CN102305932A - 菲涅耳望远镜成像激光雷达运动目标成像方法 - Google Patents

菲涅耳望远镜成像激光雷达运动目标成像方法 Download PDF

Info

Publication number
CN102305932A
CN102305932A CN201110209950A CN201110209950A CN102305932A CN 102305932 A CN102305932 A CN 102305932A CN 201110209950 A CN201110209950 A CN 201110209950A CN 201110209950 A CN201110209950 A CN 201110209950A CN 102305932 A CN102305932 A CN 102305932A
Authority
CN
China
Prior art keywords
fresnel
laser radar
target
telescope
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110209950A
Other languages
English (en)
Other versions
CN102305932B (zh
Inventor
吕笑宇
刘立人
闫爱民
戴恩文
吴亚鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN 201110209950 priority Critical patent/CN102305932B/zh
Publication of CN102305932A publication Critical patent/CN102305932A/zh
Application granted granted Critical
Publication of CN102305932B publication Critical patent/CN102305932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种利用菲涅耳望远镜成像激光雷达对运动目标成像的方法,包括下列步骤:菲涅耳望远镜成像激光雷达一维扫描工作模式信号发射和接收、时间域采样信号ii AB的时间-空间变换、空间域采样信号ii space的Delaunay三角剖分、设计重采样信号ii(x,y)对应的空间坐标矩阵B、三角网格数据ii tri立方卷积插值和利用相位型空间光调制器实现目标重建,本发明将一维周期扫描,立方卷积插值和空间光调制器相结合应用到菲涅耳望远镜成像激光雷达对运动目标成像中,解决了空间域采样信号非均匀分布的问题,扩展了菲涅耳望远镜成像激光雷达的应用范围。

