CN102323819B - 一种基于协调控制的智能轮椅室外导航方法 - Google Patents

一种基于协调控制的智能轮椅室外导航方法 Download PDF

Info

Publication number
CN102323819B
CN102323819B CN 201110210585 CN201110210585A CN102323819B CN 102323819 B CN102323819 B CN 102323819B CN 201110210585 CN201110210585 CN 201110210585 CN 201110210585 A CN201110210585 A CN 201110210585A CN 102323819 B CN102323819 B CN 102323819B
Authority
CN
China
Prior art keywords
wheelchair
behavior
output
barrier
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110210585
Other languages
English (en)
Other versions
CN102323819A (zh
Inventor
张毅
罗元
李敏
谢颖
蔡军
林海波
张军
胡豁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN 201110210585 priority Critical patent/CN102323819B/zh
Publication of CN102323819A publication Critical patent/CN102323819A/zh
Application granted granted Critical
Publication of CN102323819B publication Critical patent/CN102323819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种基于协调控制的智能轮椅室外导航方法,它通过GPS和超声传感器采集外部环境信息,首先采用基于行为的控制方法配合模糊逻辑算法设计不同功能的行为模块,其次利用神经网络算法设计行为协调控制器,通过对各个行为模块的协调控制而实现具有较高智能性的自主导航功能。它可以降低室外导航系统的成本,提高实时性和系统的鲁棒性。

Description

一种基于协调控制的智能轮椅室外导航方法
技术领域
本发明涉及自动化领域,特别是一种导航方法。
背景技术
通常情况下,老年人和残障人士的行动能力和反应能力都低于普通人,因此为他们设计的辅助工具不仅要具备良好的移动能力,更要具备自主思考能力以及能够与使用者方便进行交流的能力。智能轮椅作为一种智能型电动轮椅,不但能够通过电机进行驱动,更具备了高端移动机器人的智能性,拥有良好的人机接口且能实现自主控制,是做为老年人和残障人士辅助工具的最佳选择。
普通智能轮椅要在室外环境下达到实用还存在一些问题:在未知环境中导航效果不佳;导航算法实时性不足,难以适应动态环境;导航算法鲁棒性较低,在传感器精度不足或者存在陷阱区域的情形下导航效果不佳;有时候需要对环境进行预处理,系统成本较高。
发明内容
本发明的目的就是提供一种基于协调控制的智能轮椅室外导航方法,它可以降低室外导航系统的成本,提高实时性和系统的鲁棒性。
本发明的目的是通过这样的技术方案实现的,它包括有模糊控制器、协调控制器、一个GPS定位装置和三个超声传感器,其步骤如下:
1)轮椅和障碍物信息采集:GPS定位装置和三个超声传感器实时采集信息,GPS定位装置用于轮椅本身的自定位,三个超声传感器分别位于轮椅的左、右两侧和正前方,对障碍物进行监测;
2)设计趋向行为:根据GPS定位装置的数据推算出轮椅的位置和姿态,利用轮椅的位置和姿态信息作为输入信息,通过模糊控制器处理设计出轮椅的趋向行为,即轮椅朝着目标前进的运动行为;
3)设计避障行为:轮椅正前方超声传感器采集到的障碍物距离数据,通过模糊控制器设计出避障行为,即轮椅绕开障碍物的运动行为;
4)设计沿墙走行为:利用位于轮椅两侧的超声传感器采集到的两侧障碍物距离信息,通过模糊控制器设计沿墙走行为,即轮椅对障碍物边沿进行跟踪并保持一定距离的运动行为;
5)步骤2)、3)、4)所述的三个基本独立运动行为,通过神经网络设计行为协调控制器对三个行为进行协调控制,进而得到导航目的性的整体行为,即轮椅的实际运动行为。
进一步,所述步骤2)中设计趋向行为的模糊控制器的输入变量是轮椅与目标之间的距离                                                
Figure 679228DEST_PATH_IMAGE001
以及当前趋向角的值
Figure 841219DEST_PATH_IMAGE002
,输出是轮椅的线速度
Figure 27350DEST_PATH_IMAGE003
和角速度
Figure 934869DEST_PATH_IMAGE004
Figure 472030DEST_PATH_IMAGE001
越大轮椅距离目标点越远,控制线速度
Figure 126127DEST_PATH_IMAGE003
越大,
Figure 432344DEST_PATH_IMAGE001
越小轮椅距离目标点越近,控制线速度
Figure 239326DEST_PATH_IMAGE003
越小;
运动方向偏向目标点左边
Figure 263783DEST_PATH_IMAGE002
取负值,偏向右边
Figure 518309DEST_PATH_IMAGE002
取正值,
Figure 944611DEST_PATH_IMAGE002
的绝对值越大,控制
Figure 928354DEST_PATH_IMAGE004
越大,反之的绝对值越小,控制
Figure 436007DEST_PATH_IMAGE004
越小,轮椅根据
Figure 264286DEST_PATH_IMAGE002
的正负来决定转动方向。
进一步,轮椅与目标之间的距离
Figure 877320DEST_PATH_IMAGE001
根据GPS定位装置可以进行实时测量;
当前趋向角的值
Figure 610789DEST_PATH_IMAGE002
可以根据以下公式测得
Figure 2011102105856100002DEST_PATH_IMAGE005
Figure 410380DEST_PATH_IMAGE006
表示当前轮椅位置,
Figure 545695DEST_PATH_IMAGE007
表示轮椅上一个采样时刻的位置,由此两点将确定向量
Figure 74504DEST_PATH_IMAGE008
,同理,由
Figure 357586DEST_PATH_IMAGE006
和目标点
Figure 6873DEST_PATH_IMAGE009
可以确定向量
Figure 498160DEST_PATH_IMAGE010
进一步,所述步骤3)中设计避障行为的模糊控制器的输入为轮椅前方超声传感器探测的障碍物距离
Figure 823968DEST_PATH_IMAGE011
,左侧超声传感器探测的障碍物距离
Figure 48143DEST_PATH_IMAGE012
,右侧超声传感器探测的障碍物距离
Figure 235542DEST_PATH_IMAGE013
,输出为轮椅的线速度
Figure 407766DEST_PATH_IMAGE014
和角速度
Figure 343623DEST_PATH_IMAGE015
进一步,所述步骤4)中设计沿墙走行为的模糊控制器的输为为左侧、前方、右侧超声传感器探测的轮椅和墙的距离
Figure 352031DEST_PATH_IMAGE012
Figure 55337DEST_PATH_IMAGE013
,输出为轮椅运动的线速度
Figure 473680DEST_PATH_IMAGE016
以及角速度
Figure 953072DEST_PATH_IMAGE017
进一步,步骤5)中所述神经网络设计行为协调控制器的输入为三个超声传感器的信息
Figure 436268DEST_PATH_IMAGE012
Figure 68237DEST_PATH_IMAGE011
Figure 844432DEST_PATH_IMAGE013
和用于监测轮椅是否进入陷阱区域的标志变量
Figure 581094DEST_PATH_IMAGE018
,输出为三个行为的权重值,再根据公式
Figure 913986DEST_PATH_IMAGE019
 得出轮椅的整体行为,其中
Figure 587413DEST_PATH_IMAGE020
Figure 363871DEST_PATH_IMAGE021
Figure 755538DEST_PATH_IMAGE022
分别表示趋向行为输出的线速度、避障行为输出的线速度、沿墙走行为输出的线速度,
Figure 892121DEST_PATH_IMAGE023
Figure 918589DEST_PATH_IMAGE024
Figure 302166DEST_PATH_IMAGE025
分别表示趋向行为输出的角速度、避障行为输出的角速度、沿墙走行为输出的角速度,
Figure 606557DEST_PATH_IMAGE027
Figure 67625DEST_PATH_IMAGE028
分别表示趋向行为输出的权重值、避障行为输出的权重值、沿墙走行为输出的权重值。
进一步,所述权重值与预设阈值K进行比较,权重值小于K时默认为0,大于K时为计算出的实际值。
进一步,
Figure 277776DEST_PATH_IMAGE030
时刻轮椅与目标点的距离,
Figure 444577DEST_PATH_IMAGE031
为下一个采样时刻轮椅与目标点的距离,
Figure 25731DEST_PATH_IMAGE032
,表示轮椅正向着目标点靠近,为初始值
Figure 899939DEST_PATH_IMAGE033
Figure 103387DEST_PATH_IMAGE034
表示轮椅向着背离目标点的方向运动,反映出轮椅进入了陷阱区域,
Figure 539048DEST_PATH_IMAGE018
的值由初始值
Figure 671214DEST_PATH_IMAGE033
变为
由于采用了上述技术方案,本发明具有如下的优点:针对室外环境下的智能轮椅自主导航的研究,与其他室外导航算法的不同之处在于本算法依据行为控制思想设计了一种具有较高智能性而且成本低廉的室外自主导航功能模块,可以在复杂动态的室外工作环境下实现智能轮椅的自主导航。该方法以行为控制思想为基础,不需要对环境进行建模分析,控制系统不但具有较高的实时性而且对传感器信息具有不敏感性,从而提高了系统的鲁棒性和降低了系统成本,系统能够自主识别和逃离陷阱区域,有较高的智能性。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书和权利要求书来实现和获得。
附图说明
本发明的附图说明如下。
图1为系统坐标系示意图。
图2为计算趋向角的流程图。
图3为趋向行为轮椅运动轨迹示意图。
图4为室外导航系统控制流程图。
图5为本发明原理框图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
一种基于协调控制的智能轮椅室外导航方法,它包括有模糊控制器、协调控制器、一个GPS定位装置和三个超声传感器,其步骤如下:
1)轮椅和障碍物信息采集:GPS定位装置和三个超声传感器实时采集信息,GPS定位装置用于轮椅本身的自定位,三个超声传感器分别位于轮椅的左、右两侧和正前方,对障碍物进行监测;
2)设计趋向行为:根据GPS定位装置的数据推算出轮椅的位置和姿态,利用轮椅的位置和姿态信息作为输入信息,通过模糊控制器处理设计出轮椅的趋向行为,即轮椅朝着目标前进的运动行为;
3)设计避障行为:轮椅正前方超声传感器采集到的障碍物距离数据,通过模糊控制器设计出避障行为,即轮椅绕开障碍物的运动行为;
4)设计沿墙走行为:利用位于轮椅两侧的超声传感器采集到的两侧障碍物距离信息,通过模糊控制器设计沿墙走行为,即轮椅对障碍物边沿进行跟踪并保持一定距离的运动行为;
5)步骤2)、3)、4)所述的三个基本独立运动行为,通过神经网络设计行为协调控制器对三个行为进行协调控制,进而得到导航目的性的整体行为,即轮椅的实际运动行为。
本发明实现智能轮椅的室外导航功能的方法是,通过GPS和超声传感器采集外部环境信息,首先采用基于行为的控制方法配合模糊逻辑算法设计不同功能的行为模块,其次利用神经网络算法设计行为协调控制器,通过对各个行为模块的协调控制而实现具有较高智能性的自主导航功能。
将行为控制方法应用于室外导航功能的实现中,可以将复杂的导航任务划分为多个简单的任务分而治之,最常用的三种基本行为是:
趋向行为:忽略障碍物信息而控制轮椅向目标点前进。
避障行为:忽略目标点信息而控制轮椅实时的避障。
沿墙走行为:控制轮椅实时的保持对障碍物边沿的跟踪。
考虑到模糊控制方法不需要建立被控对象的精确数学模型以及可以方便利用专家经验的优势,利用模糊逻辑算法可以设计三种行为的模糊控制器。
智能轮椅的绝对坐标系和体坐标系如图1所示。其中,
Figure 5582DEST_PATH_IMAGE037
轴组成绝对坐标系,在实际应用中,该坐标系即为地球的经纬度坐标系,表示纬度坐标轴,
Figure 427915DEST_PATH_IMAGE037
表示经度坐标轴。
Figure 25119DEST_PATH_IMAGE033
,
Figure 558475DEST_PATH_IMAGE035
轴组成轮椅的体坐标系,其中
Figure 608339DEST_PATH_IMAGE033
表示轮椅当前的运动方向。
Figure 770330DEST_PATH_IMAGE038
表示轮椅的各个超声传感器探测的障碍物的距离信息,
Figure 723505DEST_PATH_IMAGE001
表示轮椅与目标点之间的距离。
Figure 194807DEST_PATH_IMAGE002
表示轮椅当前运动方向偏离目标点的角度值,即趋向角。
所述步骤2)中设计趋向行为的模糊控制器的输入变量是轮椅与目标之间的距离
Figure 545017DEST_PATH_IMAGE001
以及当前趋向角的值
Figure 948183DEST_PATH_IMAGE002
,输出是轮椅的线速度
Figure 316717DEST_PATH_IMAGE003
和角速度
Figure 398067DEST_PATH_IMAGE039
Figure 235573DEST_PATH_IMAGE001
越大轮椅距离目标点越远,控制线速度
Figure 926318DEST_PATH_IMAGE003
越大,
Figure 647893DEST_PATH_IMAGE001
越小轮椅距离目标点越近,控制线速度
Figure 398680DEST_PATH_IMAGE003
越小;运动方向偏向目标点左边
Figure 723482DEST_PATH_IMAGE002
取负值,偏向右边
Figure 453803DEST_PATH_IMAGE002
取正值,
Figure 796928DEST_PATH_IMAGE002
的绝对值越大,控制
Figure 223011DEST_PATH_IMAGE039
越大,反之
Figure 769530DEST_PATH_IMAGE002
的绝对值越小,控制
Figure 67657DEST_PATH_IMAGE039
越小,轮椅根据
Figure 704436DEST_PATH_IMAGE002
的正负来决定转动方向。其模糊规则如下:
Figure 859343DEST_PATH_IMAGE040
 
Figure 893158DEST_PATH_IMAGE041
 
Figure 962352DEST_PATH_IMAGE042
 ,
Figure 45026DEST_PATH_IMAGE044
 
Figure 566137DEST_PATH_IMAGE039
 
Figure 2803DEST_PATH_IMAGE042
 
Figure 605386DEST_PATH_IMAGE045
Figure 852828DEST_PATH_IMAGE040
 
Figure 110503DEST_PATH_IMAGE041
 
Figure 790008DEST_PATH_IMAGE042
 
Figure 567471DEST_PATH_IMAGE046
,
Figure 235082DEST_PATH_IMAGE044
 
Figure 150692DEST_PATH_IMAGE039
 
Figure 132423DEST_PATH_IMAGE042
 
Figure 764393DEST_PATH_IMAGE047
Figure 42053DEST_PATH_IMAGE040
  
Figure 298558DEST_PATH_IMAGE042
 
Figure 785034DEST_PATH_IMAGE048
,
Figure 60026DEST_PATH_IMAGE044
 
Figure 890841DEST_PATH_IMAGE039
 
Figure 11113DEST_PATH_IMAGE042
 
Figure 303160DEST_PATH_IMAGE049
Figure 499786DEST_PATH_IMAGE040
  
Figure 804177DEST_PATH_IMAGE042
 ,
Figure 554144DEST_PATH_IMAGE044
 
Figure 498834DEST_PATH_IMAGE039
  
Figure 479745DEST_PATH_IMAGE051
Figure 768906DEST_PATH_IMAGE040
 
Figure 356882DEST_PATH_IMAGE041
 
Figure 638959DEST_PATH_IMAGE042
 ,
Figure 453124DEST_PATH_IMAGE044
 
Figure 295440DEST_PATH_IMAGE039
 
Figure 115629DEST_PATH_IMAGE042
 
Figure 655063DEST_PATH_IMAGE053
Figure 961061DEST_PATH_IMAGE040
 
Figure 336678DEST_PATH_IMAGE041
 
Figure 209825DEST_PATH_IMAGE042
 
Figure 42914DEST_PATH_IMAGE054
,
Figure 94047DEST_PATH_IMAGE044
 
Figure 206228DEST_PATH_IMAGE039
 
Figure 53705DEST_PATH_IMAGE042
 
Figure 318464DEST_PATH_IMAGE055
Figure 789766DEST_PATH_IMAGE040
 
Figure 562812DEST_PATH_IMAGE041
 
Figure 528494DEST_PATH_IMAGE042
 ,
Figure 969589DEST_PATH_IMAGE044
 
Figure 994046DEST_PATH_IMAGE039
 
Figure 497839DEST_PATH_IMAGE042
 
Figure 160027DEST_PATH_IMAGE057
Figure 973131DEST_PATH_IMAGE040
 
Figure 717840DEST_PATH_IMAGE041
 
Figure 25325DEST_PATH_IMAGE042
 
Figure 368450DEST_PATH_IMAGE058
 
Figure 791603DEST_PATH_IMAGE050
 
Figure 338122DEST_PATH_IMAGE059
 
Figure 370669DEST_PATH_IMAGE001
 
Figure 72696DEST_PATH_IMAGE042
 
Figure 978335DEST_PATH_IMAGE060
,
Figure 199101DEST_PATH_IMAGE044
 
Figure 599120DEST_PATH_IMAGE003
 
Figure 854521DEST_PATH_IMAGE042
 
Figure 934396DEST_PATH_IMAGE040
 
Figure 574325DEST_PATH_IMAGE041
 
Figure 497282DEST_PATH_IMAGE042
 
Figure 433139DEST_PATH_IMAGE062
 
Figure 425235DEST_PATH_IMAGE063
 
Figure 119388DEST_PATH_IMAGE001
 
Figure 896851DEST_PATH_IMAGE042
 
Figure 564462DEST_PATH_IMAGE060
,
Figure 748581DEST_PATH_IMAGE044
  
Figure 424599DEST_PATH_IMAGE042
 
Figure 699329DEST_PATH_IMAGE064
Figure 416749DEST_PATH_IMAGE040
 
Figure 936592DEST_PATH_IMAGE001
 
Figure 439380DEST_PATH_IMAGE042
 
Figure 386476DEST_PATH_IMAGE065
,
Figure 591193DEST_PATH_IMAGE044
 
Figure 419121DEST_PATH_IMAGE003
 
Figure 274951DEST_PATH_IMAGE042
 
Figure 894413DEST_PATH_IMAGE065
Figure 586426DEST_PATH_IMAGE040
 
Figure 713650DEST_PATH_IMAGE001
 
Figure 860205DEST_PATH_IMAGE042
 
Figure 211420DEST_PATH_IMAGE066
,
Figure 79145DEST_PATH_IMAGE044
 
Figure 557530DEST_PATH_IMAGE003
 
Figure 122373DEST_PATH_IMAGE042
 
上述参数均为模糊规则常用预设值,得出轮椅与目标之间的距离
Figure 741453DEST_PATH_IMAGE001
根据GPS定位装置可以进行实时测量;
当前趋向角的值可以根据以下公式测得
Figure 131295DEST_PATH_IMAGE005
Figure 27575DEST_PATH_IMAGE006
表示当前轮椅位置,表示轮椅上一个采样时刻的位置,由此两点将确定向量
Figure 421571DEST_PATH_IMAGE008
,同理,由
Figure 961006DEST_PATH_IMAGE006
和目标点可以确定向量。实时计算
Figure 716100DEST_PATH_IMAGE002
的流程图如图2所示,因此通过这种方法可以实时的计算出
Figure 614436DEST_PATH_IMAGE002
并控制轮椅向目标点趋向。趋向行为的仿真结果和实际执行效果如图3所示,轮椅由初始点随机选择初始方向,该仿真结果表示,趋向行为激活时轮椅可以由任意姿态向目标点趋向。当趋向角很大时轮椅有较大的转动角速度,因此转向动作较为明显,而当趋向角为零时轮椅可以保持直线运动直至目标点,由图3可知趋向行为的模糊控制器可以实现期望的趋向功能。
所述步骤3)中设计避障行为的模糊控制器的输入为轮椅前方超声传感器探测的障碍物距离,左侧超声传感器探测的障碍物距离
Figure 715433DEST_PATH_IMAGE012
,右侧超声传感器探测的障碍物距离,输出为轮椅的线速度
Figure 79867DEST_PATH_IMAGE014
和角速度
Figure 36321DEST_PATH_IMAGE015
。具体的模糊规则如下所示:
Figure 72017DEST_PATH_IMAGE040
 
Figure 286967DEST_PATH_IMAGE012
 
Figure 406232DEST_PATH_IMAGE042
  
Figure 308777DEST_PATH_IMAGE063
 
Figure 515635DEST_PATH_IMAGE011
  
Figure 505774DEST_PATH_IMAGE066
,
Figure 253412DEST_PATH_IMAGE044
 
Figure 810164DEST_PATH_IMAGE015
 
Figure 589508DEST_PATH_IMAGE042
 
Figure 324246DEST_PATH_IMAGE051
 
Figure 57715DEST_PATH_IMAGE063
 
Figure 654044DEST_PATH_IMAGE014
 
Figure 789359DEST_PATH_IMAGE042
 
Figure 694998DEST_PATH_IMAGE064
Figure 482476DEST_PATH_IMAGE040
 
Figure 318713DEST_PATH_IMAGE012
 
Figure 121584DEST_PATH_IMAGE042
 
Figure 886540DEST_PATH_IMAGE060
 
Figure 656919DEST_PATH_IMAGE063
 
Figure 109897DEST_PATH_IMAGE011
  
Figure 887153DEST_PATH_IMAGE058
 
Figure 646293DEST_PATH_IMAGE066
,
Figure 824333DEST_PATH_IMAGE044
 
Figure 601796DEST_PATH_IMAGE015
  
Figure 444737DEST_PATH_IMAGE068
 
Figure 973938DEST_PATH_IMAGE063
 
Figure 294323DEST_PATH_IMAGE014
 
Figure 398414DEST_PATH_IMAGE042
 
Figure 801320DEST_PATH_IMAGE064
Figure 134213DEST_PATH_IMAGE040
 
Figure 135536DEST_PATH_IMAGE012
 
Figure 584097DEST_PATH_IMAGE042
 
Figure 788813DEST_PATH_IMAGE065
 
Figure 803692DEST_PATH_IMAGE063
  
Figure 528252DEST_PATH_IMAGE042
 
Figure 970997DEST_PATH_IMAGE066
  
Figure 293711DEST_PATH_IMAGE013
 
Figure 346724DEST_PATH_IMAGE042
 
Figure 775300DEST_PATH_IMAGE060
,
Figure 988107DEST_PATH_IMAGE044
 
Figure 257676DEST_PATH_IMAGE015
 
Figure 779793DEST_PATH_IMAGE042
  
Figure 165960DEST_PATH_IMAGE063
 
Figure 850888DEST_PATH_IMAGE014
 
Figure 248633DEST_PATH_IMAGE042
 
Figure 136955DEST_PATH_IMAGE064
Figure 144094DEST_PATH_IMAGE040
 
Figure 182064DEST_PATH_IMAGE012
 
Figure 249246DEST_PATH_IMAGE042
 
Figure 624863DEST_PATH_IMAGE065
 
Figure 671579DEST_PATH_IMAGE063
 
Figure 331099DEST_PATH_IMAGE011
 
Figure 382232DEST_PATH_IMAGE042
   
Figure 35345DEST_PATH_IMAGE013
 
Figure 257379DEST_PATH_IMAGE042
 ,
Figure 445708DEST_PATH_IMAGE044
 
Figure 814241DEST_PATH_IMAGE015
  
Figure 467518DEST_PATH_IMAGE051
 
Figure 220580DEST_PATH_IMAGE063
  
Figure 139558DEST_PATH_IMAGE014
  
Figure 949568DEST_PATH_IMAGE069
 
Figure 23014DEST_PATH_IMAGE012
  
Figure 989757DEST_PATH_IMAGE065
 
Figure 350200DEST_PATH_IMAGE063
 
Figure 298564DEST_PATH_IMAGE011
 
Figure 892619DEST_PATH_IMAGE042
 
Figure 175701DEST_PATH_IMAGE060
  
Figure 319205DEST_PATH_IMAGE013
 
Figure 582696DEST_PATH_IMAGE042
  
Figure 228889DEST_PATH_IMAGE066
, 
Figure 84773DEST_PATH_IMAGE015
 
Figure 342448DEST_PATH_IMAGE042
 
Figure 21953DEST_PATH_IMAGE045
 
Figure 799416DEST_PATH_IMAGE063
  
Figure 467027DEST_PATH_IMAGE014
 
Figure 400215DEST_PATH_IMAGE042
 
 
Figure 353893DEST_PATH_IMAGE012
 
Figure 336892DEST_PATH_IMAGE042
 
Figure 856735DEST_PATH_IMAGE065
 
Figure 91014DEST_PATH_IMAGE063
 
Figure 303690DEST_PATH_IMAGE011
  
Figure 333405DEST_PATH_IMAGE060
 
Figure 923655DEST_PATH_IMAGE063
   ,
Figure 577085DEST_PATH_IMAGE044
 
Figure 131564DEST_PATH_IMAGE015
 
Figure 45293DEST_PATH_IMAGE042
  
Figure 39586DEST_PATH_IMAGE063
  
Figure 851DEST_PATH_IMAGE014
  
Figure 870904DEST_PATH_IMAGE064
Figure 48508DEST_PATH_IMAGE040
 
Figure 679210DEST_PATH_IMAGE012
 
Figure 833110DEST_PATH_IMAGE042
 
Figure 341714DEST_PATH_IMAGE065
 
Figure 881149DEST_PATH_IMAGE063
 
Figure 446866DEST_PATH_IMAGE011
 
Figure 822484DEST_PATH_IMAGE042
 
Figure 367735DEST_PATH_IMAGE065
  
Figure 501224DEST_PATH_IMAGE013
 
Figure 364138DEST_PATH_IMAGE042
 
Figure 217474DEST_PATH_IMAGE058
 
Figure 731501DEST_PATH_IMAGE066
,
Figure 641950DEST_PATH_IMAGE044
 
Figure 992160DEST_PATH_IMAGE015
 
Figure 879214DEST_PATH_IMAGE042
 
Figure 683965DEST_PATH_IMAGE047
 
Figure 326168DEST_PATH_IMAGE063
  
Figure 542834DEST_PATH_IMAGE042
 
Figure 516606DEST_PATH_IMAGE064
Figure 596007DEST_PATH_IMAGE040
 
Figure 170076DEST_PATH_IMAGE012
 
Figure 900397DEST_PATH_IMAGE042
 
Figure 994255DEST_PATH_IMAGE065
 
Figure 915944DEST_PATH_IMAGE063
 
Figure 147948DEST_PATH_IMAGE011
 
Figure 508391DEST_PATH_IMAGE042
 
Figure 456756DEST_PATH_IMAGE065
  
Figure 271576DEST_PATH_IMAGE013
 
Figure 346629DEST_PATH_IMAGE042
 
Figure 664347DEST_PATH_IMAGE066
, 
Figure 950414DEST_PATH_IMAGE015
 
Figure 387081DEST_PATH_IMAGE042
 
Figure 995523DEST_PATH_IMAGE055
 
Figure 242965DEST_PATH_IMAGE063
  
Figure 180145DEST_PATH_IMAGE042
 
Figure 562902DEST_PATH_IMAGE040
 
Figure 534969DEST_PATH_IMAGE012
 
Figure 329750DEST_PATH_IMAGE042
 
Figure 148670DEST_PATH_IMAGE066
 
Figure 488647DEST_PATH_IMAGE063
 
Figure 658597DEST_PATH_IMAGE011
 
Figure 991490DEST_PATH_IMAGE042
 
Figure 163452DEST_PATH_IMAGE058
 
Figure 438444DEST_PATH_IMAGE066
,
Figure 331576DEST_PATH_IMAGE044
 
Figure 202580DEST_PATH_IMAGE015
 
Figure 996092DEST_PATH_IMAGE042
 
Figure 946381DEST_PATH_IMAGE045
 
Figure 559765DEST_PATH_IMAGE063
 
Figure 500039DEST_PATH_IMAGE014
 
Figure 649523DEST_PATH_IMAGE042
 
Figure 180047DEST_PATH_IMAGE040
  
Figure 908761DEST_PATH_IMAGE042
 
Figure 135605DEST_PATH_IMAGE066
 
Figure 536631DEST_PATH_IMAGE063
 
Figure 67975DEST_PATH_IMAGE011
 
Figure 206700DEST_PATH_IMAGE042
 
Figure 650451DEST_PATH_IMAGE066
 
Figure 991302DEST_PATH_IMAGE063
 
Figure 562223DEST_PATH_IMAGE013
 
Figure 39341DEST_PATH_IMAGE042
 
Figure 653993DEST_PATH_IMAGE060
,  
Figure 732917DEST_PATH_IMAGE042
 
Figure 472465DEST_PATH_IMAGE051
 
Figure 584646DEST_PATH_IMAGE063
 
Figure 746637DEST_PATH_IMAGE014
 
Figure 702742DEST_PATH_IMAGE042
 
Figure 174043DEST_PATH_IMAGE064
Figure 947089DEST_PATH_IMAGE040
 
Figure 912771DEST_PATH_IMAGE012
 
Figure 218988DEST_PATH_IMAGE042
 
Figure 359726DEST_PATH_IMAGE066
 
Figure 384183DEST_PATH_IMAGE063
 
Figure 887976DEST_PATH_IMAGE011
  
Figure 363268DEST_PATH_IMAGE066
 
Figure 422491DEST_PATH_IMAGE063
 
Figure 409602DEST_PATH_IMAGE013
 
Figure 752727DEST_PATH_IMAGE042
 
Figure 175881DEST_PATH_IMAGE065
,
Figure 909350DEST_PATH_IMAGE044
 
Figure 754947DEST_PATH_IMAGE015
 
Figure 388797DEST_PATH_IMAGE042
 
Figure 543704DEST_PATH_IMAGE051
   
Figure 915221DEST_PATH_IMAGE014
 
Figure 232939DEST_PATH_IMAGE042
 
Figure 256357DEST_PATH_IMAGE040
 
Figure 896286DEST_PATH_IMAGE012
 
Figure 569975DEST_PATH_IMAGE042
 
Figure 4367DEST_PATH_IMAGE058
 
Figure 747195DEST_PATH_IMAGE060
 
Figure 486088DEST_PATH_IMAGE063
 
Figure 450501DEST_PATH_IMAGE011
  
Figure 115280DEST_PATH_IMAGE066
 
Figure 831432DEST_PATH_IMAGE063
 
Figure 728981DEST_PATH_IMAGE013
 
Figure 83606DEST_PATH_IMAGE042
 
Figure 987977DEST_PATH_IMAGE066
,
Figure 9285DEST_PATH_IMAGE044
 
Figure 761341DEST_PATH_IMAGE015
 
Figure 708437DEST_PATH_IMAGE042
 
Figure 660956DEST_PATH_IMAGE051
   
Figure 210514DEST_PATH_IMAGE042
 
Figure 780823DEST_PATH_IMAGE067
上述参数均为模糊规则常用预设值,以上十二条模糊规则保证轮椅在前方、左方、右方出现障碍物时,轮椅可以安全避过障碍物,向安全的地点移动。例如第三条规则,当轮椅左方的障碍物与轮椅的距离中等,前方的障碍物与轮椅的距离较远,右方的障碍物与轮椅的距离较近的时候,轮椅将以较小的线速度保持直行,以免与障碍物发生碰撞,其余各个规则不再赘述。该模糊规则库可以保证轮椅在避障操作中有合理的角速度和线速度,保证了轮椅的安全。
所述步骤4)中设计沿墙走行为的模糊控制器的输为为左侧、前方、右侧超声传感器探测的轮椅和墙的距离
Figure 908047DEST_PATH_IMAGE012
Figure 159479DEST_PATH_IMAGE013
,输出为轮椅运动的线速度
Figure 588056DEST_PATH_IMAGE016
以及角速度
Figure 751927DEST_PATH_IMAGE017
。其模糊规则如下所示:
 
Figure 792882DEST_PATH_IMAGE012
 
Figure 944640DEST_PATH_IMAGE042
 
Figure 413667DEST_PATH_IMAGE060
 
Figure 583748DEST_PATH_IMAGE063
 
Figure 972705DEST_PATH_IMAGE011
 
Figure 110294DEST_PATH_IMAGE042
 
Figure 618898DEST_PATH_IMAGE066
 
Figure 909065DEST_PATH_IMAGE063
 
Figure 976247DEST_PATH_IMAGE013
 
Figure 99667DEST_PATH_IMAGE042
 
Figure 910497DEST_PATH_IMAGE060
,
Figure 55171DEST_PATH_IMAGE044
 
Figure 794719DEST_PATH_IMAGE017
 
Figure 906900DEST_PATH_IMAGE042
 
Figure 760237DEST_PATH_IMAGE051
 
Figure 149630DEST_PATH_IMAGE063
 
Figure 856817DEST_PATH_IMAGE016
 
Figure 393977DEST_PATH_IMAGE042
 
Figure 359659DEST_PATH_IMAGE064
Figure 164411DEST_PATH_IMAGE040
 
Figure 432712DEST_PATH_IMAGE012
  
Figure 398448DEST_PATH_IMAGE060
 
Figure 637799DEST_PATH_IMAGE063
 
Figure 388586DEST_PATH_IMAGE011
 
Figure 198541DEST_PATH_IMAGE042
 
Figure 692977DEST_PATH_IMAGE066
 
Figure 786835DEST_PATH_IMAGE063
 
Figure 207058DEST_PATH_IMAGE013
 
Figure 2845DEST_PATH_IMAGE042
 
Figure 536857DEST_PATH_IMAGE065
,
Figure 672172DEST_PATH_IMAGE044
 
Figure 577811DEST_PATH_IMAGE017
 
Figure 365288DEST_PATH_IMAGE042
 
Figure 201526DEST_PATH_IMAGE055
 
Figure 4397DEST_PATH_IMAGE063
 
Figure 769353DEST_PATH_IMAGE016
 
Figure 539732DEST_PATH_IMAGE042
 
Figure 678195DEST_PATH_IMAGE069
Figure 335573DEST_PATH_IMAGE040
  
Figure 529105DEST_PATH_IMAGE042
 
Figure 520195DEST_PATH_IMAGE060
 
Figure 484609DEST_PATH_IMAGE063
 
Figure 644895DEST_PATH_IMAGE011
  
Figure 856750DEST_PATH_IMAGE066
 
Figure 177136DEST_PATH_IMAGE063
 
Figure 281227DEST_PATH_IMAGE013
  
Figure 203976DEST_PATH_IMAGE066
,
Figure 956031DEST_PATH_IMAGE044
 
Figure 404592DEST_PATH_IMAGE017
 
Figure 858576DEST_PATH_IMAGE042
 
Figure 686505DEST_PATH_IMAGE057
 
Figure 480017DEST_PATH_IMAGE063
  
Figure 791492DEST_PATH_IMAGE042
 
Figure 715455DEST_PATH_IMAGE067
Figure 176523DEST_PATH_IMAGE040
 
Figure 229536DEST_PATH_IMAGE012
 
Figure 658113DEST_PATH_IMAGE042
 
Figure 559335DEST_PATH_IMAGE065
 
Figure 140489DEST_PATH_IMAGE063
 
Figure 600289DEST_PATH_IMAGE011
 
Figure 32275DEST_PATH_IMAGE042
 
Figure 48772DEST_PATH_IMAGE066
 
Figure 671383DEST_PATH_IMAGE063
  
Figure 206718DEST_PATH_IMAGE042
 
Figure 26906DEST_PATH_IMAGE060
,
Figure 64876DEST_PATH_IMAGE044
 
Figure 132058DEST_PATH_IMAGE017
  
Figure 554392DEST_PATH_IMAGE047
 
Figure 213912DEST_PATH_IMAGE063
 
Figure 265045DEST_PATH_IMAGE016
 
Figure 819304DEST_PATH_IMAGE042
 
Figure 918158DEST_PATH_IMAGE040
 
Figure 327142DEST_PATH_IMAGE012
  
Figure 390837DEST_PATH_IMAGE065
 
Figure 697053DEST_PATH_IMAGE063
 
Figure 824409DEST_PATH_IMAGE011
  
Figure 103392DEST_PATH_IMAGE066
 
Figure 22370DEST_PATH_IMAGE063
 
Figure 320627DEST_PATH_IMAGE013
 
Figure 832380DEST_PATH_IMAGE042
 
Figure 890597DEST_PATH_IMAGE065
,
Figure 905827DEST_PATH_IMAGE044
 
Figure 640564DEST_PATH_IMAGE017
 
Figure 934886DEST_PATH_IMAGE042
 
Figure 233012DEST_PATH_IMAGE047
 
Figure 869792DEST_PATH_IMAGE063
 
Figure 775431DEST_PATH_IMAGE016
 
Figure 996197DEST_PATH_IMAGE042
 
Figure 336829DEST_PATH_IMAGE069
Figure 388968DEST_PATH_IMAGE040
  
Figure 675035DEST_PATH_IMAGE042
 
Figure 49385DEST_PATH_IMAGE065
 
Figure 720144DEST_PATH_IMAGE063
 
Figure 154536DEST_PATH_IMAGE011
 
Figure 162944DEST_PATH_IMAGE042
 
Figure 904766DEST_PATH_IMAGE066
 
Figure 869180DEST_PATH_IMAGE063
 
Figure 287523DEST_PATH_IMAGE013
  
Figure 264759DEST_PATH_IMAGE066
,
Figure 896729DEST_PATH_IMAGE044
 
Figure 174389DEST_PATH_IMAGE017
  
Figure 425034DEST_PATH_IMAGE047
   
Figure 204268DEST_PATH_IMAGE042
 
Figure 340851DEST_PATH_IMAGE067
Figure 435496DEST_PATH_IMAGE040
 
Figure 819073DEST_PATH_IMAGE012
  
Figure 874196DEST_PATH_IMAGE066
 
Figure 584532DEST_PATH_IMAGE063
 
Figure 637545DEST_PATH_IMAGE011
 
Figure 551274DEST_PATH_IMAGE042
 
Figure 278928DEST_PATH_IMAGE066
 
Figure 548497DEST_PATH_IMAGE063
 
Figure 821347DEST_PATH_IMAGE013
 
Figure 674902DEST_PATH_IMAGE042
 
Figure 433343DEST_PATH_IMAGE060
,
Figure 869004DEST_PATH_IMAGE044
 
Figure 499705DEST_PATH_IMAGE017
 
Figure 404338DEST_PATH_IMAGE042
 
Figure 411478DEST_PATH_IMAGE045
 
Figure 701645DEST_PATH_IMAGE063
 
Figure 329679DEST_PATH_IMAGE016
 
Figure 892247DEST_PATH_IMAGE042
 
Figure 250547DEST_PATH_IMAGE067
Figure 349215DEST_PATH_IMAGE040
 
Figure 384036DEST_PATH_IMAGE012
 
Figure 246950DEST_PATH_IMAGE042
 
Figure 287237DEST_PATH_IMAGE066
 
Figure 551996DEST_PATH_IMAGE063
 
Figure 524763DEST_PATH_IMAGE011
 
Figure 61923DEST_PATH_IMAGE042
 
Figure 762026DEST_PATH_IMAGE066
 
Figure 566778DEST_PATH_IMAGE063
 
Figure 208980DEST_PATH_IMAGE013
 
Figure 46486DEST_PATH_IMAGE042
 
Figure 238696DEST_PATH_IMAGE065
,
Figure 461735DEST_PATH_IMAGE044
 
Figure 25572DEST_PATH_IMAGE017
 
Figure 53438DEST_PATH_IMAGE042
 
Figure 344611DEST_PATH_IMAGE055
 
Figure 438469DEST_PATH_IMAGE063
 
Figure 861622DEST_PATH_IMAGE016
 
Figure 657409DEST_PATH_IMAGE042
 
Figure 454070DEST_PATH_IMAGE069
Figure 589385DEST_PATH_IMAGE040
   
Figure 850230DEST_PATH_IMAGE066
  
Figure 686566DEST_PATH_IMAGE011
 
Figure 456945DEST_PATH_IMAGE042
 
Figure 644344DEST_PATH_IMAGE066
  
Figure 752425DEST_PATH_IMAGE013
 
Figure 446318DEST_PATH_IMAGE042
 ,
Figure 464139DEST_PATH_IMAGE044
 
Figure 570897DEST_PATH_IMAGE017
 
Figure 801022DEST_PATH_IMAGE042
 
Figure 845070DEST_PATH_IMAGE057
 
Figure 156666DEST_PATH_IMAGE063
  
Figure 745910DEST_PATH_IMAGE016
  
Figure 999485DEST_PATH_IMAGE067
Figure 672912DEST_PATH_IMAGE040
 
Figure 698637DEST_PATH_IMAGE012
 
Figure 588839DEST_PATH_IMAGE042
 
Figure 709111DEST_PATH_IMAGE058
 
Figure 315673DEST_PATH_IMAGE060
 
Figure 200714DEST_PATH_IMAGE063
   
Figure 969103DEST_PATH_IMAGE058
  
Figure 188043DEST_PATH_IMAGE063
 
Figure 666429DEST_PATH_IMAGE013
 
Figure 168954DEST_PATH_IMAGE042
 
Figure 455186DEST_PATH_IMAGE058
 
Figure 43162DEST_PATH_IMAGE060
,
Figure 325238DEST_PATH_IMAGE044
 
Figure 511631DEST_PATH_IMAGE017
  
Figure 296234DEST_PATH_IMAGE057
 
Figure 819486DEST_PATH_IMAGE063
 
Figure 358921DEST_PATH_IMAGE016
 
Figure 973573DEST_PATH_IMAGE042
 
 
Figure 55427DEST_PATH_IMAGE012
 
Figure 792045DEST_PATH_IMAGE042
 
Figure 904226DEST_PATH_IMAGE060
 
Figure 66217DEST_PATH_IMAGE063
 
Figure 19392DEST_PATH_IMAGE011
 
Figure 490694DEST_PATH_IMAGE042
  
Figure 232352DEST_PATH_IMAGE066
 
Figure 600885DEST_PATH_IMAGE063
 
Figure 682236DEST_PATH_IMAGE013
 
Figure 519742DEST_PATH_IMAGE042
  
Figure 932061DEST_PATH_IMAGE060
,
Figure 495897DEST_PATH_IMAGE044
   
Figure 81097DEST_PATH_IMAGE057
   
Figure 41980DEST_PATH_IMAGE016
  
Figure 773624DEST_PATH_IMAGE064
Figure 866213DEST_PATH_IMAGE040
 
Figure 900029DEST_PATH_IMAGE012
 
Figure 234802DEST_PATH_IMAGE042
 
Figure 552519DEST_PATH_IMAGE058
 
Figure 629060DEST_PATH_IMAGE060
 
Figure 573007DEST_PATH_IMAGE063
 
Figure 275253DEST_PATH_IMAGE011
 
Figure 198209DEST_PATH_IMAGE042
 
Figure 136996DEST_PATH_IMAGE058
 
Figure 129092DEST_PATH_IMAGE066
 
Figure 808597DEST_PATH_IMAGE063
 
Figure 586060DEST_PATH_IMAGE013
 
Figure 191354DEST_PATH_IMAGE042
 
Figure 434860DEST_PATH_IMAGE060
,
Figure 964062DEST_PATH_IMAGE044
 
Figure 48561DEST_PATH_IMAGE017
 
Figure 388538DEST_PATH_IMAGE042
 
Figure 105958DEST_PATH_IMAGE045
   
Figure 955738DEST_PATH_IMAGE016
 
Figure 902834DEST_PATH_IMAGE042
 
Figure 107550DEST_PATH_IMAGE064
Figure 994866DEST_PATH_IMAGE040
 
Figure 788378DEST_PATH_IMAGE012
 
Figure 719425DEST_PATH_IMAGE042
 
Figure 96924DEST_PATH_IMAGE060
 
Figure 286465DEST_PATH_IMAGE063
  
Figure 537897DEST_PATH_IMAGE042
 
Figure 966474DEST_PATH_IMAGE058
 
Figure 444860DEST_PATH_IMAGE066
  
Figure 239476DEST_PATH_IMAGE013
 
Figure 328917DEST_PATH_IMAGE042
 
Figure 610994DEST_PATH_IMAGE060
,
Figure 30343DEST_PATH_IMAGE044
 
Figure 739673DEST_PATH_IMAGE017
     
Figure 428701DEST_PATH_IMAGE016
  
Figure 107824DEST_PATH_IMAGE064
上述参数均为模糊规则常用预设值,以上十三条规则保证轮椅可以沿着左侧或者右侧墙壁(或者路沿)运动。原理是当轮椅距离右侧墙壁过近时,轮椅则向远离右侧墙壁的方向运动,相反当轮椅与右侧墙壁距离较大时则向靠近墙壁的方向运动,轮椅在不断的远离和靠近的动作中保持对墙壁的跟踪。
步骤5)中所述神经网络设计行为协调控制器的输入为三个超声传感器的信息
Figure 501765DEST_PATH_IMAGE012
Figure 552898DEST_PATH_IMAGE011
Figure 104227DEST_PATH_IMAGE013
和用于监测轮椅是否进入陷阱区域的标志变量,输出为三个行为的权重值,再根据公式
Figure 780245DEST_PATH_IMAGE070
得出轮椅的整体行为,其中
Figure 21663DEST_PATH_IMAGE021
Figure 987345DEST_PATH_IMAGE022
分别表示趋向行为输出的线速度、避障行为输出的线速度、沿墙走行为输出的线速度,
Figure 795026DEST_PATH_IMAGE023
分别表示趋向行为输出的角速度、避障行为输出的角速度、沿墙走行为输出的角速度,
Figure 204295DEST_PATH_IMAGE026
Figure 692914DEST_PATH_IMAGE027
分别表示趋向行为输出的权重值、避障行为输出的权重值、沿墙走行为输出的权重值。
所述权重值与预设阈值K进行比较,权重值小于K时默认为0,大于K时为计算出的实际值。
该方法将仲裁机制和命令融合机制有效结合起来,训练后的神经网络根据外部环境的情形可以选择全部或者部分行为的激活。周围没有障碍物时能够单独执行趋向行为,忽略避障和沿墙走行为可以节省不必要的系统开销,系统具有较快的反应速度;如果附近有障碍物则可以综合所有行为的结果得到整体的输出,提高系统控制精度和目的性。系统兼顾了反应速度和控制精度,在室外复杂工作环境下能够获得较好的导航控制效果。
在室外复杂动态的工作环境中存在大量的陷阱区域,例如密集障碍物区域、一段长度很长且没有断点的路沿、转盘、曲率较小的转弯等等,陷阱区域的特殊路况容易让轮椅在反复的避障或者沿墙走的行为中失去导航的目的性。为进一步提高系统的智能性,行为协调控制器引入标志变量
Figure 4389DEST_PATH_IMAGE018
用以监测轮椅是否进入陷阱区域,当监测到轮椅进入陷阱区域后控制器会做通过自主改变行为控制权重的方式提高导航的目的性,控制轮椅尽快逃出陷阱区域,系统控制流程图如图4所示。
Figure 340485DEST_PATH_IMAGE030
时刻轮椅与目标点的距离,
Figure 75222DEST_PATH_IMAGE031
为下一个采样时刻轮椅与目标点的距离,
Figure 808692DEST_PATH_IMAGE032
,表示轮椅正向着目标点靠近,
Figure 405021DEST_PATH_IMAGE018
为初始值
Figure 353385DEST_PATH_IMAGE033
Figure 445975DEST_PATH_IMAGE034
表示轮椅向着背离目标点的方向运动,反映出轮椅进入了陷阱区域,
Figure 245171DEST_PATH_IMAGE018
的值由初始值
Figure 81409DEST_PATH_IMAGE033
变为
Figure 884280DEST_PATH_IMAGE035
时,行为协调控制器就能够监测到轮椅进入了陷阱区域,此时神经网络的输出为
Figure 872592DEST_PATH_IMAGE072
针对陷阱区域所设计,具备以下两个特点:
①可以暂时忽略周围障碍物信息而单纯执行趋向行为。
该特性相当于改变了行为的优先级或者控制权重,在存在障碍物的环境条件下趋向行为也将有机会被单独执行。由于陷阱区域的障碍物信息导致控制器输出的控制决策失去了导航的目的性,因此忽略障碍物的信息而执行趋向行为可以提前终止不合理的控制决策,提高了控制的目的性,从而可以控制轮椅尽快逃出陷阱区域向着目标点前进。
Figure 215456DEST_PATH_IMAGE073
。如果单纯的忽略障碍物信息而执行趋向行为,容易造成使用的不安全,因此将①中的趋向行为的线速度设置为0轮椅可以在原地完成方向的调整,从而保证了轮椅的安全。
Figure 712165DEST_PATH_IMAGE074
用以控制识别陷阱区域功能的开启和关闭,
Figure 720572DEST_PATH_IMAGE075
时将开启该功能,此时将对进行监测。当控制器输出
Figure 426808DEST_PATH_IMAGE072
后,
Figure 845151DEST_PATH_IMAGE074
被置为
Figure 32200DEST_PATH_IMAGE077
关闭该功能,直至下一次执行趋向行为后重新被置为
Figure 131054DEST_PATH_IMAGE078
,该功能再次启动。关闭陷阱识别功能的目的是防止轮椅一直在陷阱区域反复不前。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1. 一种基于协调控制的智能轮椅室外导航方法,它包括有模糊控制器、协调控制器、一个GPS定位装置和三个超声传感器,其步骤如下:
1)轮椅和障碍物信息采集:GPS定位装置和三个超声传感器实时采集信息,GPS定位装置用于轮椅本身的自定位,三个超声传感器分别位于轮椅的左、右两侧和正前方,对障碍物进行监测;
2)设计趋向行为:根据GPS定位装置的数据推算出轮椅的位置和姿态,利用轮椅的位置和姿态信息作为输入信息,通过模糊控制器处理设计出轮椅的趋向行为,即轮椅朝着目标前进的运动行为;
3)设计避障行为:轮椅正前方超声传感器采集到的障碍物距离数据,通过模糊控制器设计出避障行为,即轮椅绕开障碍物的运动行为;
4)设计沿墙走行为:利用位于轮椅两侧的超声传感器采集到的两侧障碍物距离信息,通过模糊控制器设计沿墙走行为,即轮椅对障碍物边沿进行跟踪并保持一定距离的运动行为;
5)步骤2)、3)、4)所述的三个基本独立运动行为,通过神经网络设计行为协调控制器对三个行为进行协调控制,进而得到导航目的性的整体行为,即轮椅的实际运动行为。
2. 如权利要求1所述的一种基于轮调控制的智能轮椅室外导航方法,其特征在于:所述步骤2)中设计趋向行为的模糊控制器的输入变量是轮椅与目标之间的距离                                               以及当前趋向角的值
Figure 2011102105856100001DEST_PATH_IMAGE004
,输出是轮椅的线速度
Figure 2011102105856100001DEST_PATH_IMAGE006
和角速度
Figure 2011102105856100001DEST_PATH_IMAGE008
Figure 57339DEST_PATH_IMAGE002
越大轮椅距离目标点越远,控制线速度越大,
Figure 754216DEST_PATH_IMAGE002
越小轮椅距离目标点越近,控制线速度
Figure 24792DEST_PATH_IMAGE006
越小;
运动方向偏向目标点左边
Figure 839164DEST_PATH_IMAGE004
取负值,偏向右边
Figure 661627DEST_PATH_IMAGE004
取正值,
Figure 804026DEST_PATH_IMAGE004
的绝对值越大,控制
Figure 2926DEST_PATH_IMAGE008
越大,反之的绝对值越小,控制越小,轮椅根据
Figure 294864DEST_PATH_IMAGE004
的正负来决定转动方向。
3. 如权利要求2所述的一种基于协调控制的智能轮椅室外导航方法,其特征在于:
轮椅与目标之间的距离根据GPS定位装置可以进行实时测量;
当前趋向角的值
Figure 430628DEST_PATH_IMAGE004
可以根据以下公式测得
Figure 2011102105856100001DEST_PATH_IMAGE010
Figure 2011102105856100001DEST_PATH_IMAGE012
表示当前轮椅位置,表示轮椅上一个采样时刻的位置,由此两点将确定向量
Figure DEST_PATH_IMAGE016
,同理,由
Figure 611205DEST_PATH_IMAGE012
和目标点
Figure DEST_PATH_IMAGE018
可以确定向量
Figure DEST_PATH_IMAGE020
4. 如权利要求1所述的一种基于协调控制的智能轮椅室外导航方法,其特征在于:所述步骤3)中设计避障行为的模糊控制器的输入为轮椅前方超声传感器探测的障碍物距离,左侧超声传感器探测的障碍物距离,右侧超声传感器探测的障碍物距离
Figure DEST_PATH_IMAGE026
,输出为轮椅的线速度
Figure DEST_PATH_IMAGE028
和角速度
Figure DEST_PATH_IMAGE030
5. 如权利要求1所述的一种基于协调控制的智能轮椅室外导航方法,其特征在于:所述步骤4)中设计沿墙走行为的模糊控制器的输为为左侧、前方、右侧超声传感器探测的轮椅和墙的距离
Figure 603562DEST_PATH_IMAGE024
Figure 754052DEST_PATH_IMAGE022
Figure 397523DEST_PATH_IMAGE026
,输出为轮椅运动的线速度
Figure DEST_PATH_IMAGE032
以及角速度
Figure DEST_PATH_IMAGE034
6. 如权利要求1、2、3、4或5所述的一种基于协调控制的智能轮椅室外导航方法,其特征在于:步骤5)中所述神经网络设计行为协调控制器的输入为三个超声传感器的信息
Figure 608056DEST_PATH_IMAGE024
Figure 212344DEST_PATH_IMAGE022
Figure 291158DEST_PATH_IMAGE026
和用于监测轮椅是否进入陷阱区域的标志变量
Figure DEST_PATH_IMAGE036
,输出为三个行为的权重值,再根据公式
Figure DEST_PATH_IMAGE038
得出轮椅的整体行为,其中
Figure DEST_PATH_IMAGE040
Figure DEST_PATH_IMAGE042
Figure DEST_PATH_IMAGE044
分别表示趋向行为输出的线速度、避障行为输出的线速度、沿墙走行为输出的线速度,
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE050
分别表示趋向行为输出的角速度、避障行为输出的角速度、沿墙走行为输出的角速度,
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE056
分别表示趋向行为输出的权重值、避障行为输出的权重值、沿墙走行为输出的权重值。
7. 如权利要求6所述的一种基于协调控制的智能轮椅室外导航方法,其特征在于:所述权重值与预设阈值K进行比较,权重值小于K时默认为0,大于K时为计算出的实际值。
8. 如权利档求6所述的一种基于协调控制的智能轮椅室外导航方法,其特征在于:
Figure DEST_PATH_IMAGE060
时刻轮椅与目标点的距离,为下一个采样时刻轮椅与目标点的距离,
Figure DEST_PATH_IMAGE064
,表示轮椅正向着目标点靠近,
Figure 41333DEST_PATH_IMAGE036
为初始值
Figure DEST_PATH_IMAGE066
表示轮椅向着背离目标点的方向运动,反映出轮椅进入了陷阱区域,
Figure 688346DEST_PATH_IMAGE036
的值由初始值
Figure 638984DEST_PATH_IMAGE066
变为
CN 201110210585 2011-07-26 2011-07-26 一种基于协调控制的智能轮椅室外导航方法 Active CN102323819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110210585 CN102323819B (zh) 2011-07-26 2011-07-26 一种基于协调控制的智能轮椅室外导航方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110210585 CN102323819B (zh) 2011-07-26 2011-07-26 一种基于协调控制的智能轮椅室外导航方法

Publications (2)

Publication Number Publication Date
CN102323819A CN102323819A (zh) 2012-01-18
CN102323819B true CN102323819B (zh) 2013-06-19

Family

ID=45451569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110210585 Active CN102323819B (zh) 2011-07-26 2011-07-26 一种基于协调控制的智能轮椅室外导航方法

Country Status (1)

Country Link
CN (1) CN102323819B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316502B2 (en) * 2014-07-22 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Intelligent mobility aid device and method of navigating and providing assistance to a user thereof
US9578307B2 (en) 2014-01-14 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US9576460B2 (en) 2015-01-21 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable smart device for hazard detection and warning based on image and audio data
US9586318B2 (en) 2015-02-27 2017-03-07 Toyota Motor Engineering & Manufacturing North America, Inc. Modular robot with smart device
US9811752B2 (en) 2015-03-10 2017-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable smart device and method for redundant object identification
US9898039B2 (en) 2015-08-03 2018-02-20 Toyota Motor Engineering & Manufacturing North America, Inc. Modular smart necklace
US9915545B2 (en) 2014-01-14 2018-03-13 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US9922236B2 (en) 2014-09-17 2018-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable eyeglasses for providing social and environmental awareness
US9958275B2 (en) 2016-05-31 2018-05-01 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for wearable smart device communications
US9972216B2 (en) 2015-03-20 2018-05-15 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for storing and playback of information for blind users
US10012505B2 (en) 2016-11-11 2018-07-03 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable system for providing walking directions
US10024678B2 (en) 2014-09-17 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable clip for providing social and environmental awareness
US10024679B2 (en) 2014-01-14 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US10024667B2 (en) 2014-08-01 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable earpiece for providing social and environmental awareness
US10024680B2 (en) 2016-03-11 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Step based guidance system
US10248856B2 (en) 2014-01-14 2019-04-02 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707675B (zh) * 2012-04-23 2015-11-04 深圳市中科鸥鹏智能科技有限公司 群机器人控制器、群机器人控制方法及控制器终端
CN103699124A (zh) * 2013-12-04 2014-04-02 北京工业大学 一种用于全向智能轮椅避障的模糊神经网络控制方法
US10360907B2 (en) 2014-01-14 2019-07-23 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US9629774B2 (en) 2014-01-14 2017-04-25 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
CN105807760B (zh) * 2014-12-30 2020-01-03 Tcl集团股份有限公司 一种智能机器人及其自建路径的方法和装置
US10490102B2 (en) 2015-02-10 2019-11-26 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for braille assistance
US9677901B2 (en) 2015-03-10 2017-06-13 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for providing navigation instructions at optimal times
US10561519B2 (en) 2016-07-20 2020-02-18 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable computing device having a curved back to reduce pressure on vertebrae
US10432851B2 (en) 2016-10-28 2019-10-01 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable computing device for detecting photography
US10521669B2 (en) 2016-11-14 2019-12-31 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for providing guidance or feedback to a user
CN109906069B (zh) * 2017-01-22 2021-12-31 四川金瑞麒智能科学技术有限公司 一种具有医疗监测及反应功能的智能轮椅系统
US11314256B2 (en) 2017-01-22 2022-04-26 Sichuan Golden Ridge Intelligence Science & Technology Co., Ltd. Mechanical transmission control method and system for use with intelligent wheelchair
WO2018133074A1 (zh) * 2017-01-22 2018-07-26 四川金瑞麒智能科学技术有限公司 一种基于大数据及人工智能的智能轮椅系统
CN110225736B (zh) * 2017-01-22 2021-12-31 四川金瑞麒智能科学技术有限公司 一种智能轮椅的环境信息收集与反馈系统及方法
CN108762260A (zh) * 2018-05-16 2018-11-06 南京理工大学 基于差分gps的履带式自主导航机器人及其导航方法
CN109709546B (zh) * 2019-01-14 2021-11-16 珠海格力电器股份有限公司 宠物状态监测方法和装置
CN111966130B (zh) * 2020-06-28 2023-06-27 上海伊涵家居饰品有限公司 座椅自动归位控制方法、系统及其存储介质
CN112698169B (zh) * 2021-01-11 2022-02-01 中国科学院声学研究所 一种电晕放电定位方法、装置、电子设备及存储介质
CN114046796A (zh) * 2021-11-04 2022-02-15 南京理工大学 一种智能轮椅自主行走算法、装置及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577782B1 (en) * 1991-11-01 2000-06-28 Motorola, Inc. A vehicle route guidance system
TW459168B (en) * 2000-05-25 2001-10-11 Notetry Ltd Indicator for a robotic machine
CN101598559A (zh) * 2008-06-05 2009-12-09 广东电子工业研究院有限公司 车载持续导航装置的定位补偿方法和定位数据的优化算法
CN100568144C (zh) * 2008-09-04 2009-12-09 湖南大学 一种未知环境下移动机器人多行为融合自动导航方法
CN101549498B (zh) * 2009-04-23 2010-12-29 上海交通大学 智能帮扶式助行机器人的自主跟踪与导航系统

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9578307B2 (en) 2014-01-14 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US10248856B2 (en) 2014-01-14 2019-04-02 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US9915545B2 (en) 2014-01-14 2018-03-13 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US10024679B2 (en) 2014-01-14 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US9316502B2 (en) * 2014-07-22 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Intelligent mobility aid device and method of navigating and providing assistance to a user thereof
US10024667B2 (en) 2014-08-01 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable earpiece for providing social and environmental awareness
US10024678B2 (en) 2014-09-17 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable clip for providing social and environmental awareness
US9922236B2 (en) 2014-09-17 2018-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable eyeglasses for providing social and environmental awareness
US9576460B2 (en) 2015-01-21 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable smart device for hazard detection and warning based on image and audio data
US9586318B2 (en) 2015-02-27 2017-03-07 Toyota Motor Engineering & Manufacturing North America, Inc. Modular robot with smart device
US9811752B2 (en) 2015-03-10 2017-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable smart device and method for redundant object identification
US9972216B2 (en) 2015-03-20 2018-05-15 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for storing and playback of information for blind users
US9898039B2 (en) 2015-08-03 2018-02-20 Toyota Motor Engineering & Manufacturing North America, Inc. Modular smart necklace
US10024680B2 (en) 2016-03-11 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Step based guidance system
US9958275B2 (en) 2016-05-31 2018-05-01 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for wearable smart device communications
US10012505B2 (en) 2016-11-11 2018-07-03 Toyota Motor Engineering & Manufacturing North America, Inc. Wearable system for providing walking directions

Also Published As

Publication number Publication date
CN102323819A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
CN102323819B (zh) 一种基于协调控制的智能轮椅室外导航方法
Gehrig et al. Collision avoidance for vehicle-following systems
WO2017041730A1 (zh) 一种移动机器人避障导航的方法和系统
WO2019076044A1 (zh) 移动机器人局部运动规划方法、装置及计算机存储介质
CN105629970A (zh) 一种基于超声波的机器人定位避障方法
CN103984342A (zh) 移动机器人的多脉冲神经网络控制器导航控制方法
Handayani et al. Target tracking in mobile robot under uncertain environment using fuzzy logic controller
CN104097205B (zh) 基于任务空间的机器人实时运动自碰撞避免控制方法
Cao et al. Fuzzy logic control for an automated guided vehicle
Takahashi et al. Development of prediction based emergency obstacle avoidance module by using LIDAR for mobile robot
Ghandour et al. A hybrid collision avoidance system for indoor mobile robots based on human-robot interaction
Dafflon et al. Adaptive autonomous navigation using reactive multi-agent system for control law merging
CN115399950A (zh) 具有定位导航与多模态人机交互功能的智能轮椅及控制方法
CN111590576B (zh) 一种核辐射环境的救灾机器人
Watthanawisuth et al. Design of mobile robot for real world application in path planning using ZigBee localization
He et al. A fuzzy neural network based on TS model for mobile robots to avoid obstacles
CN109015643A (zh) 一种行走机器人行走线路控制方法
Wei et al. 3-D path planning using neural networks for a robot manipulator
Petrović Small-scale cars for autonomous driving research
Ardilla et al. Topological Twin for Mobility Support Robots
Sun et al. Personal Care Robot Navigation System Based on Multi-sensor Fusion
JP2022181105A (ja) 移動体、制御装置及びそのプログラム
Liang et al. Research on path planning of mine rescue robots based on fuzzy control
Erfani Localization and controlling the mobile robot by sensory data fusion
Alicea Efficient Control and Locomotion Stragegies in Unstructured Natural Environments: A Study of Vegetation-Rich and Fluid-Covered Terrain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant