CN102292307A - 超硬/硬质复合材料 - Google Patents
超硬/硬质复合材料 Download PDFInfo
- Publication number
- CN102292307A CN102292307A CN2009801550364A CN200980155036A CN102292307A CN 102292307 A CN102292307 A CN 102292307A CN 2009801550364 A CN2009801550364 A CN 2009801550364A CN 200980155036 A CN200980155036 A CN 200980155036A CN 102292307 A CN102292307 A CN 102292307A
- Authority
- CN
- China
- Prior art keywords
- superhard
- hard particles
- matrix material
- matrix
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62886—Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6265—Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62818—Refractory metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62831—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/027—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/324—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/347—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0059—Cosmetic or alloplastic implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/78—Means for protecting prostheses or for attaching them to the body, e.g. bandages, harnesses, straps, or stockings for the limb stump
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/427—Diamond
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明提供了超硬或硬质复合材料,其包含分散在基质材料中的初级超硬或硬质微粒材料和至少一种次级超硬或硬质微粒材料。初级超硬或硬质微粒材料具有比基质材料的热膨胀系数低的热膨胀系数,至少一种次级超硬或硬质微粒材料具有比基质材料的热膨胀系数大的热膨胀系数。
Description
技术领域
本发明涉及超硬或硬质复合材料及其制备方法。
背景技术
超硬复合材料,通常为研磨压块的形式,广泛应用于切削、粉碎、研磨、钻孔以及其它磨削操作。它们一般含有分散在第二相基质的超硬研磨颗粒。基质可以是金属、陶瓷或金属陶瓷。超硬或硬质研磨颗粒可以是金刚石、立方氮化硼(cBN)、碳化硅或氮化硅等。这些颗粒可以在常用的高压和高温的压块制造方法期间相互结合,形成多晶块体,或者可以通过第二相材料的基质结合以形成多晶块体。这些物体通常被称为多晶金刚石(PCD)或多晶立方氮化硼(PCBN),它们分别含有金刚石或cBN作为超硬颗粒。
PCT申请WO2006/032984公开了制造多晶研磨元件的方法,包括如下步骤:提供多个具有亲玻璃性(vitreophilic)表面的超硬研磨颗粒,用基质前体材料涂覆超硬研磨颗粒,处理涂覆的超硬研磨颗粒以使它们适合于烧结,优选地将基质前体材料转化为基质前体材料的氧化物、氮化物、碳化物、氮氧化物、碳氧化物、碳氮化物,或者基质前体材料的元素形式,或者其结合,以及在它们为晶体学上或热力学上稳定的温度和压力下固结和烧结涂覆的超硬研磨颗粒。这样,制备的超硬多晶复合材料具有匀匀分散在细,亚微米和纳米晶粒的基质材料中的超硬颗粒。
超硬研磨元件通常包括大量任何尺寸或尺寸分布小于约数百微米、向下以及包括亚微米和纳米尺寸(小于0.1微米,即100纳米的颗粒)的超硬微粒材料,这些超硬微粒材料良好地分散在连续基质中,该连续基质由极细晶粒的氧化物陶瓷、非氧化物陶瓷、金属陶瓷或这类材料的结合制成。
EP0698447公开了另一种生产超硬复合材料的方法,其中基质是由有机金属聚合物前体热解生成的,例如聚合的聚硅氮烷的热解。这对从金刚石和/或cBN生产超硬复合材料具有特别的效用,其中陶瓷基质选自碳化硅、氮化硅、碳氮化硅、二氧化硅、碳化硼、氮化铝、碳化钨、氮化钛和碳化钛。
发明内容
根据本发明,提供了超硬或硬质复合材料,其包含分散在基质材料中的初级超硬或硬质微粒材料和至少一种次级超硬或硬质微粒材料,特征在于初级超硬或硬质微粒材料具有比基质材料低的热膨胀系数,并且至少一种次级超硬或硬质微粒材料具有比基质材料的热膨胀系数高的热膨胀系数。
本发明扩展至研磨衬片(insert),其包含PCD或PCBN层;烧结碳化物基材,PCD或PCBN层通过中间层与之结合;中间层包含如上所述的复合材料。
具体实施方式
本发明涉及超硬或硬质复合材料,其由结合在共同的、连续的基质材料中的多于一种的超硬或硬质微粒材料组成。
根据本发明,将热膨胀系数比基质材料低的初级超硬或硬质微粒材料与至少一种次级超硬或硬质微粒材料一起引入到基质材料中,其中至少一种具有比基质材料的热膨胀系数高的热膨胀系数。
对于单独一种次级超硬或硬质微粒材料,αp,αm和αs分别表示初级颗粒、基质材料和次级颗粒在室温下(25℃)的热膨胀系数。
那么,本发明的这个方面可以概括为:一种复合材料,含有分散在基质中不同的初级和次级微粒材料,其中选择材料使得以下关系成立:
αp<αm<αs………………………………………………………(1)
已知,当基质中的颗粒具有比它们结合于其中的基质低的热膨胀系数时,在基质中形成拉应力场,所述颗粒处于压缩下。
相反,当基质中的颗粒具有比它们结合于其中的基质高的热膨胀系数时,在基质中形成压应力场,所述颗粒本身处于拉应力下。
当两种微粒材料(指定为初级和次级颗粒)处于相同基质中时,其中三种材料的热膨胀系数符合式(1),那么预料到:初级和次级两种不同的微粒材料颗粒周围的应力场,会在或多或少的程度上倾向于相互抵消。这样,通过初级和次级微粒材料、它们的尺寸分布和浓度的选择,以及基质材料的选择,基质中的应力场可以得到优化建立。在复合材料中的微粒材料的尺度下,建立和设计的应力场的目标在于能够影响和优化所得复合材料的热机械性能。既而,可实现用于大范围多样化应用的优化和改善的复合材料。
如果初级和次级颗粒均匀分布在基质的空间中,使得每个初级颗粒在次级颗粒的周围,反之亦然,则将导致在复合材料中的微粒材料的尺度下对平均应力场的最佳控制。在基质中以这种方式建立应力场是本发明的一个方面。
本发明另一个方面在于使用多于一种的次级微粒材料并且与初级微粒材料在高温下结合到所选的相容基质中。初级和多于一种的次级颗粒的选择基于它们相对的热膨胀系数和所选基质材料的热膨胀系数。
可以提供本发明的这个方面的一般表达式,其中αp是在基质中的初级颗粒的热膨胀系数,它总是小于基质的热膨胀系数αm。现在,设次级微粒材料的种类数为n,其中n可以是任何大于1的整数。不同类型的次级微粒材料可具有小于或大于基质的热膨胀系数的热膨胀系数。热膨胀系数比基质的热膨胀系数大的次级微粒材料的数量是x,其中x是1或更大,并小于或等于n。
那么,对于与n种次级微粒材料一起纳入基质中的初级微粒材料而言,本发明的一般表达式为:
αp至αn-x<αm<αx…………………………………………………(2)
因此,本发明包含复合材料,其中初级微粒材料具有的热膨胀系数总是比基质的热膨胀系数小,与任何种类数的次级微粒材料的存在一起,全部或任何数量的次级微粒材料具有的热膨胀系数比基质的热膨胀系数大,前提是其中至少一种符合这个要求。
所述初级微粒材料包括超硬和硬质颗粒,如金刚石、立方氮化硼、碳化硅、氮化硅、赛隆、碳化硼、氧化铝等。也可使用具有所需的机械性能和与所选基质材料化学相容性的更普遍的任何化合物或材料,包括氧化物和非氧化物陶瓷,金属和金属陶瓷材料。
基质材料包括陶瓷,例如金属的氧化物、氮化物、碳化物、硼化物,特别是在EP0698447,PCT申请WO2006/032984,EP07766525,EP07789413和PCT公开WO2007/148214中公开的那些基质,通过引用并入本文。特别地,本发明中包括纳米晶粒尺寸即小于100纳米晶粒尺寸的这些公开的基质类型的变体。所述基质还包括金属,例如钨、钼和类似的高熔点金属及合金。
所述次级微粒材料包括单晶和多晶的陶瓷、金属、合金和金属陶瓷。
初级和次级微粒材料的平均晶粒尺寸可在10至100微米、1至10微米,0.1到1微米(亚微米),小于0.1微米(纳米尺寸),即小于100纳米的范围内。
初级颗粒可小于或大于次级颗粒。
优选地,初级和次级颗粒的尺寸相似或相等。
可以对整体复合材料中每种微粒材料组分的相对尺寸进行选择,以设计和控制基质中颗粒周围的应力场。
也可以对整体复合材料中的微粒材料组分的相对质量或体积比例进行选择,以建立和控制基质中颗粒周围的应力场。
下文中给出了在数学上描述了基质中的空间应力场和微粒材料的尺寸与性能之间的关系的模型。该模型可以用于指导优选的复合材料实施方案的设计,其涵盖在本发明的范围内。
将通常形成为多晶研磨体形式的超硬复合材料(也称为多晶研磨元件)用作车削,粉碎和珩磨的切削工具,用于岩石、陶瓷和金属的钻孔刀具,耐磨零件等。生物相容型的复合材料的变体也可以应用于承重假体用途。
本发明特别针对设计(tailor)复合材料组分的热膨胀系数的失配,其中存在的材料相为微米、亚微米和/或纳米晶粒尺寸的,使得可利用在应用中的性能和行为方面所预期的改善(因为使用这样的材料)。
所述超硬复合材料可通过在高温度和压力下烧结基质材料产生。或者,也可采用其它适合的固结和烧结技术,例如放电等离子烧结(SPS)。
在这些烧结技术中使用的高温条件下,超硬或硬质微粒材料和基质材料在烧结后达到弹性、塑性的平衡,假使维持在高温度和压力条件。
然而,在冷却到室温时,超硬材料或硬质微粒材料与基质之间热膨胀系数的差异会在所述颗粒和基质显微结构的尺度下产生局部应力。
在文献中已知,在无限(infinite)基质中,单个球状颗粒中的热膨胀失配的应力σT可通过所谓的Selsing公式表示,(J.Selsing;“Internal Sresses in Ceramics”;J.Am.Ceram.Soc.,1961,vol.44,p 419.):
σT=ΔαΔT/Γ ………………………………………(3)
其中,Δα=αp-αm ………………………………………(4)
其是初级颗粒材料的热膨胀系数αp与基质材料的热膨胀系数αm之差;
其中ΔT=Tpl-T室 ………………………………………(5)
其是基质材料的弹性,塑性转化温度Tpl与室温T室之差;且
其中Γ=(1+υm)/2Em+(1-2υp)/Ep…………………………(6)
其中υ是泊松比,E是杨氏模量,下标m和p分别表示基质和初级颗粒。
基质中围绕所述颗粒的切向σTt和径向σTr的应力分布可表示为
σTt=-(σT/2)(rp/x)3…………………………………………………(7)
σTr=σT(rp/x)3……………………………………………………(8)
其中rp表示颗粒的半径,x是离开颗粒的径向距离。
在其中αp小于αm(如以上对初级微粒材料所定义的)的情况下,冷却后在初级颗粒中的平均残余应力是压应力,在基质中是拉应力。
在其中存在次级微粒材料的热膨胀系数为αs且其中αs大于αm的情况下,冷却后在次级颗粒中的平均残余应力是拉应力,在所述次级颗粒周围的基质中是压应力。
再者,基质中的残余应力场取决于颗粒半径r以及从颗粒到基质中的距离x,这为上述式(7)和(8)的形式,但相反的是,其是压应力。
在初级和次级颗粒在基质中紧密相邻,即分隔的距离与它们的直径接近,热膨胀系数表示为式(1)时,则它们之间基质的所得应力场将会减小,这是由于与不同颗粒相关的拉应力场与压应力场的部分抵消。
基质中所得残余局部应力场的大小,在组分颗粒的尺度下将会因此不仅取决于初级和次级颗粒的材料,还取决于它们的相对尺寸、浓度,以及它们在基质中相对于彼此的均匀性。
当均匀性的程度高时本发明达到最佳效果,以至于每个初级颗粒将会在大量的次级颗粒周围,在它们之间具有合适的接近度。
当初级和次级微粒材料的尺寸相当时,在初级与次级微粒组分的体积百分比的比例在1比2和2比1之间时,产生所需的高度均匀性。这意味着,每单位体积复合材料中的初级和次级颗粒的数量比例在1比2到2比1之间。一个更优选的实施方案是,复合材料中每单位体积的初级和次级颗粒的数量基本相等。
因此可控制和减少基质中的应力场的空间分布,这将带来裂纹在材料中萌生和传播的后果,因而显著影响材料在用于热机械应用时的行为,在所述热机械应用中它可能经过严峻的条件。
表1是在本发明中可能用到的硬质和超硬陶瓷材料及其线性热膨胀系数的示例性而非全面的列表。
表1.
陶瓷材料 | 热膨胀系数(ppm/°K) |
金刚石 | 0.8 |
cBN | 1.0 |
CrN | 2.3 |
Si3N4 | 3.2 |
TaN | 3.6 |
SiC | 4.4 |
B4C | 4.5 |
AlN | 5.7 |
WC | 6.0 |
TaC | 6.3 |
Cr2O3 | 6.7 |
ZrC | 6.7 |
HfC | 6.9 |
HfN | 6.9 |
NbC | 7.2 |
ZrN | 7.2 |
VC | 7.3 |
TiC | 7.4 |
Mo2C | 7.8 |
VN | 8.1 |
Al2O3 | 8.4 |
TiN | 9.4 |
ZrO2 | 10.0 |
NbN | 10.1 |
Cr3C2 | 10.4 |
表2是在适当情况下,可用于本发明的单质金属和一些重要的金属合金类型的热膨胀系数,连同在室温和5.5GPa下的一些熔点的示例性但并非全面的列表。对金属元素给出的热膨胀系数是在室温下的,而合金类型的热膨胀系数是在540至980℃的温度范围内的。
高压熔点取自J.F Cannon,J.Phys.Chem.Ref.Data,Vol3,No.3,1974。
表2.
表3是可用于本发明的金属陶瓷类型的热膨胀系数的示例性但并非全面的列表。所给出的热膨胀系数是室温下的。
表3.
金属陶瓷 | 热膨胀系数(ppm/℃) |
碳化钨基 | 4-7 |
氧化铝基 | 8-9 |
碳化铬基 | 10-11 |
碳化钛基 | 8-13 |
高熔点,共熔金属间化合物例如Ni3Ti(mp=1380℃),Ni3Al的(mp=1385℃),Ni3Ta(mp=1550℃),AlNi(mp=1638℃)和多种其它的金属间化合物也是本发明复合材料中的初级和次级微粒组分的备选。
这种性能的表格和列表可用于选择初级和次级微粒材料和基质材料从而组合以形成由本发明各方面表述的复合材料,即,符合由上述式(1)或(2)表达的热膨胀条件。
常用的超硬微粒材料例如金刚石和立方氮化硼(cBN)的超硬复合材料,由于基质中存在拉应力场,特别容易遭受残余应力问题。这是因为,可以从表1看出,与基质材料的备选材料相比,金刚石和cBN具有非常低的热膨胀系数(在室温下大约1ppm/℃)。根据复合材料的制备方法和随之的固结和烧结条件,表1,2和3中列举的多种材料作为基质材料的备选。与金刚石和cBN相比,这些材料中的一些具有非常高的热膨胀系数,因而会产生非常大的室温热膨胀失配。这些大的热膨胀失配可能会在基质中造成非常大的拉应力场,在某些情况下,拉应力场会非常大以至于它们可潜在地导致在冷却时自发地产生微裂纹,并使所需的复合材料非常难于或甚至不能生产为有用的宏观工件。参照式(7)和(8),可以看出这有望成为特别普遍的,因为使用了大于几个微米的金刚石或cBN颗粒。这是因为拉应力场的强度取决于颗粒半径的三次方。因而,颗粒越大,基质中的拉应力强度越高。
一个符合式1的实施例是其中需要金刚石或cBN结合于氮化钛基质中。参照表1,可以看出氮化钛(TiN)的热膨胀系数为9.4×10-6/℃(9.4ppm/℃),所以其与金刚石或cBN的热膨胀系数的差距是大的,约8.4ppm/℃。这样大的差距预计会在TiN基质中引起大的拉应力场。这些大的拉应力场可能会在某些情况下是有利的,例如当它们提供优先的裂纹扩展路径时。但是,通过引入热膨胀系数高于TiN的次级硬质颗粒,有利地调整和减小TiN基质中的拉应力场。
参照表1,可以看出碳化铬(Cr3C2)具有10.4ppm/℃的热膨胀系数。这明显高于T iN的热膨胀系数。此外,Cr3C2颗粒预计会与已知的生产复合材料所需的工艺和方法相容。Cr3C2因而是本发明中使用的次级硬质颗粒的备选,由于它明显符合由式(1)表达的条件。因此,包含金刚石或cBN作为初级颗粒,氮化钛(TiN)作为基质,和碳化铬作为次级颗粒的复合材料是本发明示例性的实施方案。
这个实施方案的优选变体是使用纳米晶粒尺寸(小于100纳米)的氮化钛(TiN)基质。更优选的该实施方案的变体是使用纳米晶粒尺寸的氮化钛基质,其中基质的晶粒尺寸是或接近于TiN的Hall Petch偏差值,即50nm,如南非专利申请2006/04765中公开的。
参照表2,还可以看出,所列出的多种金属具有大于表1所列的基质材料如TiN等的热膨胀系数。但是,并不是它们中所有的都能与用于在这样的基质中产生金刚石和cBN的方法和工艺相容。
通常,如果打算将任何金属用于本发明的任何实施方案中的次级颗粒,则其在该复合材料的制造过程和生产方法中必须不能熔融并且必须保持作为该复合材料的共格(coherent)的微粒组分。
现有技术中已知的生产具有陶瓷基质的复合材料的一些重要的关键方法采用化学前体方法生产陶瓷或玻璃陶瓷基质。EP0698447、PCT申请WO2006/032984、EP07766525、EP07789413和PCT公开WO2007/148214披露了这种方法的实施例。一般而言,这些方法利用从前体化学品得到的纳米晶粒尺寸的材料在低温下,有时在比已经存在的微米尺寸结晶材料颗粒的传统烧结温度低500℃的温度下可烧结的现象。
本发明中优选的纳米晶粒尺寸的基质在900至1450℃的范围内是可烧结的,特别是如果烧结是在高压下进行的,例如5.5GPa。大多数金属的熔点由于金属在熔融时的通常膨胀行为产生的压力施加而升高。过渡金属的典型平均熔点升高,例如对于钴,镍和铁大约为30到40℃每GPa。因而例如如表2所示,纯镍(Ni)在5.5GPa下的熔点接近1650℃。已确定的是,纳米晶粒尺寸的Al2O3和TiN在5.5GPa下适当的烧结温度在1350至1450℃的范围内。在这些条件下,纯Ni的颗粒不会熔融,并会在烧结基质中将保持为共格的颗粒。
Ni在室温下的热膨胀系数为13.5ppm/℃,因此镍可用作在其中将金刚石和或cBN用作初级颗粒的基质中有效的次级颗粒。本发明提供了这个实施方案中的复合材料,其中初级颗粒的热膨胀(金刚石和cBN约为1ppm/℃)显著低于基质材料(Al2O3和TiN分别为8.4和9.4ppm/℃),而基质材料的热膨胀又显著低于次级颗粒(Ni为13.5ppm/℃)。
符合式1的进一步的实施例是需要将金刚石结合在碳化钽基质中。参照表1,可以看出碳化钽(TaC)的热膨胀系数为6.3×10-6/℃(6.3ppm/℃),所以其相对于金刚石或cBN的热膨胀系数差异是大的,约为5.5ppm/℃。这种显著的热膨胀系数差异预计会在TaC基质中引起大的拉应力场。这些大的拉应力场可能会在某些情况下是有利的,例如当它们提供优先的裂纹扩展路径时。但是,通过引入热膨胀系数高于TaC的热膨胀系数的次级硬质颗粒以调整和减小TaC基质中的拉应力场也是有利的。
参照表1,可以看出氧化铝(Al2O3)具有8.4ppm/℃的热膨胀系数。这显著大于TaC的热膨胀系数。Al2O3因而是本发明所采用的次级硬质颗粒的备选,因为它明显符合式(1)表达的条件。因此,包含金刚石作为初级颗粒,碳化钽(TaC)作为基质,和氧化铝作为次级颗粒的复合材料是本发明的实施方案,并且是该方面的例子。该实施方案的优选变体使用纳米晶粒尺寸(小于100纳米)的碳化钽(TaC)基质。
因此,一般地,这样的金属微粒材料可用作本发明的实施方案的次级颗粒:其对所述基质可行的烧结和制造方法而言,与所选的基质材料是相容的,并能保持为共格的、不熔的颗粒,当然前提是它们中的至少一种具有比基质的热膨胀系数大的热膨胀系数。表2是这类微粒金属示例性的但非全面的列表。
作为本发明的复合材料的金属次级微粒组分的特别效用的是各种类型的超级合金,其热膨胀系数如表2所示。因此众所周知,非常需要的超级合金的热机械整体性能例如高温强度可以涵盖在本发明的实施方案中。
这也可适用于一般的微粒金属陶瓷材料,一些这样的实施例在表3中列出,以及高熔点金属间化合物,它们也是有用的二次微粒材料。
本发明进一步涉及包含研磨衬片,其包括复合材料研磨压块。研磨衬片的特征在于PCD或PCBN层与烧结碳化物基材之间的中间层。该中间层包括如上所述的复合材料。
所述PCD或PCBN层可能是细晶粒或粗晶粒型。厚度会根据层的性能和颗粒尺寸而改变。
衬底的烧结碳化物可以是现有技术中已知的任何种类,例如烧结碳化钨,烧结碳化钽,烧结碳化钼或碳化钛。如现有技术中所已知,这种烧结碳化物具有结合相,如镍、钴、铁或者含上述一种或多种这些金属的合金。通常,结合相以6至20质量%的量存在。当PCD或PCBN层是厚层时,优选烧结碳化物的结合相低于8质量%,更优选低于6质量%。
该研磨衬片可能具有任何合适的形状,这取决于它所应用的场所。例如,研磨衬片可具有盘状形状,具有平的工作面,围绕其圆周限定出切割刃。本发明特别适用于成形的研磨衬片,例如其中超级研磨层呈现为对衬片提供工作表面的子弹或圆顶形状。
本发明的研磨衬片可通过形成本发明的另一方面的方法制造。该方法包括如下步骤:
(1)提供烧结碳化物基材,
(2)将制造如上所述中间层所需的组分层置于烧结碳化物基材的表面上;
(3)将金刚石或立方氮化硼颗粒以及任选的合适结合相材料的层置于在步骤(2)的层上,从而产生未结合的块体;
(4)将未结合的块体经受所述金刚石或立方氮化硼在晶体学上是稳定的升高的温度和压力,从而制造结合的研磨衬片。
现有技术中已知所施加的升高的温度和压力条件。它们是从大量金刚石颗粒中生产PCD和从大量立方氮化硼颗粒中生产PCBN所必要的条件。通常,这些条件是在1300至1600摄氏度的温度和5至8GPa的压力下。
现在将仅以举例的方式,参照以下非限定性的实施例描述本发明。
实施例
为了生产预压块样品,将406.3克Ta(OC2H5)5首先溶解在滴液漏斗A中的75毫升干乙醇(dry ethanol)中。将52ml去离子水在滴液漏斗B中与50ml分析纯级乙醇混合。
使用高能量超声波探头,将70克平均晶粒尺寸为1.5微米的合成金刚石分散在750毫升分析纯级乙醇中。将滴液漏斗A和B中的溶液同时送入含有金刚石悬浮液的烧杯中,使用Silverson机械混合器将其搅拌。
在加入全部试剂之后,将得到的溶液在旋转蒸发器(rotavapour)中干燥,随后在烘箱中在80℃下另外干燥24小时。然后,将涂覆氧化钽的金刚石在H2/Ar气体混合物中在1300℃下热处理3小时。X射线衍射分析证实,所得到的粉末是TaC涂覆的金刚石。
将10vol%TaC涂覆的金刚石粉末悬浮在1.5升分析纯级乙醇中。加入20体积%亚微米氧化铝粉末并混合10分钟,随后加入10体积%1微米TaC粉末,随后机械搅拌混合20分钟。
然后,将该悬浮液在旋转蒸发器中干燥,随后在90℃下烘干24小时。
将分散在20体积%的纳米TaC预压块样品中的金刚石/氧化铝材料进行分析,其显示出在TaC基质中的金刚石和氧化铝颗粒的良好的均匀分散性。因此,认为在高压带系统中在5.5GPa和1400℃下烧结所述预压块约15分钟将会产生约1.5微米的平均金刚石晶粒尺寸的固体结构(无裂纹);20vol%的亚微米氧化铝材料分散在20体积%的纳米TaC中。
Claims (21)
1.超硬或硬质复合材料,其包含分散在基质材料中的初级超硬或硬质微粒材料和至少一种次级超硬或硬质微粒材料;特征在于:初级超硬或硬质微粒材料具有比基质材料的热膨胀系数低的热膨胀系数,该或至少一种次级超硬或硬质微粒材料具有比基质材料的热膨胀系数高的热膨胀系数。
2.根据权利要求1所述的复合材料,其中所述初级超硬或硬质微粒材料选自包括金刚石、立方氮化硼、碳化硅、氮化硅、碳化硼、赛隆和氧化铝的超硬或硬质颗粒的组。
3.根据权利要求1所述的复合材料,其中所述初级超硬或硬质微粒材料选自氧化物和非氧化物陶瓷、金属和金属陶瓷。
4.根据权利要求1-3中任一项所述的复合材料,其中所述复合材料包含单独一种次级超硬或硬质微粒材料。
5.根据权利要求1-3中任一项所述的复合材料,其中所述复合材料包括多于一种的次级超硬或硬质微粒材料。
6.根据权利要求1-3中任一项所述的复合材料,其中至少一种次级超硬或硬质微粒材料选自包括单晶和多晶陶瓷、金属、合金和金属陶瓷的组。
7.根据权利要求1-6中任一项所述的复合材料,其中所述基质材料选自包括金属氧化物、氮化物、碳化物和硼化物的陶瓷的组。
8.根据权利要求1-7中任一项所述的复合材料,其中所述基质材料是纳米晶粒尺寸的。
9.根据权利要求8所述的复合材料,其中所述基质材料的晶粒尺寸小于100nm。
10.根据权利要求1-9中任一项所述的复合材料,其中所述基质材料包含一种以上选自包括钨、钼及其合金的组的高熔点金属。
11.根据前述权利要求中任一项所述的复合材料,其中所述初级和次级超硬或硬质微粒材料的平均晶粒尺寸为0.1微米至100微米。
12.根据权利要求11所述的复合材料,其中所述初级和次级超硬或硬质微粒材料的平均晶粒尺寸为10至100微米。
13.根据权利要求11所述的复合材料,其中所述初级和次级超硬或硬质微粒材料的平均晶粒尺寸为1至10微米。
14.根据权利要求11所述的复合材料,其中所述初级和次级超硬或硬质微粒材料的平均晶粒尺寸为0.1至1微米。
15.根据权利要求1-10中任一项所述的复合材料,其中所述初级和次级超硬或硬质微粒材料的平均晶粒尺寸小于0.1微米。
16.研磨衬片,包含多晶金刚石(PCD)或多晶立方氮化硼(PCBN)的层、基材;以及将所述PCD或PCBN层与基材结合的中间层,其中所述中间层包含如权利要求1-15中任一项定义的复合材料。
17.根据权利要求16所述的研磨衬片,其中所述基材是选自包括烧结碳化钨、烧结碳化钽、烧结碳化钼和烧结碳化钛的组的烧结碳化物基材。
18.根据权利要求17所述的研磨衬片,其中所述烧结碳化物进一步包含选自镍、钴、铁或含有一种或多种这些金属的合金的结合相。
19.根据权利要求18所述的研磨衬片,其中所述结合相以6-20质量%的量存在。
20.根据权利要求19所述的研磨衬片,其中所述烧结碳化物的结合相小于6质量%。
21.制备根据权利要求16-20中任一项所述的研磨衬片的方法,包括如下步骤:
(1)提供烧结碳化物基材,
(2)将制备如权利要求1-15中任一项所述复合材料所需的组分层置于烧结碳化物基材的表面上,
(3)将金刚石或立方氮化硼颗粒以及任选地合适的结合相材料的层置于在步骤(2)的层上,从而产生未结合的块体,及
(4)将未结合的块体经受所述金刚石或立方氮化硼在晶体学上是稳定的升高的温度和压力条件,从而制备结合的研磨衬片。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0823328.0 | 2008-12-22 | ||
GBGB0823328.0A GB0823328D0 (en) | 2008-12-22 | 2008-12-22 | Ultra hard/hard composite materials |
PCT/IB2009/055836 WO2010073198A2 (en) | 2008-12-22 | 2009-12-18 | Ultra hard/hard composite materials |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102292307A true CN102292307A (zh) | 2011-12-21 |
Family
ID=40344013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009801550364A Pending CN102292307A (zh) | 2008-12-22 | 2009-12-18 | 超硬/硬质复合材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8789626B2 (zh) |
EP (1) | EP2373595A2 (zh) |
KR (1) | KR20110136788A (zh) |
CN (1) | CN102292307A (zh) |
GB (1) | GB0823328D0 (zh) |
WO (1) | WO2010073198A2 (zh) |
ZA (1) | ZA201104359B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104326749A (zh) * | 2014-09-30 | 2015-02-04 | 苏州博利迈新材料科技有限公司 | 一种高强度纳米陶瓷材料及其制备方法 |
CN105201502A (zh) * | 2015-09-15 | 2015-12-30 | 安徽澳德矿山机械设备科技股份有限公司 | 高硬度金属陶瓷层耐磨截齿 |
CN105525345A (zh) * | 2016-02-18 | 2016-04-27 | 彭建国 | 金刚石多晶体合成超硬材料及其生产工艺 |
CN106488895A (zh) * | 2014-07-18 | 2017-03-08 | 六号元素(英国)有限公司 | 制造超硬物品的方法 |
CN106563809A (zh) * | 2016-11-14 | 2017-04-19 | 中石化石油机械股份有限公司江钻分公司 | 一种聚晶金刚石‑硬质合金复合片及其制备方法 |
CN107531578A (zh) * | 2015-03-09 | 2018-01-02 | 六号元素(英国)有限公司 | 聚晶磨料构造 |
CN111132782A (zh) * | 2017-10-02 | 2020-05-08 | 日立金属株式会社 | 超硬合金复合材料及其制造方法以及超硬工具 |
CN112159231A (zh) * | 2020-10-09 | 2021-01-01 | 武汉理工大学 | 一种超硬轻质金刚石-B4C-SiC三元复合陶瓷的快速制备方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2012103935A (ru) | 2009-07-08 | 2013-08-20 | Бейкер Хьюз Инкорпорейтед | Режущий элемент и способ его формирования |
BR112012000535A2 (pt) | 2009-07-08 | 2019-09-24 | Baker Hughes Incorporatled | elemento de corte para uma broca de perfuração usada na perfuração de formações subterrâneas |
CA2775102A1 (en) * | 2009-09-25 | 2011-03-31 | Baker Hughes Incorporated | Cutting element and method of forming thereof |
IE86959B1 (en) | 2010-11-29 | 2019-02-20 | Element Six Ltd | Fabrication of ultrafine polycrystalline diamond with nano-sized grain growth inhibitor |
GB201305871D0 (en) * | 2013-03-31 | 2013-05-15 | Element Six Abrasives Sa | Superhard constructions & methods of making same |
GB201318640D0 (en) * | 2013-10-22 | 2013-12-04 | Element Six Abrasives Sa | Superhard constructions & methods of making same |
CN104311091B (zh) * | 2014-09-30 | 2016-05-18 | 苏州博利迈新材料科技有限公司 | 一种稀土掺杂纳米陶瓷材料及其制备方法 |
EP3224222B1 (en) | 2014-11-26 | 2019-05-08 | Corning Incorporated | Composite ceramic composition and method of forming same |
US9719742B2 (en) * | 2015-08-10 | 2017-08-01 | Bryan Zeman | Empty ammunition magazine bolt hold open device |
GB201609672D0 (en) | 2016-06-02 | 2016-07-20 | Element Six Uk Ltd | Sintered polycrystalline cubic boron nitride material |
RU2753565C2 (ru) * | 2017-05-01 | 2021-08-17 | ЭРЛИКОН МЕТКО (ЮЭс) ИНК. | Буровое долото, способ изготовления корпуса бурового долота, композит с металлической матрицей и способ изготовления композита с металлической матрицей |
US10406654B2 (en) | 2017-10-25 | 2019-09-10 | Diamond Innovations, Inc. | PcBN compact for machining of ferrous alloys |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US10680354B1 (en) * | 2019-03-14 | 2020-06-09 | Antaya Technologies Corporation | Electrically conductive connector |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB972835A (en) * | 1960-04-28 | 1964-10-21 | Norton Co | Grinding tool |
US3841852A (en) | 1972-01-24 | 1974-10-15 | Christensen Diamond Prod Co | Abraders, abrasive particles and methods for producing same |
JPS6335456A (ja) | 1987-03-23 | 1988-02-16 | 住友電気工業株式会社 | 鋳鉄切削加工用高硬度焼結体およびその製造法 |
JP2576867B2 (ja) | 1987-05-30 | 1997-01-29 | ダイジェット工業株式会社 | 高靭性立方晶窒化硼素基焼結体 |
JP2634235B2 (ja) | 1989-04-21 | 1997-07-23 | 三菱重工業株式会社 | 工具用焼結材料 |
JP2634236B2 (ja) | 1989-04-21 | 1997-07-23 | 三菱重工業株式会社 | 工具用焼結材料 |
JP2691048B2 (ja) | 1990-05-23 | 1997-12-17 | 三菱重工業株式会社 | 工具用焼結材料 |
JPH07188827A (ja) | 1993-12-27 | 1995-07-25 | Chichibu Onoda Cement Corp | 工具用焼結体及びその製造方法 |
ZA956408B (en) | 1994-08-17 | 1996-03-11 | De Beers Ind Diamond | Abrasive body |
EP0778941B1 (de) | 1995-06-30 | 2003-05-02 | Klaus Züchner | Messeinrichtung und verfahren zur bestimmung des wassergehaltes in einem gas |
DE19544655A1 (de) | 1995-11-30 | 1997-06-05 | Goldwell Gmbh | Oxidations-Haarfärbemittel |
WO2000015577A1 (fr) * | 1998-09-16 | 2000-03-23 | Research Institute Of Advanced Material Gas-Generator, Ltd. | Materiau composite a base de ceramique ayant une excellente stabilite a temperature elevees |
US20030224220A1 (en) * | 1999-04-16 | 2003-12-04 | Nguyen Thinh T. | Dense refractory material for use at high temperatures |
US6454027B1 (en) * | 2000-03-09 | 2002-09-24 | Smith International, Inc. | Polycrystalline diamond carbide composites |
US20060057287A1 (en) | 2003-12-08 | 2006-03-16 | Incomplete Trex Enterprises Corp | Method of making chemical vapor composites |
JP4739228B2 (ja) | 2003-12-11 | 2011-08-03 | エレメント シックス (プロプライエタリィ) リミティッド | 多結晶ダイヤモンド研磨エレメント |
KR20070083557A (ko) | 2004-09-23 | 2007-08-24 | 엘리먼트 씩스 (프티) 리미티드 | 다결정 연마 물질 및 그 제조방법 |
CN100572312C (zh) * | 2004-11-26 | 2009-12-23 | 鸿富锦精密工业(深圳)有限公司 | 模仁及其制造方法 |
US7166550B2 (en) * | 2005-01-07 | 2007-01-23 | Xin Chen | Ceramic composite body of silicon carbide/boron nitride/carbon |
US8020643B2 (en) * | 2005-09-13 | 2011-09-20 | Smith International, Inc. | Ultra-hard constructions with enhanced second phase |
WO2007144731A2 (en) | 2006-06-09 | 2007-12-21 | Element Six (Production) (Pty) Ltd | Ultrahard composite materials |
ES2372005T3 (es) | 2006-06-09 | 2012-01-12 | Element Six (Production) (Pty) Ltd. | Materiales compuestos ultraduros. |
WO2007148214A2 (en) | 2006-06-23 | 2007-12-27 | Element Six (Production) (Pty) Ltd | Transformation toughened ultrahard composite materials |
-
2008
- 2008-12-22 GB GBGB0823328.0A patent/GB0823328D0/en not_active Ceased
-
2009
- 2009-12-18 CN CN2009801550364A patent/CN102292307A/zh active Pending
- 2009-12-18 KR KR1020117017152A patent/KR20110136788A/ko not_active Application Discontinuation
- 2009-12-18 EP EP09799733A patent/EP2373595A2/en not_active Ceased
- 2009-12-18 US US13/141,042 patent/US8789626B2/en active Active
- 2009-12-18 WO PCT/IB2009/055836 patent/WO2010073198A2/en active Application Filing
-
2011
- 2011-06-10 ZA ZA2011/04359A patent/ZA201104359B/en unknown
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106488895A (zh) * | 2014-07-18 | 2017-03-08 | 六号元素(英国)有限公司 | 制造超硬物品的方法 |
CN106488895B (zh) * | 2014-07-18 | 2019-04-23 | 六号元素(英国)有限公司 | 制造超硬物品的方法 |
CN104326749A (zh) * | 2014-09-30 | 2015-02-04 | 苏州博利迈新材料科技有限公司 | 一种高强度纳米陶瓷材料及其制备方法 |
CN104326749B (zh) * | 2014-09-30 | 2016-08-17 | 深圳市四鼎华悦科技有限公司 | 一种高强度纳米陶瓷材料及其制备方法 |
CN107531578A (zh) * | 2015-03-09 | 2018-01-02 | 六号元素(英国)有限公司 | 聚晶磨料构造 |
CN107531578B (zh) * | 2015-03-09 | 2021-06-15 | 六号元素(英国)有限公司 | 聚晶磨料构造 |
CN105201502A (zh) * | 2015-09-15 | 2015-12-30 | 安徽澳德矿山机械设备科技股份有限公司 | 高硬度金属陶瓷层耐磨截齿 |
CN105525345A (zh) * | 2016-02-18 | 2016-04-27 | 彭建国 | 金刚石多晶体合成超硬材料及其生产工艺 |
CN105525345B (zh) * | 2016-02-18 | 2018-06-26 | 长春阿尔玛斯科技有限公司 | 金刚石多晶体合成超硬材料及其生产工艺 |
CN106563809A (zh) * | 2016-11-14 | 2017-04-19 | 中石化石油机械股份有限公司江钻分公司 | 一种聚晶金刚石‑硬质合金复合片及其制备方法 |
CN111132782A (zh) * | 2017-10-02 | 2020-05-08 | 日立金属株式会社 | 超硬合金复合材料及其制造方法以及超硬工具 |
CN112159231A (zh) * | 2020-10-09 | 2021-01-01 | 武汉理工大学 | 一种超硬轻质金刚石-B4C-SiC三元复合陶瓷的快速制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2373595A2 (en) | 2011-10-12 |
US20110297450A1 (en) | 2011-12-08 |
WO2010073198A2 (en) | 2010-07-01 |
US8789626B2 (en) | 2014-07-29 |
GB0823328D0 (en) | 2009-01-28 |
WO2010073198A3 (en) | 2010-10-14 |
ZA201104359B (en) | 2012-09-26 |
KR20110136788A (ko) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102292307A (zh) | 超硬/硬质复合材料 | |
US5580666A (en) | Cemented ceramic article made from ultrafine solid solution powders, method of making same, and the material thereof | |
US8597387B2 (en) | Abrasive compact with improved machinability | |
US8318082B2 (en) | Cubic boron nitride compact | |
US8435317B2 (en) | Fine grained polycrystalline abrasive material | |
US8382868B2 (en) | Cubic boron nitride compact | |
US20110020163A1 (en) | Super-Hard Enhanced Hard Metals | |
US20070235908A1 (en) | Method of making a ceramic body of densified tungsten carbide | |
JP2012513361A (ja) | 超硬質/硬質複合材料 | |
WO2023235658A1 (en) | Low content pcbn grade with high metal content in binder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111221 |