 각각의 라세믹 혼합물(racemic mixture, C02)은 R,S-거울상체의 효과가 우세하다는 것을 의미하는 작용제(agonist)로써 작용한다. 11, 12-위치에 단 하나의 이중 결합을 갖고 있는 17, 18-EETeTr 유사체에 적용되는 장확하게 동일한 입체화학적(sterochemical) 조건: 라세메이트(racemate, C4) 및 R, S-거울상체(C9)는 작용물적 효과를 나타내고 S, R-거울상체가 비활성적이다. 반면에, 단 하나의 이중결합을 14, 15-위치에 갖고 있는 유사체는 라세메이트(C5) 및 S, R-거울상체(C19)로서의 효과를 보이지 않지만 R, S-거울상체(C20)으로서의 작용물적 효과를 보인다. 따라서, S,R-거울상체가 동시에 존재할 때, 이 경우에 R, S-거울상체의 작용물적 효과는 폐지된다.
C11, C13 및 C24 화합물의 효과는 17, 18-에폭시-기가 적절한 산소-기능(suitable oxygen-functionality)를 갖는 잔기에 의해 치환될 수 있다는 것을 의미한다. 상기 치환 종류는 작용물적 효과를 유지(C24)할 뿐만 아니라 유의적으로 증가시키기까지 한다: 17, 18-EETeTr(-22.5±0.8; n=60)과 함께 C11(-27.0±1.2; n=27) 또는 C13(-33.7±1.3; n=24) 및 C4(-18.3±1.5; n=21) 사이에서 작용물적 효과의 비교를 위한 p<0.05.
실시예 20
길항제( antagonist )의 식별
본 실시예는 EPA 및 17,18-EETeTr의 길항제로써 작용하는 화합물의 식별을 나타내고 따라서 n-3 PUFAs 및 그들의 CYP-의존적 오메가-3 에폭시-대사체(CYP-dependent omega-3 epoxy-metabolites)의 물리학적 효과를 억제한다. 이러한 길항제는 신생 쥐 심근세포의 수축성에서 EPA, 17,18-EETeTr 및 그들의 합성 작용제의 변시성 효과를 폐지하는 그들의 능력을 기본으로 선택된다.
재료 및 방법
검사되는 화합물의 구조는 도 2에 나타내고 있다. 잠재적인 길항제는 C1, C3, C5, C6, C7, 및 C8을 포함하고, 이것은 상기 상응하는 실시예에서 묘사된 것과 같이 합성된다.
생물검정(bioassay)은 실시예 25에서 묘사된 것과 같이 NRCM으로 수행된다. 실험의 첫 시리즈에서, 화합물 C4는 작용제로써 사용되고 이것의 효과는 배양된 NRCM을 5분 동안 먼저 잠재적인 길항제의 1개와 함께 인큐베이션 한 후에 결정된다. C4 및 잠재적인 작용제는 최종농도 30nM에서 사용된다. 실험의 두번째 시리즈에서, 화합물 C3(30nM)은 C2, C4 및 C13(30nM 각각) 작용물적 유사체에 대한 것 뿐만 아니라 EPA(3.3μM) 및 17,18-EETeTr(30nM)에 대한 그것의 길항 효과를 위해 검사된다.
결과
결과는 도 2 및 3에 나타내고 있다. 도 2에 요약되어 있는 데이터는 화합물 C4의 작용물적 효과가 유의적으로 화합물 C3 및 C5에 의해 억제되었다는 것을 보여준다. C3 및 C5의 길항제적 능력은 두 화합물이 배양되는 NRCM에 단일 처리되었을 때(실시예 25를 비교, 도 1), 유의적인 효과를 나타내지 않기 때문에 작용제와 함께 조합되어 유일하게 명백하게 되었다. 다른 화합물(C1, C6, C6 및 C8)은 으의 작용물적 효과를 억제하지 않고(도 2) 또한 단일 검사되었을 때 비활성적이었다(실시예 25 비교, 도1). 활성화된 길항제(C3 및 C5)를 완벽하게 비활성적 유사체(C1, C6, C7 및 C8)로부터 구별되는 구조적 특징은 14, 15-이중 결합의 존재이다.
도 3에 요약된 데이터는 화합물 C3가 C4 뿐만 아니라 EPA, 17,18-EETeTr, C2 및 C13의 매우 강한(potent) 길항제라는 것을 나타낸다. 30nM의 농도에서, C3은 3.3μM의 농도로 적용된 EPA의 부정적인 변시성 효과를 폐지했다. 가장 강한 작용제(C13)의 효과조차도 유사체가 같은 몰농도(30nM)로 존재할 때 거의 완벽하게 C3에 의해서 억제되었다.
실시예 21
동일한 세포대사를 통한 EPA 및 그것의 작용물적 유사체 작용( EPA and its agonistic analogs act via the same cellular mechanisms )
본 실시예는 EPA, 17,18-EETeTr 및 그 대부분의 강한 합성 작용액(C13)이 몇몇의 약학적 중재(intervention)에서 같은 반응에 의해 판단되듯이 동일한 세포행동의 메커니즘(mechanism)을 공유한다는 것을 나타낸다.
재료 및 방법