Description

菲涅耳望远镜成像激光雷达运动目标成像方法
技术领域
本发明涉及菲涅耳望远镜成像激光雷达,特别是一种利用菲涅耳望远镜成像激光雷达对运动目标成像的方法。
在菲涅耳望远镜成像激光雷达成像系统中,存在空间域采样信号非均匀分布的问题,影响目标的重建。本发明利用快速反射镜(FSM)控制激光束对运动目标进行快速的一维周期扫描,并利用立方卷积插值实现非均匀分布空间域采样信号到均匀分布重采样信号的转换,最后利用相位型空间光调制器重建目标,实现了菲涅耳望远镜成像激光雷达对运动目标的成像,扩展了菲涅耳望远镜成像激光雷达的应用范围。
背景技术
在目标探测和目标识别领域,获得高分辨率图像是一项持续的工作。在军事应用特别是预警探测、战略防御和侦察监视等方面具有战略性发展地位。菲涅耳望远镜成像激光雷达是一种新型的成像激光雷达技术,能够实现目标超光学分辨率极限的二维成像。
菲涅耳望远镜成像激光雷达基于对目标进行同轴同心相位二次项偏振正交双光束扫描的光电数据收集以及光学和数字计算空间复相位解调的图像重构(参见在先技术[1]:刘立人,菲涅耳望远镜成像激光雷达,公开号:CN1019800049A)。
菲涅耳望远镜成像激光雷达的工作原理如图1所示,从激光器1开始依次是发射偏振分束器2,左通道空间相位调制器3,右通道空间相位调制器4,发射偏振合束器5,激光放大器6,发射望远镜7,光束扫描器8,目标9,接收望远镜10,接收偏振分束器11,2×490°空间光学桥接器12,上路平衡接收机13和上路放大及码数转换器14,下路平衡接收机15和下路放大及码数转换器16,复数化器17,时间空间坐标转换器18,重采样插值空间坐标变换器19,匹配滤波器20到输出图像21,此外还有控制计算机22。
在对运动目标成像时,由于目标和扫描光束的相对运动,所接收的时间域采样信号经过时间-空间变换后,获得的空间域采样信号呈现二维周期折线式的非均匀分布,影响了目标的重建。在先技术仅提出利用重采样插值空间坐标变换器19对采样信号进行处理,但并未给出具体的实施方法。
重采样插值是一种重要的数值计算方法,通过重采样点一定邻域范围内采样点数值计算获得重采样点的数值。重采样插值广泛应用于雷达成像、医学成像等领域,插值的精度对成像质量有重要的影响。在菲涅耳望远镜成像激光雷达中,需要处理的空间域采样信号呈周期折线式非均匀分布,采样信号的函数值为二维菲涅耳波带片形式的复数二次项,与现有的激光雷达(参见在先技术[2]:Carrara,W.G.,Goodman,R.S.,Majewski,R.M.,Spotlight Synthetic Aperture Radar:Signal Processing Algorithms[M].Artech House(Boston),1995)和医学成像(参见在先技术[3]:许为华,尹学松,医学图像插值算法的研究[J]计算机仿真,2006,23(1):111~114)等工作中采样信号的分布和函数值形式均不同。因此必须选择适合于菲涅耳望远镜成像激光雷达采样信号特点的插值方法,并证明其有效性。
在先技术对于此问题并未给出具体解决方法。针对这一情况,我们提出包含重采样插值步骤的菲涅耳望远镜成像激光雷达运动目标成像方法。
发明内容
本发明的目的在于针对上述在先技术的不足,提供一种菲涅耳望远镜成像激光雷达运动目标成像方法,以能够克服菲涅耳望远镜成像激光雷达空间域采样信号非均匀分布的问题,该方法原理可靠,易于实现。
本发明的具体技术解决方案如下:
一种菲涅耳望远镜成像激光雷达对运动目标成像的方法,其特点在于包括下列步骤:
①菲涅耳望远镜成像激光雷达一维扫描工作模式信号发射和接收:
菲涅耳望远镜成像激光雷达发射系统将偏振正交的同轴同心光束投向目标。快速反射镜FSM控制光束做高速一维周期扫描,当运动目标经过扫描光束时,接收望远镜对回波进行光学接收。菲涅耳望远镜成像激光雷达接收系统得到采样信号ii,AB为:
Figure BDA0000078503950000022
其中yw(t)为光束的线性周期扫描函数;v为目标运动速度,θ为目标运动方向与光束扫描方向的夹角;t2为目标面时间,Δt2是时间采样周期;
Figure BDA0000078503950000031
是发射系统两路光的相位延迟差;Requ是等效曲率半径;S为光斑的振幅函数(参见在先技术[1]:刘立人,菲涅耳望远镜成像激光雷达成像激光雷达,公开号:CN1019800049A)。
采样信号ii,AB的坐标矩阵A的行数和列数分别为kx,ky
②采样信号ii,AB的Delaunay三角剖分:
在采样信号ii,AB中,找出相距最短的两点连接作为定向基线,搜索位于定向基线右面的第三个点,创建Delaunay三角形。然后把新生成的三角形的两个边作为新的基线。重复上述过程直到所有的基线都用过为止。形成一系列相连但不重叠的三角形的集合,而且这些三角形的外接圆不包含这个面域的其他任何点。实现采样信号ii,AB的Delaunay三角剖分,在计算机内建立ii,AB的三角网格数据ii,tri。(参见在先技术[4]:Lee D T and Schacher B J.Two algorithms for constructing a delaunaytriangulation[J].International Journal of Computer and Information Sciences,1980,9(3):219~242)
③建立重采样信号ii(x,y)的坐标矩阵B:
重采样信号ii(x,y)在x方向和y方向的采样间隔相等,即
Δx=Δy,                    (2)
坐标矩阵B中各元素值呈等间隔分布,矩阵B的总元素数K’为:
K’=(kx-a)×(ky-b),         (3)
其中a,b为删除的边缘采样宽度;
④三角网格数据ii,tri立方卷积插值:
立方卷积插值核为(参见在先技术[5]:Robert G.Keys,Cubic convolutioninterpolation for digital image processing[J].IEEE,1981.29(6):1153~1160):
g ( x ) = 3 | x | 3 / 2 - 5 | x | 2 / 2 + 1 0 < | x | < 1 - | x | 3 / 2 + 5 | x | 2 / 2 - 4 | x | + 2 1 < | x | < 2 0 2 < | x | . - - - ( 4 )
对于重采样信号ii(x,y)中任一采样点i,依据i在B中对应的坐标值,计算点i与三角网格ii,tri中采样点的距离,获得点i在ii,tri中的邻近点集合P,依据(4)式所示立方卷积插值核对邻近点集合P进行插值,得到重采样点i的函数值。重复这一过程,直到获得所有重采样信号的函数值,从而得到满足正交坐标规则分布的重采样信号ii(x,y):
Figure BDA0000078503950000041
Figure BDA0000078503950000042
其中:ΔL为采样距离间隔,即
Δx=Δy=ΔL    .               (6)
⑤目标重建:
计算机将重采样信号ii(x,y)输入空间光调制器,调制空间光调制器的输出强度,利用平行光照射空间光调制器,实时产生重建目标(参见在先技术[6]:T.C.Poon,optical scanning holography with matlab[M],Springer,New York,2007.)。
本发明的技术效果如下:
本发明与现有成像激光雷达技术相比,本发明利用快速反射镜(FSM)控制激光束对运动目标进行快速的一维周期扫描,并利用立方卷积插值实现非均匀分布空间域采样信号到均匀分布重采样信号的转换,最后利用相位型空间光调制器重建目标,实现了菲涅耳望远镜成像激光雷达对运动目标的成像,扩展了菲涅耳望远镜成像激光雷达的应用范围。
该方法原理可靠,易于实现。优点在于可以用于运动目标的高分辨率实时成像,适用于高速运动目标识别等领域。
附图说明
图1是菲涅耳望远镜成像激光雷达成像原理图。
图2是本发明菲涅耳望远镜成像激光雷达运动目标成像方法的流程图。
图3是本发明菲涅耳望远镜成像激光雷达运动目标成像方法相对运动示意图。
图4是本发明菲涅耳望远镜成像激光雷达运动目标成像方法采样信号坐标分布示意图。
图5是本发明菲涅耳望远镜成像激光雷达运动目标成像方法立方卷积插值后均匀正交分布的重采样点示意图。
图6是本发明菲涅耳望远镜成像激光雷达运动目标成像方法目标重建示意图。
图7是本发明菲涅耳望远镜成像激光雷达运动目标成像方法计算机仿真的目标图像。
图8是本发明菲涅耳望远镜成像激光雷达运动目标成像方法计算机仿真重建目标图像。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明,但不应以此限制本发明的保护范围。
先请参阅图2,图2是本发明菲涅耳望远镜成像激光雷达目标成像方法的流程图。包括的步骤:101为菲涅耳望远镜成像激光雷达一维扫描工作模式信号发射和接收;102为时间域采样信号ii,AB的时间-空间变换;103空间域采样信号ii,space的Delaunay三角剖分;104为设计重采样信号ii(x,y)对应的空间坐标矩阵B;105三角网格数据ii,tri立方卷积插值;106为目标重建。
一种菲涅耳望远镜成像激光雷达运动目标成像方法,其特点在于包括以下步骤:
①菲涅耳望远镜成像激光雷达一维扫描工作模式信号发射和接收:
菲涅耳望远镜成像激光雷达发射系统将偏振正交的同轴同心光束投向目标。快速反射镜FSM控制光束做高速一维周期扫描,当运动目标经过扫描光束时,接收望远镜对回波进行光学接收。
图3是本发明菲涅耳望远镜成像激光雷达运动目标成像方法相对运动示意图。
激光波长λ=1μm,发射望远镜产生的在h=100km上目标照明宽度为照明光斑相位半波数N=18。
菲涅耳望远镜成像激光雷达接收系统接收到采样信号ii,AB为:
Figure BDA0000078503950000052
Figure BDA0000078503950000053
其中:yw(t)为光束的线性周期扫描函数,设计光斑光束一维扫描函数yw(t)振幅等于光斑的半径,为5m,可以实现较理想的采样;v为目标运动速度,θ为目标运动方向与光束扫描方向的夹角。令激光扫描方向与目标飞行方向相垂直,即θ0°;t2为目标面时间,Δt2是时间采样周期;
Figure BDA0000078503950000061
是发射系统两路光的相位延迟差;Requ是等效曲率半径;S为光斑的振幅函数;采样信号ii,AB的坐标矩A的行数和列数分别为kx,ky,设计采样点数n=K=kx×ky=101×101。(参见在先技术[1]:刘立人,菲涅耳望远镜成像激光雷达成像激光雷达,公开号:CN1019800049A)。
图4是本发明菲涅耳望远镜成像激光雷达运动目标成像方法采样信号坐标分布示意图。
②采样信号的Delaunay三角剖分:
在采样信号ii,AB中,找出相距最短的两点连接作为定向基线,搜索位于定向基线右面的第三个点,创建Delaunay三角形。然后把新生成的三角形的两个边作为新的基线。重复上述过程直到所有的基线都用过为止。形成一系列相连但不重叠的三角形的集合,而且这些三角形的外接圆不包含这个面域的其他任何点。实现采样信号ii,AB的Delaunay三角剖分,在计算机内建立ii,AB的三角网格数据ii,tri(参见在先技术[4]:Lee D T and Schacher B J.Two algorithms for constructing a delaunaytriangulation[J].International Journal of Computer and Information Sciences,1980,9(3):219~242)。
③建立重采样信号ii(x,y)的坐标矩阵B:
重采样信号ii(x,y)在x方向和y方向的采样间隔相等,即
Δx=Δy,                       (2)
对应的矩阵B中各元素值呈等间隔分布。
由于使用内插的方式,所以舍弃部分边缘采样点,矩阵B的总元素数K’满足
K’=(kx-a)×(ky-b),            (3)
其中a,b为删除的边缘采样宽度,a=b=2,坐标矩阵B的总元素数K’=99×99;
④三角网格数据ii,tri立方卷积插值:
典型的重采样插值方法包括:最近邻插值,双线性插值和立方卷积插值。由于平衡探测信号满足菲涅耳波带片二次项分布,相比其他两种插值方法,立方卷积插值法具有更高的阶次,连续性更好,因此误差相对较小。选择立方卷积插值法作为菲涅耳望远镜成像激光雷达的重采样插值算法。
立方卷积插值核为(参见在先技术[5]:Robert G.Keys,Cubic convolutioninterpolation for digital image processing[J].IEEE,1981.29(6):1153~1160):
g ( x ) = 3 | x | 3 / 2 - 5 | x | 2 / 2 + 1 0 < | x | < 1 - | x | 3 / 2 + 5 | x | 2 / 2 - 4 | x | + 2 1 < | x | < 2 0 2 < | x | . - - - ( 4 )
对于重采样信号ii(x,y)中任一采样点i,依据i在B中对应的坐标值,计算点i与三角网格ii,tri中采样点的距离,获得点i在ii,tri中的邻近点集合P,依据(4)式所示立方卷积插值核对邻近点集合P进行插值,得到重采样点i的函数值。重复这一过程,直到获得所有重采样信号的函数值,从而得到满足正交坐标规则分布的重采样信号ii(x,y):
Figure BDA0000078503950000072
Figure BDA0000078503950000073
其中:ΔL为采样距离间隔,即
Δx=Δy=ΔL.                    (6)
通过步骤②~④,完成重采样插值。
图5是本发明菲涅耳望远镜成像激光雷达运动目标成像方法重采样插值后重采样数据分布示意图。
⑤目标重建:
图6是本发明菲涅耳望远镜成像激光雷达运动目标成像方法目标重建示意图。201为计算机,202为空间光调制器,203为平行照明光,204为重建目标像。
计算机1将重采样信号ii(x,y)输入空间光调制器2,调制空间光调制器的输出强度,利用平行光3照射空间光调制器,实时产生重建目标4(参见在先技术[6]:T.C.Poon,optical scanning holography with matlab[M],Springer,New York,2007.)
图7是本发明菲涅耳望远镜成像激光雷达运动目标成像方法计算机仿真的目标图像。
图8是本发明菲涅耳望远镜成像激光雷达运动目标成像方法计算机仿真重建的目标图像。
本发明采用重采样插值方法,解决了菲涅耳望远镜成像激光雷达运动目标一维扫描模式非均匀采样的问题,并给出了一维扫描模式的具体成像步骤。经计算机仿真获得了较好的目标重建图像。
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (1)

1.一种利用菲涅耳望远镜成像激光雷达对运动目标成像的方法,其特征在于该方法包括下列步骤:
①菲涅耳望远镜成像激光雷达一维扫描工作模式信号发射和接收:
菲涅耳望远镜成像激光雷达发射系统将偏振正交的同轴同心光束投向目标,快速反射镜FSM控制光束做高速一维周期扫描,当运动目标经过扫描光束时,接收望远镜对回波进行光学接收,菲涅耳望远镜成像激光雷达接收系统得到采样信号ii,AB为:
Figure FDA0000078503940000011
Figure FDA0000078503940000012
其中yw(t)为光束的线性周期扫描函数;v为目标运动速度,θ为目标运动方向与光束扫描方向的夹角;t2为目标面时间,Δt2是时间采样周期;
Figure FDA0000078503940000013
是发射系统两路光的相位延迟差;Requ是等效曲率半径;S为光斑的振幅函数,采样信号ii,AB的坐标矩阵A的行数和列数分别为kx,ky
②采样信号ii,AB的Delaunay三角剖分:
在采样信号ii,AB中,找出相距最短的两点连接作为定向基线,搜索位于定向基线右面的第三个点,创建Delaunay三角形;然后把新生成的三角形的两个边作为新的基线,重复上述过程直到所有的基线都用过为止,形成一系列相连但不重叠的三角形的集合,而且这些三角形的外接圆不包含这个面域的其他任何点,实现采样信号ii,AB的Delaunay三角剖分,在计算机内建立ii,AB的三角网格数据ii,tri
③建立重采样信号ii(x,y)的坐标矩阵B:
重采样信号ii(x,y)在x方向和y方向的采样间隔相等,即
Δx=Δy,
坐标矩阵B中各元素值呈等间隔分布,矩阵B的总元素数K’为:
K’=(kx-a)×(ky-b),
其中:a,b为删除的边缘采样宽度;
④三角网格数据ii,tri立方卷积插值:
立方卷积插值核为:
g ( x ) = 3 | x | 3 / 2 - 5 | x | 2 / 2 + 1 0 < | x | < 1 - | x | 3 / 2 + 5 | x | 2 / 2 - 4 | x | + 2 1 < | x | < 2 0 2 < | x |
对于重采样信号ii(x,y)中任一采样点i,依据i在B中对应的坐标值,计算点i与三角网格ii,tri中采样点的距离,获得点i在ii,tri中的邻近点集合P,依据(4)式所示立方卷积插值核对邻近点集合P进行插值,得到重采样点i的函数值,重复这一过程,直到获得所有重采样信号的函数值,从而得到满足正交坐标规则分布的重采样信号ii(x,y):
Figure FDA0000078503940000022
Figure FDA0000078503940000023
其中:ΔL为采样距离间隔,即
Δx=Δy=ΔL  ;
⑤目标重建:
计算机将重采样信号ii(x,y)输入空间光调制器,调制空间光调制器的输出强度,利用平行光照射空间光调制器,产生重建目标。
CN 201110209950 2011-07-26 2011-07-26 菲涅耳望远镜成像激光雷达运动目标成像方法 Active CN102305932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110209950 CN102305932B (zh) 2011-07-26 2011-07-26 菲涅耳望远镜成像激光雷达运动目标成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110209950 CN102305932B (zh) 2011-07-26 2011-07-26 菲涅耳望远镜成像激光雷达运动目标成像方法

Publications (2)

Publication Number Publication Date
CN102305932A true CN102305932A (zh) 2012-01-04
CN102305932B CN102305932B (zh) 2013-10-30

Family

ID=45379808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110209950 Active CN102305932B (zh) 2011-07-26 2011-07-26 菲涅耳望远镜成像激光雷达运动目标成像方法

Country Status (1)

Country Link
CN (1) CN102305932B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416398A (zh) * 2016-06-07 2019-03-01 Dscg史罗轩公司 使用lidar的运动估计

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019226A2 (de) * 2001-08-23 2003-03-06 Automotive Distance Control Systems Gmbh Vorrichtung zur abtastung einer szene
US20070167786A1 (en) * 2005-12-20 2007-07-19 General Electric Company Fresnel zone imaging system and method
CN101236248A (zh) * 2008-03-05 2008-08-06 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的离焦接收望远镜
CN101236298A (zh) * 2008-03-05 2008-08-06 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的空间相位偏置发射望远镜
CN101256233A (zh) * 2008-03-05 2008-09-03 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的双向环路发射接收望远镜
CN101344594A (zh) * 2008-05-14 2009-01-14 中国科学院上海光学精密机械研究所 扫描合成孔径激光成像雷达
CN101344593A (zh) * 2008-05-14 2009-01-14 中国科学院上海光学精密机械研究所 滑动聚束合成孔径激光成像雷达
CN101980049A (zh) * 2010-09-17 2011-02-23 中国科学院上海光学精密机械研究所 费涅尔望远镜成像激光雷达

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019226A2 (de) * 2001-08-23 2003-03-06 Automotive Distance Control Systems Gmbh Vorrichtung zur abtastung einer szene
US20070167786A1 (en) * 2005-12-20 2007-07-19 General Electric Company Fresnel zone imaging system and method
CN101236248A (zh) * 2008-03-05 2008-08-06 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的离焦接收望远镜
CN101236298A (zh) * 2008-03-05 2008-08-06 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的空间相位偏置发射望远镜
CN101256233A (zh) * 2008-03-05 2008-09-03 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的双向环路发射接收望远镜
CN101344594A (zh) * 2008-05-14 2009-01-14 中国科学院上海光学精密机械研究所 扫描合成孔径激光成像雷达
CN101344593A (zh) * 2008-05-14 2009-01-14 中国科学院上海光学精密机械研究所 滑动聚束合成孔径激光成像雷达
CN101980049A (zh) * 2010-09-17 2011-02-23 中国科学院上海光学精密机械研究所 费涅尔望远镜成像激光雷达

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D.T.LEE等: "Two Algorithms for Constructing a Delaunay Triangulation", 《INTERNATIONAL JOURNAL OF COMPUTER AND INFORMATION SCIENCES》 *
R.G.KEYS: "Cubic Convolution Interpolation for Digital Image Processing", 《IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING》 *
XIAOYU LV等: "Imaging System of Fresnel Telescopy", 《PROC. OF SPIE》 *
刘立人: "菲涅耳望远镜全孔径合成成像激光雷达-原理", 《光学学报》 *
吕笑宇等: "基于菲涅耳波带板扫描的光学成像技术研究进展", 《激光与光电子学进展》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416398A (zh) * 2016-06-07 2019-03-01 Dscg史罗轩公司 使用lidar的运动估计
CN109416398B (zh) * 2016-06-07 2023-12-08 Dscg史罗轩公司 使用lidar的运动估计

Also Published As

Publication number Publication date
CN102305932B (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
CN101975947B (zh) 二维镜像综合孔径辐射成像方法
CN102662171B (zh) 一种sar层析三维成像方法
US8466834B2 (en) Radar-imaging of a scene in the far-field of a one- or two-dimensional radar array
CN109471193B (zh) 一种微波毫米波三维全息成像系统信号处理成像方法
CN102645651B (zh) 一种sar层析超分辨成像方法
CN104007440B (zh) 一种加速分解后向投影聚束合成孔径雷达成像方法
CN107037429B (zh) 基于门限梯度追踪算法的线阵sar三维成像方法
CN101980049B (zh) 费涅尔望远镜成像激光雷达
CN103487802A (zh) 扫描雷达角超分辨成像方法
CN102087359A (zh) 一维镜像综合孔径辐射成像方法
CN103616682B (zh) 一种基于曲面投影的多基线InSAR处理方法
CN105842694A (zh) 一种基于ffbp sar成像的自聚焦方法
CN104121990A (zh) 基于随机光栅的压缩感知宽波段高光谱成像系统
JP3113338B2 (ja) 逐次型像合成装置
CN109520969B (zh) 一种基于大气介质自调制的分布式散射成像方法
CN105699969A (zh) 基于广义高斯约束的最大后验估计角超分辨成像方法
CN103018740B (zh) 一种基于曲面投影的InSAR成像方法
CN103336278A (zh) 多视角观测下前视三维sar成像方法
CN107576961A (zh) 一种互质降采样间歇合成孔径雷达稀疏成像方法
CN102621546A (zh) 基于关联成像的三维信息获取方法
CN112817009A (zh) 基于二维光学相控阵的抗干扰探测成像系统和方法
CN103630903B (zh) 基于顺轨干涉sar测量海面流场径向速度的方法
CN103630905A (zh) 阵列天线sar极坐标交叠子孔径成像方法
CN103439703B (zh) 直视合成孔径激光成像雷达反射式双面平动发射装置
CN106791781A (zh) 一种连续波相位测量式单像素三维成像系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant