CN102325875B - 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用 - Google Patents

具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用 Download PDF

Info

Publication number
CN102325875B
CN102325875B CN201080008971.0A CN201080008971A CN102325875B CN 102325875 B CN102325875 B CN 102325875B CN 201080008971 A CN201080008971 A CN 201080008971A CN 102325875 B CN102325875 B CN 102325875B
Authority
CN
China
Prior art keywords
cell
cells
bacterium
bcg
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080008971.0A
Other languages
English (en)
Other versions
CN102325875A (zh
Inventor
S·A·泊赛利
M·M·文卡塔斯瓦米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Network Alliance Corp
Original Assignee
Albert Einstein College of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert Einstein College of Medicine filed Critical Albert Einstein College of Medicine
Priority to CN201710852533.6A priority Critical patent/CN107619804A/zh
Publication of CN102325875A publication Critical patent/CN102325875A/zh
Application granted granted Critical
Publication of CN102325875B publication Critical patent/CN102325875B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/522Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oncology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • AIDS & HIV (AREA)
  • Dermatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及与物理结合了神经酰胺类糖脂物理的细菌细胞相关的组合物和方法。本发明可直接递送神经酰胺类糖脂佐剂到感染细菌疫苗的相同细胞。本发明的组合物和方法用于预防和治疗疾病。

Description

具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用
发明背景
发明领域
本发明一般涉及免疫学领域。
背景技术
已知分枝杆菌在哺乳动物中引起严重疾病,如结核病、汉森氏病、麻风、肺病类结核、淋巴腺炎、皮肤病或弥散性疾病。全球人口的三分之一感染结核分枝杆菌(Mycobacterium tuberculosis),尽管卡介苗(BCG)已使用超过75年,每年仍有200万人死于结核病。Hoft DF,Lancet 372:164-175(2008)。结核病是目前全球传染病中导致死亡的第二大因素,仅次于HIV/AIDS。Young DB等,Journal of Clinical Investigation 118:1255-1265(2008)。
一些研究表明有效控制结核分枝杆菌感染需要MHC I类和II类限制性T细胞。Mogues T等,J Exp Med 193:271-280(2001)和Flynn JL等,Proc Natl Acad Sci USA 89:12013-12017(1992)。然而,脂质抗原呈递分子CD1d缺陷型小鼠并不比野生型小鼠更易感染结核分枝杆菌,表明CD1d限制性NKT细胞对于保护性免疫不是绝对必需。Behar SM等,J ExpMed 189:1973-1980(1999)。天然杀伤细胞(NKT)代表了表达T-细胞受体和NK-细胞受体的T淋巴细胞亚群,在连接先天性免疫和适应性免疫中发挥作用。Kronenberg M和Gapin L,NatRev Immunol 2:557-568(2002)。激活后,NKT细胞在针对不同病原体包括单增李斯特菌(L.monocytogenes)、结核分枝杆菌、硕大利什曼原虫(Leishmania major)的早期和迟发性免疫有显著作用。Kronenberg(2002);Behar SM和Porcelli SA,Curr Top MicrobiolImmunol 314:215-250(2007);Emoto M等,Eur J Immunol 29:650-659(1999);Ishikawa H等,Int Immunol 12:1267-1274(2000)和Ranson T等,J Immunol 175:1137-1144(2005)。有报导NKT细胞的激活可引起CD4和CD8 T细胞应答增强,并诱导树突细胞成熟。NishimuraT等,Int Immunol 12:987-994(2000)和Silk JD等,J Clin Invest 114:1800-1811(2004)。
与识别MHC-结合肽的常规T细胞不同,NKT细胞特异性针对MHC I类样蛋白CD1d呈递的脂质抗原。目前已鉴定了一些可由CD1d呈递激活NKT细胞的糖脂抗原,包括从自源和细菌源性糖脂。Tsuji M Cell Mol Life Sci 63:1889-1898(2006)。含非变异Vα14-Jα18重排T细胞受体的NKT细胞(iNKT细胞)经由CD1d呈递时,对鞘糖脂、α-半乳糖神经酰胺(αGalCer)有反应性。Kronenberg M和Gapin L,Nat Rev Immunol 2:557-568(2002);Kronenberg M,Annu Rev Immunol 23:877-900(2005)。最近的研究显示通过共施用αGalCer作为佐剂激活iNKT细胞,可改善抗疟原虫、杜氏利什曼原虫、单增李斯特菌和HIV的疫苗。Gonzalez-Aseguinolaza G等,J Exp Med 195:617-624(2002);Dondji B等,European Journal ofImmunology 38:706-719(2008);Huang YX等,Vaccine 26:1807-1816(2008)和Enomoto N等,FEMS Immunol Med Microbiol 51:350-362(2007)。
作为一种治疗剂,αGalCer可减少小鼠中的疟原虫寄生并延长结核分枝杆菌感染小鼠的存活。Gonzalez-Aseguinolaza G等,Proc Natl Acad Sci USA 97:8461-8466(2000);Chackerian A等,Infection and Immunity 70:6302-6309(2002)。因此,尽管CD1d限制性T细胞对于最佳免疫并不绝对必需,其特异性激活提高了宿主对传染病的抵抗力。
对小鼠单次注射αGalCer引发血清中的细胞因子动荡,导致IFNγ,、IL-12和IL-4分泌。Fujii S等,Immunol Rev 220:183-198(2007)。通过αGalCer刺激CD1d限制性iNKT细胞也可迅速激活NK细胞、树突细胞、B细胞和常规T细胞。Nishimura T等,Int Immunol 12:987-994(2000);Kitamura H等,J Exp Med 189:1121-1128(1999);Fujii S等,J Exp Med198:267-279(2003)。iNKT细胞生成大量IFNγ且其生成需要iNKT细胞与DC之间经CD40-CD40配体相互作用实现直接接触。Nishimura T等,Int Immunol 12:987-994(2000).。显示iNKT细胞生成的IFNγ对小鼠肿瘤模式中αGalCer的抗转移效果具有关键作用。Hayakawa Y等,Eur J Immunol 31:1720-1727(2001);Smyth MJ等,Blood 99:1259-1266(2002)。因此,有认为iNKT细胞激活能通过影响早期细胞因子环境调节适应性免疫应答。
最近,称为α-C-GalCer的α-GalCer C-糖苷类似物被确定为优势Th1扭曲化合物,其比GalCer在小鼠中的抗肿瘤和抗疟疾活性更高。该化合物也在小鼠中诱导更高的Th1细胞因子IL-12和IFNγ水平。Schmieg J等,Journal of Experimental Medicine 198:1631-1641(2003)。已确认这2种细胞因子IL-12和IFNγ对于在小鼠和人中控制TB是必须的。
对于在小鼠模型中针对结核病与BCG疫苗一起的佐剂使用很少有研究。一项此类研究报导了当将CpG ODN和BCG疫苗一起使用时,抗结核分枝杆菌的保护提高。Freidag BL等,Infect Immun 68:2948-2953(2000)。大部分针对αGalCer与抗不同传染病疫苗一起使用的佐剂效果的早期研究分别共施用αGalCer和各疫苗以利用其佐剂活性。Gonzalez-Aseguinolaza G等(2002);Dondji B等(2008);Huang YX等(2008)和Enomoto N等(2007)。因此,仍需要用于增强对细菌如分枝杆菌、抗原的免疫应答的有效组合物和疫苗。
发明概述
本发明涉及包括细菌细胞和神经酰胺类糖脂的经修饰细菌,其中所述神经酰胺类糖脂与细胞壁物理结合。在进一步实施方式中,神经酰胺类糖脂包括糖基神经酰胺或α-糖基神经酰胺或其类似物。
在一种实施方式中,糖基神经酰胺或其类似物包括式I:
其中,R1是线性或分支的C1-C27烷烃或C2-C27烯烃;或R1是-C(OH)-R3,其中R3是线性或分支的C1-C26烷烃或C2-C26烯烃;或R1是C6-C27烷烃或烯烃,其中(i)C6-C27烷烃或烯烃由C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环取代,或(ii)C6-C27烷烃或烯烃包括C6-C27烷基或烯基链中的C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环。
R2是下列(a)-(e)中的一种:
(a)-CH2(CH2)xCH3
(b)-CH(OH)(CH2)xCH3
(c)-CH(OH)(CH2)xCH(CH3)2
(d)-CH=CH(CH2)xCH3
(e)-CH(OH)(CH2)xCH(CH3)CH2CH3
其中,X是4-17范围内的整数。
R4是α-连接或β-连接单糖,或当R1线性或分支C1-C27烷烃时,R4是:
以及A是O或-CH2
在一种实施方式中,α-半乳糖神经酰胺或其类似物包括式II:
其中,R1是线性或分支的C1-C27烷烃或C2-C27烯烃;或R1是-C(OH)-R3,其中R3是线性或分支的C1-C26烷烃或C2-C26烯烃;
R2是下列(a)-(e)中的一种:
(a)-CH2(CH2)xCH3
(b)-CH(OH)(CH2)xCH3
(c)-CH(OH)(CH2)xCH(CH3)2
(d)-CH=CH(CH2)xCH3
(e)-CH(OH)(CH2)xCH(CH3)CH2CH3
其中,X是4-17范围内的整数。
在一种实施方式中,α-半乳糖神经酰胺或其类似物包括式III:
其中,R是H或-C(O)R1,其中R1是线性或分支的C1-C27烷烃或C2-C27烯烃;或R1是-C(OH)-R3,其中R3是线性或分支的C1-C26烷烃或C2-C26烯烃;或R1是C6-C27烷烃或烯烃,其中(i)C6-C27烷烃或烯烃由C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环取代,或(ii)C6-C27烷烃或烯烃包括C6-C27烷基或烯基链中的C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环;或R1是-(CH2)nR5,其中n是0-5范围内的整数,R5是-C(O)OC2H5、可选取代的C5-C15环烷烃、可选取代的芳环或芳烷基,
R2是下列(a)-(e)中的一种:
(a)-CH2(CH2)xCH3
(b)-CH(OH)(CH2)xCH3
(c)-CH(OH)(CH2)xCH(CH3)2
(d)-CH=CH(CH2)xCH3
(e)-CH(OH)(CH2)xCH(CH3)CH2CH3
其中,X是4-17范围内的整数。
在一种实施方式中,所述神经酰胺类糖脂纳入细菌细胞的细胞壁。在进一步实施方式中,所述细菌细胞选自分枝杆菌细胞、李斯特菌(Listeria)细胞、沙门氏菌(Salmonella)细胞、耶尔森氏菌(Yersinia)细胞、弗朗西丝氏菌(Francisella)和军团菌(Legionella)细胞。在另一实施方式中,所述细菌细胞是活的、死的或减毒细胞。
在一种实施方式中,所述经修饰的细菌增强抗原特异性CD8T细胞对抗原的应答。在进一步实施方式中,所述抗原是分枝杆菌抗原。
在一种实施方式中,所述经修饰的细菌表达异源抗原。在进一步实施方式中,所述异源抗原是病毒抗原、细菌抗原、真菌抗原、寄生虫抗原或肿瘤特异性抗原。在另一实施方式中,所述异源抗原是免疫原性肽。
在一种实施方式中,所述细菌细胞是重组细菌细胞。
本发明也涉及包括经修饰细菌和药物载体的组合物。在一种实施方式中,所述药物载体选自盐水、缓冲盐水、右旋糖、水、甘油和其组合。在另一实施方式中,所述组合物还包括佐剂。在另一实施方式中,所述组合物是疫苗组合物。
本发明还涉及治疗或预防动物疾病的方法,包括对需要治疗或预防的动物施用经修饰的细菌。在一种实施方式中,所述经修饰细菌施用的量足以改变疾病进程。在另一实施方式中,所述经修饰细菌施用的量足以诱导动物中抗所述疾病的免疫应答。
在一种实施方式中,免疫应答与未结合神经酰胺类糖脂的细菌细胞相比有增强或改变。在一种实施方式中,所述疾病选自病毒性疾病、细菌性疾病、真菌性疾病、寄生虫性疾病和增殖性疾病。在另一种实施方式中,所述疾病选自结核病、肺病类结核、淋巴腺炎、皮肤病、弥散性疾病、黑死病、肺鼠疫、兔热病、军团病、炭疽、伤寒症、副伤寒、食源性疾病、李斯特菌病、疟疾、人类免疫缺陷病毒(HIV)、猿免疫缺陷病毒(SIV)、人乳头瘤病毒(HPV)、呼吸道合胞病毒(RSV)、流感、肝炎(HAV、HBV和HCV)和癌症。
本发明也涉及一种诱导动物中对抗原的免疫应答的方法,包括给动物施用经修饰的细菌。在一种实施方式中,所述经修饰细菌施用的量足以提高动物中抗原特异性CD8T细胞应答或增强天然杀伤(NKT)细胞的活性。在另一实施方式中,所述免疫应答包括抗体应答。在另一实施方式中,所述免疫应答包括CD8T细胞应答。在另一实施方式中,所述免疫应答包括CD8T细胞应答和抗体应答。
本发明也涉及一种调节动物中CD8T细胞对BCG应答的方法,包括给动物施用有效量的经修饰细菌。
在一种实施方式中,施用所述经修饰细菌的途径选自肌肉内、静脉内、气管内、鼻内、经皮肤、皮内、皮下、眼球内、阴道、直肠、腹膜内、肠内、吸入或者2种或更多所述途径的组合。
本发明也涉及包括经修饰细菌的试剂盒。在一种实施方式中,所述经修饰细菌是冻干的。在另一实施方式中,所述试剂盒包括用于施用经修饰细菌的工具。
本发明还涉及制备神经酰胺类糖脂/分枝杆菌复合物的方法,包括(a)在培养基中培养分枝杆菌细胞和(b)在所述神经酰胺类糖脂纳入所述分枝杆菌细胞的细胞壁的条件下,将神经酰胺类糖脂加入所述培养基。
在一种实施方式中,本发明涉及一种针对抗原的疫苗的生产方法,包括:(a)分离神经酰胺类糖脂/分枝杆菌复合物和(b)将药物载体加入分离的(a)复合物。
下面进一步详细描述发明的这些和其它方面。
附图简要说明
图1:αGalCer稳定纳入牛分枝杆菌(M.bovis)BCG细胞壁。(A)图显示CHCl3+CH3OH(2∶1)、磷酸盐缓冲液(PBS)+0.05%吐温80或0.05%泰洛沙泊(Tyloxapol)中14C-αGalCer的溶解度。(B)图显示在含0.05%泰洛沙泊的无蛋白Middlebrooks 7H9培养基中生长的牛分枝杆菌BCG在不同浓度14C-αGalCer存在下纳入的14C-αGalCer。(C)在含0.05%泰洛沙泊的无蛋白Middlebrooks 7H9培养基中,14C-αGalCer存在时生长的牛分枝杆菌BCG提取的细胞壁脂的薄层色谱带,道1:直接溶于2∶1氯仿-甲醇的14C-αGalCer。道2:提取自牛分枝杆菌BCG的14C-αGalCer。
图2:结合牛分枝杆菌BCG的αGalCer在体外具有生物活性。(A)剂量反应曲线显示当与BCG、αGalCer/BCG或α-C-GalCer/BCG感染的骨髓来源树突细胞(BMDC)培养时,NKT细胞杂交瘤DN3A4-1.2激活后24小时的IL-2生成。(B)和(C)剂量反应曲线显示小鼠脾细胞用BCG、αGalCer/BCG或α-C-GalCer/BCG感染的BMDC激活后24小时的(B)IFNγ和(C)IL-4生成。(D)、(E)和(F)剂量反应曲线显示人iNKT细胞克隆用BCG、αGalCer/BCG或α-C-GalCer/BCG感染的单核细胞来源人树突细胞激活后,(D)IFNγ、(E)TNFα和(F)IL-13的生成。(G)和(H)剂量反应曲线显示当与BCG、αGalCer/BCG或α-C-GalCer/BCG感染的BMDC培养时,来自未处理C57BL/6小鼠的肝单核细胞激活后(G)IFNγ和(H)IL-4的生成。
图3:结合牛分枝杆菌BCG的αGalCer在体内具有生物活性。(A)、(B)和(C)图显示小鼠注射4.8nmol载剂(Veh)、BCG、αGalCer或αGalCer/BCG(5x106CFU)后1到50小时的不同时间点时(A)IFN-γ、(B)IL-12p70和(C)IL-4的血清水平(ng/ml)。
图4:当与牛分枝杆菌BCG共同给药时,αGalCer和α-C-GalCer诱导DC成熟和共刺激标记的迅速上调。(A)和(B)IP注射载剂、BCG、αGalCer/BCG和α-C-GalCer/BCG到(A)脾和(B)肝CD11c+树突细胞后20小时DC成熟标记的柱状图分布。上调MHC II和共刺激分子:CD80、CD86、CD70和41BB。(C)和(D)图显示对于αGalCer/BCG和α-C-GalCer/BCG,(C)脾和(D)肝细胞中MHC II、CD80、CD86、CD70和41BB的倍数增加。
图5:用BCG-OVA和αGalCer作为佐剂的免疫增强CD8T细胞对分枝杆菌抗原的应答。(A)图显示用αGalCer/BCG-Ova、BCG-Ova免疫或未免疫(Unvac.)3周时,小鼠脾中对OVA肽,SIINFEKL(SEQ ID NO:1)特异性的产IFNγCD8T细胞的ELISPOT试验结果。(B)图显示用αGalCer/BCG-Ova、α-C-GalCer/BCG-Ova、BCG-Ova免疫或未免疫2个月时,小鼠脾中对SIINFEKL特异性的产IFNγCD8T细胞的ELISPOT试验结果。(C)图显示用αGalCer/BCG免疫、BCG单独免疫或未免疫2周时,BALB/c小鼠中对Mtb肽,TB10.3/4MHC-I(H-2Kd)表位GYAGTLQSL(SEQ ID NO:2)特异性的产IFNγCD8T细胞的ELISPOT试验结果。(D)散点图显示注射有CFSE-标记Thy1.2+OT-I脾细胞且感染αGalCer/BCG-Ova、α-C-GalCer/BCG-Ova或BCG-Ova的代表性Thy1.1+B6.PL小鼠。(E)图显示(D)所述细胞中未分裂细胞百分比。
图6:接种BCG、αGalCer/BCG或α-C-GalCer/BCG后小鼠中对有毒力结核分枝杆菌刺激的保护性免疫。(A)和(B)图显示在将有毒力结核分枝杆菌H37Rv菌株刺激各组7只未处理(未免疫)或接种(BCG、αGalCer/BCG或α-C-GalCer/BCG)小鼠3周和6周后,C57BL/6小鼠肺(A)和脾(B)中结核分枝杆菌的平均CFU(和标准差)。(C)图显示在将有毒力结核分枝杆菌H37Rv菌株用于各组4只未处理(未免疫)或接种(BCG、αGalCer/BCG或α-C-GalCer/BCG)小鼠6周后,CD1d-KO小鼠肺和脾中结核分枝杆菌的平均CFU。(D)图显示刺激4只未处理(未免疫)或接种(BCG、αGalCer/BCG或α-C-GalCer/BCG)小鼠6周后,Jalpha-18KO小鼠肺和脾中结核分枝杆菌的平均CFU。*p<0.05;**p<0.007(单向方差分析,Turkey事后检验)。
图7:在用有毒力结核分枝杆菌刺激6周后,组织学检测已接种并用有毒力结核分枝杆菌刺激小鼠的肺。与(B)BCG、(C)αGalCer/BCG或(D)α-C-GalCer/BCG接种小鼠相比,(A)图像显示未接种小鼠有更严重、扩散性的肺病变,有大量肉芽肿性肺炎和固结。原始放大20x。
图8:与BCG相比,接种αGalCer/BCG或α-C-GalCer/BCG不显著增强CD4T细胞对分枝杆菌抗原的应答。(A)图显示用BCG、αGalCer/BCG、α-C-GalCer/BCG免疫或未免疫2个月时,C57BL/6小鼠中对Ag85B p25特异性的产IFNγ脾CD4T细胞的ELISPOT试验。(B)图显示用BCG、αGalCer/BCG或α-C-GalCer/BCG免疫2个月时,脾中产IFNγ、IL-2和TNFα的多功能CD4T细胞的频率。(C)和(D)图显示用BCG、αGalCer/BCG或α-C-GalCer/BCG免疫2个月时,C57BL/6小鼠(C)脾和(D)肺中调节性T细胞的频率。(E)散点图显示注射有CFSE-标记Thy1.2+P25TCR-Tg脾细胞且感染BCG、αGalCer/BCG或α-C-GalCer/BCG的代表性Thy1.1+B6.PL小鼠。(F)图显示(E)所述细胞中未分裂细胞百分比。
图9:接种纳入BCG中的αGalCer(Incorp)与分别施用(Sep=BCG-OVA和αGalCer在不同位置分别注射)或混合(Mix=临注射前将BCG-OVA和αGalCer在相同注射器中一起混合)相比,增强了CD8T细胞对分枝杆菌抗原的应答。(A)和(B)图显示在通过皮肤内注射BCG-OVA(每只小鼠5x106BCG-OVA)、0.1μgαGalCer+BCG-OVA(Sep)、0.1μgαGalCer+BCG-OVA(Mix)、4μgαGalCer+BCG-OVA(Sep)、4μgαGalCer+BCG-OVA(Mix)和αGalCer/BCG(Incorp)免疫后17天,小鼠(收集脾和腹股沟深淋巴结细胞)中对(A)SIINFEKL(SEQ ID NO:1)或(B)TB10.4MHC I类(H-2Kb)限制性表位QIMYNYPAM(SEQ ID NO:3)特异性的产IFNγCD8T细胞的ELISPOT试验结果。
图10:接种纳入BCG中的αGalCer(Incorp)与分别施用(Sep=BCG-OVA和αGalCer在不同位置分别注射)或混合(Mix=临注射前将BCG-OVA和αGalCer在相同注射器中一起混合)相比,增强了CD8T细胞对分枝杆菌抗原的应答。(A)和(B)图显示用BCG-OVA(每只小鼠5x106BCG-OVA)、0.1μgαGalCer+BCG-OVA(Sep)、0.1μgαGalCer+BCG-OVA(Mix),和αGalCer/BCG-OVA(Incorp)免疫后,小鼠中对(A)TB10.4MHC I类(H-2Kb)限制性表位QIMYNYPAM(SEQID NO:3)或(B)SIINFEKL(SEQ ID NO:1)特异性的产IFNγCD8T细胞的ELISPOT试验结果。
图11:iNKT细胞激活糖脂直接纳入活分枝杆菌以获得CD8T细胞诱导的最佳增强。与在不同位置注射(Sep)未修饰(BCG)、未修饰BCG加0.1μg糖脂(标为αGalCer或α-C-GalCer)、或者在临注射前将未修饰BCG与0.1μg糖脂(所示αGalCer或α-C-GalCer)混合后注射到相同位置相比,接种纳入BCG中的αGalCer或α-C-GalCer(Inc)显著增强CD8T细胞对分枝杆菌抗原的应答。图中显示了在小鼠免疫后3周,脾细胞悬浮液中对MHC I类呈递的分枝杆菌抗原TB10.4 MHC I类(H-2Kb)限制性表位的肽QIMYNYPAM(SEQ ID NO:3)有特异性的产IFNγCD8T细胞的ELISPOT试验结果,***p<0.01(ANOVA)。
发明的详细描述
本发明提供用于增强,即引发、刺激或提高免疫应答的组合物、分离细胞、疫苗和方法。本文所述经修饰细菌包括与细菌细胞物理结合的神经酰胺类糖脂,例如稳定纳入细菌细胞壁如分枝杆菌细胞壁的神经酰胺类糖脂。本发明的神经酰胺类糖脂/细菌复合物可通过影响CD1d限制性天然杀伤T(“NKT”)细胞的活性来增强免疫应答。在某些实施方式中,本发明的组合物如疫苗组合物,包括纳入牛分枝杆菌卡介苗(BCG)细胞壁的α-半乳糖神经酰胺或其类似物。本文所述神经酰胺类糖脂/细菌复合物用于刺激需要的免疫应答,例如抗分枝杆菌抗原的免疫应答。免疫应答能用于预防、治疗或改善细菌病原体如分枝杆菌例,如导致人TB的结核分枝杆菌所引起的疾病。
本发明的优势也包括将神经酰胺类糖脂佐剂直接递送给被细菌如活的减毒细菌感染的相同细胞,使得佐剂集中从而令所用剂量大大减少。因而减少局部和全身毒性并降低生产成本。此外,物理连接如直接纳入在实践上具有优势,特别是针对存在运输和贮存问题的第三世界群体的疫苗。物理结合,如直接纳入了神经酰胺类糖脂的细菌被冻干再被重建可使得佐剂活性完整恢复。因此,冻干疫苗可在给药现场再水合并悬浮。
定义
应注意术语“一”、“一个”实体是指一个或多个该实体,例如“一个载体”应理解为代表一个或多个载体。如此,术语“一”(或“一个”)、“一个或多个”和“至少一个”可在本文交换使用。
如下文详述,本发明包括糖脂,通常是神经酰胺类糖脂例如α-半乳糖神经酰胺,本文中也表示为α-GalCer、或其类似物,如α-C-GalCer,其与细菌细胞壁物理结合,例如纳入细菌细胞壁,如分枝杆菌细胞壁。在某些实施方式中,神经酰胺类糖脂经非共价相互作用物理结合。本文所述“神经酰胺类糖脂”包括具有α-连接的半乳糖或葡萄糖的糖脂。神经酰胺类糖脂的实施例可见本文所述,还可参见例如Porcelli,美国专利申请公开号2006/0052316、Tsuji,美国专利申请公开号2006/0211856、Jiang,美国专利申请公开号2006/0116331、Hirokazu等,美国专利申请公开号2006/0074235、Tsuji等,美国专利申请公开号2005/0192248、Tsuji,美国专利申请公开号2004/0127429和Tsuji等,美国专利申请公开号2003/0157135,所有这些的全文通用引用纳入本文。
疫苗
术语“疫苗”指一种组合物,将其施用给动物时能刺激免疫应答,例如抗感染如分枝杆菌感染。本发明涉及的疫苗组合物包括细菌细胞,例如分枝杆菌细胞,其中所述细胞可以是死的、活的和/或减毒的,例如活的减毒细菌疫苗BCG。细菌疫苗例如活细菌疫苗、死细菌疫苗或减毒细菌疫苗在本领域已知或能用本领域技术人员熟知的方法采用常规实验生成。本发明的细菌疫苗也包括重组细菌,例如重组分枝杆菌。
在某些实施方式中,细菌细胞和神经酰胺类糖脂共同施用。在一种实施方式中,细菌细胞被修饰,例如“糖脂修饰”将糖脂物理连接到细菌细胞,例如神经酰胺类糖脂纳入细菌细胞如分枝杆菌细胞的细胞壁。
在另一实施方式中,本发明的糖脂修饰细菌细胞可用作递送异源抗原如免疫原性多肽的载体。例如,糖脂修饰的细菌细胞如细胞壁结合神经酰胺类糖脂的重组细菌细胞,可用作载体递送源自另一种病原体的抗原(例如细菌性(如沙门氏菌、李斯特菌、炭疽杆菌(Bacillus anthracis)和志贺菌(Shigella)抗原)、真菌性、寄生虫性(例如来自疟原虫(Plasmodium)的疟疾抗原)或病毒抗原(例如来自HIV、SIV、HPV、RSV、流感或肝炎(HAV、HBV和HCV)的病毒抗原))或肿瘤特异抗原。
在一种实施方式中,本发明的经修饰细菌包括经修饰的分枝杆菌细胞,例如稳定地非共价纳入了α-GalCer的牛分枝杆菌卡介苗(BCG)细胞。BCG是活的减毒细菌疫苗。巴斯德研究所的卡尔梅特和介林使与结核分枝杆菌紧密相关的牛分枝杆菌(Mycobacteriumbovis)相关分枝杆菌减毒,通过在培养基中生长13年并在此期间监控其在动物中毒性的减少以生成牛分枝杆菌卡介苗(BCG)。BCG是所有疫苗中最广泛使用的一种,既便宜又安全。然而,BCG疫苗对发展中国家的TB传染病的作用有限。Doherty T和Anderson P,ClinicalMicrobio Reviews 18(4):687-702(2005)。在另一种实施方式中,所述分枝杆菌细胞是耻垢分枝杆菌(M.smegmatis)细胞,这是另一种能施用给哺乳动物而不引起疾病的分枝杆菌非病原菌株。
除了经修饰分枝杆菌细胞,发明的其他经修饰细菌包括但不限于来自芽孢杆菌(Bacillus)属(例如引起炭疽的炭疽杆菌)、沙门氏菌属(例如引起伤寒症、副伤寒、食源性疾病)、葡萄球菌(Staphylococcus)属、链球菌(Streptococcus)属、李斯特菌属(例如引起李斯特菌病)、志贺菌属、耶尔森氏菌属(例如引起黑死病、肺鼠疫)、弗朗西丝氏菌属(例如引起兔热病)和军团菌属(例如引起军团病)的糖脂修饰细菌。
本文所用术语“抗原”和相关术语“抗原性”指特异性结合抗体或T细胞受体的物质。
本文所用术语“免疫原”和相关术语“免疫原性”指引起免疫应答,包括在动物例如哺乳动物中抗体和/或细胞免疫应答的能力。免疫原可能也是抗原性的,但“抗原”由于其大小或构象而不一定是“免疫原”。“免疫原性组合物”引起对象的免疫应答,例如特异性识别该“免疫原性组合物”所含一种或多种抗原的抗体。
术语“免疫应答”意在包括免疫系统对抗原或免疫原反应的细胞活性。该活性包括但不限于生成抗体、细胞毒性、淋巴细胞增殖、细胞因子释放、炎症、吞噬、抗原呈递等。本文所述“适应性免疫应答”是高度特异于特定抗原或免疫原的免疫应答,例如生成特异抗体或生成特异T淋巴细胞。本文所述“先天免疫应答”是不特异于特定抗原的免疫应答,例如NK和NKT细胞释放细胞因子。免疫应答的示例包括抗体应答或细胞应答,例如细胞毒性T细胞应答。
术语“保护性免疫应答”或“治疗性免疫应答”指对免疫原的免疫应答在某方面预防或至少部分阻滞疾病症状、副作用或进展。“保护性”是指在未染病实验动物中诱导免疫应答,其中若动物后来患上或感染该病,例如暴露于结核分枝杆菌,则免疫应答可缓解、减轻、调节或在某些情况下完全预防疾病症状。“治疗性”是指在患病的实验动物,例如患结核病的人中诱导免疫应答,该免疫应答缓解、减轻、调节或在某些情况下完全去除疾病症状。
术语“调节免疫应答”指用组合物或处理的给定免疫应答相对无组合物或处理的该免疫应答有任何增强、减弱或改变。例如,使用佐剂增强对抗原的免疫应答被视作调节该免疫应答。降低免疫应答如避免自体免疫也是一种调节。此外,改变免疫应答如从主要是TH2应答改为主要是TH1应答也是免疫应答的调节。本发明提供通过给动物施用组合物调节免疫应答的方法,组合物中包含经修饰的细菌,例如在其细胞壁如分枝杆菌细胞壁内纳入神经酰胺类糖脂的细菌细胞。
术语“佐剂”指能够(1)改变或增强对特定抗原的免疫应答或(2)提高或辅助药理学试剂效果的物质。在某些实施方式中,神经酰胺类糖脂在与细菌细胞如BCG同时施用,例如当神经酰胺类糖脂已纳入BCG细胞时,其作为佐剂发挥功能。在另一实施方式中,包括第二佐剂。其他适当佐剂包括但不限于LPS衍生物(例如单磷酰脂质A(MPL))、TLR9激动剂(例如CPG ODNS)、TLR7/8激动剂(例如咪喹莫特)、细胞因子和生长因子、细菌组分(例如内毒素,特别是超抗原、外毒素和细胞壁成分);铝基盐;钙基盐;氧化硅;多核苷酸;类毒素;血清蛋白、病毒和病毒源物质、毒物、毒液、咪唑并喹啉(imidazoquiniline)化合物、泊洛沙姆(poloxamer)和阳离子类脂。
大量物质显示经多种机制具有佐剂活性。能增加免疫原的表达、抗原性或免疫原性的任何化合物都是潜在佐剂。本发明的其他潜在佐剂包括但不限于:糖脂;趋化因子;诱导细胞因子和趋化因子生成的化合物;干扰素;惰性载体,如明矾、膨润土、乳胶和丙烯酸酯粒子;普流罗尼(pluronic)嵌段聚合物,如TiterMax(嵌段共聚物CRL-8941、鲨烯(可代谢油)和微粒硅稳定剂);沉淀形成剂,如弗氏佐剂;表面活性物质,如皂苷、溶血卵磷脂、视黄醛、Quil A、脂质体和普流罗尼聚合物制剂;巨噬细胞刺激剂,如细菌脂多糖;替代途径补体激活剂,如胰岛素、酵母聚糖、内毒素和左旋咪唑;非离子表面活性剂;聚(氧乙烯)-聚(氧丙烯)三嵌段共聚物;mLT;MF59TM;SAF;RibiTM佐剂系统;海藻糖二霉菌酸酯(TDM);细胞壁骨架(CWS);DetoxTM;QS21;StimulonTM;弗氏完全佐剂;弗氏不完全佐剂;巨噬细胞集落刺激因子(M-CSF);肿瘤坏死因子(TNF);3-O-脱酰MPL;CpG寡核苷酸;聚氧乙烯醚、聚氧乙烯酯,和一种以上佐剂的组合。
在某些实施方式中,所述佐剂是细胞因子。本发明的组合物可包括一种或多种细胞因子、趋化因子或诱导细胞因子和趋化因子生成的化合物。实施例包括但不限于粒细胞-巨噬细胞集落刺激因子(GM-CSF)、粒细胞集落刺激因子(G-CSF)、巨噬细胞集落刺激因子(M-CSF)、集落刺激因子(CSF)、促红细胞生成素(EPO)、白介素2(IL-2)、白介素3(IL-3)、白介素4(IL-4)、白介素5(IL-5)、白介素6(IL-6)、白介素7(IL-7)、白介素8(IL-8)、白介素10(IL-10)、白介素12(IL-12)、白介素15(IL-15)、白介素18(IL-18)、干扰素α(IFNα)、干扰素β(IFNβ)、干扰素γ(IFNγ)、干扰素ω(IFNω)、干扰素τ(IFNτ)、干扰素γ诱导因子I(IGIF)、转化生长因子β(TGF-β)、RANTES(受激活调节,正常T细胞表达且可能分泌)、巨噬细胞炎性蛋白(例如MIP-1α和MIP-1β)、利什曼原虫延伸起始因子(LEIF)和Flt-3配体。
在某些实施方式中,本发明的组合物进一步包括另外成分,例如具有免疫活性的多肽。例如,所述具有免疫活性的蛋白是共刺激分子,如Toll样受体(″TLR″)B7.1或B7.2。本文所用″B7″通指B7.1或B7.2。共刺激分子如与T和NK细胞上CD28相互作用的B7-1(CD80)或B7-2(CD86)的胞外区,能作为氨基末端融合纳入本发明所用可溶性CD1d复合物结构的β2-微球蛋白而被施用。参见例如1999年12月16日出版的WO 9964597。在某些实施方式中,共刺激分子如B7信号分子与本发明组合物的结合可更使由本发明的神经酰胺类糖脂/细菌复合物对更有效和持续地激活NKT细胞。
在其他实施方式中,本发明的组合物进一步包括额外的佐剂成分,例如上述任意佐剂如LPS衍生物(例如MPL)、TLR9激动剂(例如CPG ODNS)、TLR7/8激动剂(例如咪喹莫特)、细胞因子和生长因子,细菌组分(例如内毒素,特别是超抗原、外毒素和细胞壁成分);铝基盐;钙基盐;氧化硅;多核苷酸;类毒素;血清蛋白、血清蛋白、病毒和病毒来源物质、毒物、毒液、咪唑并喹啉化合物、泊洛沙姆、阳离子类脂和Toll样受体(TLR)激动剂。有效TLR激动剂佐剂的示例包括但不限于:N-乙酰胞壁酰-L-丙氨酸-D-异谷酰胺(MDP)、脂多糖(LPS)、基因修饰和/或降解的LPS、明矾、葡聚糖、集落刺激因子(例如EPO、GM-CSF、G-CSF、M-CSF、聚乙二醇化G-CSF、SCF、IL-3、IL6、PIXY 321)、干扰素(例如γ-干扰素、α-干扰素)、白介素(例如IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-10、IL-12、IL-15、IL-18)、皂苷(例如QS21)、单磷酰脂A(MPL)、3-脱-O-酰化单磷酰脂A(3D-MPL)、未甲基化CpG序列、1-甲基色氨酸、精氨酸酶抑制剂、环磷酰胺、阻断免疫抑制功能的抗体(例如抗CTLA4抗体)、脂类(如棕榈酸残基)、三棕榈酰-S-甘油酰半胱氨酸赖氨酰丝氨酸(P3 CSS)和弗氏佐剂。替代或补充地,本发明组合物可进一步包括调节免疫细胞激活的淋巴因子或细胞因子如转化生长因子(TGF,例如TGFα和TGFβ);α干扰素(例如IFNα);γ干扰素(例如IFNγ)或淋巴细胞功能相关蛋白,例如LFA-1或LFA-3;或胞间粘附分子,例如ICAM-1或ICAM-2。
本发明的组合物可进一步包括免疫原性多肽。在某些实施方式中,本发明的糖脂修饰重组细菌细胞能用作递送异源抗原或免疫原的载体。异源抗原或免疫原可包括但不限于,免疫原性多肽。在一种实施方式中,可通过本发明的糖脂修饰重组细菌细胞表达免疫原性多肽,例如由细胞壁已纳入神经酰胺类糖脂的重组分枝杆菌表达异源病原体的免疫原性多肽。
“免疫原性多肽”意在包括抗原性或免疫原性多肽,例如具有表位或表位组合的聚氨基酸物质。如本文所用,免疫原性多肽是当被引入脊椎动物时,该多肽与脊椎动物的免疫系统分子相互作用,即是抗原性的,和/或诱导脊椎动物中的免疫应答,即是免疫原性的。免疫原性多肽很可能也是抗原性的,但抗原性多肽由于其大小或构象不总是免疫原性的。抗原性和免疫原性多肽的示例包括但不限于,来自感染源如细菌、病毒、寄生虫或真菌的多肽、来自如宠物毛屑、植物、灰尘和其他环境源的过敏原,以及某些自身多肽,如肿瘤相关抗原。
本发明的抗原性和免疫原性多肽能用于预防或治疗,例如治愈、缓解、减轻病毒、细菌、真菌和寄生虫传染病的严重性,或者预防或降低这些疾病的传染,以及治疗过敏和增殖性疾病如癌症。
此外,本发明的抗原性和免疫原性多肽能用于预防或治疗,例如治愈、缓解、减轻癌症的严重性,所述癌症包括但不限于口腔和咽癌(例如舌、嘴、咽)、消化系统(例如食管、胃、小肠、结肠、直肠、肛门、肛管,肛门直肠、肝、胆囊、胰腺)、呼吸系统(例如喉、肺)、骨、关节、软组织(包括心脏)、皮肤、黑色素瘤、乳房、生殖器官(例如子宫颈、子宫内膜、卵巢、外阴、阴道、前列腺、睾丸、阴茎)、泌尿系统(例如膀胱、肾、输尿管和其他泌尿器官)、眼、脑、内分泌系统(例如甲状腺和其他内分泌腺)、淋巴瘤(例如霍奇金病、非霍奇金淋巴瘤),多发性骨髓瘤、白血病(例如急性淋巴细胞白血病、慢性淋巴细胞白血病,急性髓细胞白血病、慢性髓细胞白血病)。
病毒抗原性和免疫原性多肽的示例包括但不限于,腺病毒多肽、甲型病毒多肽、杯状病毒多肽如杯状病毒衣壳抗原、冠状病毒多肽、瘟热病毒多肽、埃博拉病毒多肽、肠道病毒多肽、黄病毒多肽、肝炎病毒(AE)多肽如乙肝核心或表面抗原、疱疹病毒多肽如单纯疱疹病毒或水痘带状疱疹病毒糖蛋白、免疫缺陷病毒多肽如人免疫缺陷病毒包膜或蛋白酶、传染性腹膜炎病毒多肽、流感病毒多肽如流感病毒A红血球凝集素、神经氨酸酶或核蛋白、白血病病毒多肽、马堡病毒多肽、正粘病毒多肽、乳头瘤病毒多肽、副流感病毒多肽如红血球凝集素/神经氨酸酶、副粘病毒多肽、细小病毒多肽、瘟病毒多肽、小核糖核酸病毒多肽如脊髓灰质炎病毒衣壳多肽、痘病毒多肽如牛痘病毒多肽、狂犬病病毒多肽如狂犬病病毒糖蛋白G、呼肠病毒多肽、逆转录病毒多肽和轮状病毒多肽。
细菌抗原性和免疫原性多肽的示例包括但不限于,放线菌(Actinomyces)多肽、杆菌多肽如来自炭疽杆菌的免疫原性多肽、拟杆菌(Bacteroides)多肽、博德特氏菌(Bordetella)多肽、巴尔通体(Bartonella)多肽、疏螺旋体(Borrelia)多肽如布氏疏螺旋体(B.burgdorferi)OspA、布鲁氏菌(Brucella)多肽、弯曲杆菌(Campylobacter)多肽、二氧化碳噬纤维菌(Capnocytophaga)多肽、衣原体(Chlamydia)多肽、梭菌(Clostridium)多肽、棒状杆菌(Corynebacterium)多肽、柯克斯体(Coxiella)多肽、嗜皮菌(Dermatophilus)多肽、肠道球菌(Enterococcus)多肽、埃里希体(Ehrlichia)多肽、埃希菌(Escherichia)多肽、弗朗西丝氏菌(Francisella)多肽、梭杆菌(Fusobacterium)多肽、血巴尔通体(Haemobartonella)多肽、嗜血杆菌(Haemophilus)多肽如b型流感嗜血杆菌(H.influenzae)外膜蛋白、螺杆菌(Helicobacter)多肽、克雷伯菌(Klebsiella)多肽、L型细菌(L form bacteria)多肽、钩端螺旋体(Leptospira)多肽、李斯特菌(Listeria)多肽、分枝杆菌(Mycobacteria)多肽、支原体(Mycoplasm)多肽、奈瑟菌(Neisseria)多肽、新立克次体(Neorickettsia)多肽、诺卡氏菌(Nocardia)多肽、巴斯德菌(Pasteurella)多肽、消化球菌(Peptococcus)多肽、消化链球菌(Peptostreptococcus)多肽、肺炎链球菌(Pneumococcus)多肽、变形杆菌(Proteus)多肽、假单胞杆菌(Pseudomonas)多肽、立克次氏体(Rickettsia)多肽、罗卡利马(Rochalimaea)多肽、沙门氏菌(Salmonella)多肽、志贺菌(Shigella)多肽、葡萄球(Staphylococcus)多肽、链球菌(Streptococcus)多肽如化脓链球菌(S.pyogenes)M蛋白、密螺旋体(Treponema)多肽和耶尔森菌多肽如鼠疫耶尔森菌(Y.pestis)F1和V抗原。
寄生虫抗原性和免疫原性多肽的示例包括但不限于,结肠小袋纤毛虫(Balantidium coli)多肽、溶组织内变形虫(Entamoeba histolytica)多肽、肝片吸虫(Fasciola hepatica)多肽、蓝氏贾第鞭毛虫(Giardia lamblia)多肽、利什曼原虫(Leishmania)多肽和疟原虫多肽(例如恶性疟原虫(Plasmodium falciparum)多肽)。
真菌抗原性和免疫原性多肽的示例包括但不限于,曲霉多肽、念珠菌多肽、粗球孢子菌或C.posadasii多肽、隐球菌多肽、组织胞浆菌多肽、肺孢菌多肽和副球孢子菌多肽。
肿瘤相关抗原性和免疫原性多肽的示例包括但不限于,肿瘤特异性免疫球蛋白可变区GM2、Tn、sTn、托-弗氏抗原(TF)、Globo H、Le(y)、MUC1、MUC2、MUC3、MUC4、MUC5AC、MUC5B、MUC7、癌胚抗原、人绒毛膜促性腺素β链(hCGβ)、C35、HER2/neu、CD20、PSMA、EGFRvIII、KSA、PSA、PSCA、GP100、MAGE 1、MAGE 2、TRP 1、TRP 2、酪氨酸酶、MART-1、PAP、CEA、BAGE、MAGE、RAGE和相关蛋白。
本发明的组合物可进一步包括其他治疗剂。治疗剂的示例包括但不限于,抗代谢物、烷基化剂、蒽环类、抗生素和有丝分裂抑止剂。抗代谢物包括甲氨蝶呤、6-巯基嘌呤、6-硫代鸟嘌呤、阿糖胞苷、5-氟尿嘧啶氨烯咪胺。烷基化剂包括氮芥、塞替派(thioepa)苯丁酸氮芥、美法仑、卡莫司汀(BSNU)和洛莫司汀(CCNU)、环磷酰胺、白消安、二溴甘露醇、链脲霉素、丝裂霉素C和顺二氯二氨基铂(II)(DDP)顺铂。蒽环类包括柔红霉素(以前的道诺霉素)和多柔比星(本文也称为阿霉素)。另外的例子包括米托蒽醌和比生群。抗生素包括更生霉素(以前的放线菌素)、博来霉素、光神霉素和氨茴霉素(AMC)。有丝分裂抑止剂包括长春新碱和长春花碱(通常称为长春花生物碱)。其他细胞毒剂包括丙卡巴肼、羟基脲、天冬酰胺酶、皮质甾类、米托坦(O,P′-(DDD))、干扰素。细胞毒剂的更多例子包括但不限于,蓖麻毒素、多柔比星、紫杉醇、松胞菌素B、短杆菌肽D、溴化乙锭、依托泊苷、替尼泊苷、秋水仙碱、二羟炭疽菌素二酮、1-去氢睾酮和糖皮质激素。本发明包括所述治疗剂的类似物或同系物。
细菌细胞
本发明的经修饰细菌可获得自细菌细胞的天然形式或可以是重组细菌细胞。在一种实施方式中,本文所述任何细菌细胞也可以未修饰并与单独的神经酰胺类糖脂抗原配制成。在另一种实施方式中,本发明的神经酰胺类糖脂与细菌细胞物理结合例如纳入细菌细胞壁,并用作佐剂以增强对例如细菌的免疫应答。
细菌可描述为革兰氏阳性或革兰氏阴性。Beveridge TJ,Biotech Histochem 76(3):111-118(2001);Gram HC,Fortschritte der Medizin 2:185-189(1884)。革兰氏阳性菌在革兰氏染色中染成深蓝或紫色。革兰氏阳性菌特征一般是其部分细胞壁结构有肽聚糖以及多糖和/或磷壁酸。肽聚糖有时也称为胞壁质,是多糖链杂聚物,其经短肽交联。革兰氏阴性菌一般由双层膜包围。外膜包含脂多糖(LPS)和孔蛋白,用作渗透屏障。分枝杆菌生成分支菌酸丰富的厚外层包覆,用做有效的屏障。分枝杆菌抗酸染色且与革兰氏阳性菌在系统发生学上相关。
能引起疾病或症状且可由本发明的经修饰细菌或组合物或疫苗组合物治疗、预防和/或诊断的细菌或真菌试剂包括但不限于下列革兰氏阴性和革兰氏阳性菌和细菌家族和真菌:不动杆菌(Acinetobacter)、放线菌(Actinomycetes)(例如棒状杆菌(Corynebacterium)、分枝杆菌、诺卡氏菌)、新生隐球菌(Cryptococcus neoformans)、曲霉(Aspergillus)、杆菌(Bacillaceae)(例如炭疽杆菌)、拟杆菌(Bacteroidaceae)、芽生菌(Blastomyces)、博德特氏菌、布鲁氏菌、念珠菌(Candidia)、弯曲菌(Campylobacter)、梭菌(Clostridium)、球孢子菌(Coccidioides)、棒状杆菌(Corynebacterium)、隐球菌(Cryptococcus)、皮肤真菌(Dermatophytes)、肠杆菌(Enterobacteriaceae)(大肠杆菌(例如肠毒性大肠杆菌(Enterotoxigenic E.coli)和肠出血性大肠杆菌(EnterohemorrhagicE.coli))、克雷伯菌、沙门氏菌(例如伤寒沙门氏菌(Salmonella typhi)和副伤寒沙门氏菌(Salmonella paratyphi))、沙雷菌(Serratia)、志贺菌、耶尔森菌等)、丹毒丝菌(Erysipelothrix)、弗朗西丝氏菌、螺杆菌、军团菌、螺旋体(Spirochaetaceae)(例如包柔氏螺旋体(Borrelia)(如伯氏疏螺旋体(Borrelia burgdorferi)))、钩端螺旋体(Leptospiraceae)、李斯特菌、支原体(Mycoplasmatales)、麻风分枝杆菌(Mycobacteriumleprae)、弧菌(Vibrionaceae)(例如霍乱弧菌(Vibrio cholerae))、奈瑟氏球菌(例如脑膜炎奈瑟球菌(Neisseria meningitidis)和淋病奈瑟球菌(Neisseria gonorrhoeae))、放线杆菌(Actinobacillus)、嗜血杆菌(Haemophilus)(例如B型流感嗜血杆菌(Haemophilusinfluenza type B))、巴斯德菌(Pasteurella)、假单胞杆菌(Pseudomonas)、立克次氏体、衣原体、梅毒螺旋体(Treponema pallidum)、葡萄球菌(例如金黄色葡萄球菌(Staphylococcus aureus))和链球菌(例如肺炎链球菌(Streptococcus pneumoniae)和B组链球菌(Group B Streptococcus))。
这些细菌或真菌家族可引起下列疾病或症状,包括但不限于:菌血症、心内膜炎、眼部感染(结膜炎、结核病、葡萄膜炎)、牙龈炎、机会感染(例如AIDS相关感染)、甲沟炎、假肢相关感染、莱特尔病(Reiter′s Disease)、呼吸道感染如百日咳或脓胸、败血症、莱姆病、猫抓病、痢疾、副伤寒发热、食物中毒、伤寒、肺炎、淋病、脑膜炎(例如A和B型脑膜炎)、衣原体病、梅毒、白喉、麻风、副结核、结核病(TB)、汉森氏病、肺病类结核、淋巴腺炎、皮肤病或弥散性疾病、狼疮、肉毒杆菌病、坏疽、破伤风、脓疱疮、风湿热、猩红热、性传播疾病、皮肤病(例如蜂窝组织炎、皮肤菌病)、毒血症、尿道感染和伤口感染。
本发明的经修饰细菌、组合物或疫苗组合物可用于治疗、预防和/或诊断任何所述症状或疾病。在具体实施方式中,本发明的组合物用于治疗:结核病、肺病类结核、淋巴腺炎、皮肤病、弥散性疾病、黑死病、肺鼠疫、兔热病、军团病、炭疽、伤寒发热、副伤寒发热、食源性疾病、李斯特菌病、疟疾、HIV、SIV、HPV、流感、肝炎(HAV、HBV和HCV)和癌症。
分枝杆菌
分枝杆菌属包括已知引起哺乳动物严重疾病的病原体,包括例如结核病和麻风。分枝杆菌属(也称为分枝杆菌)不含内芽孢或囊,且通常视作革兰氏阳性。除了膜脂中发现的常规脂肪酸,分枝杆菌具有大量极长链饱和(C18-C32)和单不饱和(直至C26)n-脂肪酸。α-烷基β-羟基极长链脂肪酸即分支菌酸的出现是分枝杆菌和相关种属的标志。分枝杆菌的分支菌酸是有大α-分支(C20-C25)的大(C70-C90)。主链包含一个或两个双键、环丙烷环、环氧基、甲氧基、酮基或甲基分支。此类酸是细胞壁的主要成分,大部分在称为阿拉伯半乳聚糖的主要细胞壁多糖的末端六阿拉伯呋喃糖基单位处的4个成簇被酯化。还发现它们与海藻糖的6和6′位置酯化形成“索因子”。还发现少量分支菌酸与丙三醇或糖如海藻糖、葡萄糖和果糖酯化,这取决于培养基中存在的糖。分枝杆菌也含有大量甲基分支的脂肪酸。这些包括10-甲基C18脂肪酸(发现在磷脂酰肌醇酯甘露糖苷中酯化的结核硬脂酸)、含海藻糖的脂低聚糖中发现的2,4-二甲基C14酸和在单、二、三甲基分支C14-C25脂肪酸、三甲基不饱和C27酸(结核菌烯酸)、四甲基分支C28-C32脂肪酸(结核蜡酸)以及在酚糖脂和结核菌醇酯中发现的较短同系物、多甲基分支phthio-ceranic酸如七甲基分支C37酸和含氧多甲基分支酸如硫脂中的17-羟基-2,4,6,8,10,12,14,16-八甲基C40酸。另外,结核蜡酸和其他分支酸与结核菌醇(phthicerol)和酚结核菌醇(phenolphthicerol)及其衍生物酯化。Kolattukudy等,Microbio.24(2):263-270(1997).Evidence implicates specific cell envelopelipids in Mtb pathogenesis.Rao等,J.Exp.Med.,201(4):535-543(2005)。
分枝杆菌菌种包括但不限于:脓肿分枝杆菌(M.abscessus);非洲分枝杆菌(M.africanum);田野分枝杆菌(M.agri);爱知分枝杆菌(M.aichiense);河床分枝杆菌(M.alvei);M.arupense;亚洲分枝杆菌(M.asiaticum);欧巴涅分枝杆菌(M.aubagnense);金色分枝杆菌(M.aurum);南非分枝杆菌(M.austroafricanum);鸟分枝杆菌复合群(Mycobacterium avium complex,MAC);鸟分枝杆菌(M.avium);鸟分枝杆菌副结核亚种(M.avium paratuberculosis),其涉及人克罗恩氏病和羊副结核性肠炎;森林鸟分枝杆菌(M.avium silvaticum);原始鸟分枝杆菌(M.avium″hominissuis″);哥伦比亚分枝杆菌(M.colombiense);M.boenickei;波希米亚分枝杆菌(M.bohemicum);M.bolletii;M.botniense;牛分枝杆菌;M.branderi;布里斯本分枝杆菌(M.brisbanense);雾分枝杆菌(M.brumae);M.canariasense;山羊分枝杆菌(M.caprae);隐藏分枝杆菌(M.celatum);龟分枝杆菌(M.chelonae);嵌合分枝杆菌(M.chimaera);千田分枝杆菌(M.chitae);氯酚红分枝杆菌(M.chlorophenolicum);楚布分枝杆菌(M.chubuense);胚胎分枝杆菌(M.conceptionense);汇合分枝杆菌(M.confluentis);显著分枝杆菌(M.conspicuum);库氏分枝杆菌(M.cookii);美化分枝杆菌(M.cosmeticum);迪氏分枝杆菌(M.diernhoferi);多利分枝杆菌(M.doricum);杜氏分枝杆菌(M.duvalii);象分枝杆菌(M.elephantis);诡诈分枝杆菌(M.fallax);产鼻疽分枝杆菌(M.farcinogenes);微黄分枝杆菌(M.flavescens);佛罗伦萨分枝杆菌(M.florentinum);M.fluoroanthenivorans;偶发分枝杆菌(M.fortuitum);偶发分枝杆菌解乙酰氨亚种(M.fortuitum subsp.acetamidolyticum);腓特烈斯堡分枝杆菌(M.frederiksbergense);加地斯分枝杆菌(M.gadium);胃分枝杆菌(M.gastri);日内瓦分枝杆菌(M.genavense);浅黄分枝杆菌(M.gilvum);古地分枝杆菌(M.goodii);戈登分枝杆菌(M.gordonae);嗜血分枝杆菌(M.haemophilum);M.hassiacum;M.heckeshornense;海德堡分枝杆菌(M.heidelbergense);爱尔兰分枝杆菌(M.hiberniae);M.hodleri;M.holsaticum;休斯敦分枝杆菌(M.houstonense);免疫原分枝杆菌(M.immunogenum);插入分枝杆菌(M.interjectum);中间分枝杆菌(M.intermedium);胞内分枝杆菌(M.intracellulare);堪萨斯分枝杆菌(M.kansasii);科莫斯分枝杆菌(M.komossense);M.kubicae;熊本分枝杆菌(M.kumamotonense);湖分枝杆菌(M.lacus);慢生黄分枝杆菌(M.lentiflavum);引起麻风的麻风分枝杆菌(M.leprae);鼠麻风分枝杆菌(M.lepraemurium);马达加斯加分枝杆菌(M.madagascariense);马德里分枝杆菌(M.mageritense);马尔摩分枝杆菌(M.malmoense);海分枝杆菌(M.marinum);马西里亚分枝杆菌(M.massiliense);田鼠分枝杆菌(M.microti);莫娜分枝杆菌(M.monacense);M.montefiorense;莫里奥卡分枝杆菌(M.moriokaense);产粘液分枝杆菌(M.mucogenicum);壁分枝杆菌(M.murale);内布拉斯卡分枝杆菌(M.nebraskense);新金色分枝杆菌(M.neoaurum);新奥尔良分枝杆菌(M.neworleansense);不产色分枝杆菌(M.nonchromogenicum);新卡城分枝杆菌(M.novocastrense);奥布分枝杆菌(M.obuense);沼泽分枝杆菌(M.palustre);副偶然分枝杆菌(M.parafortuitum);副瘰疠分枝杆菌(M.parascrofulaceum);帕尔玛分枝杆菌(M.parmense);外来分枝杆菌(M.peregrinum);草分枝杆菌(M.phlei);M.phocaicum;鳍脚分枝杆菌(M.pinnipedii);猪分枝杆菌(M.porcinum);多孔分枝杆菌(M.poriferae);假下出分枝杆菌(M.pseudoshottsii);灰尘分枝杆菌(M.pulveris);耐冷分枝杆菌(M.psychrotolerans);狗牙根分枝杆菌(M.pyrenivorans);罗德岛分枝杆菌(M.rhodesiae);萨斯喀彻温分枝杆菌(M.saskatchewanense);瘰疬分枝杆菌(M.scrofulaceum);塞内加尔分枝杆菌(M.senegalense);首尔分枝杆菌(M.seoulense);败血分枝杆菌(M.septicum);坏疽分枝杆菌(M.shimoidei);下出分枝杆菌(M.shottsii);猿猴分枝杆菌(M.simiae);耻垢分枝杆菌(M.smegmatis);泥炭藓分枝杆菌(M.sphagni);苏加分枝杆菌(M.szulgai);土地分枝杆菌(M.terrae);抗热分枝杆菌(M.thermoresistibile);东海分枝杆菌(M.tokaiense);三重分枝杆菌(M.triplex);次要分枝杆菌(M.triviale);结核分枝杆菌复合群(Mycobacteriumtuberculosis complex,MTBC),其组成物引起人和动物结核病(人结核病的主因-结核分枝杆菌;牛分枝杆菌;牛分枝杆菌BCG;非洲分枝杆菌;卡耐提分枝杆菌;山羊分枝杆菌;鳍脚分枝杆菌);热泉分枝杆菌(M.tusciae);引起″布路里″或″拜恩斯代尔,溃疡″的溃疡分枝杆菌(M.ulcerans);母牛分枝杆菌(M.vaccae);M.vanbaalenii;沃林斯基分枝杆菌(M.wolinskyi)和蟾蜍分枝杆菌(M.xenopi)。
可根据诊断和治疗用途对分枝杆菌分组,例如:引起结核病的结核分枝杆菌复合群(MTB):结核分枝杆菌、非洲分枝杆菌、牛分枝杆菌、牛分枝杆菌BCG、山羊分枝杆菌、田鼠分枝杆菌、鳍脚分枝杆菌、蹄兔杆菌和卡耐提分枝杆菌(建议名)(Somoskovi等,J.ClinicalMicrobio 45(2):595-599(2007));引起汉森氏病或麻风的麻风分枝杆菌;非结核分枝杆菌(NTM)是能引起肺病类结核、淋巴腺炎、皮肤病或弥散性疾病的所有其他分枝杆菌。MTB膜显示出高度遗传同一性。Somoskovi(2007)。本发明的分枝杆菌可包括重组分枝杆菌。例如重组分枝杆菌细胞,例如重组BCG细胞如rBCG30细胞。
重组细菌
本发明的经修饰细菌也可包括重组细菌细胞,例如重组分枝杆菌细胞。一个重组分枝杆菌细胞的非限制性示例是rBCG30,由BCG疫苗菌株并遗传修饰成过量表达免疫显性抗原Ag85B而衍生得到。参见Doherty和Anderson,Clinical Microbio Reviews 18(4):687-702(2005)。适合生成本发明的糖脂修饰细菌的其他重组细菌细胞示例包括但不限于BCG-HIV;BCG-SIV;BCG-HCV;rBCG/IL-2和表达HIV肽的重组耻垢分枝杆菌(参见例如Aldovini和Young,Nature 351:479-482(1994);Yasutomi等,J.of Immunol.150(7):3101-3107(1993);Uno-Furuta等,Vaccine 21(23):3149-3156(2003);Matsumoto等,J.Exp.Med.188(5):845-854(1998);Yamada等,J.of Urology 164(2):526-531(2000);Cayabyab等,J.of Virology 80(4):1645-1652(2006);Stover等,Nature 351:456-460(1991);和Bloom等,美国专利号5,504,005)。
在一种实施方式中,经修饰的细菌包括改造成表达由非天然多核苷酸编码多肽的重组细菌细胞如BCG-HIV,其中重组细菌细胞与神经酰胺类糖脂物理结合。本发明进一步涉及的组合物或疫苗组合物包括本发明的经修饰细菌,其中细菌细胞是天然或重组的。
本发明还涉及重组(遗传改造)的经修饰细菌,例如表达编码异源多肽DNA的神经酰胺类糖脂/分枝杆菌复合物。可以使用标准遗传改造技术能使所述DNA纳入细菌基因组或在染色体外存在。本发明的重组细菌可通过采用载体进行改造,载体将感兴趣的DNA如编码异源抗原或免疫原的DNA引入细菌如分枝杆菌。
如本文所用,术语“载体”是指能运送与其连接的另一核酸的核酸分子。“质粒”是载体类型中的一种,是指能连接其他DNA区段的环状双联DNA环。某些载体能在其引入的宿主细胞中自主复制(例如有细菌复制起点的细菌载体)。本发明的载体能指导与其操作性连接的编码多肽如免疫原性多肽的基因表达。这类载体在本文中称为“表达载体”。一般,用于重组DNA技术的表达载体通常是质粒形式。
含编码多肽核酸的表达载体可用于本发明,例如用于在重组细菌如糖脂修饰的重组细菌中表达免疫原性多肽。与所述核酸操作性连接的载体和表达控制序列的选择取决于所需功能特性例如蛋白表达和待转化宿主细胞。
本领域已知用于调节经操作性连接编码序列表达的表达控制元件。示例包括但不限于,诱导型启动子、组成型启动子、分泌信号和其它调节元件。使用诱导型启动子时,可通过例如改变宿主细胞培养基营养状态或改变温度来控制诱导型启动子。本发明的多核苷酸和核酸编码区域可与另外的编码分泌或信号肽的编码区域相联,后者指导本发明多核苷酸所编码多肽的分泌。
在一种实施方式中,感兴趣多核苷酸的细菌表达发生在染色体外,例如来自质粒(如游离型地)。例如将感兴趣的基因克隆到质粒中并引入培养的分枝杆菌细胞,例如BCG或耻垢分枝杆菌,其中感兴趣的基因编码感兴趣的多肽,例如免疫原性多肽。所用质粒载体包含的复制子和控制序列来自与宿主细胞如分枝杆菌宿主细胞相容菌种。所述载体可携带复制位点以及提供转化细胞表型选择的标记序列。
本发明的载体包括但不限于原核复制子,即能指导细菌宿主细胞中重组DNA分子在染色体外的自主复制和维持的DNA序列。所述复制子是本领域熟知的。另外,含原核复制子的载体也可包括表达产生可检测标记如药物抗性的基因。细菌药物抗性基因的非限制性示例是提供抗氨苄青霉素或四环素的基因。
含原核复制子的载体也可包括用于指导细菌宿主细胞中编码基因序列的表达的原核或噬菌体启动子。与细菌宿主相容的启动子序列通常由质粒载体提供,该载体含传统限制性位点用于插入待表达DNA区段。可用于在原核宿主细胞如分枝杆菌宿主细胞中表达的启动子的示例包括但不限于热休克启动子、应激蛋白启动子、pMTB30启动子、B-内酰胺酶(青霉素酶)启动子、乳糖启动子、表达卡那霉素抗性的启动子、表达氯霉素抗性的启动子和cI启动子(也参见Sambrook等)。本发明可使用多种原核克隆载体。所述载体的示例包括但不限于pUC8、pUC9、pBR322和pBR329(BioRad实验室)、pPL、pEMBL和pKK223(Pharmacia)(也参见Sambrook等)。
通过常规转化或转染技术可将载体DNA引入原核细胞。如本文所用,术语“转化”和“转染”指多种将外源核酸(例如DNA)引入宿主细胞的本领域认可技术,包括磷酸钙或氯化钙共沉淀、DEAE-葡聚糖介导的转染、脂转染或电穿孔。转化或转染宿主细胞的适当方法可参见Sambrook等(MOLECULAR CLONING:A LABORATORY MANUAL(分子克隆实验手册),第2版,Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,Cold SpringHarbor,N.Y.,1989)和其他实验手册。通过适合所用载体和宿主细胞的常规方法,可转化宿主细胞例如细菌细胞如分枝杆菌细胞或糖脂修饰的分枝杆菌细胞。对于转化原核宿主细胞例如分枝杆菌细胞,可使用电穿孔和盐处理方法(Cohen等,Proc.Natl.Acad.Sci.USA 69:2110-14(1972))以及本领域已知的其他技术。