NRCMs으로 생물검정(bioassay)가 실시예 25 및 26에 묘사된 것과 같이 수행되었다. 작용물적 효과의 추측상 억제제로써 사용되는 화합물은 하기와 같다: 11,12-에폭시아이코사트리에노익 산(Cayman Chemicals로부터 11,12-epoxyeicosatrienoic acid, 11,12-EET; 30nM 최종농도에서 사용, AH6089(Cayman Chemicals)로부터 EP2의 비특정적 길항제 및 관련된 프로스타노이드 수용체(prostanoid receptor); 최종농도 10μM에서 사용, Sigma-Aldrich의 칼포스틴 C(calphostin C, PKC-입실론 억제제); 100Nm에서 사용, Sigma-Aldrich의 H89(PKC-억제제); 최종 농도 1μM에서 사용. 배양된 NRCMs을 화합물 없이 또는 도 4에서 지시되고 있는 화합물 중 1개와 함께 작용물의 효과가 결정되기 전에 먼저 5분 동안 인큐베이션한다: EPA(3,3μM), 17,18-EETeTr(30nM) 또는 C13(30nM). 몇몇의 실험에서, NRCMs을 선택적인 EP2 프로스타노이드 수용체 작용제(prostanoid receptor agonist, Sigma-Aldrich에서의 butaprost; 최종 농도 100nM에서 사용)로 특정 억제제의 효과를 위한 대조군(control)을 제공하기 위해 자극한다.
결과
결과는 도 4에 보여진다. EPA, 17,18-EETeTr 및 화합물 C13d의 부정적인 변시성 효과는 11,12-EET, C3, AH6089 and calphostin C에 의하여 매우 억제되었지만 H89에 의해서 영향받지 않았다. 상기 결과는 EPA, 17,18-EETeTr 및 그 대부분의 강력한 합성 유사체는 동일한 억제적 프로파일(inhibitory profile)을 공유하는 것을 나타내고 따라서 상기 화합물이 그들의 생물학적 같은 세포메커니즘(cellular mechanism)을 통한 효과를 확인하는 것이다. 더 자세하게는, 상기 결과는 3개의 작용물이 동일한 1차 타겟(primary target, the putative omega-3 epoxyeicosanoid receptor)결합 및 활성화를 위해 11,12-EET, C3 및 AH6089와 경쟁한다는 것 및 그 따라오는 신호 경로(subsequent signal pathway)는 필수적인 요소로써 단백젤 키나아제 C(protein kinase C)의 활성화를 포함한다는 것을 가르킨다. 대조적으로, EPA, 17,18-EETeTr 및 C3에서, 부타프로스타(butaprost)는 긍정적인 변시성 효과를 나타낸다. 상기 부타프로스트 효과는 AH6089 및 H89에 의해 억제되지만 C3 및 칼포스틴 C(calphostin C)에 의해서는 억제되지 않는다. 따라서, 부타프로스트의 1차 타겟(EP2 receptor) 및 상기 부타프로스트에 의해 유도된 신호경로(PKC 대신 PKA의 연관)는 EPA, 17,18-EETeTr 및 그들의 합성 유사체의 것과 상이하다.
도 4: EPA(01), 17,18-EETeTr(02) 및 상기 합성 작용제 C13의 부정적인 변시성 효과는 11,12-EET, 화합물 C3, AH6089(비선택적인 프로스타노이드 수용체 길항제; unselective prostanoid receptor antagonist) 및 칼포스틴(calphostin C, PKC-억제제)에 의해 억제되지만 H89(PKA 억제제)에 의해서는 억제되지 않는다. 부타프로스트(butaprost, EP2 작용물)의 긍정적인 변시성 효과는 AH6089 및 H89에 의해 억제되지만 C3 및 칼포스틴(calphostin C)에 의해 억제되지 않는다.
실시예 22
칼슘의 과중 및 β-아드레날린 자극에 대한 17,18- EETeTr 작용물 보호
본 실시예는 증가된 세포외 Ca2 +-농도에 대한 또는 β-아드레날린 자극에 대한 것과 같은 스트레스에 의해 유도된 심근세포의 반응이 17,18-EETeTr 작용제 C11에 의해 억제되는 것을 보여준다.
재료 및 방법
화합물 C11은 상기에 뵤사된 것과 같이(실시예 11) 합성된다. NRCMs은 실시예 19에서와 같이 분리되고 배양된다. 배지의 기초 Ca2 +-농도는 1.2mM이다. 증가된 세포외 Ca2 +-농도(2.2, 5.2 8.2mM)은 적절한 양의 1M CaCl2 용액을 배지에 첨가함으로써 조절된다. 이소프로테렌올(Sigma-Aldrich의)는 β-아드레노수용체(adrenoreceoptor) 작용제로서 사용되고 배지에 최종 농도 0.1, 1 또는 10μM을 제공하기 위해 첨가된다. C11을 최종 농도 30nM에서 사용하고 배지에 Ca2 +-농도가 변하기 전 또는 이소프로테렌올을 첨가하기 5분 먼저 첨가한다. 대조군(control)은 C11 없이 수행된다.
결과
결과는 도 5에 나타내었다. 대조군 실험에서는(control experiment), NRCMs은 증가된 세포외 Ca2 +-농도에 대해 유의적으로 많이 증가된 박동률을 보인다. C11롸 먼저 인큐베이션된 것은 유의적으로 NRCMs의 박동률이 기초 조건(1.2mM Ca2 +) 뿐만 아니라 8.2mM까지의 더 높은 Ca2 +-농도에서 감소되었다(도 5A). 유사하게, C11은 아드레노수용체(adrenoreceptor)로써 작용하는 이소프로테렌올의 증가된 농도에 대한 반응을 감소시켰고 그렇게 함으로써 수축성 및NRCMs의 박동률을 증가시켰다(도 5B).
도 5: 합성 작용제 C11은 β-아드레날린 자극(이소프로테란올:isoproterenol. 도 5A) 및 증가된 세포외 Ca2 +-농도(도 5B)에 대한 NRCMs의 반응을 억제한다.
실시예 23
생체 내 조건에서 17,18- EETeTr 작용물의 항-부정맥 효과( anti - arrhythmic effect of 17,18- EETeTr agonists under in vivo conditions )
본 실시예는 작용물적 유사체 C17이 심근경색(myocardial infarction)에 의해 유도되는 부정맥(arrhythmias)을 개선시킨다.
재료 및 방법
연구 디자인(study design): 합성 17,18-EETeTr-작용물의 생체 내 효과를 알아보기 위해서, 심근경색(myocardiac infarction) 연구는 남성 위스터 쥐(male Wistar rat)에서 수행되었다. 간략하게, 220-250g 정도 무게가 나가는 쥐를 무작위로 한회분의(bolus) 화합물 C17 (0.9% NaCl 300μl에 100μM 0.9% NaCl) 또는 대조군(vehicle control)으로써 단지 0.9% NaCl 300μl을 심근경색을 유도하기 2시간 전에 i.v.로 주입한다. 안전한 한회분의 적용을 위해, 동물은 이소플로란(isoflorane)을 이용하여 약하게 마취되었다. 한 회분을 적용한 2시간 후에, 동물들은 다시 케타민(ketamine) 및 자일라진(xylazine) (i.v.)의 혼합물으로 마취된다. 표면-ECG의 지속적인 모니터링을 시작하고(EPTracer, Netherlands) 연구가 끝날 때까지 계속한다. 기초 ECG의 기록 후에, 왼쪽 앞의 하향동맥(left anterior descending artery; LAD)의 연결(ligation)에 통해 심근경색을 유도한다. 심근경색 1시간 후에 동물을 희생시키고 기관(organ)을 모은다. 소변(urine), 피(blood), 간(liver), 신장(kidney) 및 심장(heart)으로부터의 샘플을 추후의 분석을 위해 보관한다.
부정맥 분석 방법: 심실 빈박 버든(ventricular tachycardia burden burden)을 심실 심근(ventricular myocardium)으로부터 유래된 모든 부정맥 사건(event)의 합으로 계산하였고, 이것은 심근경색 유도 후 처음 1시간 안에 관찰되었다. 심실 부정맥(ventricular arrhythmias)의 빈도 뿐만 아니라 그 정도(severity)를 정량화 하기 위해서, 부정맥-정도-점수(arrhythmia-severity-score)를 계산하였다. 상기 점수는 다른 부정맥 사건의 수(PVC, couplet, triplet, VT < 1.5 sec, VT >= 1.5 sec), 1 내지 5의 증가된 정도 인덱스(index)에 의해 요소화된(factorized) 각각의 클래스(class)(예를 들면 PVC x 1, couplets x 2,... , VT>=1,5sec x 5)의 합으로서 계산되었다
.
결과
결과는 도 6에 나타내었다. 합성의 17,18-EETeTr 작용제(화합물 C17)의 한 회분 주입은 어떠한 명백한 부정적인 부작용도 유도하지 않는다. 심실 부정맥(Ventricular arrhythmias)은 관상 동맥(coronary artery) 연결(ligation) 후 일어나고 단일의 심실성기외 수축(premature entricular conraction; PVC)비 지속적인 심실 빈박(ventricular tachycardia; VT) 및 심실 빈박/세동(ventricular tachycardia/fibrillation)로서 관찰된다. 합성 17,18-EETeTr-작용제가 처리된 쥐는 대조군과 비교하여 유의적으로 감소된 심실빈박 버든(ventricular tachycardia burden)을 나타낸다(7526.2±5664.3 vs. 56377.4±17749.9ms/h, p<0.05, n=5 per group); 도 6A. 게다가, 부정맥 정도 점수는 17,18-EETeTr-작용물 그룹에서 더 낮다(125±25 vs. 33693 arbitrary units, n=5 per 그룹); 도 6B.
도 6: 화합물 17, 17, 18-EETeTr의 합성 작용제 처리는 심근경색의 쥐모델에서 심 부정맥(cardiac arrhythmias)의 빈도(A) 및 정도(B)를 개선시킨다.

Claims (15)

  1. 하기 화학식 1로 표시되는 화합물, 이의 약학적으로 허용 가능한 염(salt), 용매화합물(solvate) 또는 수화물(hydrate):
    [화학식 1]
    Figure 112015112417826-pct00107

    (상기 화학식 1에서,
    R1
    Figure 112015112417826-pct00108
    이고,
    R2는 하이드록시(hydroxy), -O(CH2CH2O)pH, -NR3R4 또는 Xaa이고,
    상기 p는 1 내지 3의 정수이고,
    상기 R3 및 R4는 독립적으로 수소 원자 또는 Ra-O-CO-Ya-이고, 여기서 상기 Ra는 수소 원자이고, 상기 Ya는 C1-C6 알킬렌(alkylene)이고,
    Xaa는 글리신(glycine)이고;

    B는 CH2이고;

    m은 1의 정수이고;

    T, U 및 W는 각각 -CH2CH2-이고;

    V는 시스(cis) 또는 트랜스(trans) -CH=CH-이고;

    X는 부재, CH2 또는 NR5이고,
    Z는 CH2 또는 NR5'이고,
    상기 R5 및 R5'는 독립적으로 수소 원자, 메틸(methyl), 에틸(ethyl), 프로필(propyl) 또는 이소-프로필기(iso-propyl group)이고;

    Y는 -C(O)- 또는 -C(O)-C(O)-이고; 및

    n은 0 내지 3의 정수이다).
  2. 제1항에 있어서,
    상기 n은 0 또는 1의 정수인 것을 특징으로 하는 화합물, 이의 약학적으로 허용 가능한 염(salt), 용매화합물(solvate) 또는 수화물(hydrate).
  3. 제1항에 있어서,
    상기 X는 NR5인 것을 특징으로 하는 화합물, 이의 약학적으로 허용 가능한 염(salt), 용매화합물(solvate) 또는 수화물(hydrate).
  4. 제1항에 있어서,
    상기 Z는 NR5'인 것을 특징으로 하는 화합물, 이의 약학적으로 허용 가능한 염(salt), 용매화합물(solvate) 또는 수화물(hydrate).
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 군으로부터 선택되는 어느 하나의 화합물인 것을 특징으로 하는 화합물, 이의 약학적으로 허용 가능한 염(salt), 용매화합물(solvate) 또는 수화물(hydrate):
    Figure 112015112417826-pct00109
    .
  6. 제1항의 화합물, 이의 약학적으로 허용 가능한 염(salt), 용매화합물(solvate) 또는 수화물(hydrate)을 유효성분으로 함유하는 부정맥(arrhythmia)의 예방 또는 치료용 약학적 조성물.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
KR1020117018764A 2009-01-13 2010-01-13 신규한 아이코사노이드 유도체 KR101618166B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09000372.4 2009-01-13
EP09000372A EP2208720A1 (en) 2009-01-13 2009-01-13 Novel eicosanoid derivatives

Publications (2)

Publication Number Publication Date
KR20110103471A KR20110103471A (ko) 2011-09-20
KR101618166B1 true KR101618166B1 (ko) 2016-05-04

Family

ID=40887072

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117018764A KR101618166B1 (ko) 2009-01-13 2010-01-13 신규한 아이코사노이드 유도체

Country Status (10)

Country Link
US (3) US9272991B2 (ko)
EP (3) EP2208720A1 (ko)
JP (1) JP5684726B2 (ko)
KR (1) KR101618166B1 (ko)
CN (1) CN102348678B (ko)
AU (1) AU2010205816B2 (ko)
CA (1) CA2749840C (ko)
DK (1) DK2376432T3 (ko)
ES (1) ES2633315T3 (ko)
WO (1) WO2010081683A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208720A1 (en) * 2009-01-13 2010-07-21 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Novel eicosanoid derivatives
MX2012005689A (es) * 2009-11-25 2012-08-31 Cytometix Inc Analogos de acido araquidonico y metodos para el tratamiento analgesico utilizando los mismos.
PE20141155A1 (es) * 2011-04-06 2014-09-21 Mcw Res Found Inc Analogos del acido epoxi-eicosatrienoico y metodos para hacer y de uso del mismo
US9416118B2 (en) 2011-06-10 2016-08-16 The Brigham And Women's Hospital, Inc. Docosahexaenoyl ethanolamides
EP2922817A4 (en) * 2012-11-21 2016-06-22 Univ Sydney OMEGA-3 ANALOGUES
SI3097076T1 (sl) * 2014-01-22 2019-10-30 Max Delbrueck Centrum Fuer Molekulare Medizin Novi derivati CYP-eikozanoida
KR20170030474A (ko) * 2014-05-22 2017-03-17 더 유니버시티 오브 시드니 오메가―3 유사체
WO2016022567A2 (en) * 2014-08-04 2016-02-11 University Of Miami Methods for modulating iks channel activity
RU2761438C2 (ru) * 2015-07-22 2021-12-08 Омейкос Терапьютикс Гмбх Метаболически устойчивые аналоги cyp-эйкозаноидов для лечения кардиологических заболеваний
WO2017156164A1 (en) * 2016-03-09 2017-09-14 Board Of Regents, The University Of Texas System 20-hete receptor (gpr75) antagonists and methods of use
US20190117597A1 (en) * 2016-04-01 2019-04-25 Omeicos Therapeutics Gmbh Analogs of cyp-eicosanoids for use in treating or preventing a disorder associated with neovascularization and/or inflammation
CA3019028A1 (en) * 2016-04-01 2017-10-05 Omeicos Therapeutics Gmbh Analogs of cyp-eicosanoids for use in treating or preventing a disorder associated with neovascularization and/or inflammation
CN110845447B (zh) * 2019-11-28 2023-07-18 南京林业大学 美国白蛾性信息素组分的合成方法
WO2023094615A1 (en) 2021-11-26 2023-06-01 Omeicos Therapeutics Gmbh Synthetic eicosanoid analogues for the treatment and prevention of diseases associated with increased gdf15 plasma concentration
CN116351339A (zh) * 2022-06-07 2023-06-30 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009571A1 (en) * 2002-03-01 2008-01-10 Pixton Matthew R Aliphatic Polyester-Acrylic Blend Molding Composition Having Good Ductility and Weatherability

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088058C (zh) 1994-10-13 2002-07-24 肽技术有限公司 经修饰的多不饱和脂肪酸
US5753702A (en) 1996-05-22 1998-05-19 University Of Vermont Arachidonic acid metabolite, 16-hete
US6395781B1 (en) * 1998-02-26 2002-05-28 Mcw Research Foundation 20-HETE antagonists and agonists
US6552084B2 (en) 1999-11-09 2003-04-22 Alcon Universal Ltd. Hydroxyeicosatetraenoic acid analogs and methods of their use in treating dry eye disorders
WO2002059072A2 (en) 2001-01-02 2002-08-01 New York Medical College 12-hydroxy-eicosatrienoic acid analogs and methods of use thereof
WO2004080389A2 (en) 2003-03-07 2004-09-23 Taisho Pharmaceutical Co., Ltd. Hydroxyeicosadienamide compounds
US20080306155A1 (en) 2004-09-16 2008-12-11 Roman Richard J Method for treating renal disease
US20080095711A1 (en) * 2006-08-31 2008-04-24 Falck John R Modulators of Pulmonary Hypertension
US7550617B2 (en) 2006-10-02 2009-06-23 Medical College Of Georgia Research Institute Compositions and methods for the treatment of renal and cardiovascular disease
EP2208720A1 (en) * 2009-01-13 2010-07-21 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Novel eicosanoid derivatives
MX2012005689A (es) * 2009-11-25 2012-08-31 Cytometix Inc Analogos de acido araquidonico y metodos para el tratamiento analgesico utilizando los mismos.
RU2761438C2 (ru) * 2015-07-22 2021-12-08 Омейкос Терапьютикс Гмбх Метаболически устойчивые аналоги cyp-эйкозаноидов для лечения кардиологических заболеваний

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009571A1 (en) * 2002-03-01 2008-01-10 Pixton Matthew R Aliphatic Polyester-Acrylic Blend Molding Composition Having Good Ductility and Weatherability

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
American Journal of Physiology, no. 280, pp. H2430-H2440, (2001)*
Phytochemistry(ELSEVIER) 23(8), pp. 1639-1641, (1984)*

Also Published As

Publication number Publication date
US20160326128A1 (en) 2016-11-10
WO2010081683A1 (en) 2010-07-22
US9272991B2 (en) 2016-03-01
CA2749840C (en) 2016-12-13
US20190315701A1 (en) 2019-10-17
US11365183B2 (en) 2022-06-21
AU2010205816B2 (en) 2015-12-17
EP2376432A1 (en) 2011-10-19
EP3222612A1 (en) 2017-09-27
DK2376432T3 (en) 2017-07-31
EP2208720A1 (en) 2010-07-21
JP2012515177A (ja) 2012-07-05
KR20110103471A (ko) 2011-09-20
CA2749840A1 (en) 2010-07-22
CN102348678A (zh) 2012-02-08
EP2376432B1 (en) 2017-04-12
JP5684726B2 (ja) 2015-03-18
ES2633315T3 (es) 2017-09-20
AU2010205816A1 (en) 2011-07-28
US10287262B2 (en) 2019-05-14
US20120122972A1 (en) 2012-05-17
CN102348678B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
KR101618166B1 (ko) 신규한 아이코사노이드 유도체
CN108349880B (zh) 用于治疗心脏疾病的cyp类花生酸代谢稳健类似物
US11130772B2 (en) CYP-eicosanoid derivatives
AU2017240193B2 (en) Analogs of CYP-eicosanoids for use in treating or preventing a disorder associated with neovascularization and/or inflammation
US20020198382A1 (en) Oxiran carboxylic acids for the treatment of diabetes
JP6944465B2 (ja) 血管新生及び/又は炎症と関連する障害の治療又は予防における使用に対するcyp−エイコサノイドの類縁体

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 4