CN103984342A - 移动机器人的多脉冲神经网络控制器导航控制方法 - Google Patents

移动机器人的多脉冲神经网络控制器导航控制方法 Download PDF

Info

Publication number
CN103984342A
CN103984342A CN201310716892.0A CN201310716892A CN103984342A CN 103984342 A CN103984342 A CN 103984342A CN 201310716892 A CN201310716892 A CN 201310716892A CN 103984342 A CN103984342 A CN 103984342A
Authority
CN
China
Prior art keywords
controller
robot
impact point
mobile robot
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310716892.0A
Other languages
English (en)
Other versions
CN103984342B (zh
Inventor
王秀青
侯增广
谭民
潘世英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Normal University
Original Assignee
王秀青
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王秀青 filed Critical 王秀青
Priority to CN201310716892.0A priority Critical patent/CN103984342B/zh
Publication of CN103984342A publication Critical patent/CN103984342A/zh
Application granted granted Critical
Publication of CN103984342B publication Critical patent/CN103984342B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种移动机器人的多脉冲神经网络控制器导航控制方法,属于移动机器人目标点趋近自主导航控制器技术领域,用于移动机器人的导航控制。其技术方案是:本发明包括目标点趋近控制器、沿墙行走控制器、避障行为控制器,控制器中采用了脉冲神经网络,在神经网络中同时融入时空信息。本方法在不同条件下设定各控制器权值,并根据不同控制器的权值顺序作为控制器激活与否的判别顺序,通过控制器激活及转换条件的使用,实现各控制器之间的相互转换。本发明通过神经网络的在线训练,实现机器人的在线自主学习,与先前的基于模块化的控制器相比,控制策略简便易行,通过各控制器之间的转换,更加有效、高精度地控制移动机器人实现目标点趋近导航控制任务。