如本文所用,术语“多肽”意在包括单个“多肽”以及复数“多肽”,且是指由酰胺键(也称为肽键)线性连接的单体(氨基酸)组成的分子。术语“多肽”指具有2个或2个以上氨基酸的链或多条链,且不指向特定长度的产物。因此,“多肽”的定义包括肽、二肽、三肽、寡肽、“蛋白”、“氨基酸链”或任何用来指向具有2个或2个以上氨基酸的链或多条链的其它术语,术语“多肽”可用于替代任意这些术语或交换使用。术语“多肽”也指多肽表达后修饰的产物。多肽可从天然生物源获得或通过重组技术生成,但不必须从特定核酸序列翻译。可以任意方式产生多肽,包括化学合成。
本发明的多肽大小可以是约3个或更多、5个或更多、10个或更多、20个或更多、25个或更多、50个或更多、75个或更多、100个或更多、200个或更多、500个或更多、1000个或更多、或者2000个或更多的氨基酸。
“分离的多肽”或其片段、变体或衍生物是指不在其天然环境中的多肽。不要求特定的纯化水平。例如,可从其天然或自然环境中取出分离的多肽。对于本发明的目的,重组生成的多肽和宿主细胞中表达或作为重组细菌疫苗成分的蛋白被视作分离的,因为是通过适当技术分离、分级或者部分或基本纯化的天然或重组多肽。
本发明的多肽也包括上述多肽的片段、衍生物、类似物或变体或其组合。当涉及本发明的多肽时,术语“片段”、“变体”、“衍生物”和“类似物”包括保持对应天然多肽至少部分生物、抗原性或免疫原性特征的任意多肽。
术语“多核苷酸”意在包括单个核酸以及复数核酸,是指分离的核酸分子或构建体,例如信使RNA(mRNA)、来自病毒的RNA或质粒DNA(pDNA)。多核苷酸可包括常规磷酸二脂键或非常规键(例如酰胺键,如肽核酸(PNA)中的酰胺键)。术语“核酸”是指1个或多个核酸区段,例如多核苷酸中存在的DNA或RNA片段。本发明的RNA可以是单链或双链。
“分离”的核酸或多核苷酸是从其天然环境中取出的核酸分子、DNA或RNA。例如,对于本发明的目的,载体所含编码治疗性多肽的重组多核苷酸视作分离的。分离的多核苷酸的进一步示例包括保持在异源宿主细胞如重组细菌细胞中的重组多核苷酸,或溶液中的纯化(部分或基本)多核苷酸。分离的RNA分子包括本发明的体内或体外RNA转录物以及本文所示瘟病毒载体的正和负链形式和双链形式。本发明所述分离的多核苷酸或核酸进一步包括合成产生的所述分子。另外,多核苷酸或核酸可以是或可以包括调节元件如启动子、核糖体结合位点或转录终止子。
如本文所用,“异源多核苷酸”或“异源核酸”或“异源基因”或“异源序列”或“外源DNA区段”是指源自与特定宿主细胞异种来源的多核苷酸、核酸或DNA区段,或者,若是相同来源,则从其原始形式经过修饰。宿主细胞中的异源基因包括特定宿主细胞内源性但经过修饰的基因。因此,这些术语所指的DNA区段与细胞异种或异源,或者与细胞同源但在宿主细胞核酸中处于通常不发现所述元件的位置。
如本文所用,“编码区域”是核酸的一部分,由可翻译成氨基酸的密码子组成。尽管“终止密码子”(TAG、TGA或TAA)不翻译成氨基酸,它若存在则可视作编码区域部分,但任何侧翼序列例如启动子、核糖体结合位点或转录终止子、内含子、5′and 3′非翻译区等,都不是编码区域部分。本发明的2个或更多编码区域可存在于单个多核苷酸构建体例如单个载体,或存在于分别的多核苷酸构建体例如分别的(不同)载体。此外,载体可包含单个编码区域,或包括2个或更多编码区域。另外,本发明的载体、多核苷酸或核酸可编码2个或更多融合或未融合异源编码区域。异源编码区域包括但不限于专门的元件或结构域,如分泌信号肽或异源功能域。
在某些实施方式中,所述多核苷酸或核酸是DNA。在DNA情况下,含编码多肽核酸的多核苷酸通常包括与1个或多个编码区域操作性相连的启动子和/或其他转录或翻译控制元件。操作性相连是指基因产物例如多肽的编码区域与1个或多个调节序列相联时,其结合方式将基因产物的表达置于调节序列的影响或控制下。如果诱导启动子功能导致编码所需基因产物的mRNA转录,且如果2个DNA片段的连结性质不干扰指导基因产物表达的调节序列表达能力或干扰待转录DNA模板能力,2个DNA片段(如多肽编码区域和其相关启动子)就是“操作性相连”。因此,如果启动子能影响编码多肽的核酸转录,则启动子区域与该核酸操作性相连。所述启动子可以是仅在预定细胞中指导DNA实质转录的细胞特异性启动子。除了启动子之外,其他转录控制元件例如增强子、操作子、抑制子和转录终止信号可与所述多核苷酸操作性连接以指导细胞特异性转录。
“参比氨基酸序列”是指未引入任何氨基酸取代的特定序列。本领域普通技术人员能理解,如果没有取代,本发明的“分离的多肽”包括的氨基酸序列与参比氨基酸序列相同。
本文所述多肽具有多种变化,如取代、插入或缺失。多肽中可取代的示范氨基酸包括具有碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电极性侧链(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、非极性侧链(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸,色氨酸)、β-分支侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳族侧链(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)的氨基酸。
也考虑与本文所述多肽和参比多肽至少70%、75%、80%、85%、90%或95%相同的对应多肽片段。
如本领域已知,两种多肽间的“序列相同性”通过比较一种多肽的氨基酸序列与第二种多肽的序列来确定。本文的讨论中,为确定任何特定多肽是否与另一多肽至少约70%、75%、80%、85%、90%或95%相同,可使用本领域已知方法和计算机程序/软件,例如但不限于,BESTFIT程序(威斯康星序列分析包,Unix第8版,Genetics Computer Group,University Research Park,575 Science Drive,Madison,WI 53711)。BESTFIT使用Smith和Waterman的局部同源性算法,Advances in Applied Mathematics 2:482-489(1981),寻找2种序列间的最佳同源性区段。例如在使用BESTFIT或任何其它序列排列程序来确定特定序列与本发明的参比序列是否95%相同时,参数当然应设为在参比多肽序列全长基础上计算相同性百分比且至多允许达到参比序列氨基酸总数5%的同源性缺口。
神经酰胺类糖脂抗原
可用于本发明的神经酰胺类糖脂抗原包括但不限于那些在细菌细胞中存在时,例如通过将神经酰胺类糖脂纳入细菌细胞壁时,能调节动物免疫应答的神经酰胺类糖脂。所述抗原可以源自外来抗原或来自自身抗原。此外,神经酰胺类糖脂抗原可以是合成的。适当抗原已有描述,例如Porcelli,美国专利申请公开号2006/0052316、Tsuji等,美国专利申请公开号2006/0211856、Jiang,美国专利申请公开号2006/0116331、Hirokazu等,美国专利申请公开号2006/0074235、Tsuji等,美国专利申请公开号2005/0192248、Tsuji,美国专利申请号2004/0127429和Tsuji等,美国专利申请号2003/0157135,它们通过引用纳入本文。在某些实施方式中,神经酰胺类糖脂是α-GalCer或其类似物。在其它实施方式中,神经酰胺类糖脂是α-C-GalCer或其类似物。
本文所用术语“可选取代”指未取代或用1个或多个取代基取代,取代基包括卤素(F、Cl、Br、I)、烷基、取代烷基、芳基、取代芳基或烷氧基。
本文单独使用或作为其他基团部分所用的术语“烷基”是指直链或支链饱和脂族烃,通常具有1到18个碳或指定的碳数量。一种此类实施方式中,烷基是甲基。非限制的示范性烷基包括乙基、n-丙基、异丙基等。
本文所用术语“取代烷基”是指具有1个或多个卤素(F、Cl、Br、I)取代的上述烷基。
本文所用术语“杂环”指3到10元单环或二环杂环,可以是饱和、不饱和非芳族,或含至多4个杂原子的芳环。各杂原子独立地选自可季铵化的氮;氧;和包括亚砜和砜的硫。杂环可经氮、硫或碳原子结合。代表性杂环包括吡啶基、呋喃基、苯硫基、吡咯基、恶唑基、咪唑基、噻唑基、噻二唑基、异唑基、吡唑基、异噻唑基、哒嗪基、嘧啶基、吡嗪基、三嗪基、吗啉基、吡咯烷酮基、吡咯烷基、呱啶基、哌嗪基、乙内酰脲基、戊内酰胺基(valerolactamyl)、环氧乙烷基、环氧丙烷基、四氢呋喃基、四氢吡喃基、四氢吡啶基、四氢嘧啶基、四氢苯硫基、四氢噻喃基、喹啉基、-异喹啉基、-色酮基、-香豆素基、-吲哚基、-吲嗪基、-苯并[b]呋喃基、-苯并[b]苯硫基、-吲唑基、-哌嗪基、-4H-喹嗪基、-异喹啉基、-喹啉基、-酞嗪基、-萘啶基、-咔唑基等。术语杂环也包括杂芳基。
本文单独使用或作为其他基团部分所用术语“芳基”是指单环和二环芳环系统,通常具有6到14个碳原子(即C6-C14芳基)如苯基、1-萘基等。
本文所用术语“取代芳基”是指具有1个或多个取代基的上述芳基,取代基包括卤素(F、Cl、Br、I)或烷氧基。
本文单独使用或作为其他基团部分所用术语“芳烷基”是指具有1个或多个芳基取代基的上述烷基。非限制的示范性芳烷基包括苯甲基、苯乙基、二苯甲基等。
本文单独使用或作为其他基团部分所用术语“烷氧基”是指与末端氧原子结合的烷基。非限制的示范行烷氧基包括甲氧基、乙氧基等。
本文所用术语“烷烃”指直链或支链非环饱和烃。代表性直链烷烃包括-甲基、-乙基、-n-丙基、-n-丁基、-n-戊基、-n-己基、-n-庚基、-n-辛基、-n-壬基和-n-癸基。代表性支链烷烃包括-异丙基、-仲丁基、-异丁基、-叔丁基、-异戊基、-新戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1,1-二甲丙基、1,2-二甲丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1-乙基丁基、2-乙基丁基、3-乙基丁基、1,1-二甲丁基、1,2-二甲丁基、1,3-二甲丁基、2,2-二甲丁基、2,3-二甲丁基、3,3-二甲丁基、1-甲基己基、2-甲基己基、3-甲基己基、4-甲基己基、5-甲基己基、1,2-二甲戊基、1,3-二甲戊基、1,2-二甲己基、1,3-二甲己基、3,3-二甲己基、1,2-二甲庚基、1,3-二甲庚基和3,3-二甲庚基。
本文所用术语“烯烃”指具有至少1个碳-碳双键的直链或支链非环烃。代表性直链和支链烯烃包括-乙烯基、-丙烯基、-1-丁烯基、-2-丁烯基、-异丁烯基、-1-戊烯基、-2-戊烯基、-3-甲基-1-丁烯基、-2-甲基-2-丁烯基、-2,3-二甲基-2-丁烯基、-1-己烯基、-2-己烯基、-3-己烯基、-1-庚烯基、-2-庚烯基、-3-庚烯基、-1-辛烯基、-2-辛烯基、-3-辛烯基、-1-壬烯基、-2-壬烯基、-3-壬烯基、-1-癸烯基、-2-癸烯基、-3-癸烯基等。
本文所用术语“环烷”指具有3到15个碳原子的饱和环烃。代表性环烷是环丙基、环戊基等。
本文单独使用或作为其他基团部分所用术语“烷基环烯”是指连接有上述环烷的上述烷基。
本文所用术语“环烯”指环系统中具有至少1个碳-碳双键且有5到15个碳原子的单环非芳烃。代表性环烯包括-环戊烯基、-环戊二烯基、-环己烯基、-环己二烯基、-环庚烯基、-环庚二烯基、-环庚三烯基、-环辛烯基、-环辛二烯基、-环辛三烯基、-环辛四烯基、-环壬烯基、-环壬二烯基、-环癸烯基、-环癸二烯基等。术语“环烯”也包括二环烯和三环烯。本文所用术语“二环烯”指1个环中具有至少1个碳-碳双键且有8到15个碳原子的二环烃环系统。代表性二环烯包括但不限于,-茚基、-并环戊二烯基、-萘基、-薁基、-并环庚三烯基、-1,2,7,8-四氢萘基等。本文所用术语“三环烯”指1个环中具有至少1个碳-碳双键且有8到15个碳原子的三环烃环系统。代表性三环烯包括但不限于,-蒽基(anthracenyl)、-菲基(phenanthrenyl)、-萉基等。
本文所用术语“芳环”指5到14元芳族碳环,包括单、二环和三环系统。代表性芳环是苯基、萘基、蒽基(anthryl)和菲基(phenanthryl)。
本文所用短语“氧代(oxo)”指与氧的双键,即C=O。
本文所用术语“单糖”指用作碳水化合物结构单元的单一糖。单糖的示例包括葡萄糖、岩藻糖、半乳糖和甘露糖。
本发明所用其他神经酰胺类糖脂包括但不限于表1中的神经酰胺类糖脂抗原。
表1
在本发明的经修饰细菌中,神经酰胺类糖脂抗原与细菌细胞“物理结合”以生成“经修饰细菌”。“物理结合”指与细菌细胞直接相互作用,例如通过本领域普通技术人员已知的标准方法将神经酰胺类糖脂嵌入质膜或细菌细胞壁如分枝杆菌细胞壁的脂丰富表面。在某些实施方式中,神经酰胺类糖脂经非共价方式与细菌细胞壁物理结合。例如,神经酰胺类糖脂存在下生长的细菌细胞将神经酰胺类糖脂纳入其细胞壁。在本发明的一个方面,经非共价作用与细菌细胞物理结合的神经酰胺类糖脂可从细菌细胞壁中提取且提取后神经酰胺类糖脂仍保持其化学结构和生物学活性。可通过本领域技术人员已知方法来检测与细胞壁物理结合的神经酰胺类糖脂。通过稳定结合神经酰胺类糖脂抗原与细菌细胞壁,可制成神经酰胺类糖脂/细菌复合物。在某些实施方式中,本发明的组合物允许同时施用神经酰胺类糖脂抗原和细菌细胞,例如将糖脂修饰的分枝杆菌细胞呈递给抗原呈递细胞。在某些实施方式中,神经酰胺类糖脂纳入分枝杆菌细胞壁。所述细菌细胞例如分枝杆菌细胞,可以是死、活和/或减毒细菌细胞。在另一实施方式中,所述细菌细胞可以是重组的。
本发明的经修饰细菌包括单一神经酰胺类糖脂抗原,或可包括神经酰胺类糖脂抗原的异质混合物。即细菌细胞群可与神经酰胺类糖脂抗原物理结合或与神经酰胺类糖脂抗原混合物物理结合。
本发明的经修饰细菌例如本发明的神经酰胺类糖脂/细菌复合物或者含该复合物的组合物或疫苗组合物可带有标记以使可直接检测,或能与特异结合复合物的第二标记免疫试剂联合使用,例如用于检测或诊断目的。感兴趣的标记可包括染料、酶、化学发光剂、颗粒、放射性同位素或其他直接或间接可检测的试剂。另外,可使用第二级标记,例如针对本发明复合物组成之一的带标记抗体。
适当酶标记的示例包括但不限于苹果酸脱氢酶、葡萄球菌核酸酶、δ-5-类固醇-异构酶、酵母-乙醇脱氢酶、α-甘油磷酸脱氢酶、磷酸丙糖异构酶、过氧化物酶、碱性磷酸酶、天冬酰胺酶、葡萄糖氧化酶、β-半乳糖苷酶、核糖核酸酶、脲酶、过氧化氢酶、葡萄糖-6-磷酸脱氢酶、葡糖淀粉酶和乙酰胆碱酯酶。
适当放射性同位素标记的示例包括3H、111In、125I、131I、32P、35S、14C、51Cr、57To、58Co、59Fe、75Se、152Eu、90Y、67Cu、217Ci、211At、212Pb、47Sc、109Pd等。适当非放射性同位素标记的示例包括157Gd、55Mn、162Dy、52Tr和56Fe。
适当荧光标记的示例包括152Eu标记、荧光素标记、异硫氰酸酯标记、罗丹明标记、藻红蛋白标记、藻青蛋白标记、别藻蓝蛋白标记、o-邻苯二甲醛标记和荧光胺标记。
化学发光标记的示例包括发光氨(luminal)标记、异发光氨(isoluminal)标记、芳香吖啶酯标记、咪唑标记、吖啶盐标记、草酸酯标记、萤光素标记、萤光素酶标记和水母蛋白标记。
核磁共振对照试剂的示例包括重金属核如Gd、Mn和Fe。
使上述标记结合本发明的神经酰胺类糖脂或多肽的典型技术由Kennedy等,Clin.Chim.Acta 70:1-31(1976)和Schurs等,Clin.Chim.Acta 81:1-40(1977)提供。后者提到的偶联技术是戊二醛方法、高碘酸盐方法、二马来酰亚胺方法、m-马来酰亚胺基苯甲基-N-羟基-琥珀酰亚胺酯方法,所有这些方法通过引用纳入本文。
在某些实施方式中,神经酰胺类糖脂包括糖基神经酰胺或其类似物或α-半乳糖神经酰胺或其类似物。
在进一步实施方式中,所述糖基神经酰胺或其类似物包括式I:
其中,R1是线性或分支的C1-C27烷烃或C2-C27烯烃;或R1是-C(OH)-R3,其中R3是线性或分支的C1-C26烷烃或C2-C26烯烃;或R1是C6-C27烷烃或烯烃,其中(i)所述C6-C27烷烃或烯烃由C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环取代,或(ii)所述C6-C27烷烃或烯烃在C6-C27烷基或烯基链内包含C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环;
R2是下列(a)-(e)中的一种:
(a)-CH2(CH2)xCH3
(b)-CH(OH)(CH2)xCH3
(c)-CH(OH)(CH2)xCH(CH3)2
(d)-CH=CH(CH2)xCH3
(e)-CH(OH)(CH2)xCH(CH3)CH2CH3
其中,X是4-17范围内的整数。
R4是α-连接或β-连接单糖,或当R1线性或分支的C1-C27烷烃时,R4是:
以及,A是O或-CH2.
在另一实施方式中,所述α-半乳糖神经酰胺或其类似物包括式II:
其中,R1是线性或分支的C1-C27烷烃或C2-C27烯烃;或R1是-C(OH)-R3,其中R3是线性或分支的C1-C26烷烃或C2-C26烯烃;以及
R2是下列(a)-(e)中的一种:
(a)-CH2(CH2)xCH3
(b)-CH(OH)(CH2)xCH3
(c)-CH(OH)(CH2)xCH(CH3)2
(d)-CH=CH(CH2)xCH3
(e)-CH(OH)(CH2)xCH(CH3)CH2CH3
其中,X是4-17范围内的整数。
在另一实施方式中,所述α-半乳糖神经酰胺或其类似物包括式III:
其中,R是H或-C(O)R1,其中R1是线性或分支的C1-C27烷烃或C2-C27烯烃;或R1是-C(OH)-R3,其中R3是线性或分支的C1-C26烷烃或C2-C26烯烃;或R1是C6-C27烷烃或烯烃,其中(i)所述C6-C27烷烃或烯烃由C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环取代,或(ii)所述C6-C27烷烃或烯烃在C6-C27烷基或烯基链内包含C5-C15环烷烃、C5-C15环烯烃、杂环或芳香环;或R1是-(CH2)nR5,其中n是0-5范围内的整数,R5是-C(O)OC2H5、可选取代的C5-C15环烷烃、可选取代的芳环或芳烷基,以及
R2是下列(a)-(e)中的一种:
(a)-CH2(CH2)xCH3
(b)-CH(OH)(CH2)xCH3
(c)-CH(OH)(CH2)xCH(CH3)2
(d)-CH=CH(CH2)xCH3
(e)-CH(OH)(CH2)xCH(CH3)CH2CH3
其中,X是4-17范围内的整数。
在另一实施方式中,R1选自下组:
其中()代表R1与式III化合物的结合点。
在另一实施方式中,所述α-半乳糖神经酰胺或其类似物包括(2S,3S,4R)-1-O-(α-D-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3,4-十八烷三醇(KRN7000)或(2S,3S)-1-O-(α-D-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3-十八烷二醇)。
在另一实施方式中,所述α-半乳糖神经酰胺或其类似物包括(2S,3S,4R)-1-CH2-(α-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3,4-十八烷三醇(α-C-GalCer)。
神经酰胺类糖脂的其他非限制性示例的描述见Tsuji等,美国专利号7,273,852;Taniguchi等,美国专利号6,531,453和Higa等,美国专利号5,936,076,所有内容都通过引用纳入本文。
天然杀伤T(NKT)细胞
天然免疫系统在对外来病原体的高攻击性、保护性免疫应答与维持对正常组织耐受性的需要之间取得复杂的平衡。近年来,对有助于维持该平衡的许多不同细胞类型间的相互作用有了更多的认识。例如,这些相互作用可导致极化反应,或是TH1型T细胞产生促炎细胞因子(如干扰素-γ)或是TH2型T细胞产生抑制TH1活性的白介素-4(IL-4)。在一些不同动物模型中,T细胞极化成TH1显示出有利于对肿瘤或传染性病原体的保护性免疫,而T细胞极化成TH2可能是防止细胞介导的自身免疫病发展的关键因素。决定免疫刺激会引起攻击性细胞介导免疫还是下调该反应的条件高度局部化的,从某种意义上,各组织包括独特的抗原呈递细胞(APC)和淋巴细胞谱系,其相互作用偏向不同的免疫应答。例如,在最适条件下,位于正常组织中的树突细胞(DC)可显著表现为有利于耐受性相互作用的成熟谱系与阶段并作为细胞介导自身免疫的屏障,而肿瘤或感染位置会吸引刺激潜在细胞介导免疫应答的成熟髓系树突细胞。
CD1d限制性NKT细胞是独特的非常规T细胞种类,在确定局部环境的免疫刺激结果中发挥重要作用。它们与更大的NKT细胞种类共有T细胞和天然杀伤(NK)细胞谱系标记的表达。由此,将NKT细胞视作先天性免疫如NKT细胞的一部分且其在正常人个体中频率可高达总T淋巴细胞的2.0%(Gumperz等,J Exp Med 195:625(2002);Lee等,J Exp Med 195:637(2002))。
通过对MHC Ib类单型分子CD1d所呈递脂质和糖脂抗原的特异性来区分CD1d限制性NKT细胞与其他NKT细胞(Kawano等,Science 278:1626-1629(1997))。CD1d是β2-微球蛋白相关非MHC编码分子并与经典MHC I类分子结构相关。CD1d具有特异性结合脂尾部或疏水肽烃链的疏水性抗原结合口袋。Zeng等,Science 277:339-345,(1997)。已知CD1d结合来自海绵的α-糖基化鞘脂、α-半乳糖神经酰胺(α-GalCer)、相关分子如有α-连接半乳糖或葡萄糖但不是甘露糖的神经酰胺类糖脂抗原。Kawano等,Science 278:1626-1629(1997)和Zeng等,Science 277:339-345(1997)。如本文所述,抗原呈递细胞通过结合CD1d的α-GalCer或相关分子刺激来激活CD1d限制性NKT细胞的能力很有助于功能性分析该非常规T细胞亚群。没有炎症时,CD1d限制性NKT细胞表现出优选位于某些组织如胸腺、肝和骨髓(Wilson等,Trends Mol Med 8:225(2002))并已在小鼠肝转移中主要研究了NKT细胞的抗肿瘤活性。
NKT细胞具有分泌TH1和TH2细胞因子的独特能力,在炎症、自身免疫和肿瘤免疫中都记载有潜在细胞毒性以及调节功能(Bendelac等,Science 268:863(1995);Chen和Paul,J Immunol 159:2240(1997)和Exley等,J Exp Med 186:109(1997))。
本文所指的“iNKT”细胞是CD1d限制性NKT细胞亚群,表达高保守的αβT细胞受体(TCR)。在人中,该不变TCR包含与Vβ11相关的Vα24Jα15,而在小鼠中,受体包括高度同源的Vα14Jα18和Vβ8.2。其他CD1d限制性NKT细胞表达更可变的TCR。通过结合带α-GalCer的CD1d四聚体可检测CD1d限制性NKT细胞的TCR不变和TCR可变型(Benlagha等,J Exp Med 191:1895-1903(2000);Matsuda等,J Exp Med 192:741-754(2000)和Karadimitris等,ProcNatl Acad Sci USA 98:3294-3298(2001))。本申请所定义的CD1d限制性NKT细胞(CD1d限制性NKT)包括表达不变或可变TCR的细胞以及与带α-GalCer或相关神经酰胺类糖脂抗原的CD1d结合或由其激活的细胞。本申请所定义的CD1d限制性NKT细胞(CD1d-NKT)包括表达不变或可变TCR的细胞以及与带α-GalCer或相关鞘脂的CD1d结合或由其激活的细胞,鞘脂具有α-连接半乳糖或葡萄糖,包括分子如OCH,它与α-GalCer的区别在于具有缩短的长链鞘脂基(C5对C14)和酰基链(C24对C26)(Miyamoto等,Nature 413:531-4(2001))。
CD1d限制性NKT显示出针对表达CD1d的靶有直接的细胞毒活性。然而,CD1d限制性NKT对免疫应答的效果可能通过募集其他淋巴细胞而被放大,募集是经直接相互作用,或者也许更重要是通过与DC作用而间接募集。CD1d限制性NKT具有在免疫应答早期分泌大量IL-4和IFN-γ的独特能力。IFN-γ的分泌诱导产白介素-12(IL-12)的DC激活。IL-12通过NKT细胞刺激更多IFN-γ分泌,也引起分泌更多IFN-γ的NK细胞激活。
由于CD1d限制性NKT能迅速分泌大量IL-4和IFN-γ,免疫应答的极化取决于促炎IFN-γ或抗炎IL-4细胞因子中哪一个的效果占优。有报导这与CD1d限制性NKT不同亚群的相对频率部分有关。这些亚群包括(i)不变CD1d限制性NKT群,其为CD4和CD8阴性且产生显著TH1型反应,包括分泌促炎IFN-γ和TNF-α,和(ii)单独CD1d限制性NKT群,其为CD4+且产生TH1和TH2型反应,包括分泌抗炎TH2型细胞因子IL-4、IL-5、IL-10和IL-13(Lee等,J ExpMed 195:637-41(2002)和Gumperz等,J Exp Med 195:625-36(2002))。另外,取决于CD1d结合的特定神经酰胺类糖脂,可差异性调节NKT细胞活性(参见例如美国专利申请公开号2006/0052316)。影响CD1d限制性NKT亚群激活的局部因素包括细胞因子环境,以及重要地,募集到该环境中的DC。
一族神经酰胺类糖脂(即α-半乳糖神经酰胺(α-GalCer)和相关α-糖基神经酰胺)显示通过鼠NKT细胞刺激强CD1d限制性反应(Kawano等,1997)。这些化合物含α-异头己糖(NKT细胞识别活性半乳糖或葡萄糖),将它们与通常出现在哺乳动物组织中仅含β-异构糖的神经酰胺相区别。已知这些化合物天然出现在海绵中,它们最初从海绵中分离得到,在证明α-GalCer注射到荷瘤小鼠中时引起免疫激活产生强肿瘤排斥成为免疫学家的兴趣所在(Kobayashi等,Oncol.Res.7:529-534(1995))。随后,该活性与α-GalCer经CD1d依赖机制迅速激活NKT细胞的能力相关连。目前显示α-GalCer结合CD1d,因而产生对NKT细胞TCR具有可测亲和力的分子复合体(Naidenko等,J Exp.Med.190:1069-1080(1999);Matsuda等,JExp.Med.192:741(2000);Benlagha等,J Exp.Med.191:1895-1903(2000))。因此,α-GalCer提供了能在体外和体内激活大部分NKT细胞的有效试剂。
最为广泛研究的NKT激活α-GalCer在文献中称为KRN7000,是具有与α-GalCer天然形式相似结构的合成分子,天然α-GalCer最初因为在啮齿动物中的抗癌活性而从海绵中分离(Kawano等,Science 278:1626-1629(1997);Kobayashi等,1995;Iijima等,Bioorg.Med.Chem.6:1905-1910(1998);Inoue等,Exp.Hematol.25:935-944(1997);Kobayashi等,Bioorg.Med.Chem.4:615-619(1996a)和Biol.Pharm.Bull.19:350-353(1996b);Uchimura等,Bioorg.Med.Chem.5:2245-2249(1997a);Uchimura等,Bioorg.Med.Chem.5:1447-1452(1997b);Motoki等,Biol.Pharm.Bull.19:952-955(1996a);Nakagawa等,Oncol.Res.10:561-568(1998);Yamaguchi等,Oncol.Res.8:399-407(1996))。一种有截短鞘脂基的KRN7000合成类似物在实验过敏性脑脊髓炎(EAE)小鼠模型中显示出增强的抑制自身免疫的能力(Miyamoyo等,Nature 413:531-534(2001))。美国专利号5,936,076鉴定了改变α-GalCer鞘脂基的其他变体。
从1997年11月迄今的大量文献研究了KRN7000激活哺乳动物免疫系统的机制(Kawano等,Science 278:1626-1629(1997);Benlagha等,J Exp.Med.191:1895-1903(2000);Burdin等,Eur.J Immunol.29:2014-2025(1999);Crowe等,J.Immunol.171:4020-4027(2003);Naidenko等,J Exp.Med.190:1069-1080(1999);Sidobre等,J.Immunol.169:1340-1348(2002);Godfrey等,Immunol.Today 21:573-583(2000);Smyth和Godfrey,Nat.Immunol.1:459-460(2000))。这些研究一致显示KRN7000作用的最可能机制是该化合物与CD1d蛋白的结合,CD1d蛋白在大部分造血细胞以及一些上皮和其他细胞谱系上表达。KRN7000结合CD1d产生分子复合体,该复合体由被称为天然杀伤T细胞(NKT细胞)的T淋巴细胞亚群的T细胞抗原受体(TCR)高亲和性识别。识别KRN7000/CD1d复合体引起NKT细胞的迅速激活,NKT细胞位于肝、脾和其它淋巴器官且能运行到任何组织。激活的NKT细胞迅速分泌各种化学因子和其它细胞因子,也能激活其它细胞种类如树突细胞和天然杀伤(NK)细胞。KRN7000/CD1d复合体激活后的一连串事件对免疫系统有许多潜在的下游效果。例如,在某些感染类型中,这能产生辅助效果提高对感染的适应性免疫和促进康复。或者,在某些自身免疫病类型中,KRN7000激活NKT细胞可改变自身免疫应答进程,从而抑制组织破坏和改善疾病。
NKT淋巴细胞的功能仍然没有完全确定,但许多研究指出这些T细胞在调节免疫应答中起到重要作用。NKT细胞的标志是在刺激时通过它们的α-βTCR迅速生成大量IL-4和IFN-γ(Exley等,J.Exp.Med.186:109(1997))。事实上,它们的身份可能是免疫激活中早期生成IL-4的主要细胞,这提示它们在极化2型(Th2)T细胞反应中可能发挥关键作用。由此,NKT细胞不意外地被鉴定为在确定小鼠中多种不同病原体感染结果中起到显著作用。
一些间接机制有助于CD1d限制性NKT细胞的保护性效果。体内施用α-GalCer激活NKT细胞引起NK细胞的伴随激活(Eberl和MacDonald,Eur.J.Immunol.30:985-992(2000)和Carnaud等,J.Immunol.163:4647-4650(1999))。在NKT细胞缺陷小鼠中,α-GalCer不能通过NK细胞诱导细胞毒活性。NKT细胞也提高经典MHC I类限制性细胞毒性T细胞的诱导(Nishimura等,Int Immunol 12:987-94(2000)和Stober等,J Immunol 170:2540-8(2003))。
能用于特异激活CD1d限制性NKT细胞的特定抗原如α-GalCer和相关抗原的可利用性使得能检测这些非常规T细胞在多种免疫应答中的作用。
施用α-GalCer对一些不同微生物感染具有效果,包括对鼠疟疾、真菌和乙肝病毒感染的保护性效果。Kakimi等,J Exp Med 192:921-930(2000);Gonzalez-Aseguinolaza等,Proc Natl Acad Sci USA 97:8461-8466(2000)和Kawakami等,Infect Immun 69:213-220(2001)。在肿瘤免疫动物模型中也观察到施用α-GalCer的显著效果。例如,α-GalCer刺激以NKT依赖性方式抑制肺和肝转移(Smyth等,Blood 99:1259(2002))。另外,α-GalCer对某些自身免疫病具有保护性效果,包括1型糖尿病和实验性自身免疫脑脊髓炎(EAE,熟知的多发性硬化鼠模型系统)。Hong S等,Nat.Med.7:1052-1056(2001)和Miyamoto K.等,Nature 413:531-534(2001)。
NKT活性试验
本发明组合物调节免疫应答的能力可通过体外试验容易地确定。试验所用NKT细胞包括转化的NKT细胞系,或从哺乳动物例如人或啮齿动物如小鼠中分离的NKT细胞。可通过分选与CD1d:α-GalCer四聚体结合的细胞从哺乳动物中分离NKT细胞。参见例如Benlagha等,J Exp Med 191:1895-1903(2000);Matsuda等,J Exp Med 192:741-754(2000)和Karadimitris等,Proc Natl Acad Sci USA 98:3294-3298(2001)。进行适当试验确定本发明的化合物或组合物是否能调节NKT细胞活性,通过共培养NKT细胞和抗原呈递细胞,将感兴趣的特定化合物或组合物直接加入针对抗原呈递细胞或NKT细胞的培养基,测量IL-4或IFN-γ生成。在没有本发明的化合物或组合物或存在本发明的化合物或组合物情况下用非靶向抗体时相同细胞共培养中IL-4或IFN-γ生成的显著增加或减少表明NKT细胞的刺激或抑制。
试验所用NKT细胞在适合增殖的条件下培养。例如,NKT细胞杂交瘤在约37℃和5%CO2、完全培养基(添加10%FBS、青霉素/链霉素、L-谷氨酰胺和5x10-5M 2-巯基乙醇的RPMI1640)中适当培养。将连续稀释的所述化合物加入NKT细胞培养基。加入NKT细胞的合适化合物浓度通常在10-12至10-6M范围内。可使用产生略次于最大NKT细胞激活的抗原剂量和APC数以检测本发明的化合物对NKT细胞反应的刺激或抑制。
另外,通过本领域已知放射性标记技术测量抗原依赖性T细胞增殖变化来确定NKT细胞激活的调节,而不是测量表达蛋白如IL-4或IFN-γ。例如,可在试验培养基中引入标记(例如氚化)的核苷酸。将DNA中该标记核苷酸的纳入用于测量T细胞增殖。此试验不适合生长无需抗原呈递的NKT细胞,例如NKT细胞杂交瘤。接触本发明的化合物或组合物后T细胞增殖水平的差异表明该复合体调节T细胞活性。例如,NKT细胞增殖减少表明所述化合物或组合物可抑制免疫应答。NKT细胞增殖增加表明所述化合物或组合物可刺激免疫应答。
此外,51Cr释放试验能用于确定细胞毒活性。
这些体外试验可用于选择和鉴定能适当调节免疫应答的神经酰胺类糖脂/细菌细胞复合物和含该复合物的组合物。上述试验例如测量IL-4或FN-γ生成或NKT细胞增殖,用于确定与所述化合物接触是否调节T细胞激活。
补充或替代地,动物例如小鼠、兔、非人灵长类动物中的免疫刺激实验可用于鉴定能适当调节免疫应答且有效治疗和/或预防人细菌疾病如结核病的神经酰胺类糖脂/细菌细胞复合物和含该复合物的组合物。例如,小鼠可接种神经酰胺类糖脂/细菌细胞复合物如BCG/αGalCer或BCG/α-C-GalCer(例如5x106CFU/小鼠),并用传染性细菌如强毒株结核分枝杆菌H37Rv刺激。
处理方法
本发明的经修饰细菌、组合物或疫苗组合物能用于预防疾病和治疗性处理疾病,例如病毒性疾病、细菌性疾病、真菌性疾病、寄生虫性疾病、过敏性疾病或增生性疾病如癌症。在已患病个体中,本发明用于进一步刺激或调节动物免疫系统,从而减少或消除疾病或紊乱相关的症状。如本文所述,“处理”是指使用一种或多种本发明的经修饰细菌、组合物或疫苗组合物,以预防、治愈、延缓或降低动物中特定疾病症状的严重性,和/或特定时间段内已染病并因而需要治疗的动物中疾病不再恶化。
术语“预防”或“防止”是指使用一种或多种本发明的经修饰细菌、组合物或疫苗组合物,以在尚未染病动物中产生免疫,若该动物后来易得此病则可预防或减少疾病症状。因此,本发明的方法称为治疗性方法或者防止或预防性方法。不要求本发明的任何经修饰细菌、组合物或疫苗组合物提供对疾病剂的完全免疫或者完全治愈或消除所有疾病症状。
如本文所用,“需要治疗和/或预防免疫的动物”是指的个体需要治疗,即预防、治愈、延缓或降低某些疾病症状的严重性和/或在特定时间段不导致疾病恶化。
“有效量”是以单剂量或以系列剂量的部分施用给个体的量对于治疗和/或预防有效。例如,施用使得用传染性结核分枝杆菌刺激约2周后,结核分枝杆菌相关疾病症状发生率或严重性相对未处理个体减少,则施用的量是有效的。该量的变化取决于待处理个体的健康和身体情况、待处理个体的分类组(例如人、非人灵长类动物、灵长类动物等)、个体免疫系统的反应能力、所需保护程度、疫苗制剂、医疗条件的专业评估和其它相关因素。预期有效量在能经常规试验确定的相对较宽范围内。
术语“脊椎动物”意在涵盖单一“脊椎动物”以及复数“脊椎动物”,包括哺乳动物和鸟以及鱼、爬行动物和两栖动物。
术语“哺乳动物”意在涵盖单一“哺乳动物”和复数“哺乳动物”,包括但不限于人;灵长类动物如猿、猴(例如猫头鹰、松鼠、悬猴、恒河猴、非洲绿猴、赤猴、猕猴和长尾猴)、猩猩、狒狒、长臂猿和黑猩猩;犬科动物如狗和狼;猫科动物如猫、狮子和老虎;马科动物如马、驴和斑马;食用动物如母牛、猪和羊;有蹄类动物如鹿和长颈鹿;熊科动物如熊;其他如兔、小鼠、雪貂、海豹、鲸鱼。具体的,所述哺乳动物可以是人对象、食用动物或陪伴动物。
术语“禽”意在涵盖单一“禽”和复数“禽”,包括但不限于野生水禽如鸭、鹅,燕鸥、剪嘴鸥和海鸥;以及家禽如火鸡、小鸡、鹌鹑、雉、鹅和鸭。术语“禽”也包括雀形目鸟如欧掠鸟虎皮鹦鹉。
本发明提供在需要治疗或预防的动物中预防或治疗疾病的方法,该方法包括将含细菌细胞如分枝杆菌细胞和神经酰胺类糖脂抗原的组合物施用给患有此病或易患此病的动物,其中所述神经酰胺类糖脂如本文所述纳入细菌细胞的细胞壁。在进一步的实施方式中,所述细菌细胞可用作载体递送来自另一病原体的抗原或肿瘤特异抗原。
本发明也包括调节即刺激或抑制免疫应答的方法,该方法包括将有效量的含细菌细胞如分枝杆菌细胞和神经酰胺类糖脂抗原的组合物施用给动物,其中所述神经酰胺类糖脂如本文所述纳入细菌细胞的细胞壁。
在某些实施方式中,本发明的方法包括治疗患病动物的疾病例如分枝杆菌疾病,通过给患病动物施用本发明组合物例如细菌、如经修饰的分枝杆菌、如与神经酰胺类糖脂物理结合如以非共价方式纳入细胞壁的BCG细胞,施用量足以改变所述疾病发展。
在其它实施方式中,本发明的方法包括在需要预防疾病的动物中防止疾病例如分枝杆菌疾病,通过给需要的动物施用本发明组合物例如经修饰的分枝杆菌,如与神经酰胺类糖脂物理结合如以非共价方式纳入细胞壁的BCG细胞,与施用缺乏神经酰胺类糖脂的未修饰细胞相比,施用的量足以增强对细菌和细菌编码抗原的免疫应答。
在进一步实施方式中,治疗和预防的疾病可以是但不限于病毒性、细菌性、真菌性或寄生虫传染病、过敏性或增生性疾病如癌症。更具体地,所述可以是例如结核病、汉森氏病、肺病类结核、淋巴腺炎、皮肤病、弥散性疾病、黑死病、肺鼠疫、兔热病、军团病、炭疽、伤寒症发热、副伤寒发热、食源性疾病、李斯特菌病、疟疾、HIV、SIV、HPV、RSV、流感、肝炎(HAV、HBV和HCV)。
在另一个实施方式中,本发明的方法包括增强动物中对细菌细胞如分枝杆菌细胞的免疫应答,包括给动物施用本发明的经修饰细菌如神经酰胺类糖脂纳入细菌细胞壁;其中所述经修饰细菌施用的量足以在所述动物中增强所述细胞对抗原的抗原特异性CD8T细胞反应并提高天然杀伤T(NKT)细胞活性。
在另一实施方式中,本发明的方法包括同时施用神经酰胺类糖脂佐剂和细菌细胞如分枝杆菌细胞给抗原呈递细胞,该同时施用通过稳定结合神经酰胺类糖脂佐剂与细菌细胞壁以产生神经酰胺类糖脂/细菌复合物;随后施用神经酰胺类糖脂/细菌复合物给抗原呈递细胞而实现。
如本文所用,“需要的对象”是指需要治疗的个体,治疗即为预防、治愈、延缓或降低疾病症状如细菌感染严重性和/或特定时间段内疾病不恶化。
根据这些方法,本发明的经修饰细菌、组合物或疫苗组合物的可以足以改变疾病发展的量施用。
“免疫”(施用疫苗)是普通和广泛的方法且所用的本发明疫苗本质上可以是旨在主动免疫预防的任何制备品,包括但不限于制备死的微生物强毒株和活的微生物减毒株。Stedman′s Illustrated Medical Dictionary(第24版),Williams & Wilkins,Baltimore,第1526页(1982)。在一些情况中,疫苗必须施用一次以上以引起有效的保护,例如已知抗毒素疫苗必须给予多次剂量。
本文所用术语“激发”或“初始”和“加强”或“提高”分别指初始和后续免疫,即根据这些术语在免疫学中的常规定义。然而,在某些实施方式中,例如激发成分和加强成分在单一制剂中时初始和后续免疫不再必须,因为“激发”和“加强”组合物同时施用。也参见McShane H,Curr Opin Mol Ther 4(1):13-4(2002)及Xing Z和Charters TJ,Expert RevVaccines 6(4):539-46(2007),它们都通过引用纳入本文。
在其它实施方式中,本发明的一种或多种组合物用于“初始-加强”方案。在这些实施方式中,本发明的一种或多种疫苗组合物递送给脊椎动物,从而引发脊椎动物对细菌抗原如分枝杆菌抗原的免疫应答,随后使用第二种免疫原性组合物作为加强免疫。本发明的一种或多种疫苗组合物用于引发免疫,随后第二种免疫原性组合物如重组细菌疫苗用于加强抗细菌的免疫应答。该疫苗组合物可包括一种或多种载体,用于表达编码本文所述免疫原性多肽的一个或多个基因。
本发明进一步提供在脊椎动物中产生、增强或调节对病原体如细菌性、真菌性、病毒性或寄生虫病原体或肿瘤抗原的保护性和/或治疗性免疫应答的方法,包括施用一种或多种本文所述经修饰细菌、组合物或疫苗组合物给需要治疗和/或预防性免疫的脊椎动物。在该方法中,所述组合物包括经修饰的细菌,例如神经酰胺类糖脂纳入其细胞壁的分枝杆菌。
在某些实施方式中,本发明的经修饰细菌、组合物或疫苗组合物例如BCG/αGalCer或BCG/α-C-GalCer能用于减少获得有利疫苗反应所需剂量。这对于降低局部和全身毒性具有潜在优势,因而提高疫苗的安全情况。另外,这也有能降低生产成本的益处。
本发明的某些实施方式包括用于减少或消除NKT细胞对多次单独施用神经酰胺类糖脂抗原的反应无能,这些抗原通过细菌细胞壁呈递给NKT细胞。显示多次单独施用α-GalCer导致NKT细胞在延长时间段内成为无反应性。本发明中,糖脂如α-GalCer作为神经酰胺类糖脂/细菌细胞复合物的部分施用,可保护NKT细胞不对抗原发生反应无能并延长多次施用时的反应。因此,通过响应带有本发明神经酰胺类糖脂抗原的神经酰胺类糖脂/细菌细胞复合物来激活NKT细胞,此外,可通过响应带有本发明神经酰胺类糖脂抗原的神经酰胺类糖脂/细菌细胞复合物再刺激而再激活NKT细胞。
根据本发明的方法,施用本文所述含细菌细胞和神经酰胺类糖脂抗原的组合物以调节动物如脊椎动物、如哺乳动物例如人的免疫应答。在某些实施方式中,本发明的方法增强免疫应答,例如针对在用神经酰胺类糖脂/细菌细胞复合物之前、之后或同时递送的抗原。施用本发明的神经酰胺类糖脂/细菌细胞复合物,例如与免疫原一起,通常可引起免疫细胞如NKT细胞或NK细胞释放细胞因子。响应施用本发明的经修饰细菌、组合物或疫苗组合物而释放的细胞因子可与TH1型免疫反应相关,例如干扰素γ和TNF-α。替代或补充地,施用本发明的经修饰细菌、组合物或疫苗组合物可引起TH2型免疫反应相关细胞因子释放,例如IL-4、IL-5、IL-10或IL-13。替代或补充地,施用本发明的经修饰细菌、组合物或疫苗组合物可引起其它细胞因子释放,例如IL-2、IL-1β、IL-12、IL-17、IL-23、TNF-β/LT、MCP-2、制瘤素-M和RANTES。调节释放细胞因子类型的方法包括改变神经酰胺类糖脂/细菌细胞复合物的神经酰胺类糖脂抗原。不同神经酰胺类糖脂抗原对从NKT或其他免疫细胞释放细胞因子的效果可采用体外试验进行选自和测试,参见本文另述和Porcelli,美国专利申请公开号2006/0052316所述,以及通过本领域普通技术人员熟知的其它方法进行。施用本发明的神经酰胺类糖脂/细菌细胞复合物和含该复合物的疫苗组合物可通过诱导NKT细胞增殖并通过诱发其它免疫细胞的募集或激活来进一步调节免疫应答,免疫细胞包括但不限于NK细胞、CTL、其它T淋巴细胞,例如CD8+或CD4+T淋巴细胞、树突细胞、B淋巴细胞和其它细胞。
在某些实施方式中,施用本发明的神经酰胺类糖脂/细菌细胞复合物和含该复合物的疫苗组合物影响一种或多种NKT细胞活性,例如但不限于细胞增殖、一种或多种细胞因子生成、或者募集和/或激活非NKT免疫系统细胞,包括但不限于NK细胞、CTL、其它T淋巴细胞如CD8+或CD4+T淋巴细胞、树突细胞、B淋巴细胞和其它细胞。
本发明的某些实施方式涉及使用本发明的神经酰胺类糖脂/细菌细胞复合物作为重组疫苗调节对免疫原如由细菌细胞/神经酰胺类糖脂复合物表达的病原体抗原或肿瘤抗原的免疫应答。因此,本发明提供了诱导动物中对免疫原的免疫应答的方法,该方法包括将含免疫原的组合物施用给需要的动物,其中免疫原存在于神经酰胺类糖脂/细菌细胞复合物中。根据此实施方式,相对于施用无神经酰胺类糖脂/细菌细胞复合物的免疫原,神经酰胺类糖脂/细菌细胞复合物的施用量足以诱导免疫应答抗该免疫原,例如细菌病原体或重组细菌表达的免疫原。某些实施方式中用作疫苗的神经酰胺类糖脂/细菌细胞复合物可以是呈递重组抗原的重组细菌细胞。在其它实施方式中,免疫应答针对所述神经酰胺类糖脂/细菌细胞复合物的细菌细胞。在其它实施方式中,用作疫苗的神经酰胺类糖脂/细菌细胞复合物可以靶向特定器官、组织、细胞或细胞表面标记,如Bruno等,美国专利申请公开号2006/0269540中所述。
在某些实施方式中,本发明的神经酰胺类糖脂/细菌细胞复合物和含该复合物的组合物作为治疗性疫苗施用给例如已患病如结核病的动物。根据这些方法,本发明的经修饰细菌引起的免疫应答对治疗有效,如通过减少症状或减轻疾病严重性来影响疾病结果,与没有神经酰胺类糖脂/细菌细胞复合物时施用免疫原相比,所述神经酰胺类糖脂/细菌细胞复合物的施用量足以调节抗该免疫原的免疫应答。另外,本发明的神经酰胺类糖脂/细菌细胞复合物和含该复合物的组合物作为预防性疫苗施用,即防止或减少该动物未来可能患的疾病如传染病的症状。根据这些方法,神经酰胺类糖脂/细菌细胞复合物引起的免疫应答对预防有效,例如通过减少症状或减轻疾病严重性来影响该疾病结果,相对在没有神经酰胺类糖脂/细菌细胞复合物时施用免疫原,所述神经酰胺类糖脂/细菌细胞复合物的施用量足以调节抗该免疫原的免疫应答。
本发明也提供用于本文所述方法的神经酰胺类糖脂/细菌细胞复合组合物。这些组合物包括本文另述的细菌细胞和神经酰胺类糖脂。例如,本发明的神经酰胺类糖脂/细菌细胞复合组合物可包括神经酰胺类糖脂/分枝杆菌细胞复合物,例如αGalCer/BCG和α-C-GalCer/BCG。
本文所述方法、经修饰细菌、组合物或疫苗组合物也可用于提高抗传染剂如神经酰胺类糖脂/细菌细胞复合物的免疫应答,其中该复合物的细菌细胞表达异源抗原,例如病毒抗原、细菌抗原或寄生虫抗原。能引起可用发明的方法、经修饰细菌、组合物或疫苗组合物处理的疾病或症状的传染剂包括但不限于病毒、细菌、真菌和寄生虫试剂。病毒的示例包括但不限于下列DNA和RNA病毒家族:虫媒病毒、腺病毒、沙粒病毒、动脉炎病毒、双RNA病毒、布尼亚病毒、杯状病毒、圆环病毒、冠状病毒、黄病毒、肝DNA病毒(肝炎)、疱疹病毒(如巨细胞病毒、单纯疱疹、带状疱疹)、单股反链病毒(Mononegavirus)(例如副粘病毒、麻疹病毒、弹状病毒)、正粘病毒(例如流感)、乳多空病毒、细小病毒、小核糖核酸病毒、痘病毒(如天花或牛痘)、呼肠孤病毒(例如轮状病毒)、逆转录病毒(HTLV-I、HTLV-II、慢病毒)和披膜病毒(例如风疹病毒)。所述家族中的病毒能引起多种疾病或症状,包括但不限于:关节炎、细支气管炎、脑炎、眼部感染(例如结膜炎、角膜炎)、慢性疲劳综合症、肝炎(甲肝、乙肝、丙肝、戊肝、慢性活动性肝炎、丁肝)、脑膜炎、机会感染(例如AIDS)、肺炎、伯基特氏淋巴瘤、水痘、出血热、麻疹,腮腺炎、副流感、狂犬病、普通感冒、脊髓灰质炎、白血病、风疹、性传播疾病、皮肤病(例如卡波西肉瘤、疣)和病毒血症。
类似地,细菌或真菌试剂引起的疾病或症状的可由发明的方法、经修饰细菌、组合物或疫苗组合物治疗或预防。所述细菌或真菌试剂包括但不限于下列革兰氏阴性和革兰氏阳性细菌家族和真菌:放线菌(例如棒状杆菌、分枝杆菌、诺卡氏菌)、曲霉、杆菌(例如炭疽菌、梭菌)、拟杆菌、芽生菌、博德特氏菌、疏螺旋体、布鲁氏菌、念珠菌、弯曲菌、球孢子菌、隐球菌、皮肤真菌、肠杆菌(克雷伯菌、沙门氏菌、沙雷菌、耶尔森菌)、丹毒丝菌、螺杆菌、军团菌、钩端螺旋体、李斯特菌、支原体、奈瑟氏球菌(例如不动杆菌、淋病奈瑟球菌和脑膜炎奈瑟球菌)、巴斯德菌感染(例如放线杆菌、嗜血杆菌、巴斯德菌)、假单胞杆菌、立克次氏体、衣原体、梅毒、葡萄球菌。所述细菌或真菌家族可引起下列疾病或症状,包括但不限于:菌血症、心内膜炎、眼部感染(结膜炎、结核病、葡萄膜炎)、牙龈炎、机会感染(例如AIDS相关感染)、甲沟炎、假肢相关感染、莱特尔氏病、呼吸道感染如百日咳或脓胸、败血症、莱姆病、猫抓病、痢疾、副伤寒发热、食物中毒、伤寒、肺炎、淋病、脑膜炎、衣原体病、梅毒、白喉、麻风、副结核、结核病、汉森氏病、肺病类结核、淋巴腺炎、皮肤病、弥散性疾病、狼疮、肉毒杆菌中毒、坏疽、破伤风、脓疱疮、风湿热、猩红热、性传播疾病、皮肤病(例如蜂窝组织炎、皮肤菌病)、毒血症、尿道感染和伤口感染。
此外,本发明的方法、经修饰细菌、组合物或疫苗组合物可用于治疗或预防寄生虫剂引起的疾病。可通过发明的复合物处理的寄生虫病包括但不限于下列家族:阿米巴病、巴贝西虫病、球虫病、隐孢子虫病、双核阿米巴病、媾疫、外寄生虫病、贾第鞭毛虫病、蠕虫病、利什曼病、泰勒虫病、弓形体病、锥虫病和毛滴虫病。
根据所公开的方法,本发明所用的方法、经修饰细菌、组合物或疫苗组合物可以经,例如肌肉内(i.m.)、静脉内(i.v.)、皮下(s.c.)或肺内途径施用。其他合适的施用途径包括但不限于气管内、经皮肤、眼内、鼻内、吸入、腔内、管内(例如进入胰脏)和薄壁组织内(即进入任何组织)施用。经皮肤递送包括但不限于皮内(例如进入真皮或表皮)、经皮肤(例如通过皮肤)和经粘膜(即进入或经皮肤或粘膜组织)施用。腔内施用包括但不限于施用到口、阴道、直肠、鼻、腹膜或肠腔以及鞘内(即进入椎管)、室内(即进入脑室或心室)、心房内(即进入心房)和蛛网膜下(即进入脑蛛网膜下隙)施用。
本发明的组合物进一步包括适当载体。该组合物包括治疗有效量的神经酰胺类糖脂/分枝杆菌复合物和药学上可接受的载体或赋形剂。所述载体包括但不限于盐水、缓冲盐水、右旋糖、水、甘油、乙醇和其组合。制剂必须适合施用模式。
药物组合物
术语“药学上可接受的”是指在慎重医疗判断范围内适合接触人和动物的组织而没有过多毒性或其它并发症的组合物,该组合物具有合理的收益/风险比例。在一些实施方式中,本发明的组合物和疫苗是药学上可接受的。
本发明的神经酰胺类糖脂/细菌细胞复合物能与一种或多种药学上可接受的赋形剂、载体或稀释剂联合在药物组合物,例如疫苗组合物中施用。应当理解当施用给人患者时,本发明药物组合物的总的单独或每日用法由主治医师在慎重医疗判断范围内决定。任何特定病人的特定治疗有效剂量水平取决于多种因素,包括要达到的反应类型和程度;其它试剂(若使用)的特定组成;病人的年龄、体重、总体健康状况、性别和饮食;组合物的施用时间、施用途径和排出速度;治疗持续时间;联用或碰巧与特定组合物一起使用的药物(如化学治疗剂);医学领域熟知的类似因素。本领域已知的适当制剂可参见Remington’sPharmaceutical Sciences(《雷明顿药物科学》)(最新版),Mack Publishing Company,Easton,PA。
用符合良好医学实践的方式配制和给予用于特定预防或治疗性处理的组合物,考虑病人个体的临床情况(特别是化合物单独预防或治疗的副作用)、化合物递送位置、施用方法、施用方案和从业者已知的其它因素。因此,本文所用本发明复合物的“有效量”由这些考虑因素决定。
本发明的组合物如疫苗组合物施用给病人的适当剂量由临床医生决定。但作为指南,本发明组合物的适当量可以在每剂101到1012CFU间,例如101、102、103、104、105、106、107、108、109、1010、1011或1012CFU,悬于0.05到0.1ml免疫惰性载体,例如药物载体。在一种实施方式中,本文所述诱导免疫足以预防或治疗,即治愈、改善、减轻疾病严重性或者预防或减少疾病的本发明疫苗的有效量是约103到约107菌落形成单位(CFU)/kg体重。本发明的组合物可作为单一剂量或多剂量施用。本发明的制剂可以剂型使用,如口服施用的胶囊、液体溶液、悬浮液或酏剂,或用于溶液或悬浮液制剂供例如肠胃外、鼻内或局部施用的无菌液体。
本发明的组合物可经口、静脉内、直肠、肠胃外、脑池内、皮内、阴道内、腹腔内、局部(通过粉末、油膏、凝胶,乳油、滴剂或透皮贴片)、颊面施用,或作为口腔或鼻喷剂。如本文所用,术语“肠胃外”所指的施用模式包括静脉内、肌肉内、腹膜内、胸骨内、皮下和关节内注射和输液。
可根据已知方法配制本发明的组合物,例如疫苗组合物。适当制备方法的描述参见例如Remington’s Pharmaceutical Sciences(《雷明顿药物科学》),第16版,A.Osol编著,Mack Publishing Co.,Easton,PA(1980)和Remington’s Pharmaceutical Sciences(《雷明顿药物科学》),第19版,A.R.Gennaro编著,Mack Publishing Co.,Easton,PA(1995),它们的内容通过引用纳入本文。尽管所述组合物可作为水溶液施用,它也可制成乳液、凝胶、溶液、悬浮液、冻干形式或本领域已知的其它形式。另外,所述组合物包含药学上可接受的添加剂,包括例如稀释剂、粘合剂、稳定剂和保存剂。一旦制成,本发明的组合物可直接施用给对象。待治疗的对象可以是动物;具体地,可治疗人对象。
在某些实施方式中,组合物中纳入的宿主细胞例如细菌细胞具有表达本发明多肽如免疫原性多肽的载体。本发明的组合物中所述发明多肽的浓度可以变化较大,即重量比从低于约0.1%,通常是或至少约2%到多达20%到50%或更大,可根据所选的特定施用模式,主要通过流体量、粘性等进行选择。
本发明的组合物通常作为水溶液或用于重建的冻干制剂按单位保存或保存在多剂量容器中。直接结合糖脂佐剂的分枝杆菌组合物可冻干,当组合物再水合和悬浮用于注射时佐剂活性完全恢复。作为一个冻干制剂的例子,10ml小瓶中装入5ml无菌过滤的1%(w/v)水溶液,冻干所得混合物。通过用水例如抑菌注射用水重建冻干的组合物来制备输液。
本发明的组合物用于施用给任何动物,例如哺乳动物(如猿、牛、马、猪、野猪、绵羊、啮齿动物、山羊、狗、猫、鸡、猴、兔、雪貂、鲸鱼和海豚),和人。
显示与人疾病紧密相关的动物模型包括但不限于豚鼠和非人的灵长类动物(参见例如Balasubramanian V等,Immunobiology 191(4-5):395-401(1994)和Barclay WR等,Infect.Immun.2(5):574-582(1970),都通过引用纳入本文)。
本发明也提供药物包或试剂盒,包括装有一种或多种本发明的药物组合物成分的一个或多个容器。可与所述容器一起提供通告,以控制药物或生物产品生产、使用或销售的政府机构规定的形式表明所述机构批准生产、使用或销售用于人施用。另外,本发明的组合物可与其它治疗性组合物联合使用。
所述疫苗的适当制品包括但不限于可注射的液体溶液或悬浮液;也可制备适合在注射前溶于或悬于液体的固体形式。所述制品也可乳化,或所述多肽包封在脂质体中。活性免疫原性成分通常与药学上可接受且与所述活性成分相容的赋形剂混合。合适的赋形剂是例如水、盐水、右旋糖、甘油等和其组合。另外,如果需要,所述疫苗制品也可包括少量辅助物质,如润湿或乳化剂、pH缓冲剂和/或提高疫苗有效性的佐剂。
含神经酰胺类糖脂/细菌细胞复合物的本发明组合物可进一步包括另外的佐剂。有效佐剂的示例如上所述且可包括但不限于:氢氧化铝、N-乙酰-胞壁酰-L-苏氨酰-D-异谷酰胺(thr-MDP)、N-乙酰-去甲-胞壁酰-L-丙氨酰-D-异谷酰胺、N-乙酰胞壁酰-L-丙氨酰-D-异谷酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷酰氧基)-乙胺、GM-CSF、QS-21(在研药物,Progenics Pharmaceuticals,Inc.)、DETOX(在研药物,RibiPharmaceuticals)、BCG和CpG丰富的寡核苷酸。
含神经酰胺类糖脂/细菌细胞复合物的本发明组合物可进一步包括Toll样受体(TLR)激动剂作为另外的佐剂。有效的TLR激动剂佐剂的示例包括但不限于:N-乙酰胞壁酰-L-丙氨酸-D-异谷酰胺(MDP)、脂多糖(LPS)、基因修饰和/或降解的LPS、明矾、葡聚糖、集落刺激因子(例如EPO、GM-CSF、G-CSF、M-CSF、聚乙二醇化G-CSF、SCF、IL-3、IL6、PIXY 321)、干扰素(例如γ-干扰素、α-干扰素)、白介素(例如IL-2、IL-7、IL-12、IL-15、IL-18)、皂苷(例如QS21)、单磷酰脂A(MPL)、3-脱-O-酰化单磷酰脂A(3D-MPL)、未甲基化CpG序列、1-甲基色氨酸、精氨酸酶抑制剂、环磷酰胺、阻断免疫抑制功能的抗体(例如抗CTLA4抗体)、脂类(如棕榈酸残基)、三棕榈酰-S-甘油酰-半胱氨酸赖氨酰-丝氨酸(P3 CSS)和弗氏佐剂。其他的佐剂示例包括化合物如艾沙托立宾(isatoribin)及其衍生物(Anadys Pharmaceuticals)或咪唑喹啉胺如咪喹莫特和瑞喹莫德(Dockrell & Kinghom,J.Antimicrob.Chemother.,48:751-755(2001)和Hemmi等,Nat.Immunol.,3:196-200(2002))、鸟嘌呤核糖核苷如C8-取代或N7,C-8-二取代鸟嘌呤核糖核苷(Lee等,Proc.Natl.Acad.Sci.USA,100:6646-6651(2003))和专利公开号JP-2005-089,334;WO99/32122;WO98/01448 WO05/092893和WO05/092892所述化合物、以及Lee等,Proc Natl Acad Sci USA,103(6):1828-1833(2006)中所述TLR-7激动剂SM360320(9-苯甲基-8-羟基-2-(2-甲氧基-乙氧基)腺嘌呤)。
除了艾沙托立宾之外,其他TLR激动剂佐剂包括9-苯甲基-8-羟基-2-(2-甲氧乙氧基)腺嘌呤(SM360320)、Actilon.TM.(Coley Pharmaceutical Group,Inc.)和Sumitmo制药有限公司的下列化合物:
可与本发明组合物联合使用的其它佐剂的描述见PCT公开号WO 2005/000348、美国专利公开号2007/0292418和美国专利公开号2007/0287664。
需要时,所述组合物也可包含少量润湿或乳化剂、或pH缓冲剂。所述组合物可以是液体溶液、悬浮液、乳液、片剂、药丸、胶囊、缓释制剂或粉末。口服制剂可包括标准载体如药用等级的甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、纤维素、碳酸镁等。
本发明的组合物可进一步包括其他调节免疫应答的化合物,例如细胞因子。术语“细胞因子”是指多肽,包括但不限于白介素(例如IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、IL-13、IL-14、IL-15、IL-16、IL-17和IL-18)、α干扰素(例如IFN-α)、β干扰素(IFN-β)、γ干扰素(例如IFN-γ)、集落刺激因子(CSF,例如CSF-1和CSF-2和CSF-3)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、转化生长因子(TGF,例如TGFα和TGFβ)和胰岛素样生长因子(IGF,例如IGF-I和IGF-II)。
除非另有说明,本发明的实践使用本领域技术内细胞生物学、细胞培养、分子生物学、转基因生物学、微生物学、重组DNA和免疫学的常规技术。所述技术在文献中详细阐明。参见例如Molecular Cloning A Laboratory Manual(分子克隆实验手册),第2版,Sambrook等编著,Cold Spring Harbor Laboratory Press:(1989);Molecular Cloning:ALaboratory Manual(分子克隆手册),Sambrook等编著,Cold Springs HarborLaboratory,New York(1992);DNA Cloning(DNA克隆),D.N.Glover编著,卷I和II(1985);Oligonucleotide Synthesis(寡核苷酸合成),M.J.Gait编著,(1984);Mullis等,美国专利号4,683,195;Nucleic Acid Hybridization(核酸杂交),B.D.Hames & S.J.Higgins编著(1984);Transcription And Translation(转录与翻译),B.D.Hames & S.J.Higgins编著(1984);Culture Of Animal Cells(动物细胞培养),R.I.Freshney,Alan R.Liss,Inc.,(1987);Immobilized Cells And Enzymes(固定化细胞和酶),IRL Press,(1986);B.Perbal,A Practical Guide To Molecular Cloning(分子克隆实践指南)(1984);thetreatise,Methods In Enzymology(酶学方法专著),Academic Press,Inc.,N.Y.;GeneTransfer Vectors For Mammalian Cells(用于哺乳动物的基因转移载体),J.H.Miller和M.P.Calos编著,Cold Spring Harbor Laboratory(1987);Methods In Enzymology(酶学方法),卷154和155(Wu等编著);Immunochemical Methods In Cell And MolecularBiology(细胞和分子生物学免疫化学方法),Mayer和Walker编著,Academic Press,London(1987);Handbook Of Experimental Immunology(实验免疫学手册),卷I-IV,D.M.Weir和C.C.Blackwell编著(1986);Manipulating the Mouse Embryo(小鼠胚胎操作),ColdSpring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,(1986);以及Ausubel等,Current Protocols in Molecular Biology(最新分子生物学实验手册),John Wiley和Sons,Baltimore,Maryland(1989)。
抗体工程的一般原理列于Antibody Engineering(抗体工程)第2版,C.A.K.Borrebaeck编著,Oxford Univ.Press(1995)。蛋白质工程的一般原理列于ProteinEngineering,A Practical Approach(蛋白质工程实践方法),Rickwood,D.等编著,IRLPress at Oxford Univ.Press,Oxford,Eng.(1995)。抗体和抗体-半抗原结合的一般原理列于:Nisonoff,A.,Molecular Immunology(分子免疫学)第2版,Sinauer Associates,Sunderland,MA(1984)和Steward,M.W.,Antibodies,Their Structure and Function(抗体,结构和功能),Chapman and Hall,New York,NY(1984)。另外,本领域已知的未具体描述的免疫学标准方法一般遵循Current Protocols in Immunology(最新免疫学实验手册),John Wiley & Sons,New York;Stites等编著,Basic and Clinical-Immunology(基础与临床免疫学)(第8版),Appleton & Lange,Norwalk,CT(1994)以及Mishell和Shiigi编著,Selected Methods in Cellular Immunology(细胞免疫学精选方法),W.H.Freeman andCo.,New York(1980)。
描述免疫学一般原理的标准参考著作包括Current Protocols in Immunology(最新免疫学实验手册),John Wiley & Sons,New York;Klein,J.,Immunology:TheScience of Self-Nonself Discrimination(免疫学:区分本物-异物的科学),John Wiley& Sons,New York(1982);Kennett,R.等编著,Monoclonal Antibodies,Hybridoma:A NewDimension in Biological Analyses(单克隆抗体,杂交瘤:生物分析的新维度),PlenumPress,New York(1980);Campbell,A.,“Monoclonal Antibody Technology(单克隆抗体技术)”发表于Burden,R.等编著的Laboratory Techniques in Biochemistry andMolecular Biology(生物化学与分子生物学实验技术),卷13,Elsevere,Amsterdam(1984),Kuby Immunnology第4版,Richard A.Goldsby,Thomas J.Kindt和BarbaraA.Osborne编著,H.Freemand & Co.(2000);Roitt,I.,Brostoff,J.和Male D.,Immunology(免疫学)第6版London:Mosby(2001);Abbas A.,Abul,A.和Lichtman,A.,Cellular andMolecular Immunology(细胞与分子免疫学)第5版,Elsevier Health Sciences Division(2005);Kontermann和Dubel,Antibody Engineering(抗体工程),Springer Verlan(2001);Sambrook和Russell,Molecular Cloning:A Laboratory Manual(分子克隆实验手册),Cold Spring Harbor Press(2001);Lewin,Genes(基因)第8版,Prentice Hall(2003);Harlow和Lane,Antibodies:A Laboratory Manual(抗体实验手册),Cold SpringHarbor Press(1988);Dieffenbach和Dveksler,PCR Primer(PCR引物)Cold SpringHarbor Press(2003)。
上述所有参考文献以及本文引用的所有参考文献,全部通过引用纳入本文。
实施例
材料和方法
小鼠。从Jackson Laboratories(Bar Harbor,Maine)获得6到8周龄的雌性野生型C57BL/6和BALB/c小鼠。CD1d-/-小鼠由M.Exley和S.Balk(Beth Israel-Deaconess MedicalCenter,Harvard Medical School,Boston)提供。V14i NKT细胞缺陷型Jα18-/-小鼠由M.Taniguchi和T.Nakayama(Chiba University,Chiba,Japan)赠送。所有小鼠在无特定病原体条件下在生物安全水平3的设施中饲养并按机构批准的操作方案使用。
细胞和细胞系。基于Lutz MB等,J Immunol Methods 223:77-92(1999)公开的操作方案制备来自C57BL/6和BALB/c小鼠的骨髓源树突细胞(BMDC)。简要地,自股骨和胫骨获得髓细胞,以2x106个细胞/板在细菌培养皿中平板培养。如Lutz等所述,细胞在GM-CSF培养基中孵育10天,之后收获非粘附树突细胞。Vα14i NKT杂交瘤DN3A4-1.2由M.Kronenberg(LaJolla Institute for Allergy and Immunology,La Jolla,CA)提供。在37℃、5%CO2的加湿培养箱中,用添加10%热灭活FCS(Gemini Biological Products,Calabasas,CA)、10mMHEPES、2mM L-谷氨酰胺、0.1mM非必需氨基酸、55μM 2-巯基乙醇、100单位/ml青霉素和100μg/ml链霉素(GIBCO)的RPMI-1640培养基(GIBCO)培养细胞。通过用注射器柱塞捣碎并经过70μM细胞筛网来制备脾细胞。用红血球细胞裂解缓冲液(SIGMA)进行红血球裂解。用下列步骤分离肝单核细胞。肝用0.014 Wunsch单位/ml释放酶(Roche)处理30分钟。匀浆经过70μM细胞筛网,用45%,67.5%Percoll梯度从团块中分离单核细胞。
糖脂。根据公开的方法(Yu,K.O.A.等,Proc Natl.Acad.Sci.USA 102:3383(2005))合成αGalCer,α-C-GalCer从NIH Tetramer Core Facility(www.niaid.nih.gov/reposit/tetramer/genguide.html)获得。糖脂以-20℃干燥保存。重建贮存物等分样品,在DMSO中重建为100μM用于体外操作或者在含0.5%吐温-20的PBS中重建为500μM用于体内研究。
细菌菌株。牛分枝杆菌BCG(Danish)从丹麦的Statens Serum Institute获得,重组BCG-Ova(巴斯德菌株)由Subash Sad,National Research Council-Institute forBiological Sciences,Ottawa,Ontario,Canada(参见Dudani R等,J.Immunol.168(11):5737-45(2002))友好赠送。这些菌株生长于无蛋白质的Middlebrook 7H9培养基(Difco)中,培养基有0.05%泰洛沙泊和20μg/mlαGalCer或α-C-GalCer。结核分枝杆菌强毒株H37Rv(从Trudeau Institute获得)在添加油酸-白蛋白-右旋糖复合物(Difco)的Middlebrook7H9培养基中生长。
14C标记的αGalCer纳入活BCG。牛分枝杆菌BCG生长于无蛋白质、含0.05%泰洛沙泊和20μg/ml 14C标记αGalCer的Middlebrook 7H9培养基至OD为0.5-1.0。彻底清洗细菌并干燥,通过β-闪烁计数评估脂的纳入。所述干燥的细菌用于TLC试验的细胞壁脂提取。
纳入BCG的GalCer和α-C-GalCer(分别为αGalCer-BCG和α-C-GalCer-BCG)的体外活性。对于NKT杂交瘤试验,用BCG、αGalCer-BCG或α-C-GalCer-BCG以10∶1的MOI感染BMDC,加入Vα14i NKT杂交瘤细胞(50,000个细胞)12小时。通过ELISA测定上清液IL-2。对于脾细胞或肝细胞刺激,大块脾细胞以500,000个细胞每孔或肝单核细胞以400,000个细胞每孔在96孔平底组织培养板中,与被BCG、αGalCer-BCG或α-C-GalCer-BCG感染的C57BL/6 BMDC一起培养。对于脾细胞激活,使用的已感染BMDC细胞数从25,000个细胞/孔开始稀释4倍直到3,125个细胞/孔。肝细胞用每孔105个已感染BMDC刺激。在37℃48小时后,取出150μl上清液用于细胞因子测量。通过ELISA测量上清液的IL-4 and IFNγ水平,使用捕捉和生物素化检测抗体对(BD PharMingen)和链霉亲和素-辣根过氧化物酶(Zymed)与TMB-Turbo底物(Pierce)。
人NKT细胞克隆激活。人单核细胞源树突细胞以5∶1的MOI感染,用NKT细胞克隆(50,000个细胞)培养24小时,测定上清液的IFNγ和IL-13。
纳入BCG的αGalCer的体内活性。小鼠腹膜内(i.p.)注射0.2ml PBS中的αGalCer-BCG,PBS加有0.05%泰洛沙泊或仅为载剂。收集血清并通过如Yu KO等,Proc Natl AcadSci U S A 102:3383-3388(2005)所述的捕捉ELISA测试IL-4、IL-12p70和IFNγ,。
腹膜内注射αGalCer-BCG后的体内树突细胞成熟试验。C57BL/6小鼠或CD1d-/-小鼠i.p.注射αGalCer-BCG,在20小时和40小时后收获脾细胞和肝单核细胞。用CD11c、CD80、CD86、MHC-II(IA/IE)、CD70、41BB和OX40的荧光染料标记抗体来染色细胞。在LSR II流式细胞仪上分析样品。
T细胞IFN-γELISPOT试验。在用OVA 257-264肽(SIINFEKL(SEQ ID NO:1))、TB10.3/4MHC-I(H-2Kd)限制性肽(GYAGTLQSL(SEQ ID NO:2))或TB10.3/4MHC-I(H-2Kb)限制性肽(QIMYNPAM(SEQ ID NO:3))体外刺激后,使用ELISPOT检测来自感染小鼠的单独CD8+T细胞的IFNγ分泌。ELISPOT板(Millipore)在室温(RT)涂覆IFNγ捕捉抗体(BDBiosciences)16小时。在室温下用1%BSA冲洗平板并封闭2小时。经RBC裂解缓冲液(Sigma-Aldrich)处理后,用Dynal小鼠T细胞阴性分离试剂盒(Invitrogen)分离T细胞。分离的T细胞与来自未处理小鼠的脾细胞和肽(5μg/ml)在37℃培养24小时。取出细胞后,平板用PBS冲洗,随后用含0.05%吐温-20的PBS(PBST)冲洗。在37℃加入生物素化抗IFNγ检测抗体(BDBiosciences),2小时后用PBST清洗。平板中加入链霉亲和素-碱性磷酸酶(Sigma-Aldrich)(37℃),1小时后冲洗并加入BCIP/NBT底物(Sigma-Aldrich)。通过用水冲洗孔来终止反应,用ELISPOT读数器(Autoimmun Diagnostika)计数点。也评估了对结核分枝杆菌Ag85B氨基酸240到254的肽-25(FQDAYNAAGGHNAVF(SEQ ID NO:4))(5μg/ml)的CD4+T细胞反应。
体内抗原呈递测试。从Rag1缺陷型OT-1 TCR-转基因小鼠(Taconic/NationalInstitute of Allergy and Infectious Diseases[NIAID])中分离供体脾细胞。RBC裂解后,用10μM羧基荧光素琥珀酰亚胺酯(CFSE)在加有0.1%BSA的PBS中以5×107个细胞/ml浓度室温标记细胞5分钟。用加有0.1%BSA的PBS冲洗细胞1次,用PBS冲洗2次,随后注射入B6.PL(Thy1.1+)受体小鼠(The Jackson Laboratory)。小鼠经侧尾静脉接受5×106或1×107个标记细胞,随后皮下接种5×106CFU的BCG-OVA/αGalCer、BCG-OVA或BCG。5-7天后收获脾细胞,用抗Thy1.2、抗CD8和抗B220抗体(BD Biosciences)染色,通过流式细胞仪分析。通过在转移群(Thy1.2+)上设门和测量该群体中未分裂(CFSE)细胞百分比来量化扩增。
免疫接种和刺激研究。所有动物研究均经阿尔伯特爱因斯坦医学院的动物管理及使用委员会(institutional animal care and use committees of the AlbertEinstein College of Medicine)批准。单用BCG或用与一种糖脂生长的BCG来皮内接种C57BL/6小鼠(5x106CFU/小鼠)。2个月后进行产气性刺激测试,使用Glas-Col吸入室递送50-100CFU/动物的结核分枝杆菌强毒株H37Rv。在刺激后3和6周杀死小鼠。在无菌条件下取出各小鼠的肺和脾,使用Seward Stomacher 80混合器(Tekmar),在加有0.05%吐温-80的5ml生理盐水中分别匀化。匀浆被连续稀释并在有潮霉素(50μg/ml)的Middlebrook 7H10琼脂上平板培养。使用标准石蜡固定、切片和H&E染色来加工肺组织用于组织病理学。
实施例1
αGalCer稳定纳入活分枝杆菌细胞壁
本实施例表明示范性神经酰胺类糖脂αGalCer稳定纳入分枝杆菌的细胞壁。分枝杆菌细胞牛分枝杆菌BCG是活的减毒细菌疫苗,通过APC主动摄入并加工用于抗原呈递。测试了(1)聚山梨酸酯吐温-80(0.05%)和(2)泰洛沙泊(0.05%)中14C标记αGalCer的溶解性。14C标记αGalCer在泰洛沙泊中的溶解性大于吐温-80中的溶解性(图1A)。在14C标记αGalCer与泰洛沙泊(0.05%)的存在下,BCG细胞在无蛋白质Middlebrook 7H9培养基中生长。随后,用PBS-泰洛沙泊(0.05%)彻底冲洗细胞,闪烁计数显示放射性标记的αGalCer与BCG细胞壁结合(图1B)。
14C标记αGalCer存在下生长的BCG中提取细胞壁脂质,进行薄层色谱。来自脂提取物的放射性标记脂的迁移率与游离的14C标记αGalCer类似,显示该神经酰胺类糖脂与细胞壁稳定结合且化学上完整(图1C)。TLC带的定量显示约21.4%的放射性标记神经酰胺类糖脂纳入细菌细胞壁。因此,神经酰胺类糖脂αGalCer稳定纳入分枝杆菌细胞壁,从而能同时施用糖脂佐剂和BCG疫苗。
实施例2
与BCG细胞壁结合的αGalCer或α-C-GalCer在小鼠和人试验中具有体外生物学活性
本实施例表明纳入分枝杆菌细胞壁的神经酰胺类糖脂(神经酰胺类糖脂/分枝杆菌复合物)具有生物学活性。已知αGalCer及其类似物在体外激活NKT细胞。测试此生物学活性以确定纳入分枝杆菌细胞壁的神经酰胺类糖脂是否保持体外激活NKT细胞的能力。将感染了α-GalCer-BCG或α-C-GalCer-BCG的小鼠BMDC与NKT细胞杂交瘤孵育。方便地测得上清液中的IL-2以剂量依赖性方式表明与BCG细胞壁结合的各神经酰胺类糖脂在体外很有效激活NKT细胞(图2A)。所有图2的值显示为一式三份培养的均值。
如图2B和图2C所示,用α-GalCer-BCG感染的BMDC激活小鼠脾细胞诱导了IFNγ和IL-4生成。用αGalCer-BCG感染的BMDC刺激肝单核细胞诱导了IFNγ和IL-4(分别为图2G和2H),而α-C-GalCer-BCG感染的BMDC诱导肝单核细胞中的IFNγ,但没有可测的IL-4(图2G和2H)。还在人系统中,通过用感染的单核细胞源人树突细胞刺激NKT细胞克隆,测试α-GalCer-BCG或α-C-GalCer-BCG的活性。α-GalCer-BCG复合物以剂量依赖性方式强诱导IFNγ、TNFα和IL-13,表明将神经酰胺类糖脂佐剂纳入免疫细胞细胞壁的策略能应用于人(分别为图2D、2E和2F)。
αGalCer-BCG感染的人单核细胞源树突细胞激活人NKT细胞的能力显示该疫苗策略能应用于人抗结核病的免疫。
实施例3
αGalCer-BCG在体内诱导可检测的细胞因子反应
本实施例表明神经酰胺类糖脂/分枝杆菌复合物保持体内活性。给小鼠施用αGalCer诱导血清细胞因子反应。测试结合神经酰胺类糖脂的BCG细胞的体内活性。αGalCer-BCG细胞(5x106)腹膜内注射到C57BL/6小鼠中,在不同时间点检测血清的细胞因子。αGalCer/BCG复合物诱导显著血清水平的IFNγ、IL-12和IL-4(图3A、3B和3C),其动力学与游离的糖脂相似。因此,显示αGalCer/BCG复合物具有体内活性。在注射αGalCer/BCG的CD1dKO或Jα18 KO小鼠(两者都是NKT缺陷型)中没有检测到血清细胞因子(数据未显示),表明αGalCer/BCG对细胞因子的诱导需通过与CD1d结合且涉及NKT细胞激活。
实施例4
α-GalCer在体内主动诱导树突细胞上的共刺激分子
本实施例表明神经酰胺类糖脂/分枝杆菌复合物保持诱导CD11c+树突细胞(DCs)上共刺激分子表达的能力。已知αGalCer和α-C-GalCer单独能诱导CD11c+树突细胞上共刺激分子的表达。C57BL/6小鼠i.p注射αGalCer-BCG或α-C-GalCer-BCG。测试脾和肝中CD11c+DC上MHC-II和共刺激分子的表达水平。相对单独的BCG,神经酰胺类糖脂/分枝杆菌复合物诱导脾和肝中共刺激分子CD80、CD86、CD70和4-1BB的上调(图4A和4B)。图4C和4D显示MHC-II和共刺激分子的倍数增加。结合的α-C-GalCer佐剂在肝中诱导更显著的CD86、CD70和41BB分子上调(图4D)。MHC II上调与BCG在脾或肝中所诱导的类似。通过测试CD1d遗传缺失小鼠,也证实这些效果取决于不变NKT细胞激活(数据未显示)。
这些结果显示神经酰胺类糖脂纳入BCG细胞壁后,其生物学活性仍然完整。具体地,αGalCer-BCG和α-C-GalCer-BCG诱导DC完全成熟,这通过DC上共刺激分子,包括CD80和CD86以及MHC II类分子的表达增加得以确定。和给予神经酰胺类糖脂复合的BCG相比,单独给予BCG疫苗的小鼠中共成熟和刺激标记的上调有延迟,这可能对改善针对抗分枝杆菌抗原的T细胞反应有影响。因此,和单独给予BCG细胞相比,注射结合神经酰胺类糖脂的BCG细胞的小鼠具有改善的疫苗效果。
实施例5
通过同时施用神经酰胺类糖脂佐剂增强抗原特异性CD8T细胞激发
本实施例表明在细胞壁内稳定纳入了αGalCer和α-C-GalCer的分枝杆菌对BCG表达分枝杆菌抗原的CD8T细胞反应改善。用与BCG-OVA复合的α-GalCer或与BCG-OVA复合的α-C-GalCer接种C57BL/6小鼠,通过IFNγELISPOT分析脾中SIINFEKL(SEQ ID NO:1)OVA肽反应性CD8T细胞。和用BCG-OVA单独接种的小鼠相比,在施用BCG-OVA疫苗复合糖脂的小鼠中观察到3周和2月(分别为图5A和5B)的SIINFEKL-特异性CD8T细胞激发有显著加强。通过IFNγELISPOT分析接种的BALB/c小鼠中与BCG复合的αGalCer增强对内源性分枝杆菌抗原TB10.4 MHC-I表位GYAGTLQSL(SEQ ID NO:2)激发CD8T细胞的佐剂效果。通过羧基荧光素琥珀酰亚胺酯(CFSE)稀释评估感染后5-7天的CD8+T细胞激活。与未接种或仅接种BCG的小鼠相比,施用αGalCer-复合BCG疫苗的小鼠显示了GYAGTLQSL(SEQ ID NO:2)特异性CD8T细胞增加(图5C)。这些结果证明通过在神经酰胺类糖脂和BCG-OVA免疫中激活NKT细胞增强了分枝杆菌抗原特异性CD8T细胞反应。
采用来自SIINFEKL/H-2Kb-反应性TCR转基因OT-I小鼠的过继转移CFSE标记初始T细胞来显示在接种情况下与SIINFEKL反应的MHC I类限制性CD8+T细胞的激发。Hinchey J,等.,J Clin Invest 117:2279-2288(2007)。给Thy1.1+B6.PL小鼠注射来自OT-I小鼠的CFSE-标记Thy1.2+脾细胞,接着单用BCG-OVA、或用αGalCer/BCG-OVA复合物或α-C-GalCer/BCG-OVA复合物接种。在注射后5-7天通过转移群中CFSE的稀释来评估CD8+T细胞激活和增殖(图5D)。在感染BCG-OVA小鼠中观察到转移OT-I T细胞的部分增殖(表示为未分裂细胞的百分比)。相反,αGalCer/BCG-OVA或α-C-GalCer/BCG-OVA感染引起转移T细胞增殖的显著增加(图5E)。
实施例6
细胞壁结合激活NKT细胞的神经酰胺类糖脂增强牛分枝杆菌BCG疫苗诱导的保护性免疫
使用免疫和刺激研究,本实施例表明当小鼠用αGalCer-BCG或α-C-GalCer-BCG接种时,T细胞激发增强也改善了BCG疫苗的保护性功效。
用低剂量(50-100CFU)结核分枝杆菌强毒株H37Rv气雾剂感染来刺激幼稚小鼠(盐水)或用5×106个活BCG(Danish)、αGalCer-BCG或α-C-GalCer-BCG经皮内途径免疫2个月的C57BL/6小鼠。在幼稚小鼠中,刺激后3和6周检测到肺中有显著生长且分散到脾。然而,与幼稚对照相比,接种BCG(Danish)、αGalCer-BCG或α-C-GalCer-BCG显著降低了气雾剂刺激小鼠的肺和脾中结核分支杆菌细菌载量(图6A和6B)。在3周时间点,α-C-GalCer-BCG接种在肺和脾中的保护明显优于BCG。刺激后6周肺和脾中CFU的降低表明,α-C-GalCer-BCG免疫对结核分支杆菌感染的控制比BCG免疫更加长效。C-糖苷优于αGalCer,因为它改善肺和脾中BCG的保护性功效,这可能是由于该类似物诱导显著的Th1细胞因子反应。在6周时间点,αGalCer-BCG和α-C-GalCer-BCG免疫在肺和脾中引起的保护明显大于BCG免疫。
组织病理学检测BCG、αGalCer-BCG或α-C-GalCer-BCG免疫小鼠的肺显示相对温和的炎症,有小和紧密、淋巴细胞丰富的肉芽肿,而幼稚小鼠有大量、组织不良的、肉芽肿病变(图7A、7B、7C和7D)。在接种αGalCer/BCG的小鼠中主要观察到淋巴细胞浸润,而在BCG接种小鼠中发现混合的组织细胞和淋巴细胞浸润。
因此,用结合αGalCer或α-C-GalCer的BCG进行单次皮内免疫,导致抗结核分枝杆菌菌株H37Rv气雾剂刺激的保护性免疫显著提高。
实施例7
结合的神经酰胺类糖脂的佐剂活性需要CD1d且该佐剂活性为NKT细胞激活特异性。
本实施例表明结合的神经酰胺类糖脂提供的佐剂活性是由于NKT细胞的特异性激活。使用CD1d敲除(KO)小鼠或Jα18 KO小鼠,2种缺失由糖脂激活的不变NKT细胞的小鼠进行免疫和刺激实验。BCG免疫和糖脂复合的BCG免疫的CD1d KO小鼠(图6C)和Jα18 KO小鼠(图6D)间没有观察到任何保护上的区别。因此,存在不变NKT细胞对纳入分枝杆菌细胞壁的神经酰胺类糖脂提高给予野生型小鼠的保护很重要。
实施例8
神经酰胺类糖脂佐剂引起的抗原特异性CD4T细胞激发
本实施例表明αGalCer-BCG和α-C-GalCer-BCG不提高CD4T细胞对Ag85B分枝杆菌抗原p25的反应。用αGalCer-BCG或α-C-GalCer-BCG免疫C57BL/6小鼠,通过IFNγELISPOT分析脾中CD4T细胞对分枝杆菌抗原-85B P25肽的反应。与BCG单独免疫的小鼠相比,接受糖脂复合的BCG疫苗的小鼠中观察到的这些CD4细胞激发没有差异(图8A、8B和8C)。通过CFSE稀释评估感染后7天的CD4+T细胞激活。接种BCG、αGalCer/BCG或α-C-GalCer/BCG 2个月后,C57BL/6小鼠肺中的淋巴细胞百分比显示,用αGalCer/BCG或α-C-GalCer/BCG2的未见明显提高(图8D)。
在接种情况下,观察到对抗原85B p25反应的MHC II类限制性CD4T细胞激发。使用来自p25-反应性TCR转基因小鼠的过继转移CFSE标记幼稚T细胞。Wolf AJ等,J.Immunol.179(4):2509-19(2007)。给Thy1.1+B6.PL小鼠注射来自p25小鼠的CFSE标记Thy1.2+脾细胞,之后单用BCG、或用αGalCer-BCG或α-C-GalCer-BCG接种。感染后7天,通过在转移群中稀释CFSE来评估CD4+T细胞激活和增殖(图8E)。在感染BCG、αGalCer/BCG或α-C-GalCer/BCG小鼠中没有观察到显著的转移p25T细胞增殖(图8F)。单用BCG或用BCG与神经酰胺类糖脂佐剂免疫的小鼠间p25 CD4T细胞的激活和增殖类似。
因此,糖脂佐剂看来没有影响CD4T细胞反应。
实施例9
施用纳入BCG的神经酰胺类糖脂比分别施用或单用BCG增强了抗原特异性CD8T细胞激发
本实施例表明,与分别施用BCG-OVA+αGalCer(在不同位置分别注射)、混合施用BCG-OVA+αGalCer(临注射前一起混合在相同注射器中)或单用BCG-OVA相比,用纳入BCG细胞壁的神经酰胺类糖脂接种引起对分枝杆菌抗原的CD8T细胞反应增强。通过皮内注射进行施用。每组免疫3只小鼠。分别、混合或结合细胞壁的αGalCer和BCG免疫后17天,小鼠中OVA肽SIINFEKL(SEQ ID NO:1)残基特异性产IFNγCD8T细胞的ELISPOT试验显示用纳入BCG细胞壁αGalCer的T细胞激发增强(图9A)。αGalCer-BCG免疫后,小鼠中TB10.3/4Mtb肽GYAGTLQSL(SEQ ID NO:2)残基特异性产IFNγCD8T细胞的ELISPOT试验也显示其活性比分别或混合施用有提高(图9B)。αGalCer/BCG免疫后小鼠中TB10.4特异性产IFNγCD8T细胞的ELISPOT试验和αGalCer+BCG-OVA免疫(分别或混合施用)后小鼠中SIINFEKL特异性产IFNγCD8T细胞的ELISPOT试验显示纳入的神经酰胺类糖脂的活性高于分别或混合施用(图10A和10B)。用α-C-GalCer替换αGalCer也获得类似的结果(图11)。因此,物理结合的神经酰胺类糖脂佐剂和分枝杆菌细胞显示CD8T细胞的显著改善,这被认为是分枝杆菌疫苗如BCG佐剂效果的基础。
这些结果表明通过直接递送佐剂到感染分枝杆菌的相同细胞,神经酰胺类糖脂佐剂的效果增强。因此,预期结合的佐剂可使得要用的疫苗剂量更少,以及减少局部和全身毒性,降低疫苗生产成本。
本文引用的所有出版物(包括专利、专利申请、期刊论文、实验手册、书或其他文献)的全部内容通过引用纳入本文。

Claims (55)

1.一种经修饰细菌,包括细菌细胞和神经酰胺类糖脂,所述神经酰胺类糖脂对于所述细菌细胞为异源的,其特征在于,所述神经酰胺类糖脂纳入所述细菌细胞的细胞壁,所述神经酰胺类糖脂是(2S,3S,4R)-1-O-(α-D-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3,4-十八烷三醇(KRN7000)或(2S,3S,4R)-1-CH2-(α-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3,4-十八烷三醇(α-C-GalCer),所述神经酰胺类糖脂激活天然杀伤T(NKT)细胞,并且所述细菌细胞为分枝杆菌细胞。
2.如权利要求1所述的经修饰细菌,其特征在于,所述分枝杆菌细胞选自结核分枝杆菌复合群(MTBC)细胞和非结核分枝杆菌(NTM)细胞。
3.如权利要求2所述的经修饰细菌,其特征在于,所述分枝杆菌细胞是MTBC细胞。
4.如权利要求3所述的经修饰细菌,其特征在于,所述MTBC细胞选自结核分枝杆菌细胞、牛分枝杆菌细胞、牛分枝杆菌卡介苗(BCG)细胞、非洲分枝杆菌细胞、卡氏分枝杆菌细胞、山羊分枝杆菌细胞和鳍脚分枝杆菌细胞。
5.如权利要求4所述的经修饰细菌,其特征在于,所述MTBC细胞是结核分枝杆菌细胞。
6.如权利要求4所述的经修饰细菌,其特征在于,所述MTBC细胞是BCG细胞。
7.如权利要求2所述的经修饰细菌,其特征在于,所述分枝杆菌细胞是NTM细胞。
8.如权利要求7所述的经修饰细菌,其特征在于,所述NTM细胞是耻垢分枝杆菌细胞。
9.如权利要求1所述的经修饰细菌,其特征在于,所述细菌细胞是活的、死的或减毒的。
10.如权利要求9所述的经修饰细菌,其特征在于,所述细菌细胞是活的。
11.如权利要求9所述的经修饰细菌,其特征在于,所述细菌细胞是死的。
12.如权利要求9所述的经修饰细菌,其特征在于,所述细菌细胞是减毒的。
13.如权利要求1所述的经修饰细菌,其特征在于,所述细菌提高抗原特异性CD8T细胞对抗原的反应。
14.如权利要求13所述的经修饰细菌,其特征在于,所述抗原是分枝杆菌抗原。
15.如权利要求1所述的经修饰细菌,其特征在于,所述经修饰细菌是异源抗原的载体。
16.如权利要求1所述的经修饰细菌,其特征在于,所述细菌表达异源抗原。
17.如权利要求15所述的经修饰细菌,其特征在于,所述异源抗原是病毒抗原、细菌抗原、真菌抗原、寄生虫抗原或肿瘤特异性抗原。
18.如权利要求15所述的经修饰细菌,其特征在于,所述异源抗原是免疫原性肽。
19.如权利要求1所述的经修饰细菌,其特征在于,所述细菌细胞是重组细菌细胞。
20.一种组合物,包含权利要求1所述的经修饰细菌和药物载体。
21.如权利要求20所述的组合物,其特征在于,所述药物载体选自盐水、缓冲盐水、右旋糖、水、甘油和其组合。
22.如权利要求20所述的组合物,其特征在于,所述组合物还包括佐剂。
23.如权利要求22所述的组合物,其特征在于,所述佐剂选自下组:糖脂、细胞因子、诱导细胞因子和趋化因子生成的化合物、细菌组分、铝基盐、钙基盐、氧化硅、多核苷酸、类毒素、血清蛋白、病毒、毒物、咪唑并喹啉化合物、TLR9激动剂、TLR7/8激动剂、泊洛沙姆、阳离子类脂、惰性载体、普流罗尼嵌段聚合物、沉淀形成剂、表面活性物质、巨噬细胞刺激剂、替代途径补体激活剂、mLT、MF59TM、SAF、RibiTM佐剂系统、LPS衍生物、海藻糖二霉菌酸酯(TDM);细胞壁骨架(CWS)、DetoxTM、QS21、StimulonTM、弗氏完全佐剂、弗氏不完全佐剂、3-O-脱酰MPL、CpG寡核苷酸、皂苷、聚氧乙烯醚、聚氧乙烯酯、和其组合。
24.如权利要求22所述的组合物,其特征在于,所述佐剂选自下组:干扰素、趋化因子、病毒来源物质、毒液、CPG ODNS、咪喹莫特、非离子表面活性剂、单磷酰脂质A(MPL)、巨噬细胞集落刺激因子(M-CSF)和肿瘤坏死因子(TNF)。
25.一种疫苗组合物,包含权利要求1所述的经修饰细菌。
26.权利要求1所述的经修饰细菌在药物制备中的用途,所述药物用于需要相应治疗的动物的疾病治疗。
27.权利要求1所述的经修饰细菌在药物制备中的用途,所述药物用于需要相应预防的动物的疾病预防。
28.如权利要求26或27所述的用途,其特征在于,所述疾病选自病毒性疾病、细菌性疾病、真菌性疾病、寄生虫病和增生性疾病。
29.如权利要求28所述的用途,其特征在于,所述疾病是细菌性疾病。
30.如权利要求29所述的用途,其特征在于,所述疾病是分枝杆菌病。
31.如权利要求26或27所述的用途,其特征在于,所述疾病选自下组:结核病、淋巴腺炎、皮肤病、弥散性疾病、黑死病、肺鼠疫、兔热病、军团病、炭疽、伤寒症发热、副伤寒发热、食源性疾病、疟疾、HIV、猿免疫缺陷病毒(SIV)、HPV、RSV、流感、肝炎和癌症。
32.如权利要求30所述的用途,其特征在于,所述分枝杆菌病是结核病。
33.权利要求1所述的经修饰细菌在药物制备中的用途,所述药物用于在动物中诱导针对抗原的免疫应答。
34.如权利要求33所述的用途,其特征在于,所述免疫应答包括抗体反应。
35.如权利要求33所述的用途,其特征在于,所述免疫应答包括CD8T细胞反应。
36.如权利要求33所述的用途,其特征在于,所述免疫应答包括CD8T细胞反应和抗体反应。
37.权利要求1所述的经修饰细菌在药物制备中的用途,所述药物用于调节动物中对BCG的CD8T细胞反应。
38.如权利要求37所述的用途,其特征在于,所述经修饰细菌是异源抗原的载体。
39.如权利要求37所述的用途,其特征在于,所述经修饰细菌表达异源抗原。
40.如权利要求38或39所述的用途,其特征在于,所述异源抗原是病毒抗原、细菌抗原、真菌抗原、寄生虫抗原或肿瘤特异性抗原。
41.如权利要求38或39所述的用途,其特征在于,所述异源抗原是免疫原性肽。
42.如权利要求26、27、33和37中任一项所述的用途,其特征在于,所述药物配制用于通过选自下组的途径来施用:肌肉内、静脉内、气管内、鼻内、经皮肤、皮内、皮下、眼球内、阴道、直肠、腹膜内、肠内、吸入或者2种或2种以上所述途径的组合。
43.如权利要求42所述的用途,其特征在于,所述施用是皮内。
44.一种试剂盒,包括权利要求1-19中任一项所述的经修饰细菌、权利要求20-24中任一项所述的组合物或权利要求25所述的疫苗组合物。
45.如权利要求44所述的试剂盒,其特征在于,所述经修饰细菌是冻干的。
46.如权利要求44所述的试剂盒,其特征在于,所述试剂盒还包括施用所述经修饰细菌的工具。
47.一种制备神经酰胺类糖脂/分枝杆菌复合物的方法,包括(a)在培养基中培养分枝杆菌细胞和(b)在所述神经酰胺类糖脂纳入所述分枝杆菌细胞的细胞壁的条件下,将神经酰胺类糖脂加入培养基,所述神经酰胺类糖脂对于所述分枝杆菌细胞为异源并激活天然杀伤T(NKT)细胞,其中所述神经酰胺类糖脂是(2S,3S,4R)-1-O-(α-D-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3,4-十八烷三醇(KRN7000)或(2S,3S,4R)-1-CH2-(α-半乳吡喃糖基)-N-廿六醇基-2-氨基-1,3,4-十八烷三醇(α-C-GalCer)。
48.一种生成针对抗原的疫苗的方法,包括:(a)分离权利要求47所述的神经酰胺类糖脂/分枝杆菌复合物和(b)将药物载体加入(a)分离的复合物。
49.如权利要求47所述的方法,其特征在于,所述分枝杆菌细胞选自结核分枝杆菌复合群(MTBC)细胞和非结核分枝杆菌(NTM)细胞。
50.如权利要求49所述的方法,其特征在于,所述NTM细胞是耻垢分枝杆菌细胞。
51.如权利要求49所述的方法,其特征在于,所述MTBC细胞选自结核分枝杆菌细胞、牛分枝杆菌细胞、BCG细胞、非洲分枝杆菌细胞、卡氏分枝杆菌细胞、山羊分枝杆菌细胞和鳍脚分枝杆菌细胞。
52.如权利要求51所述的方法,其特征在于,所述MTBC细胞是结核分枝杆菌细胞。
53.如权利要求51所述的方法,其特征在于,所述MTBC细胞是牛分枝杆菌细胞。
54.如权利要求51所述的方法,其特征在于,所述MTBC细胞是BCG细胞。
55.如权利要求47所述的方法,其特征在于,所述分枝杆菌细胞是活的、死的或减毒的。
CN201080008971.0A 2009-01-08 2010-01-08 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用 Expired - Fee Related CN102325875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710852533.6A CN107619804A (zh) 2009-01-08 2010-01-08 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14338909P 2009-01-08 2009-01-08
US61/143,389 2009-01-08
PCT/US2010/020531 WO2010081026A1 (en) 2009-01-08 2010-01-08 Bacterial vaccines with cell wall-associated ceramide-like glycolipids and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710852533.6A Division CN107619804A (zh) 2009-01-08 2010-01-08 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用

Publications (2)

Publication Number Publication Date
CN102325875A CN102325875A (zh) 2012-01-18
CN102325875B true CN102325875B (zh) 2018-04-10

Family

ID=42316842

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080008971.0A Expired - Fee Related CN102325875B (zh) 2009-01-08 2010-01-08 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用
CN201710852533.6A Pending CN107619804A (zh) 2009-01-08 2010-01-08 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710852533.6A Pending CN107619804A (zh) 2009-01-08 2010-01-08 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用

Country Status (12)

Country Link
US (1) US9139809B2 (zh)
EP (1) EP2385980B1 (zh)
JP (3) JP2012514476A (zh)
KR (2) KR101928684B1 (zh)
CN (2) CN102325875B (zh)
AU (1) AU2010203451B2 (zh)
CA (1) CA2748819A1 (zh)
DK (1) DK2385980T3 (zh)
ES (1) ES2675759T3 (zh)
NZ (1) NZ593794A (zh)
PT (1) PT2385980T (zh)
WO (1) WO2010081026A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809654B2 (en) 2002-09-27 2017-11-07 Vaccinex, Inc. Targeted CD1d molecules
EP2347774B1 (en) 2005-12-13 2017-07-26 The President and Fellows of Harvard College Scaffolds for cell transplantation
CA2678618C (en) 2007-02-21 2019-03-12 Vaccinex, Inc. Modulation of nkt cell activity with antigen-loaded cd1d molecules
WO2009102465A2 (en) 2008-02-13 2009-08-20 President And Fellows Of Harvard College Continuous cell programming devices
CA2804029A1 (en) * 2010-07-07 2012-01-12 Steven A. Porcelli Ceramide-like glycolipid-associated bacterial vaccines and uses thereof
EP2624873B1 (en) 2010-10-06 2019-12-04 President and Fellows of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
US20140329766A1 (en) * 2011-11-28 2014-11-06 Uti Limited Partnership Prophylactic Compositions for Management of Microbial Infections in Patients with Brain Injury
HUE047973T2 (hu) * 2012-04-16 2020-05-28 Harvard College Mezoporózus szilíciumdioxid készítmények immunválaszok modulálására
US9708601B2 (en) 2012-04-26 2017-07-18 Vaccinex, Inc. Fusion proteins to facilitate selection of cells infected with specific immunoglobulin gene recombinant vaccinia virus
WO2014061016A1 (en) * 2012-10-15 2014-04-24 Yeda Research And Development Co. Ltd. Use of sphingoid long chain bases and their analogs in treating and preventing bacterial infections
NZ708727A (en) * 2012-12-06 2019-09-27 Victoria Link Ltd Conjugate compounds
WO2014124245A1 (en) 2013-02-08 2014-08-14 Vaccinex, Inc. Modified glycolipids and methods of making and using the same
US9371352B2 (en) 2013-02-08 2016-06-21 Vaccinex, Inc. Modified glycolipids and methods of making and using the same
US10682400B2 (en) 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
WO2016123573A1 (en) 2015-01-30 2016-08-04 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
CN107708756A (zh) 2015-04-10 2018-02-16 哈佛学院院长等 免疫细胞捕获装置及其制备和使用方法
CN115487351A (zh) 2016-02-06 2022-12-20 哈佛学院校长同事会 重塑造血巢以重建免疫
JP7072521B2 (ja) 2016-04-22 2022-05-20 バクシネックス インコーポレーティッド ポックスウイルス細胞外エンベロープビリオン上での膜内在性タンパク質の提示
EP3484448A4 (en) 2016-07-13 2020-04-01 President and Fellows of Harvard College MIMETIC SCAFFOLDS OF CELLS HAVING ANTIGEN AND METHODS OF PREPARING AND USING THEM
CN109563143A (zh) 2016-08-02 2019-04-02 瓦西尼斯公司 在牛痘病毒/真核细胞中产生多核苷酸文库的改良方法
IL260690A (en) 2018-07-19 2018-12-31 Yeda Res & Dev Sphingosine derivatives and their use against pulmonary bacterial infections
US20210353693A1 (en) * 2018-10-17 2021-11-18 SciBac Inc. Live Biotherapeutics to Treat and Prevent Lung Conditions
LU101096B1 (en) * 2019-01-21 2020-07-21 Philippe Ulsemer Natural non-pathogenic microorganisms capable of associating glycolipids or lipopeptides and use thereof
US20230277607A1 (en) 2019-10-14 2023-09-07 Acaryon Gmbh Natural non-pathogenic microorganisms capable of associating glycolipids or lipopeptides and use thereof
CN115776896A (zh) * 2020-06-26 2023-03-10 齐沃生物科学股份有限公司 通过动物饲料对球虫病预防和治疗的正潜伏期效应

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561389A (zh) * 2001-07-25 2005-01-05 纽约大学 糖基神经酰胺作为用于抗传染病和癌症的疫苗的佐剂的用途
CN1964626A (zh) * 2004-03-31 2007-05-16 纽约大学 新型合成c-糖脂、其合成及其治疗传染病、癌症和自身免疫性疾病的用途
CN1980638A (zh) * 2004-07-07 2007-06-13 国立血清研究所 用糖脂稳定基于脂质的佐剂制剂的组合物和方法
CN101010086A (zh) * 2004-08-27 2007-08-01 耶希瓦大学艾伯塔·爱恩斯坦医学院 作为免疫和自身免疫调节剂的神经酰胺衍生物
CN101035546A (zh) * 2004-09-07 2007-09-12 启龙有限公司 糖抗原的糖基神经酰胺佐剂
WO2008133801A1 (en) * 2007-04-23 2008-11-06 Albert Einstein College Of Medicine Of Yeshiva University Ceramide derivatives as modulators of immunity and autoimmunity
WO2008140598A2 (en) * 2006-12-04 2008-11-20 Bacilligen, Inc. Novel immunotherapeutic mycobacteria, pharmaceutic formulations and uses thereof

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
US4690915A (en) 1985-08-08 1987-09-01 The United States Of America As Represented By The Department Of Health And Human Services Adoptive immunotherapy as a treatment modality in humans
US5081029A (en) 1985-09-25 1992-01-14 Oncogen Methods of adoptive immunotherapy for treatment of aids
US5194425A (en) 1988-06-23 1993-03-16 Anergen, Inc. Mhc-mediated toxic conjugates useful in ameliorating autoimmunity
DE3825615A1 (de) 1988-07-28 1990-02-01 Behringwerke Ag Antigenkonstrukte von "major histocompatibility complex" klasse i antigenen mit spezifischen traegermolekuelen, ihre herstellung und verwendung
US5936076A (en) 1991-08-29 1999-08-10 Kirin Beer Kabushiki Kaisha αgalactosylceramide derivatives
AU3220593A (en) 1991-11-19 1993-06-15 Anergen, Inc. Soluble mhc molecules and their uses
JP3717512B2 (ja) 1992-10-22 2005-11-16 麒麟麦酒株式会社 新規スフィンゴ糖脂質およびその使用
US6238676B1 (en) 1992-12-10 2001-05-29 Brigham And Women's Hospital Presentation of hydrophobic antigens to T-cells by CD1 molecules
US5679347A (en) 1992-12-10 1997-10-21 Brigham And Women's Hospital Methods of isolating CD1-presented antigens, vaccines comprising CD1-presented antigens, and cell lines for use in said methods
US5853737A (en) 1992-12-10 1998-12-29 Brigham And Women's Hospital Method for inducing a CD1-restricted immune response
GB9307371D0 (en) 1993-04-08 1993-06-02 Walls Alan J Fusion proteins
US5780441A (en) 1993-04-15 1998-07-14 Kirin Beer Kabushiki Kaisha Sphingoglycolipid compounds and therapeutic uses thereof
AU6908094A (en) 1993-05-05 1994-11-21 Mark L. Tykocinski Compositions and methods for immunotherapy with the alpha-3 domain of a class i major histocompatibility molecule
US5635363A (en) 1995-02-28 1997-06-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for the detection, quantitation and purification of antigen-specific T cells
NZ331688A (en) 1996-03-28 2000-02-28 Univ Johns Hopkins Soluble divalent and multivalent heterodimeric analogs of proteins
EP0920328A1 (en) 1996-08-23 1999-06-09 Massachusetts Institute Of Technology Allogeneic histocompatibility complexes as mediators of cell destruction
US5973128A (en) 1996-11-22 1999-10-26 The Hospital For Sick Children Research And Development Lp Glycolipid mimics and methods of use thereof
US6268411B1 (en) 1997-09-11 2001-07-31 The Johns Hopkins University Use of multivalent chimeric peptide-loaded, MHC/ig molecules to detect, activate or suppress antigen-specific T cell-dependent immune responses
CN1768759A (zh) 1997-04-10 2006-05-10 麒麟麦酒株式会社 神经酰胺化合物在制备细胞活化剂中的应用
US6248564B1 (en) 1997-08-29 2001-06-19 Harvard University Mutant MHC class I molecules
US6232445B1 (en) 1997-10-29 2001-05-15 Sunol Molecular Corporation Soluble MHC complexes and methods of use thereof
WO1999031241A1 (en) 1997-12-17 1999-06-24 Immunex Corporation Cell surface glycoproteins associated with human b cell lymphomas - ulbp, dna and polypeptides
AU2087799A (en) 1997-12-31 1999-07-19 Brigham And Women's Hospital Diagnostic and therapeutic methods based upon valpha24jalphaq t cells
GB2339782A (en) 1998-06-05 2000-02-09 Philip Michael Savage Chimeric protein complexes comprising HLA class I antigens
US20020051783A1 (en) 1998-06-05 2002-05-02 Savage Philip Michael Method for producing or enhancing a T-cell response against a target cell using a complex comprising an HLA class I molecule and an attaching means
EP1086224B1 (en) 1998-06-10 2006-03-29 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES B2 microglobulin fusion proteins and high affinity variants
US6682741B1 (en) 1998-06-10 2004-01-27 The United States Of America As Represented By The Department Of Health And Human Services β2 microglobulin fusion proteins and high affinity variants
AU4954899A (en) 1998-06-26 2000-01-17 Trustees Of Dartmouth College Methods and compositions for modulating antigen-specific immunological (humoral)responses by targeting such antigen to apcs in conjunction with anti-cd40 ligan d administration
US20050112141A1 (en) 2000-08-30 2005-05-26 Terman David S. Compositions and methods for treatment of neoplastic disease
GB9929993D0 (en) 1999-12-17 2000-02-09 Avidex Ltd Substances
WO2001071005A2 (en) 2000-03-24 2001-09-27 Micromet Ag Multifunctional polypeptides comprising a binding site to an epitope of the nkg2d receptor complex
AU2001252998A1 (en) 2000-03-28 2001-10-08 University Of Rochester Methods of producing a library and methods of selecting polynucletides
AU2001253119B2 (en) 2000-04-04 2006-04-13 University Of Rochester A gene differentially expressed in breast and bladder cancer and encoded polypeptides
AU5532601A (en) 2000-04-12 2001-10-30 Univ Rochester Targeted vaccine delivery systems
WO2001090198A1 (en) 2000-05-24 2001-11-29 Ludwig Institute For Cancer Research Multicomponent conjugates which bind to target molecules and stimulate cell lysis
AU2002213588A1 (en) 2000-06-05 2001-12-17 The Brigham And Women's Hospital, Inc. Soluble cd1 compositions and uses thereof
CA2459482C (en) 2001-08-16 2010-09-28 Daiichi Suntory Pharma Co., Ltd. Novel glycolipid and medicine for autoimmune disease containing the same as active ingredient
JP2005533057A (ja) * 2002-06-13 2005-11-04 ニューヨーク・ユニバーシティ 合成c−糖脂質、ならびに癌、感染性疾患および自己免疫疾患を処置するための合成c−糖脂質の使用
AU2003277021A1 (en) 2002-09-27 2004-04-19 Biomira, Inc. Glycosylceramide analogues
EP1413316A1 (en) 2002-09-27 2004-04-28 Bruno Robert Bifunctional conjugates or fusion proteins
US9809654B2 (en) 2002-09-27 2017-11-07 Vaccinex, Inc. Targeted CD1d molecules
HUE037560T2 (hu) 2003-02-14 2018-09-28 Japan President Nat Ct Neurology & Psychiatry Glikolipid-származékok, eljárás elõállításukra, szintézis-köztitermékeik, és eljárás a köztitermékek elõállítására
WO2004087058A2 (en) 2003-03-28 2004-10-14 Vaccinex, Inc. Targeted mhc class i alpha3 vaccine delivery systems
GB0314682D0 (en) 2003-06-24 2003-07-30 Isis Innovation Materials and methods relating to the modulation of T cell response to soluble antigen
WO2005099361A2 (en) 2003-07-10 2005-10-27 Vaccinex, Inc. MHC CLASS I - PEPTIDE-ANTIBODY CONJUGATES WITH MODIFIED β2-MICROGLOBULIN
US7771726B2 (en) 2003-10-08 2010-08-10 New York University Use of synthetic glycolipids as universal adjuvants for vaccines against cancer and infectious diseases
CN101198358B (zh) * 2004-12-01 2013-06-26 Aeras全球Tb疫苗基金会 具有增强的逃出内体能力的重组bcg菌株
AU2005322027B2 (en) 2004-12-28 2013-09-12 The Rockefeller University Glycolipids and analogues thereof as antigens for NK Tcells
KR100764678B1 (ko) * 2005-07-13 2007-10-09 재단법인서울대학교산학협력재단 알파-갈락토실세라마이드를 아쥬반트로 포함하는 비강투여용 백신 조성물
CA2678618C (en) 2007-02-21 2019-03-12 Vaccinex, Inc. Modulation of nkt cell activity with antigen-loaded cd1d molecules
CA2804029A1 (en) 2010-07-07 2012-01-12 Steven A. Porcelli Ceramide-like glycolipid-associated bacterial vaccines and uses thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561389A (zh) * 2001-07-25 2005-01-05 纽约大学 糖基神经酰胺作为用于抗传染病和癌症的疫苗的佐剂的用途
CN1964626A (zh) * 2004-03-31 2007-05-16 纽约大学 新型合成c-糖脂、其合成及其治疗传染病、癌症和自身免疫性疾病的用途
CN1980638A (zh) * 2004-07-07 2007-06-13 国立血清研究所 用糖脂稳定基于脂质的佐剂制剂的组合物和方法
CN101010086A (zh) * 2004-08-27 2007-08-01 耶希瓦大学艾伯塔·爱恩斯坦医学院 作为免疫和自身免疫调节剂的神经酰胺衍生物
CN101035546A (zh) * 2004-09-07 2007-09-12 启龙有限公司 糖抗原的糖基神经酰胺佐剂
WO2008140598A2 (en) * 2006-12-04 2008-11-20 Bacilligen, Inc. Novel immunotherapeutic mycobacteria, pharmaceutic formulations and uses thereof
WO2008133801A1 (en) * 2007-04-23 2008-11-06 Albert Einstein College Of Medicine Of Yeshiva University Ceramide derivatives as modulators of immunity and autoimmunity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis–induced inflammation and virulence;Vivek Rao et al;《The Journal of Clinical Investigation》;20060630;第116卷(第6期);摘要、图4、第1664页左栏最后一段、第1666页左栏第2段 *
基于KRN7000的结构改造以及它们对自然杀伤T细胞活化作用的构效关系(英文);张蕾等;《Journal of Chinese Pharmaceutical Sciences》;20081231;第17卷(第4期);第263-271页 *

Also Published As

Publication number Publication date
PT2385980T (pt) 2018-06-26
KR20170091794A (ko) 2017-08-09
DK2385980T3 (en) 2018-07-30
CA2748819A1 (en) 2010-07-15
AU2010203451A1 (en) 2011-08-25
WO2010081026A1 (en) 2010-07-15
JP2012514476A (ja) 2012-06-28
ES2675759T3 (es) 2018-07-12
NZ593794A (en) 2013-04-26
KR20110137290A (ko) 2011-12-22
CN102325875A (zh) 2012-01-18
JP2016025861A (ja) 2016-02-12
JP2017195894A (ja) 2017-11-02
AU2010203451A8 (en) 2011-10-06
EP2385980B1 (en) 2018-04-18
EP2385980A1 (en) 2011-11-16
CN107619804A (zh) 2018-01-23
EP2385980A4 (en) 2012-10-03
AU2010203451B2 (en) 2016-06-30
JP6168566B2 (ja) 2017-07-26
KR101928684B1 (ko) 2018-12-12
US9139809B2 (en) 2015-09-22
US20100183549A1 (en) 2010-07-22
JP6469173B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
CN102325875B (zh) 具有细胞壁结合神经酰胺类糖脂的细菌疫苗及其应用
Venkataswamy et al. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin
Flatz et al. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity
RU2709711C2 (ru) Новые иммуногенные пептиды
Carreño et al. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents
US20130164325A1 (en) Ceramide-like glycolipid-associated bacterial vaccines and uses thereof
KR101329323B1 (ko) 엔도솜을 이탈하는 능력이 보강된 재조합 비씨지 균주
Nanjappa et al. Protective antifungal memory CD8+ T cells are maintained in the absence of CD4+ T cell help and cognate antigen in mice
Flores‐Langarica et al. T‐zone localized monocyte‐derived dendritic cells promote Th1 priming to Salmonella
CN103517917B (zh) 通过添加由nkt细胞识别的表位来调整抗原免疫原性
US9821047B2 (en) Enhancing immunity to tuberculosis
Eckhardt et al. Animal models for human group 1 CD1 protein function
Sam et al. Q fever immunology: the quest for a safe and effective vaccine
US10414819B2 (en) Monoclonal antibodies that modulate immunity to MTB and enhance immune clearance
EP2505640A1 (en) Vaccine compositions for birnavirus-borne diseases
US9512186B2 (en) Recombinant strain of Mycobacterium bovis bacillus calmette-guerin (BCG), immunogenic composition and use
Choi et al. α-Galactosylceramide enhances the protective and therapeutic effects of tumor cell based vaccines for ovarian tumors
Dossa et al. In contrast to other species, α-Galactosylceramide (α-GalCer) is not an immunostimulatory NKT cell agonist in horses
Lee et al. Subunit Vaccine-Elicited Effector-Like Memory CD8 T Cells Protect Against Listeriosis
Rampuria Expansion and activation of natural killer T (NKT) cells and NKT follicular helper (NKTfh) cells in the humoral immune response to bacterial toxin
Igarashi et al. Major T Cell Response to a Mycolyl
Dietrich MYCOBACTERIUM BOVIS BCG-BASED VACCINATION APPROACHES
Prasad et al. Immunoprophylactic mechanisms of glycolipid antigens in tuberculosis
Yamada et al. Biochemical and Immunological Characterization of Ribosomal Fraction and Culture Filtrate from Mycobacterium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: American New York

Applicant after: Albert Einstein College of Medicine of Yeshiva University

Address before: American New York

Applicant before: Network Alliance Corp.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20170913

Address after: American New York

Applicant after: Network Alliance Corp.

Address before: American New York

Applicant before: Albert Einstein College of Medicine of Yeshiva University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

Termination date: 20210108

CF01 Termination of patent right due to non-payment of annual fee