Description

移动机器人的多脉冲神经网络控制器导航控制方法
技术领域
本发明涉及一种基于多个脉冲神经网络控制器的移动机器人的导航控制方法,属于移动机器人目标点趋近自主导航控制器技术领域。 
背景技术
移动机器人是机器人学中的一个重要分支,它是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合智能控制系统,主要应用于军事和民用两大领域。服务机器人是机器人研究领域的一个重要分支,在服务机器人中以移动机器人为多。移动机器人发展趋势之一是逐步向智能化方向发展。神经网络、模糊理论、遗传算法等智能计算方法为移动机器人的智能化起到了推进的作用。 
移动机器人要完成给定任务, 需要进行自主导航。自主导航是移动机器人中所要解决的重要关键问题之一。移动机器人的给定任务多以目标点趋近子任务为基础,因而目标点趋近导航是常见的移动机器人导航任务之一。在具有各种不确定信息的未知的非结构化环境中,移动机器人只有实现自主地通过感知和推理实现无碰撞趋向目标位置的智能行为,才能顺利地完成给定任务。对于移动机器人的导航控制问题,传统控制方法通过借助所建立的精确数学模型来分析解决,所设计的导航控制器大多工作在结构化的环境中,完成的任务也多为简单的重复性强的沿规划路径行走的运动。但对于在未知、非结构化环境中执行复杂任务的移动机器人,要想得到环境的精确数学模型是非常困难的。而神经网络应用的特点是不需要建立精确的对象模型,利用神经网络特定的拓扑结构,网络联结突触的权值设定,对应的神经网络学习算法,即可解决很多非线性的实际问题。 
目前被称为第三代神经网络的脉冲神经网络与前两代神经网络相比,脉冲神经网络具有下述优点: 
(1)脉冲神经元中融入了时间和空间信息,因而脉冲神经网络更适用于实际的动态环境中。
(2) 在前两代传统的神经网络中传递的是模拟信号,而脉冲神经元是通过脉冲时间序列传送和接收信息,这就使得脉冲神经网络较那些经典的神经网络具有更强的鲁棒性。 
(3) 脉冲神经网络易于用硬件实现。由于脉冲神经元模型可通过硬件电路模拟,因而脉冲神经网络功能也易于借助神经微电路来实现。 
(4) 脉冲神经网络具有很强的计算能力。它能够以更少的神经元实现第二代神经网络逼近的任何连续函数,因而同样功能的基于脉冲神经网络的神经芯片相对于基于第二代神经网络的神经芯片具有更小的体积和更低的功耗。 
由于在移动机器人控制器的设计中同时需要融入时空信息, 而同时融入时空信息正是脉冲神经网络较传统的神经网络相比独具的特点,此外脉冲神经网络计算速度快、易于用硬件实现,所以脉冲神经网络更适于移动机器人控制器的设计。 
发明内容
本发明所要解决的技术问题是提供一种移动机器人的多脉冲神经网络控制器导航控制方法,这种方法基于距离传感信息融合及多个脉冲神经网络控制器,使得移动机器人在未知、非结构环境中能够利用脉冲神经网络避障行为控制器、脉冲神经网络沿墙行走控制器进行自主避障、自主沿墙行走,配合目标点趋近模块,从而完成移动机器人在未知环境中的目标点趋近导航任务。 
解决上述技术问题的技术方法是: 
一种移动机器人的多脉冲神经网络控制器导航控制方法,它包括目标点趋近控制器、沿墙行走控制器、避障行为控制器,沿墙行走控制器和避障行为控制器中采用了脉冲神经网络,在神经网络中同时融入时空信息,导航控制方法包括以下步骤:
步骤A:初始化各控制器,及相关阈值参数: 为判断周边障碍物考虑与否的阈值,为机器人中心距目标点的距离,为机器人是否到达目标点阈值,当机器人中心距目标点的距离机器人到达目标点阈值,即,认为机器人到达目标点,为移动机器人运动方向是否偏离给定方向阈值;
步骤B:计算 为移动机器人当前运动方向和机器人中心点(x r ; y r )与目标点(x t ; y t )连线之间的夹角,  为移动机器人中心点(x,y)与目标点(x t ; y t )连线与笛卡儿坐标系中横坐标轴正向之间的夹角, 为移动机器人位姿角;
的计算如下(1)(2)式所示:
步骤C:采集距离传感器测量信息;
步骤D:判断机器人当前位置是否到达目标点,即是否?如果机器人当前位置到达目标点,即,转入步骤L,机器人停止运动,否则进入步骤E;
步骤E: 如果机器人当前位置未到达目标点,即,进入权值设置模块,设定各控制器权值,权值从大到小的顺序决定着判断各控制器是否激活的顺序;
步骤F: 若机器人当前位置未到达目标点,即当,并且移动机器人前半周距离传感器的测量值中的最小值时,目标点趋近控制器值最大,判断是否满足目标点趋近控制器条件,满足则先进入目标点趋近控制器,即转入步骤K。否则转入步骤G;
步骤G: 当移动机器人正前半周距离传感器的测量值中的最小值<机器人与目标点之间的距离,即时,根据各控制器权值大小的顺序判断各控制器激活的条件是否满足。先判断是否满足沿墙行走控制器激活条件,满足则进入I;不满足,判断是否满足避障行为控制器激活条件,满足则转入步骤J,仍旧不满足避障行为控制器激活条件,则转入步骤H;
步骤H: 判断是否满足目标点趋近控制器激活条件,满足则转入步骤K;
步骤I: 根据沿墙行走控制器控制策略控制机器人逆时针或顺时针沿墙行走时间,行走时间后,重复步骤B;
步骤J: 根据避障行为控制器控制策略控制机器人进行避障行走时间,行走时间后,重复步骤B;
步骤K: 进入目标点趋近控制器,按目标点趋近进行机器人控制,行走时间后,重复步骤B; 
步骤L:机器人到达目标点,机器人停止运动。
上述移动机器人的多脉冲神经网络控制器导航控制方法,所述权值设定算法为:当机器人与目标点之间的距离移动机器人距离正前半周最近的障碍物的距离,即,设定目标点趋近控制器的权值沿墙行走控制器的权值避障行为控制器的权值;否则,当机器人与目标点之间的距离移动机器人距离最近的障碍物的距离,即时,沿墙行走控制器的权值避障行为控制器的权值目标点趋近控制器的权值。 
上述移动机器人的多脉冲神经网络控制器导航控制方法,所述沿墙行走控制器中的脉冲神经网络工作过程为: 
(1) 计算输入层脉冲神经元的脉冲频率编码;
(2) 计算隐含层神经元的膜潜能及其输出脉冲数,及脉冲点火时间;
(3) 计算电机神经元的膜潜能(电位)、输出脉冲数,及脉冲输出时间;
(4) 利用电机神经元的输出脉冲数,控制机器人驱动电机旋转角速度。
上述移动机器人的多脉冲神经网络控制器导航控制方法,所述避障行为控制器中的脉冲神经网络工作过程为: 
(1) 采集距离传感器测量信息;
(2) 设置脉冲神经网络的网络连接权值;
(3) 图3中范围中传感器距离测量信息的最小值进行脉冲编码后输入至脉冲接近神经元,接近神经元与转向神经元进行脉冲时序同时性检测,同时计算从第k ( =1,2 )个隐含神经元输入到第i个电机神经元的激活潜能;
(4) 将距离传感器测量信息进行脉冲频率编码输入至脉冲传感器神经元,并计算从第 j 个 ( =1,2,3) 传感器神经元输入到第 i 个电机神经元的激活潜能;
(5) 计算两个电机神经元的总的膜潜能;
(6) 利用脉冲神经网络中的无监督的Hebb学习规则调节SNN的网络连接权值;
(7) 根据电机神经元的输出脉冲频率确定机器人驱动轮的角速度。
本发明的有益效果是: 
1.本发明在沿墙行走控制器、避障行为控制器中采用了脉冲神经网络,该神经网络可同时融入时空信息,该脉冲神经网络控制器可以在线学习,具有较强的自适应能力,在相似控制精度下与模糊控制器相比,所设计的脉冲神经网络控制器操作更为简便。
2.本发明提出了各控制器的权值设定算法,配合各控制器激活条件的实施,使得整个控制器算法简便有效,更易于实施。 
3.本发明采用多个子控制器综合导航控制方法,将趋近目标点任务,在不同条件下分解为目标点趋近行为、沿墙行走、避障等行为,分别由不同控制器控制,各控制器在不同条件下激活,在一定条件下可以互相转化,从而有效地实现移动机器人目标点的趋近。 
4.本发明结构简单、实施方便、可以在线进行学习、自适应性好。 
本发明对于移动机器人在导游服务、安全监控、军事、危险环境作业等方面的应用具有重要意义。 
附图说明
图1是本发明的导航控制方法原理框图; 
图2是移动机器人位姿说明图;
图3是移动机器人传感器分布示意图;
图4是实施例中移动机器人传感器分布示意图;
图5是导航控制方法施行流程图;
图6是移动机器人沿墙行走控制器结构框图;
图7是移动机器人避障行为控制器神经网络拓扑结构图;
图8是移动机器人导航实验结果图。
具体实施方式
    本发明提出一种基于多个脉冲神经网络控制器的移动机器人的导航控制方法,本方法在不同条件下设定各控制器权值,并根据不同控制器的权值顺序作为控制器激活与否的判别顺序。通过控制器激活及转换条件的使用,实现各控制器之间的相互转换。本发明通过神经网络的在线训练,实现机器人的在线自主学习,与先前的基于模块化的控制器相比,控制策略简便易行,通过各控制器之间的转换,更加有效、高精度地控制移动机器人实现目标点趋近导航控制任务。 
本发明包括目标点趋近控制器、沿墙行走控制器、避障行为控制器,沿墙行走控制器和避障行为控制器中采用了脉冲神经网络,在神经网络中同时融入时空信息。 
本发明的一个实施例中,机器人采用多超声传感器的距离测量信息,在该移动机器人中一周均匀分布着16个超声传感器,见附图3,移动机器人采用双驱动轮结构。在图8中“*”代表实施例中机器人的初始位置,“★”为机器人要趋近的目标点。对于该移动机器人的初始位姿是q (-200, -1000,90 ° )的情况下,按如下步骤实施。 
步骤A:初始化各控制器,及相关阈值参数:为判断周边障碍物考虑与否的阈值,为机器人到达目标点阈值,当机器人中心距目标点的距离即认为机器人到达目标点,为移动机器人运动方向是否偏离给定方向阈值。 
步骤B:计算为移动机器人当前运动方向和机器人中心点(x r ; y r )与目标点(x t ; y t )连线之间的夹角,  为移动机器人中心点(x,y)与与目标点(x t ; y t )连线与笛卡儿坐标系中横坐标轴正向之间的夹角,  为移动机器人位姿角; 
的计算如下(1)(2)式所示:
步骤C:采集超声传感器测量信息。
步骤D:判断机器人当前位置是否到达目标点,即是否?如果,转入步骤L机器人停止运动。否则进入步骤E。 
计算结果,机器人当前位置未到达目标点,转到步骤E。 
步骤E: 计算,即机器人当前位置未到达目标点,通过权值设置模块设定模块控制器中各控制器权值。具体权值设定算法为:为正前半周超声传感器测量值,当,即机器人传感器所获得的距离周围障碍物的最小值机器人与目标点之间的距离时,设定目标点趋近控制器的权值沿墙行走控制器的权值避障行为控制器的权值。否则,即当时,沿墙行走控制器模块的权值避障行为控制器的权值目标点趋近控制器的权值。 
步骤F:计算得,并且,采集到移动机器人前半周超声传感器的测量值,并且超声传感器的测量值中的最小值时,目标点趋近控制器的权值最大,此时移动机器人先进入目标点趋近控制器,即转入步骤K。 
步骤K: 进入目标点趋近控制器,按目标点趋近进行机器人控制。 
此时移动机器人,移动机器人进入到前行位姿角调整中。使差动轮式机器人左右两轮的速度大小相等而方向相反旋转,使机器人在原地绕机器人坐标系的原点顺时针旋转角度。之后机器人进入到沿目标方向直行趋近,即机器人沿目标方向直行。行走时间后,重复步骤B。 
机器人沿目标方向直行一段距离后,经步骤B、C进入步骤D。 
步骤D:判断机器人当前位置是否到达目标点,即是否?此时,未达到目标点进入步骤E。 
步骤E:在该实施例中,移动机器人执行目标点趋近一段时间后,,且,此时各控制的权值是:沿墙行走控制器的权值避障行为控制器的权值目标点趋近控制器的权值。先判断沿墙行走控制器激活条件满足否?即条件A满足与否? 
条件A:
范围中超声距离传感器的测量值为,经判断,不符合沿墙行走控制器激活条件。
接着判断避障行为控制器激活条件满足否? 
避障行为控制器激活条件C:
运动方向的前半周传感器的最小测量值,认为在移动机器人的前行两侧方向上有障碍物需要进入避障行为控制器,进入步骤J。
步骤J: 根据避障行为控制器控制策略控制机器人进行避障行走时间。行走时间后,重复步骤B。判断符合“避障”控制条件,重复步骤B,避障行走一段时间后,经步骤B、C、D,未达到目标点进入步骤E。 
步骤E:判断,设定权值如下:沿墙行走控制器的权值避障行为控制器的权值目标点趋近控制器的权值。 
先判断沿墙行走控制器激活条件是否满足? 
因测得,沿墙行走控制器激活条件A不满足;
接下来判断避障行为控制器激活条件是否满足?
运动方向的前半周传感器的最小测量值,认为在移动机器人的前行两侧方向上无障碍物,避障行为控制器不能被激活。
接下来判断目标点趋近控制器激活条件是否满足? 
目标点趋近控制器激活条件D:
测量结果表明,并且沿墙行走控制器”激活条件A、避障行为控制器激活条件C均不满足,因而满足目标点趋近控制器激活条件D,进入到步骤K中。
步骤K:进入目标点趋近控制器,在该控制器中先进行位姿角调整,之后进入到机器人沿目标方向直行趋近目标点。移动机器人按目标点趋近控制器行走时间后,重复步骤B,经判断仍激活目标点趋近控制器,机器人沿目标方向直行趋近目标点。 
经过多次激活目标点趋近控制器后,执行步骤B、C、D,经判断未达到目标点,之后进入步骤E。 
步骤E: 在该实施例中,移动机器人执行目标点趋近一段时间后,,且,此时各控制器的权值是:沿墙行走控制器的权值避障行为控制器的权值目标点趋近控制器的权值。先判断沿墙行走控制器激活条件满足否?即条件A满足与否? 
此时测得,并且,满足沿墙行走控制器控制条件A,机器人进入沿墙行走控制器控制阶段。
移动机器人按沿墙行走控制器行走时间后,重复步骤B,经判断仍激活沿墙行走控制器,机器人执行沿墙行走行为。 
经过多次激活沿墙行走控制器后,执行步骤B、C、D,未达到目标点之后进入步骤E。 
步骤E: 在该实施例中,移动机器人执行沿墙行走一段时间后,,且,此时各控制器的权值是:沿墙行走控制器的权值避障行为控制器的权值目标点趋近控制器的权值。先判断沿墙行走控制器激活条件满足否?即条件A满足与否? 
经判断沿墙行走控制器、避障行为控制器的激活条件均不满足,激活目标点趋近控制器,进入步骤K。
步骤K: 进入目标点趋近控制器,在该控制器中先进行位姿角调整,之后进入到机器人沿目标方向直行趋近目标点。移动机器人按目标点趋近控制器行走时间后,重复步骤B,最后阶段,经判断仍激活目标点趋近控制器,机器人沿目标方向直行趋近目标点。 
步骤L: 机器人到达目标点,机器人停止运动。 
本发明的各控制器激活条件和控制器之间的转换条件如下: 
1.沿墙行走控制器激活与退出条件:
激活条件A:在移动机器人传感器分布示意图中,O’X’方向为移动机器人前行方向,其中范围中距离传感器的测量值为,如果:如果,并且,则机器人进入墙壁跟踪模块。即满足条件A:时,机器人进入沿墙行走控制器。
退出条件B:脱离沿墙行走控制器条件B分为逆时针、顺时针沿墙行走条件。 
如果逆时针沿墙行走:即移动机器人前行方向右侧传感器读数均大于,并且时移动机器人脱离逆时针沿墙行走模块; 
如果顺时针沿墙行走:即移动机器人前行方向左侧传感器读数均大于,并且时移动机器人脱离顺时针沿墙行走模块;
沿墙行走控制器退出的条件B:(
2.避障行为控制器的激活与退出条件:
激活条件C:在移动机器人移动过程中需考虑障碍物范围为移动机器人正前半周,当正前半周传感器的最小读数,即时并且不满足墙壁跟踪控制器模块激活条件A,即C为  。
退出条件G: 
3.目标点趋近控制器激活条件:
激活条件F:
D:
E:即在移动机器人移动过程中需考虑的传感器读数,满足如下条件
本发明的沿墙行走控制器中的脉冲神经网络工作过程为: 
(1) 计算输入层脉冲神经元的脉冲频率编码;
(2) 计算隐含层神经元的膜潜能及其输出脉冲数,及脉冲点火时间;
(3) 计算电机神经元的膜潜能(电位)、输出脉冲数,及脉冲输出时间;
(4) 利用电机神经元的输出脉冲数,控制机器人驱动电机旋转角速度。
图6中显示,沿墙行走控制器脉冲神经网络如下: 
在移动机器人顺时针沿墙行走控制器的脉冲神经网络中,相应的脉冲神经网络由输入层、隐含层和输出层组成。输入层有传感器神经元1、2、3, 右转向神经元T R 与左转向神经元T L , 接近神经元N n 和距离过远检测神经元S max 、距离过近检测神经元S min 。隐含层有3个隐含神经元H 1H 2H 3。输出层有电机神经元1和2,电机神经元采用典型的IAF神经元模型。其中S max 神经元为移动机器人离墙是否过远检测神经元。如果超过了离墙距离最大阈值d maxthr S max 神经元点火,并配合左转向神经元控制机器人向墙壁方向靠近;S min 神经元为移动机器人距墙是否过近检测神经元。如果小于离墙距离最小阈值d minthr S min 神经元点火,配合左转向神经元控制机器人向远离墙壁方向行进。接近神经元N n 的作用是判断机器人离正前方的障碍物或前方拐角处距离是否过近,如果距离小于所设值,则向右转向。
移动机器人逆时针沿墙行走控制器的脉冲神经网络原理与移动机器人顺时针沿墙行走控制器的脉冲神经网络相似。 
本发明的避障行为控制器中的脉冲神经网络工作过程为: 
(1) 采集距离传感器测量信息;
(2) 设置脉冲神经网络的网络连接权值;
(3) 编码超声传感器组 2测量信息的最小值进行脉冲编码输入至脉冲接近神经元,接近神经元与转向神经元脉冲时序同时性检测,同时计算从第k ( =1,2 )个隐含神经元输入到第i个电机神经元的激活潜能;
(4) 将超声传感器测量信息进行脉冲频率编码输入至脉冲传感器神经元计算从第 j 个 ( =1,2,3) 传感器神经元输入到第 i 个电机神经元的激活潜能;
(5) 计算两个电机神经元的总的膜潜能;
(6) 利用脉冲神经网络中的无监督的Hebb学习规则调节SNN的网络连接权值;
(7) 根据电机神经元的输出脉冲频率确定机器人驱动轮的角速度。
图7中显示,避障行为控制器脉冲神经网络如下: 
控制器中的脉冲神经网络输入层有三个传感器神经元。范围中传感器为第一组传感器, 范围中传感器为第二组传感器, 范围中传感器为第三组传感器。此外,输入层还有一个接近神经元N n ,一个左转向神经元T L 和一个右转向神经元T R 。接近神经元N n 的作用是判断机器人正前方的障碍物距离是否过近,如果距离比小于所设值,则转向。如果左转向神经元TL点火,则机器人左转;如果右转向神经元T R 点火,则机器人右转。注意:在逻辑设计上T L T R 不能同时点火,即机器人不能同时既向左转又向右转。
在隐含层有两个隐含神经元H 1 和H 2,此控制器有两个电机神经元适用于有两个驱动轮的移动机器人。电机神经元分别控制着两个电机的转速。电机神经元1控制左电机转速,电机神经元2控制右电机神经元的转速。 
具体实施时, 第二组距离传感器的测量结果经脉冲编码后输入到接近神经元。 
T L T R 中输入转向脉冲序列,如果期望机器人左转,则向T L 中输入转向脉冲;反之亦然。传感器神经元1对于电机神经元2是抑制神经元,传感器神经元2,3 
对于电机神经元2是激活神经元;传感器神经元3对于电机神经元1也是抑制神经元,传感器神经元1,2对于电机神经元1是激活神经元;抑制神经元与其相应的电机神经元的连接权值符号为负值,激活神经元与其相应的电机神经元的连接权值符号为正值。
在控制器中,机器人每组超声传感器的测量结果通过频率编码方式被编码为一定长度时间窗中的脉冲作为传感器神经元的输入。距离传感器较小的测量结果对应于时间窗中较少的脉冲数(即较低频率的脉冲编码)。 
第二组超声传感器的测量结果输入到接近神经元N n N n 对此传感器信息进行如下编码:
其中是第二组传感器的测量结果,s near 为一固定常数。接近脉冲神经元N n 的点火阈值为,当时,N n 点火并输出一脉冲。s near 共同决定了当机器人距正前方障碍物距离多远时,接近神经元点火。隐含层神经元的输出采用时序一致性编码:当转向神经元T R 和接近神经元N n 在时间窗中同时点火,则隐含神经元H 1点火,即H 1有脉冲输出;反之无脉冲输出。同理,当转向神经元T L 和接近神经元N n 在时间窗中同时点火,则隐含神经元H 2点火,即H 2有脉冲输出。
在避障行为控制器的脉冲神经网络中,电机脉冲神经元采用了具有抑制周期的“阈值点火”模型积分点火(IAF)模型。 
在时间窗中电机神经元1 和2的输出脉冲数,决定了移动机器人相应驱动电机的角速度,即决定了相应驱动轮的转速。 
本发明进入目标点趋近模块,按目标点趋近进行机器人控制。目标点趋近控制策略如下: 
在目标点趋近行为控制模块中分为:1)机器人前行位姿角调整模块;2)机器人沿目标方向直行趋近模块。根据公式计算得,1)如果,机器人进入到机器人前行位姿角调整模块中。的机器人位姿角调整策略如下:采用使差动轮式机器人左右两轮的速度大小相等而方向相反旋转,使机器人在原地绕机器人坐标系的原点顺时针旋转角度。2)如果,机器人执行沿目标方向直行趋近模块,即机器人沿目标方向直行。

Claims (4)

1.一种移动机器人的多脉冲神经网络控制器导航控制方法,其特征在于:它包括目标点趋近控制器、沿墙行走控制器、避障行为控制器,沿墙行走控制器和避障行为控制器中采用了脉冲神经网络,在神经网络中同时融入时空信息,导航控制方法包括以下步骤:
步骤A:初始化各控制器,及相关阈值参数: 为判断周边障碍物考虑与否的阈值,为机器人中心距目标点的距离,为机器人是否到达目标点阈值,当机器人中心距目标点的距离机器人到达目标点阈值,即,认为机器人到达目标点,为移动机器人运动方向是否偏离给定方向阈值;
步骤B:计算为移动机器人当前运动方向和机器人中心点(x r ; y r )与目标点(x t ; y t )连线之间的夹角,   为移动机器人中心点(x,y)与与目标点(x t ; y t )连线与笛卡儿坐标系中横坐标轴正向之间的夹角,  为移动机器人位姿角;
的计算如下(1)(2)式所示:
步骤C:采集距离传感器测量信息;
步骤D:判断机器人当前位置是否到达目标点,即是否?如果机器人当前位置到达目标点,即,转入步骤L,机器人停止运动,否则进入步骤E;
步骤E: 如果机器人当前位置未到达目标点,即,进入权值设置控制器,设定各控制器权值,权值从大到小的顺序决定着判断各控制器是否激活的顺序;
步骤F: 若机器人当前位置未到达目标点,即当,并且移动机器人前半周距离传感器的测量值中的最小值时,目标点趋近控制器值最大,判断是否满足目标点趋近控制器条件,满足则先进入目标点趋近控制器,即转入步骤K;
否则转入步骤G;
步骤G: 当移动机器人正前半周距离传感器的测量值中的最小值<机器人与目标点之间的距离,即时,根据各控制器权值大小的顺序判断各控制器激活的条件是否满足;
先判断是否满足沿墙行走控制器激活条件,满足则进入I;不满足,判断是否满足避障行为控制器激活条件,满足则转入步骤J,仍旧不满足避障行为控制器激活条件,则转入步骤H;
步骤H: 判断是否满足目标点趋近控制器激活条件,满足则转入步骤K;
步骤I: 根据沿墙行走控制器控制策略控制机器人逆时针或顺时针沿墙行走时间,行走时间后,重复步骤B;
步骤J: 根据避障行为控制器控制策略控制机器人进行避障行走时间,行走时间后,重复步骤B;
步骤K: 进入目标点趋近控制器,按目标点趋近进行机器人控制; 
步骤L:机器人到达目标点,机器人停止运动。
2.根据权利要求1所述的移动机器人的多脉冲神经网络控制器导航控制方法,其特征在于:所述权值设定算法为:当机器人与目标点之间的距离移动机器人距离正前半周最近的障碍物的距离,即,设定目标点趋近控制器的权值>沿墙行走控制器的权值>避障限位控制器的权值;否则,当机器人与目标点之间的距离>移动机器人距离最近的障碍物的距离,即时,沿墙行走控制器的权值>避障控制器的权值>目标点趋近控制器的权值。
3.根据权利要求2所述的移动机器人的多脉冲神经网络控制器导航控制方法,其特征在于:所述沿墙行走控制器中的脉冲神经网络工作过程为:
(1) 计算输入层脉冲神经元的脉冲频率编码;
(2) 计算隐含层神经元的膜潜能及其输出脉冲数,及脉冲点火时间;
(3) 计算电机神经元的膜潜能(电位)、输出脉冲数,及脉冲输出时间;
(4) 利用电机神经元的输出脉冲数,控制机器人驱动电机旋转角速度。
4.根据权利要求3所述的移动机器人的多脉冲神经网络控制器导航控制方法,其特征在于:所述避障行为控制器中的脉冲神经网络工作过程为:
(1) 采集距离传感器测量信息;
(2) 设置脉冲神经网络的网络连接权值;
(3) 编码超声传感器组 2测量信息的最小值进行脉冲编码输入至脉冲接近神经元,接近神经元与转向神经元脉冲时序同时性检测,同时计算从第k ( =1,2 )个隐含神经元输入到第i个电机神经元的激活潜能;
(4) 将超声传感器测量信息进行脉冲频率编码输入至脉冲传感器神经元计算从第 j 个 ( =1,2,3) 传感器神经元输入到第 i 个电机神经元的激活潜能;
(5) 计算两个电机神经元的总的膜潜能;
(6) 利用脉冲神经网络中的无监督的Hebb学习规则调节SNN的网络连接权值;
(7) 根据电机神经元的输出脉冲频率确定机器人驱动轮的角速度。
CN201310716892.0A 2013-12-23 2013-12-23 移动机器人的多脉冲神经网络控制器导航控制方法 Expired - Fee Related CN103984342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310716892.0A CN103984342B (zh) 2013-12-23 2013-12-23 移动机器人的多脉冲神经网络控制器导航控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310716892.0A CN103984342B (zh) 2013-12-23 2013-12-23 移动机器人的多脉冲神经网络控制器导航控制方法

Publications (2)

Publication Number Publication Date
CN103984342A true CN103984342A (zh) 2014-08-13
CN103984342B CN103984342B (zh) 2016-04-06

Family

ID=51276357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310716892.0A Expired - Fee Related CN103984342B (zh) 2013-12-23 2013-12-23 移动机器人的多脉冲神经网络控制器导航控制方法

Country Status (1)

Country Link
CN (1) CN103984342B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257240A (zh) * 2015-06-18 2016-12-28 金宝电子工业股份有限公司 定位导航方法及其电子装置
CN108733043A (zh) * 2017-09-01 2018-11-02 北京猎户星空科技有限公司 机器人移动控制方法和装置
CN109753071A (zh) * 2019-01-10 2019-05-14 上海物景智能科技有限公司 一种机器人贴边行走方法及系统
CN110826437A (zh) * 2019-10-23 2020-02-21 中国科学院自动化研究所 基于生物神经网络的智能机器人控制方法、系统、装置
CN111443603A (zh) * 2020-03-31 2020-07-24 东华大学 基于自适应模糊神经网络系统的机器人共享控制方法
CN111811532A (zh) * 2020-07-02 2020-10-23 浙江大学 基于脉冲神经网络的路径规划方法和装置
CN112612289A (zh) * 2021-03-08 2021-04-06 浙江大华技术股份有限公司 轨迹跟踪控制方法、移动机器人、控制设备及存储介质
WO2023115891A1 (zh) * 2021-12-23 2023-06-29 广东浪潮智慧计算技术有限公司 一种脉冲编码方法、系统、电子设备及存储介质
CN116382267A (zh) * 2023-03-09 2023-07-04 大连理工大学 一种基于多模态脉冲神经网络的机器人动态避障方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815613B (zh) * 2022-08-16 2023-09-11 和碩聯合科技股份有限公司 適用於機器人之導航方法及其機器人

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042835A (zh) * 2010-11-05 2011-05-04 中国海洋大学 自主式水下机器人组合导航系统
CN102346489A (zh) * 2010-07-28 2012-02-08 中国科学院自动化研究所 基于脉冲神经网络的机器人跟踪目标的控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346489A (zh) * 2010-07-28 2012-02-08 中国科学院自动化研究所 基于脉冲神经网络的机器人跟踪目标的控制方法
CN102042835A (zh) * 2010-11-05 2011-05-04 中国海洋大学 自主式水下机器人组合导航系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIUQING WANG ET AL: "A behavior controller based on spiking neural networks for mobile robots", 《NEUROCOMPUTING》, 31 December 2008 (2008-12-31), pages 655 - 666, XP022440139, DOI: doi:10.1016/j.neucom.2007.08.025 *
XIUQING WANG ET AL: "A target-reaching controller for mobile robots using spiking neural networks", 《NEURAL INFORMATION PROCESSING》, 30 November 2012 (2012-11-30), pages 652 - 659 *
张惠娣: "基于情感与环境认知的移动机器人自主导航控制", 《控制理论与应用》, vol. 25, no. 6, 31 December 2008 (2008-12-31), pages 995 - 1000 *
王秀青等: "Spiking神经网络及其在移动机器人中的应用", 《PROCEEDINGS OF THE 30TH CHINESE CONTROL CONFERENCE》, 24 July 2011 (2011-07-24), pages 4133 - 4138 *
赵文斐: "基于改进T-S型模糊神经网络的护士机器人行为控制研究", 《北京联合大学学报》, vol. 27, no. 3, 31 July 2013 (2013-07-31), pages 26 - 30 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257240B (zh) * 2015-06-18 2019-05-21 金宝电子工业股份有限公司 定位导航方法及其电子装置
CN106257240A (zh) * 2015-06-18 2016-12-28 金宝电子工业股份有限公司 定位导航方法及其电子装置
CN108733043A (zh) * 2017-09-01 2018-11-02 北京猎户星空科技有限公司 机器人移动控制方法和装置
CN109753071B (zh) * 2019-01-10 2022-04-22 上海物景智能科技有限公司 一种机器人贴边行走方法及系统
CN109753071A (zh) * 2019-01-10 2019-05-14 上海物景智能科技有限公司 一种机器人贴边行走方法及系统
CN110826437A (zh) * 2019-10-23 2020-02-21 中国科学院自动化研究所 基于生物神经网络的智能机器人控制方法、系统、装置
CN111443603A (zh) * 2020-03-31 2020-07-24 东华大学 基于自适应模糊神经网络系统的机器人共享控制方法
CN111811532A (zh) * 2020-07-02 2020-10-23 浙江大学 基于脉冲神经网络的路径规划方法和装置
CN112612289A (zh) * 2021-03-08 2021-04-06 浙江大华技术股份有限公司 轨迹跟踪控制方法、移动机器人、控制设备及存储介质
CN112612289B (zh) * 2021-03-08 2021-09-14 浙江大华技术股份有限公司 轨迹跟踪控制方法、移动机器人、控制设备及存储介质
WO2023115891A1 (zh) * 2021-12-23 2023-06-29 广东浪潮智慧计算技术有限公司 一种脉冲编码方法、系统、电子设备及存储介质
CN116382267A (zh) * 2023-03-09 2023-07-04 大连理工大学 一种基于多模态脉冲神经网络的机器人动态避障方法
CN116382267B (zh) * 2023-03-09 2023-09-05 大连理工大学 一种基于多模态脉冲神经网络的机器人动态避障方法

Also Published As

Publication number Publication date
CN103984342B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103984342B (zh) 移动机器人的多脉冲神经网络控制器导航控制方法
CN107168324B (zh) 一种基于anfis模糊神经网络的机器人路径规划方法
CN102323819B (zh) 一种基于协调控制的智能轮椅室外导航方法
CN207198663U (zh) 压路机及压路机控制系统
CN102207736B (zh) 基于贝塞尔曲线的机器人路径规划方法及装置
Pandey et al. Multiple mobile robots navigation and obstacle avoidance using minimum rule based ANFIS network controller in the cluttered environment
Chen et al. Fuzzy logic controller design for intelligent robots
Ren et al. A new fuzzy intelligent obstacle avoidance control strategy for wheeled mobile robot
Bao et al. A fuzzy behavior-based architecture for mobile robot navigation in unknown environments
CN111443603B (zh) 基于自适应模糊神经网络系统的机器人共享控制方法
Li Fuzzy-logic-based reactive behavior control of an autonomous mobile system in unknown environments
Sun et al. A novel fuzzy control algorithm for three-dimensional AUV path planning based on sonar model
CN112631134A (zh) 一种基于模糊神经网络的智能小车避障方法
Singh et al. Mobile robot navigation using MLP-BP approaches in dynamic environments
Liu et al. ASL-DWA: An improved A-star algorithm for indoor cleaning robots
Bajrami et al. Artificial neural fuzzy logic algorithm for robot path finding
CN104914867A (zh) 一种模糊神经网络的六足机器人自主导航闭环控制器
Li et al. Application of artificial neural network based on q-learning for mobile robot path planning
Tsoukalas et al. Neurofuzzy motion planners for intelligent robots
Boujelben et al. A reactive approach for mobile robot navigation in static and dynamic environment using fuzzy logic control
Song et al. Behavior fusion of robot navigation using a fuzzy neural network
Mohanty et al. A new intelligent approach for mobile robot navigation
Hamzah et al. Mobile robot navigation using fuzzy logic and wavelet network
Maatoug et al. Autonomous wheelchair navigation in indoor environment based on fuzzy logic controller and intermediate targets
Chen et al. Intelligent obstacle avoidance control strategy for wheeled mobile robot

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160206

Address after: 050024 No. 20 South Second Ring Road, Hebei, Shijiazhuang

Applicant after: Hebei Normal University

Address before: 050000 Hebei Province, Shijiazhuang city Yuhua District Donggang Road East oasis District No. 10 -1-501

Applicant before: Wang Xiuqing

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20181223

CF01 Termination of patent right due to non-payment of annual fee