CN102281816B - 用于确定危重护理参数的方法和设备 - Google Patents

用于确定危重护理参数的方法和设备 Download PDF

Info

Publication number
CN102281816B
CN102281816B CN200980154809.7A CN200980154809A CN102281816B CN 102281816 B CN102281816 B CN 102281816B CN 200980154809 A CN200980154809 A CN 200980154809A CN 102281816 B CN102281816 B CN 102281816B
Authority
CN
China
Prior art keywords
signal
sensor
data
equipment
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980154809.7A
Other languages
English (en)
Other versions
CN102281816A (zh
Inventor
K.沃德
D.安德里
S.K.贝姆克
J.费林顿
J.加斯巴罗
C.卡萨巴赫
C.帕焦内
R.佩勒捷
K.罗斯
S.萨菲耶
J.M.斯蒂沃里克
E.特勒
S.维什努巴特拉
N.维亚斯
G.科瓦奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Virginia Commonwealth University
Bodymedia Inc
Original Assignee
Virginia Commonwealth University
Bodymedia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virginia Commonwealth University, Bodymedia Inc filed Critical Virginia Commonwealth University
Publication of CN102281816A publication Critical patent/CN102281816A/zh
Application granted granted Critical
Publication of CN102281816B publication Critical patent/CN102281816B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/412Detecting or monitoring sepsis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/413Monitoring transplanted tissue or organ, e.g. for possible rejection reactions after a transplant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Transplantation (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Primary Health Care (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

公开了通过使用安装在身体的感测设备来监视个体的某些生理参数的生理测量系统。该设备特别适合于连续佩戴。该系统还可适合于或适用于计算此类参数的导出。氧债测量实施例针对响应于受伤和疾病来预测结果。该技术允许闭环复苏、疾病的及早识别和及早纠正措施。

Description

用于确定危重护理参数的方法和设备
相关申请的交叉引用
本申请经由35 U.S.C. 371要求2009年11月20日提交的国际申请号PCT/US09/06234的优先权。国际申请号PCT/US09/06234是2007年10月30日提交的美国申请序号11/928,302的部分继续申请,美国申请序号11/928,302是作为美国专利号7,502,643授权的2004年9月13日提交的美国申请序号10/940,889的继续,美国专利号7,502,643要求2003年9月12日提交的美国临时申请序号60/502,764;2003年10月9日提交的美国临时申请序号60/510,013;以及2004年3月22日提交的美国临时申请序号60/555,280的权益。国际申请号PCT/US09/06234还是2004年9月13日提交的美国专利申请序号10/940,214的部分继续申请,美国专利申请序号10/940,214是2003年8月11日提交的美国专利序号10/638,588的部分继续申请,美国专利序号10/638,588是作为美国专利号6,605,038授权的2000年6月23日提交的美国申请序号09/602,537的继续,美国申请序号09/602,537是2000年6月16日提交的美国申请序号09/595,660的部分继续申请,其作为美国专利号7,689,437而授权并且其要求在2003年9月13日提交的美国临时申请号60/502,764和2004年3月22日提交的美国临时申请号60/555,280的权益。国际申请号PCT/US09/06234还是2003年10月9日提交的美国专利申请序号10/682,293的部分继续申请,美国专利申请序号10/682,293要求2002年10月9日提交的美国临时申请号60/417,163的权益。国际申请号PCT/US09/06234要求2008年11月20日提交的美国临时申请号61/116,364的权益。以上提到的每个专利申请被整体地通过引用结合到本文中。 
关于联盟赞助研究的声明
本发明是在政府支持下根据合同国防部援助规定PR023081完成的。政府在本发明中可以具有某些权利。 
技术领域
本发明涉及生理学测量系统。更具体地,该系统可以用于生理学测量的实时监视、分析和报告以确定危重(critical)护理参数。此类方法可以具体地在通过(一个或多个)连续或半连续生理和/或机械度量和/或其它血液动力学相关参数来确定氧债时使用。 
背景技术
外伤一直是美国1和44岁年龄之间的人死亡的主要原因。这些死亡的超过40%是由于出血性休克。在战斗背景下,甚至更高数目的死亡(50%或以上)是由于出血而引起的。由于对确定性(definitive)护理和更复杂的外伤模式的延迟获得,战士与可能处于类似出血水平的平民背景相比针对休克具有更高的死亡率。事实上,战士死亡的90%在提供有效的战 斗伤亡护理之前发生。 
诸如大量伤亡或战场环境的紧急情况可能限制医务人员使用诸如精神状态、心率、脉搏质量、微血管充填和偶尔地血压及脉搏血氧饱和度的粗略失血度量来确定出血的严重程度并指导治疗。当这些生理学变量异常时,提示医生积极地使受害者复苏。然而,以上变量的变化在出血的晚期发生并反映代谢失调的状态。此外,此信息当前只能在现场并在受伤之后在医疗救助到达时通过手动装置来访问。包括受伤之前的数据和在受伤之后但是在手动评估之前的数据的对作出判定而言可能重要的所有数据当前是不可用的。包括导致无意识的外伤脑损伤的损伤以及诸如极热或极冷的环境因素和各种种族的皮肤色素沉淀使得在测量损伤严重程序或对治疗的反应时更加难以使用精神状态、微血管充填和皮肤苍白观察。疼痛和压力可能减小心率监视的值。因此,在代谢失调状态之前及早地介入的能力受到限制,如医生有效地将多个伤亡人员分类并进行治疗且有效地分配资源的能力一样。在理解这些问题的情况下开发的诊断技术可以在战场上以及在平民外伤背景下可以挽救生命。 
在无损伤、无感染的健康状态下,氧消耗(VO2)是被密切调节的过程,因为氧在由多种代谢燃料产生能量时充当临界碳受主。外伤后出血导致血容量不足,其中血液流量和因此到生命器官的氧输送减少。当氧输送被减少至足以使VO2减少至临界水平之下的程度时,发生休克状态,产生局部缺血的代谢不全。VO2的这种程度的限制还可能是由其中氧输送受到低流量的限制的心源性或血管源性休克产生的。当达到氧限制的此临界水平时,发生氧债或OD。OD是局部缺血的定量度量。具体地,它是有机体总体上以与其可获得的氧的输送成正比的方式消耗氧的程度。OD的存在和程度由于由厌氧过程产生的非代谢代谢性酸的增加而进一步突出。允许动物和人类两者的局部缺血休克过程的严重程度的精确量化的是OD和相关代谢性酸血症的密切一致。 
垂危和受伤病人的隐匿性且不适当地复苏的休克这二者的识别一直是主要的临床问题。隐匿性休克-亦即不是立即在临床上显而易见的休克-在老年人外伤病人的护理中是特别关注的问题,其可能处于脓毒症(sepsis)早期,并且其常常以可能掩饰休克的常规迹象和症状的多个并发症和/或药物疗法为特征,以及诊断和治疗资源受到限制的受伤战士。甚至在具有钝伤的相对年轻且健康的受害人-典型外伤病人-身上发生的休克也可能由于在胸部、腹部、腹膜后腔、骨盆或软组织中发生的隐匿性出血而难以识别。 
大多数复苏策略似乎更偏重于对恢复到组织的正常氧输送的努力。有人提出所有这些努力已经忽略了休克状态的主要生理学基础。最有用的将是回到作为休克和休克治疗的基础的三个基本生理学原理: 
(1)进一步氧债累积的预防, 
(2)氧债的偿还, 
(3)氧债解决的时间的最小化。 
休克是在到组织的氧或DO2的输送低于组织氧消耗或VO2要求时发生的细胞水平的灌注不足的状态,并且因此表示组织DO2与VO2之间的不平衡或不匹配。氧输送取决于传统上由心输出量来全局地评估的血液流量和动脉氧含量。在临床上,多个器官机能障碍与特定组织或器官床的DO2和VO2的持续不充分平衡相关联。按照惯例,用诸如精神状态的全身端点和心率、可触知脉搏和体循环血压的标准心血管参数来评估灌注状态。然而,来自动物模型和临床研究两者的数据指示这些度量非常差地与特定组织床的灌注相关。因此,即使全身性低血压已被纠正,器官床也可能具有不足的DO2。结果,即使对象是血压正常的,DO2到各种组织床的不相等分配也可能在发生全身局部缺血之前导致隔离器官局部缺血。特别地,内脏似乎尤其易受局部缺血损伤;越来越多的证据表明内脏的局部缺血变化驱动炎症级联反应的全身性激活。持续的全身性灌注不足已经和局部缺血细胞损伤和细胞死亡有牵连,其除非被纠正,否则导致全身性炎症反应综合征或SIRS和不可逆转的多器官功能障碍综合征或MODS。虽然在最近的几十年中MODS的总发生已经减少,但MODS仍是外伤中的新近发病和死亡的主要原因,并且死亡率仍高高地保持在50~80%。 
自从二十世纪六十年代早期以来已经知道氧债的概念,但是在临床背景下并没有统一地应用。OD已经被证明是能够定量地预测出血之后的幸存和多器官衰竭的发展的唯一生理学变量。氧债的概念中隐含的是多器官功能障碍和死亡的概率主要受累积债务的影响。早期的动物实验指示存在氧债的最小阈值,在该最小阈值之下所有动物幸存下来,并且在该最小阈值之上,死亡率增加直至达到债务的普遍致死阈值。后续的动物和临床研究显示增加的死亡概率直接与总氧债相关联,并且可以从关键代谢标记、即碱缺失和乳酸来估计此债务。可见,如果在招致临床上显著的氧债之前开始复苏且该债务随后被偿还,则细胞损害将是轻微或不存在的。相反,如果增加的氧债的时段被延长和/或复苏不充分、即未能偿还氧债,则细胞损害和后续器官衰竭的可能性被大大增加。因此,休克解决的证据应至少包括氧债的完全偿还。 
遗憾的是,原始的氧债研究都没有进行关于时间帧的任何假设,在该时间帧内,累积债务将被“宽恕”或偿还。理论上,发病和/或死亡不应受到偿还调度表(repayment schedule)的影响,只要不再允许累积债务即可。然而,实际上,当管理较低容量的复苏流体时,或者如果存在确定性复苏开始的延迟,则很可能债务偿还将是较慢的。已经观察到伴 随着不充分复苏的延长的出血性休克引起相对小的比例的立即死亡,然而,占医院死亡的四分之一以上,主要是由于器官衰竭。这对战士而言必然具有深远的含意,因为创伤性脑损伤是伊拉克和阿富汗当前的军事冲突的标志性损伤。朝着医院前环境中的小量、低血压和延迟复苏的最近推动意味着我们根据债务偿还调度表来重新评估这些复苏策略甚至是更重要的。 
可以通过测量氧消耗随着时间的推移与基线的差来对氧债进行定量。可以通过对氧债水平进行定量来预测死亡和发病。尽管自从二十世纪五十年代末以来有此度量的已知预测性值,但通过使用间接量热法或间接Fick法,OD的确定是麻烦、昂贵且困难的。 
由于糖酵解是anerobiasis期间的主要能量产生过程,其主要副产物、即乳酸大大地增加。临床医生多年来已经使用乳酸来评估在诸如出血性、心源性和脓毒性休克的休克状态下发生的组织缺氧的程度。事实上,乳酸被异常提升的乳酸提升幅值和时间长度的组合已被证明是死亡和发病的预测。关于经历出血的动物的实验室研究已经证明可以使用利用传统采样法的间隔乳酸测量在这些值经历诸如逻辑回归之类的分析技术时对OD进行半定量。 
然而,据我们所知没有人提出使用连续或半连续乳酸采样来产生OD的高保真度、高精度度量,其能够用来取代诸如间接量热法和间接Fick法的OD的典型度量。也没有人提出将用这种方法进行的OD确定用作治疗和资源分配的指导或作为导致氧输送和利用之间的不平衡的疾病的伤员分类或医疗/手术管理的方法。 
OD及其代谢相关物是出血性和外伤后休克的严重程度的重要计量符(quantifier),并且可以充当这些条件的治疗中的有用指导。此类指导包括检验代谢氧债相关物(即碱缺失和乳酸)作为休克严重程度和容量复苏的适当性的指标。研究提出氧债或其代谢相关物可以是比失血、容量取代(volume replacement)、血压或心率的估计更有用的出血性休克的计量符。 
发明内容
本发明还涉及一种测量个体的生理参数的方法,包括从与佩戴在个体的身体上的传感器设备进行电子通信的至少一个传感器收集多个传感器信号。所述传感器是利用用来预测个体的状态参数的输出的生理学传感器。公开了一种能够帮助紧急护理工作人员确定有病或受伤的个体是否已达到危重状态的方法。该方法涉及从个体连续地收集生理学数据并使此数据与危重护理参数相关联,诸如创伤性损伤或疾病的存在。在一个实施例中,用数学运算来分析收集的数据以确定危重状态的存在。 
还公开了一种能够帮助紧急护理工作人员确定有病或受伤的个体是否已达到危重状态的系统。该系统可以是自动化的,并且还可以是可适应或可适用于测量多个生理参数并报 告所述生理参数和此类参数的衍生物。在优选实施例中,导出危重护理参数的系统旨在确定个体的急性健康状态。在其它实施例中,该系统可以允许疾病的及早识别和及早纠正措施。 
特别地,根据一方面,本发明涉及与软件平台相结合地使用以便监视某些生理学度量的设备。然后使用数学技术将这些度量变换成危重参数(诸如心率或氧债)的度量的值,所述数学技术然后具有关于响应于损伤以及疾病的结果的预测性值。 
管理系统利用身体上的设备,其连续地监视某些生理参数,除运动、皮肤温度和传导性之外,诸如由用户的身体发出的热量。由于设备被连续地佩戴,所以在由用户执行的任何物理活动(包括训练活动和日常生活活动)期间收集数据。该设备还被针对舒适和方便而进一步设计,使得长期佩戴在佩戴者的生活方式活动内不是不合理的。具体地,应注意的是设备被设计为用于连续且长期的佩戴。在一方面,该设备在创伤开始之前被个体利用,使得可以收集基线数据。在附加实施例中,由设备收集的数据被上传到软件平台以便确定危重护理状态的存在。可以由传感器设备、蜂窝电话或无线地通信(诸如RF、IR、蓝牙、WiFi、Wimax、RFiD)的其它第二设备内的处理器来收集所测量的数据。收集可以利用传感器设备和此第二设备或在两个设备之间的协作中(即共享处理)发生。这些设备然后确定病人的状态、危重性水平等。 
公开的系统还提供用于物理信息的输入和跟踪的容易过程。用户可以从多种信息输入方法中选择,诸如直接、自动或手动输入。 
从设备收集的信息和由用户输入的信息的组合用来提供关于用户的物理状态的反馈信息。由于信息的准确度,用户或第三方能够进行即时治疗决策。该系统能够预测指示人类生理参数的数据,包括任何给定相关时间段内的能量消耗和热量摄入以及其它检测和导出的生理学或相关信息。 
在附加实施例中,公开了用于监视某些已识别人类状态参数的设备,其包括适合于佩戴在个体的身体上的至少一个传感器。优选实施例利用传感器的组合来提供更准确地感测的数据,其中多个传感器的输出被用于附加数据的导出。被所述设备利用的一个或多个传感器可以包括选择自由以下各项组成的组的生理学传感器:呼吸传感器、温度传感器、热通量传感器、身体电导传感器、身体电阻传感器、身体电位传感器、大脑活动传感器、血压传感器、身体阻抗传感器、身体运动传感器、氧消耗传感器、身体化学传感器、身体位置传感器、身体压力传感器、光吸收传感器、身体声音传感器、压电传感器、电化学传感器、应变仪和光学传感器。所述设备还包括接收指示参数的数据的至少一部分的处理器。该处理器适合于由数据的至少一部分生成导出数据。 
所述设备还可以包括适合于被佩戴在个体的身体上的外壳。所述设备还可以包括具有适合于被缠绕在个体的身体一部分周围的具有第一和第二部件的支撑外壳的柔性主体。所述柔性主体可以支撑传感器中的一个或多个。所述设备还可以包括被耦合到外壳以便保持外壳与个体的身体之间的接触的缠绕装置,并且所述缠绕装置可以支撑传感器中的一个或多个。 
所述设备的另一实施例包括远离至少两个传感器的包括数据存储设备的中央监视单元。所述数据存储设备从处理器接收导出数据并将导出数据可检索地存储在其中。所述设备还包括用于将基于导出数据的信息从中央监视单元传送给接收者的装置,该接收者可以包括个体或经个体授权的第三方。可以由适合于佩戴在个体的身体上的外壳来支撑处理器,或者可替换地,处理器可以是中央监视单元的一部分。 
在方法、系统或设备的一个实施例中,第一函数基于第一组信号来识别一个或多个情境(context),并且基于一个或多个识别的情境来选择第二函数中的一个或多个。所选第二函数的输出被用来预测个体的状态参数。在另一实施例中,第一函数基于第一组信号来识别多个情境中的每一个,并且一个或多个第二函数中的每一个对应于情境中的一个。第一函数基于与相应情境相关联的识别概率对一个或多个第二函数中的每一个赋予权值,并且所述一个或多个第二函数的输出和权值被用来预测个体的状态参数。可以在后处理步骤中对输出进行组合以预测状态参数。另外,在设备或方法中,状态参数可以是热量支出,第二函数可以是回归算法,情境可以包括静息和活动,并且第一函数可以包括朴素贝叶斯分类器。在状态参数是热量支出的情况下,可以生成用于个体的热量消耗数据,并且可以显示基于热量支出数据和热量消耗数据的信息,诸如能量平衡数据、重量损失或增加速率或者关于个体的一个或多个目标的信息。 
在所述设备的一个实施例中,在可佩戴传感器设备中包括处理器和存储器。在另一实施例中,所述设备包括可佩戴传感器设备,处理器和存储器被包括在位于与传感器设备分开的位置处的计算设备中,其中,传感器信号被从传感器设备传送到计算设备。 
本发明还涉及制造用于测量个体的状态参数的设备的软件的方法,包括提供第一传感器设备,所述第一传感器设备从至少两个传感器接收多个信号,使用第一传感器设备来产生第一函数和一个或多个第二函数,所述一个或多个第二函数中的每一个具有输出,第一函数利用基于多个传感器信号中的一个或多个的第一组信号来确定在所述一个或多个第二函数中如何利用基于多个传感器信号中的一个或多个的第二组信号,其中,所述输出中的一个或多个被用来预测个体的状态参数。所述方法还包括产生包括用于以下操作的指令的软件: (i)在一段时间内接收由在结构上基本上与第一传感器设备相同的第二传感器设备收集的第二多个信号;(ii)在第一函数中利用基于第二多个传感器信号中的一个或多个的第三组信号以确定如何在所述一个或多个第二函数中利用基于所述第二多个传感器信号中的一个或多个的第四组信号;以及(iii)利用由所述一个或多个第二函数根据第四组信号产生的一个或多个输出来预测个体的状态参数。在所述方法中,使用传感器设备来产生第一函数和一个或多个第二函数的步骤可以包括在其中存在状态参数的情况下收集第一组多个信号,同时收集关于状态参数的黄金标准数据,并使用一个或多个机器学习技术根据所述第一组多个信号和所述黄金标准数据来产生第一函数和一个或多个第二函数。另外,第一函数可以基于第一组信号来识别一个或多个情境,并且可以基于一个或多个识别的情境来选择第二函数中的一个或多个,其中,所选第二函数的输出被用来预测个体的状态参数。可替换地,第一函数可以基于第一组信号来识别多个情境中的每一个,并且一个或多个第二函数中的每一个可以对应于情境中的一个,其中,第一函数基于与相应情境相关联的识别概率对所述一个或多个第二函数中的每一个赋予权值,并且其中,所述一个或多个第二函数的输出和权值被用来预测个体的状态参数。 
本发明的一个特定实施例涉及测量个体的能量支出的方法,包括从身体运动传感器、热通量传感器、皮肤电导传感器和皮肤温度传感器(每个与佩戴在个体的身体上的传感器设备进行电子通信)中的至少一个收集多个传感器信号,并在一个或多个函数中利用基于所述多个传感器信号中的一个或多个的第一组信号来预测个体的能量支出。所述利用步骤可以包括在第一函数中利用第一组信号,所述第一函数确定如何在一个或多个第二函数中利用基于所述多个传感器信号中的一个或多个的第二组信号,所述一个或多个第二函数中的每一个具有输出,其中,所述输出中的一个或多个被用来预测个体的能量支出。另外,所述收集步骤可以包括从身体运动传感器、热通量传感器和皮肤电导传感器收集多个传感器信号,第二组信号包括热通量高增益平均方差(HFvar)、横向和纵向加速度计SAD的矢量和(VSAD)以及皮肤电反应低增益(GSR),其中,第二函数具有A*VSAD+B*HF+C*GSR+D*BMR+E的形式,其中,A、B、C、D和E是常数且BMR是用于个体的基础代谢率。 
本发明还涉及一种用于测量个体的能量支出的设备,包括处理器、与处理器电子通信的身体运动传感器、热通量传感器、皮肤电导传感器和皮肤温度传感器中的至少两个以及存储可由处理器来执行的软件的存储器。所述软件包括用于从身体运动传感器、热通量传感器、皮肤电导传感器和皮肤温度传感器中的至少两个收集多个传感器信号并在一个或多个函 数中利用基于所述多个传感器信号中的一个或多个的第一组信号以预测个体的能量支出的指令。所述利用指令可以包括在第一函数中利用第一组信号,所述第一函数确定如何在一个或多个第二函数中利用基于所述多个传感器信号中的一个或多个的第二组信号,所述一个或多个第二函数中的每一个具有输出,其中,输出中的一个或多个被用来预测个体的能量支出。所述收集指令可以包括从身体运动传感器、热通量传感器和皮肤电导传感器收集多个传感器信号,第二组信号包括热通量高增益平均方差(HFvar)、横向和纵向加速度计SAD的矢量和(VSAD)以及皮肤电反应低增益(GSR),其中,第二函数具有A*VSAD+B*HF+C*GSR+D*BMR+E的形式,其中,A、B、C、D和E是常数且BMR是用于个体的基础代谢率。 
本发明还涉及一种制造用于测量个体的能量支出的设备的软件的方法,包括提供第一传感器设备,该第一传感器设备从身体运动传感器、热通量传感器、皮肤电导传感器和皮肤温度传感器中的至少两个接收多个信号,并使用第一传感器设备来产生一个或多个函数,所述一个或多个函数使用基于所述多个传感器信号中的一个或多个的第一组信号来预测个体的能量支出。所述方法还包括产生包括用于以下操作的指令的软件:(i)在一段时间内接收由在结构上基本上与第一传感器设备相同的第二传感器设备收集的第二多个信号,所述第二传感器设备从身体运动传感器、热通量传感器、皮肤电导传感器和皮肤温度传感器中的至少两个接收第二多个信号;以及(ii)在一个或多个函数中利用基于所述第二多个传感器信号中的一个或多个的第二组信号来预测个体的能量支出。使用传感器设备来产生一个或多个函数的步骤可以包括在其中存在用于个体的能量支出数据的条件下收集第一组多个信号,同时收集关于用于个体的能量支出数据的黄金标准数据,并使用一个或多个机器学习技术根据所述第一组多个信号和所述黄金标准数据来产生一个或多个函数。另外,所述利用指令可以包括在第一函数中利用第二组信号,所述第一函数确定如何在一个或多个第二函数中利用基于所述第二多个传感器信号中的一个或多个的第三组信号,所述一个或多个第二函数中的每一个具有输出,其中,所述输出中的一个或多个被用来预测个体的能量支出。 
在另一实施例中,本发明涉及用于自动地测量个体的第一状态参数的设备,包括处理器、用于在一段时间内生成一个或多个信号的一个或多个传感器,所述处理器接收所述一个或多个信号、以及存储可由处理器执行的软件的存储器。所述软件包括指令,用于将基于所述一个或多个信号的一个或多个信号通道输入到具有预测个体的一个或多个第二状态参数和第一状态参数或第一状态参数的指示器的第一输出的第一函数中,其中,可以基于第一状态参数与指示器之间的第一关系从所述指示器获得第一状态参数,将所述一个或多个信号通 道输入到具有预测所述一个或多个第二状态参数但不预测第一状态参数或第一状态参数的指示器的第二输出的第二函数中,并基于第一函数与第二函数之间的第二关系从第一和第二输出获得第一状态参数或指示器,并且如果获得了指示器,则基于第一关系从指示器获得第一状态参数。 
本发明还涉及一种自动地测量个体的第一状态参数的方法,包括在一段时间内从与佩戴在个体的身体上的传感器设备进行电子通信的一个或多个传感器收集一个或多个信号,将基于所述一个或多个信号的一个或多个信号通道输入到具有预测个体的一个或多个第二状态参数和第一状态参数或第一状态参数的指示器的第一输出的第一函数中,其中,可以基于第一状态参数与指示器之间的第一关系从指示器获得第一状态参数,将所述一个或多个信号通道输入到具有预测一个或多个第二状态参数但不预测第一状态参数或第一状态参数的指示器的第二输出的第二函数中,并基于第一函数和第二函数之间的第二关系从第一和第二输出获得第一状态参数或指示器,并且如果获得了指示器,则基于第一关系从指示器获得第一状态参数。可以在诸如手臂、胸、左胸和大腿位置的区域将所述设备佩戴在身体上。 
在另一实施例中,本发明涉及用一种制造用于自动地测量个体的第一状态参数的设备的软件的方法。所述方法包括提供第一传感器设备,所述第一传感器设备从一个或多个传感器接收一个或多个信号,使用第一传感器设备来产生具有预测个体的一个或多个第二状态参数和第一状态参数或第一状态参数的指示器的第一输出的第一函数,其中,可以基于第一状态参数与指示器之间的第一关系从指示器获得第一状态参数,第一函数取基于所述一个或多个信号的一个或多个信号通道作为输入,并使用第一传感器设备来产生具有预测一个或多个第二状态参数但不预测第一状态参数或第一状态参数的指示器的第二输出的第二函数,所述第二函数取所述一个或多个信号通道作为输入。所述方法还包括产生包括用于以下操作的指令的软件:(i)在一段时间内接收由与在结构上基本上与第一传感器设备相同的第二传感器设备收集的第二一个或多个信号;(ii)将基于所述第二一个或多个信号的第二一个或多个信号通道输入到第一函数和第二函数中以便分别生成第一输出和第二输出;以及(iii)基于第一函数和第二函数之间的第二关系从在输入步骤中生成的第一和第二输出获得第一状态参数或指示器,并且如果获得了指示器,则基于第一关系从指示器获得第一状态参数。使用传感器设备来产生第一函数的步骤可以包括在其中存在第二状态参数和第一状态参数或指示器的条件下收集第一组一个或多个信号,同时收集关于第二状态参数和第一状态参数或指示器的黄金标准数据,并使用一个或多个机器学习技术根据第一组一个或多个信号和黄金标准数据产生第一函数,并且使用传感器设备来产生第二函数的步骤可以包括在其中既不存在第一 状态参数又不存在指示器的条件下收集第二组一个或多个信号,同时收集关于第二状态参数而不是第一状态参数或指示器的第二黄金标准数据,并使用一个或多个机器学习技术根据第二组一个或多个信号和第二黄金标准数据来产生第二函数。 
以下美国专利或美国专利申请的公开被整体地通过引用结合到本文中:美国申请序号11/928,302、美国申请序号10/940,889、美国临时申请序号60/502,764、美国临时申请序号60/510,013、美国临时申请序号60/555,280、美国专利申请序号10/940,214、2003年8月11日提交的美国申请序号10/638,588、美国申请序号09/602,537、美国申请序号09/595,660、美国临时申请序号60/502,764、美国临时申请序号50/555,280、美国专利申请序号10/682,293、美国临时申请号60/417,163和美国临时申请号61/116,364。 
附图说明
在考虑结合以下各图进行的本发明的以下详细说明时,本发明的其它特征和优点将是显而易见的,在附图中相同的附图标记指示相同部分,并且在附图中: 
图1是根据本发明的用于通过电子网络来监视生理数据和生活方式的系统的实施例的示图; 
图2是图1所示的传感器设备的实施例的方框图; 
图3是图1所示的中央监视单元的实施例的方框图; 
图4是图1所示的中央监视单元的替换实施例的方框图; 
图5是图1所示的传感器设备的特定实施例的前视图; 
图6是图1所示的传感器设备的特定实施例的后视图; 
图7是图1所示的传感器设备的特定实施例的侧视图; 
图8是图1所示的传感器设备的特定实施例的底视图; 
图9和10是图1所示的传感器设备的特定实施例的前透视图; 
图11是图1所示的传感器设备的特定实施例的分解侧透视图; 
图12是被插入电池再充电器单元中的图5至11所示的传感器设备的侧视图; 
图13是举例说明被安装在或耦合到构成图5至11所示的传感器设备的一部分的印刷电路板的所有组件的方框图; 
图14是示出根据本发明的一个方面开发的算法的格式的方框图; 
图15是举例说明根据本发明的用于预测能量支出的示例性算法的方框图; 
图16A是传感器设备的特定实施例的前视图; 
图16B是在被佩戴在对象(subiect)的手臂上时的16A的设备的图示; 
图17A和17B是在床边情况下的水平1创伤病身体内的代谢车EE和预测EE的比较; 
图18A和18B是水平1创伤床边情况下的休克指数和预测EE的比较;以及 
图19A、19B和19C分别是示出根据本发明的一个方面的电极放置位置的左臂的后、前和后视图; 
图20A和20B分别是示出根据本发明的一个方面的电极放置位置的右臂的后和前视图; 
图20C、20D和20E分别是示出根据本发明的一个方面的电极放置位置的躯干的前、后和前视图; 
图21是根据本发明的实施例的用于检测ECG信号的电路的方框图; 
图22A和22B是图21和24所示的偏置/耦合网络的第一和第二实施例的电路图; 
图22C是第一级放大器设计的电路图; 
图23是图4和7所示的滤波器的一个实施例的电路图; 
图24是根据本发明的替换实施例的用于检测ECG信号的电路的方框图; 
图24A至24D是通过处理的各种阶段的所检测的ECG信号的图解表示; 
图24E至24H是通过搏动检测的各种阶段的所检测的ECG信号的图解表示; 
图25A至25F是根据本发明的替换实施例的用于检测ECG信号的替换电路的方框图; 
图26是形成根据本发明生成的信号的一部分的典型峰值的示图; 
图26和27A和27B是形成根据本发明生成的信号的一部分的典型上下上序列的示图; 
图28是举例说明作为时间的函数的所测量ECG信号的图表; 
图29是臂章身体监视设备的一个实施例的底视平面图; 
图30是臂章身体监视设备的第二实施例的底视平面图; 
图31是臂章身体监视设备的第三实施例的底视平面图; 
图32是臂章身体监视设备的第四实施例的底视平面图; 
图33是臂章身体监视设备的第五实施例的底视平面图; 
图34是臂章身体监视设备的第六实施例的底视平面图; 
图35是臂章身体监视设备的第七实施例的底视平面图; 
图36是安装在人手臂上的臂章身体监视设备的第七实施例的等距视图; 
图37是臂章身体监视设备的第八实施例的等距视图; 
图38A是臂章身体监视设备的第九实施例的顶视平面图; 
图38B是臂章身体监视设备的第九实施例的底视平面图; 
图38C是沿着线A-A截取的图38B的实施例的剖视图; 
图39A~39H是对LBNP/训练(exercise)严重程度求平均所得的传感器数据的示例;以及 
图40A和40B是每个个体的臂章传感器的图形示例。 
具体实施方式
通常,本发明的设备和方法利用数学公式和/或算法的开发来确定危重护理参数的存在。如本文所使用的,危重护理参数是指示危重疾病或损伤的存在的一个参数。此类疾病或损伤可以包括但不限于以下各项:1)非创伤性出血;2)创伤性出血;3)包括心肌梗死和急性心律不齐的急性和慢性心力衰竭;4)心跳停止和心源性休克;5)皮肤/软组织、大脑、肺、腹器官和骨骼的严重细菌、病毒和真菌感染;6)脓毒症、重症脓毒症、脓毒性休克;7)创伤和烧伤;8)代谢紊乱,诸如甲状腺机能亢进和减退、肾上腺机能不全、糖尿病性酮酸中毒;9)体温过高和过低;10)惊厥前期和惊厥;11)癫痫发作和癫痫持续状态;12)溺水;13)急性呼吸衰竭,包括哮喘、肺气肿、慢性阻塞性肺病、气道阻塞;14)肺栓塞;15)创伤性脑损伤;16)脊髓损伤;17)中风或局部缺血和出血;18)脑动脉瘤;20)肢体缺血;21)凝血性疾病;22)急性神经肌肉性疾病/衰竭;24)急性中毒,诸如一氧化碳、硫化氢、氰化物、心血管药物、酒精、抗抑郁剂等;25)血管阻塞危象;和26)肿瘤溶解综合征。 
在本发明的一方面,收集关于个体的生理状态和某些相关参数的数据并优选地通过诸如因特网之类的电子网络随后地或实时地传送到优选地远离个体的站点,在那里其被存储以供稍后操作或呈现给接收者。参考图1,位于用户位置5处的是适合于与人身体的至少一部分接近地设置的传感器设备10。传感器设备10优选地被个体用户佩戴在他或她的身体上,例如作为诸如贴身衬衫的衣服的一部分或作为臂章的一部分等。传感器设备10包括一个或多个传感器和微处理器,所述传感器适合于响应于个体的生理特性而生成信号。本文所使用的接近意指传感器设备10的传感器通过材料等与个体的身体分开或分开一定距离,使得传感器的能力不受妨碍。虽然在其它实施例中,传感器设备10意图包括在其中具有所有感测和可选地处理能力的设备,但其它实施例允许感测能力和处理能力如本文针对相互进行电子通信的传感器设备10描述的那些一样遍及具有部分和完全能力的单独设备而分布。 
传感器设备10生成指示个体的各种生理参数的数据,诸如个体的心率、脉搏率、逐拍心率变异、EKG或ECG、身体阻抗、呼吸率、皮肤温度、核心体温、离开身体的热流、皮肤电反应或GSR、EMG、EEG、EOG、血压、体脂肪、水合水平、活动水平、氧消耗、葡萄糖或血糖水平、身体位置、肌肉或骨骼上的压力以及UV辐射暴露和吸收。在某些情况下,指示各种生理参数的数据是由一个或多个传感器生成的一个或多个信号本身,并且在某些其它情况下,由微处理器基于由一个或多个传感器生成的一个或多个信号来计算数据。用 于生成指示各种生理参数的数据的方法和将用于此的传感器是众所周知的。表1提供了此类众所周知的方法的多个示例,并且示出正在讨论中的参数、所使用的示例性方法、所使用的示例性传感器设备和生成的信号。表1还提供了关于是否要求基于生成信号的进一步处理以生成数据的指示。 
表1 
应特别注意的是可以单独地或与上文给出的那些相结合地利用许多其它类型和种类的传感器,包括但不限于用于确定用户位置的相对和全球定位传感器;用于确定空间中的取向的转矩和旋转加速度;血液化学作用传感器;间隙液体化学作用传感器;生物阻抗传感器;侵入式乳酸传感器,以及多个情境(contextual)传感器,诸如花粉、湿度、臭氧、声学、身体和环境噪声和适合于在生物指纹方案中利用该设备的传感器。 
表1所列的数据类型意图是作为能够由传感器设备10生成的数据类型的示例。应理解的是在不脱离本发明的范围的情况下,可以由传感器设备10来生成关于其它参数的其它类型的数据。 
可以将传感器设备10的微处理器编程为总结并分析数据。例如,可以将微处理器编程为计算在定义时间段(诸如十分钟)内的平均、最小或最大心率或呼吸率。传感器设备10可以能够基于指示一个或多个生理参数的数据导出关于个体的生理状态的信息。然而,应理解的是微处理器被编程为做得更多。例如,传感器设备10的微处理器被编程为基于指示一个或多个生理参数的数据使用已知方法来导出此类信息。表2提供了能够导出的信息类型的非穷举列表,并且指示能够用作用于推导的输入的某些数据类型。在本文中且特别地在美国专利序号10/682,293中公开的方法和技术使得能够基于下文或在此公开的输入信号的任何组合(特别地)导出以下参数中的每一个。因此,应理解的是本文公开的任何感测参数、即输入信号到推导物能够单独地使用或与任何其它的相结合地使用以导出本文所列的导出参数。 
表2 
另外,传感器设备10还可以生成指示关于个体的各种情境参数的数据。导出“情境”(和本文所使用的术语的任何词根或衍生物)意指生成关于个体的状况、条件、环境或背景的数据。作为非限制性示例,传感器设备10能够生成指示空气质量、声音水平/质量、个体附近的光量或环境温度、个体的全球定位、某个人是正在汽车中驾驶、躺着、跑步还是站立的数据。某些情境推导还可以被适当地分类为活动,并且当情况如此时,对于本领域的技术人员来说将是显而易见的。传感器设备10可以包括用于响应于关于个体周围的环境的情境特性生成信号的一个或多个传感器,所述信号最终被用来生成上述数据类型。此类传感器是众所周知的,如用于生成诸如空气质量、声音水平/质量、环境温度和全球定位之类的情境参数数据的方法一样。 
图2是传感器设备10的实施例的方框图。传感器设备10包括至少一个传感器12和微处理器20。根据由传感器12生成的信号的性质,在将信号发送到微处理器20之前,可 以发送信号通过放大器14、调节电路16以及模数转换器18中的一个或多个。例如,在传感器12生成需要放大和滤波的模拟信号的情况下,可以将该信号发送到放大器14,并且然后发送到调节电路16上,其可以是例如带通滤波器。然后可以将已放大和调节的模拟信号传输到模数转换器18,在那里其被转换成数字信号。该数字信号然后被发送到微处理器20。可替换地,如果传感器12生成数字信号,则可以将信号直接发送到微处理器20。 
表示个体用户的某些生理和/或情境特性的一个或多个数字信号可以被微处理器20用来计算或生成指示个体用户的生理和/或情境参数的数据。微处理器20被编程为导出关于个体的生理状态的至少一个方面的信息。应理解的是微处理器20还可以包括其它形式的处理器或处理设备,诸如微控制器或能够被编程为执行本文所述功能的任何其它设备。 
可选地,中央处理单元可以提供操作控制或至少音频播放器设备21的选择。如对于本领域的技术人员来说将显而易见的,音频播放器21是存储和播放或单独地播放所存储的音频媒体的类型。设备可以控制音频播放器21的输出,如下文更详细地描述的,或者可以仅仅提供用户接口以允许由佩戴者来控制音频播放器21。 
根据本发明的一个实施例,指示生理和/或情境参数的数据能够被发送到诸如闪速存储器之类的存储器22,在那里,其被存储直至被以下文将描述的方式上传为止。虽然存储器22在图2中被示为分立元件,但应认识到其也可以是微处理器20的一部分。传感器设备10还包括输入/输出电路24,其适合于以本文将描述的方式输出并作为输入接收某些数据信号。因此,传感器设备10的存储器22将随着时间的推移构建关于个体用户的身体和/或环境的数据仓库。该数据被周期性地从传感器设备10上传并发送到远程中央监视单元30,如图1所示,在那里其被存储在数据库中以用于后续处理和呈现给用户,优选地通过诸如因特网之类的本地或全球电子网络。数据的此上传可以是由传感器设备10周期性地或在发生诸如传感器设备10检测到心率在某个水平之下的事件时发起的自动化过程,或者其可以由个体用户或经用户授权的某个第三方发起,优选地根据某个周期性调度表,诸如在每天晚上10:00。可替换地,不是将数据存储在存储器22中,而是传感器设备10可以实时地连续上传数据。 
可以以各种方式来实现数据从传感器设备10到中央监视单元30的上传以用于存储。在一个实施例中,通过首先借助于物理连接40(其例如可以是诸如RS232或USB端口之类的串行连接)将数据传输至图1所示的个人计算机35来上传由传感器设备10收集的数据。还可以通过使用未示出的托架(cradle)来实现此物理连接,所述托架被电子地耦合到传感器设备10能够插入其中的个人计算机35,如在许多市售个人数字助理的情况下常见的 那样。然后可以通过按下托架上的按钮来发起数据的上传,或者可以在插入传感器设备10时或在接近于无线收发机时自动地发起。可以通过首先借助于如在45处指示的近程无线传输(诸如红外线或RF传输)将数据传输至个人计算机35来上传由传感器设备10收集的数据。 
一旦由个人计算机35接收到数据,其就可选地通过多种众所周知的方法中的任何一个被压缩并加密,并且然后通过本地或全球电子网络(优选地是因特网)发送到中央监视单元30。应注意的是可以用可访问并能够通过电子网络来传送和接收数据的任何计算设备来取代个人计算机35,诸如,例如诸如由Palm公司出售的Palm VII或由Research in Motion公司出售的黑莓双向寻呼机之类的个人数字助理。 
可替换地,由传感器设备10收集的数据在被加密并可选地被微处理器20压缩之后可以被传输到诸如双向寻呼机或蜂窝式电话之类的无线设备50,以用于随后使用诸如电子邮件的无线协议或作为ASCII或二进制数据而长距离无线传输到本地电信站点。本地电信站点55包括从无线设备58接收无线传输的塔60和连接到塔60的计算机65。根据优选实施例,计算机65可访问诸如因特网之类的相关电子网络,并用来通过因特网向中央监视单元30传送以无线传输的形式接收到的数据。虽然无线设备50在图1中被示为被耦合到传感器设备10的分立设备,但可以将其或具有相同或类似功能的设备作为传感器设备10的一部分嵌入。 
传感器设备10可以提供有用来对事件加时间戳(诸如睡觉时间、醒来时间和进餐时间)的按钮。这些时间戳被存储在传感器设备10中并与如上所述的其余数据一起被上传到中央监视单元30。时间戳可以包括数字记录的语音消息,其在被上传到中央监视单元30之后,被使用语音识别技术转换成文本或能够被中央监视单元30使用的某种其它信息格式。请注意,在替换实施例中,能够自动地检测这些被加时间戳的事件。 
除使用传感器设备10来自动地收集关于个体用户的生理数据之外,可以通过例如称量个体的体重、提供与传感器设备10类似的个体将他或她的手或他或她的身体的另一部分放在其上面的感测设备或者通过使用例如激光技术或iStat血液分析仪来扫描个体的身体来使小亭(kiosk)适合于收集此类数据。小亭可以提供有如本文所述的处理能力和对相关电子网络的接入,并且因此可以适合于通过电子网络将收集的数据发送到中央监视单元。还可以提供台式感测设备,其同样类似于传感器设备10,个体将他或她的手或他或她的身体的另一部分放在其上面。例如,此类台式感测设备可以是个体将他或她的手臂放在其中的乳酸监视器。个体还可以佩戴具有结合在其中的传感器设备10的圆环。然后可以提供适合于被 耦合到圆环的底座(未示出)。然后可以借助于物理或近程无线连接将刚刚描述的台式感测设备或底座耦合到诸如个人计算机35之类的计算机,使得可以以上述方式通过相关电子网络将收集的数据上传到中央监视单元。诸如个人数字助理的移动设备也可以提供有结合在其中的传感器设备10。此类传感器设备10将适合于在移动设备被放置在个体的身体附近时收集数据,诸如通过将设备保持在一个人的手的手掌中,并以本文所述的任何方式将所收集的数据上传至中央监视单元30。 
替换实施例包括结合第三方设备(其不一定被佩戴在身体上),收集关于生理条件的附加数据。示例包括便携式血液分析仪、葡萄糖监视器、体重秤、血压袖带、脉搏血氧仪、CPAP机器、便携式制氧机、家用恒温器、踏车、蜂窝电话和GPS定位器。系统可以从这些设备收集或者在踏车或CPAP的情况下控制这些设备并收集将被集成到流中的数据以便实时或未来导出新参数。其示例是用户的手指上的脉搏血氧仪,其可以帮助测量脉搏并因此充当读取血压的代用品。另外,用户可以利用这些其它设备中的一个来确定基线读数以便校准设备。 
此外,除通过以上述方式自动地感测此类数据来收集数据之外,个体还可以手动地提供最终被传输到并存储在中央监视单元30处的关于各种参数的数据。个体用户能够访问由中央监视单元30维护的网站,并且能够通过自由地输入文本、通过回答由网站提出的问题或者通过点击由网站提供的对话框来直接输入关于生理条件的信息。中央监视单元30还可以适合于向个人计算机35或向能够接收电子邮件的某个其它设备(诸如个人数字处理、寻呼机或蜂窝式电话)周期性地发送包含被设计为引出关于生命活动的信息的问题的电子邮件消息。个体然后将通过用相关数据答复适当的电子邮件消息来向中央监视单元30提供关于生命活动的数据。中央监视单元30还可以适合于对个体用户发出电话呼叫,其中,将向个体用户提出某些问题。用户可以通过使用电话键区或通过语音输入信息来回答问题,在语音的情况下,常规语音识别技术可以被中央监视单元30用来接收并处理该答复。还可以由用户发起电话呼叫,在这种情况下,用户可以直接向人说话,或者使用键区或通过语音/语音识别技术来输入信息。还可以向中央监视单元30提供对由用户控制的信息源的访问,例如用户的诸如提供有由华盛顿的雷蒙德市的微软公司出售的Outlook产品的电子日历,其可以由此自动地收集信息。 
还可以诸如通过LED或LCD以可见的形式或以声信号的形式或诸如振动的触觉反馈的形式通过构造至少部分地为热色塑料的传感器设备10来直接通过传感器设备10向用户提供反馈。另外,在已经检测到特定生理参数(诸如已经遭遇高乳酸水平)的情况下发出提示 或警报。 
如对于本领域的技术人员来说显而易见的,可以将数据从中央监视单元30下载到传感器设备10。此类下载过程中的数据的流动基本上将是上文相对于从传感器设备10上传数据的颠倒。因此,可能的是能够远程地更新或改变传感器设备10的微处理器20的固件,即能够通过将新的固件从中央监视单元30下载到传感器设备10以用于诸如传感器设备10的定时和采样率之类的参数来将微处理器重新编程。并且,可以由用户使用由中央监视单元30保持并随后被下载到传感器设备10的网站来设置由传感器设备10提供的提示/警报。 
参考图3,示出了中央监视单元30的实施例的方框图。中央监视单元30包括被连接到路由器75的CSU/DSU70,其主要功能是获取输入和输出的数据请求或业务以及引导此类请求和业务以便在由中央监视单元30维护的网站上处理或查看。连接到路由器75的是防火墙80。防火墙80的主要目的是保护中央监视单元30的其余部分不受未授权或恶意入侵。连接到防火墙80的交换机85用来在中间件服务器95a至95c与数据库服务器110之间引导数据流。提供了负载平衡器90以在相同配置的中间件服务器95a至95c之间散布输入请求的工作负荷。负载平衡器90(其适当示例是由加利福尼亚州圣何塞市的Foundry Networks公司出售的F5Serverlron产品)分析每个中间件服务器95a至95c的可用性和在每个中间件服务器95a至95c中使用的系统资源量,以便适当地在其之间散布任务。 
中央监视单元30包括网络存储设备100,诸如存储区域网或SAN,其充当用于数据的中央贮藏库。特别地,网络存储设备100包括以上述方式存储针对每个个体用户收集的所有数据的数据库。适当网络存储设备100的示例是马萨诸塞州霍普金顿的EMC公司出售的Symmetrix产品。虽然在图3中仅示出一个网络存储设备100,但应理解的是根据中央监视单元30的数据存储需要,可以使用各种容量的多个网络存储设备。中央监视单元30还包括被耦合到网络存储设备100的数据库服务器110。数据库服务器110由两个主要组件构成:大规模多处理器服务器和企业型软件服务器组件,诸如由加利福尼亚州红木市的Oracle公司出售的8/8i组件或由华盛顿的雷蒙德市的微软公司出售的5067组件。数据库服务器110的主要功能是应请求提供对存储在数据存储设备100中的数据的访问并用新数据填充网络存储设备100。耦合到网络存储设备100的是控制器115,其通常包括用于管理存储在网络存储设备100中的数据的台式个人计算机。 
中间件服务器95a至95c(其适当示例是由加利福尼亚州的帕洛阿尔托市的Sun Microsystems公司出售的22OR双处理器)每个包含用于生成和维护由中央监视单元30维护的网站的一个或多个企业或家庭网页的软件。如本领域中已知的,网页指的是在万维网上 可用的一个或多个数据块,包括以超文本标记语言或HTML编写的一个或多个文件,并且网站一般指的是运行万维网服务器进程的因特网上的任何计算机。一个或多个企业或家庭网页是可被通过使用适当的统一资源定位符或URL来访问站点的公众的所有成员访问的打开或登录一个或多个网页。如本领域中已知的,URL是在万维网上使用的地址的形式,并提供指定因特网上的对象(通常为网页)的位置的标准方式。中间件服务器95a至95c每个还包含用于生成并维护只能被注册且变成中央监视单元30的成员的个体访问的中央监视单元30的网站的网页的软件。成员用户将是希望使其数据存储在中央监视单元30处的那些个体。出于安全目的使用口令来控制此类成员用户的访问。下面详细地描述那些网页的优选实施例,并且使用存储在网络存储设备100的数据库中的收集数据来生成。 
中间件服务器95a至95c还包含用于通过数据库服务器110从网络存储设备100请求数据并向其写入数据的软件。当个体用户出于向网络存储设备100的数据库中输入数据、查看存储在网络存储设备100的数据库中的他或她的数据或两者的目的而期望发起与中央监视单元30的会话时,用户使用诸如由华盛顿州雷蒙德市的微软公司发布的Internet Explorer之类的浏览器程序来访问中央监视单元30的主页,并作为注册用户登录。负载平衡器90将用户分配给中间件服务器95a至95c中的一个,其被识别为所选中间件服务器。用户将优选地被分配给用于每个整体会话的所选中间件服务器。所选中间件服务器使用许多众所周知的方法中的任何一个对用户进行认证,以保证仅允许真实的用户访问数据库中的信息。成员用户还可以对诸如保健提供者或个人教练之类的第三方许可对他或她的数据的访问。可以对每个经授权第三方给定单独的口令,并且可以使用常规浏览器来查看成员用户的数据。因此,用户和第三方两者都可以是数据的接收者。 
当用户得到认证时,所选中间件服务器在预定时间段内通过数据库服务器110从网络存储设备100请求个体用户的数据。所述预定时间段优选地是三十天。一旦被从网络存储设备100接收到,所请求的数据就被所选中间件服务器临时地存储在高速缓冲存储器中。高速缓存数据被所选中间件服务器用作用于再次地通过用户的浏览器以网页的形式向用户呈现信息的基础。每个中间件服务器95a至95c提供有用于生成此类网页的适当软件,包括用于利用数据来操纵并执行计算以将数据置于适当的格式以便呈现给用户的软件。一旦用户结束了他或她的会话,数据就被从高速缓冲存储器丢弃。当用户发起新的会话时,重复如上所述的用于获得并高速缓存用于该用户的数据的过程。此高速缓存系统因此理想地要求每个会话仅进行到网络存储设备100的一个呼叫,从而减少数据库服务器110必须处理的业务。如果在特定会话期间来自用户的请求要求在已经获取的高速缓存数据的预定时间段之外的数据,则 可以由所选中间件服务器来执行对网络存储设备100的单独呼叫。然而,应选择所述预定时间段,使得此类附加呼叫被最小化。还可以将高速缓存数据保存在高速缓冲存储器中,使得当用户开始新的会话时,其能够被用户重新使用,因此,消除了发起对网络存储设备100的新呼叫的需要。 
如结合表2所述,可以将传感器设备10的微处理器编程为基于指示一个或多个生理参数的数据来导出关于个体的生理状态的信息。中央监视单元30和优选地中间件服务器95a至95c还可以被类似地编程为基于指示一个或多个生理参数的数据导出此类信息。 
还可以预期用户将在会话期间输入适当的数据,例如关于用户的吃饭或睡眠习惯的信息。此附加数据优选地在用户会话的持续时间期间被所选中间件服务器存储在高速缓冲存储器中。当用户结束会话时,存储在高速缓冲存储器中的此附加新数据被所选中间件服务器传输到数据库服务器110以便填充在网络存储设备100中。可替换地,除在会话期间存储在高速缓冲存储器中以用于潜在使用之外,还可以立即将输入数据传输到数据库服务器110以用于填充在网络存储设备100中,作为在本领域中众所周知的写通式(write through)高速缓存系统的一部分。 
由图1所示的传感器设备10收集的数据被周期性地上传到中央监视单元30。用长距离无线传输或通过个人计算机35,通过电子网络、优选地因特网来实现到中央监视单元30的连接。特别地,通过CSU/DSU70、路由器75、防火墙80和交换机85来实现到负载平衡器90的连接。负载平衡器90然后选择中间件服务器95a至95c中的一个以处理数据的上传,在下文中称为所选中间件服务器。所选中间件服务器使用许多众所周知的方法中的任何一个对用户进行认证。如果认证是成功的,则如上所述地将数据上传到所选中间件服务器,并最终传输到数据库服务器110以用于填充在网络存储设备100中。 
参考图4,示出了中央监视单元30的替换实施例。除相对于图3所示和所述的元件之外,图4所示的中央监视单元30的实施例包括镜像网络存储设备120,其为网络存储设备100的冗余备份。耦合到镜像网络存储设备120的是控制器122。来自网络存储设备100的数据被出于数据冗余的目的周期性地复制到镜像网络存储设备120。 
可以为诸如保险公司或研究机构之类的第三方提供对存储在镜像网络存储设备120中的某些信息的访问,可能收取费用。优选地,为了保持向中央监视单元30提供数据的个体用户的机密性,不向这些第三方提供对此类用户的个人数据库记录的访问,而是仅仅以聚合的形式提供对存储在镜像网络存储设备120中的数据的访问。此类第三方可以能够使用常规浏览器程序通过因特网来访问存储在镜像网络存储设备120中的信息。来自第三方的请求 可以通过CSU/DSU70、路由器75、防火墙80和交换机85进入。在图4所示的实施例中,提供了用于在相同配置的中间件服务器135a至135c之间分布与来自镜像驱动阵列120的数据的访问和呈现相关的任务的单独负载平衡器130。中间件服务器135a至135c每个包含用于使得第三方能够使用浏览器来通过单独的数据库服务器125表述针对来自镜像网络存储设备120的信息的查询的软件。中间件服务器135a至135c还包含用于以网页的形式通过因特网向第三方呈现从镜像网络存储设备120获得的信息的软件。另外,第三方可以从一系列准备的报告中进行选择,其具有沿着主题线封装的信息,诸如各种人口统计种类。 
如对于本领域的技术人员来说将显而易见的,作为向这些第三方提供对存储在镜像网络存储设备120中的备份数据的访问的替代,可以向第三方提供对存储在网络存储设备100中的数据的访问。并且,作为提供负载平衡器130和中间件服务器135a至135c的替代,可以由负载平衡器90和中间件服务器95a至95c来提供相同的功能,不过在牺牲的性能水平下。 
管理者网页包括由中央监视单元30用来向用户提供从其收集和生成的数据生成的各种类型和形式的数据(一般称为分析状态数据)的实用工具(utility),所述数据即为以下各项中的一个或多个:指示由传感器设备10生成的各种生理参数的数据;从指示各种生理参数的数据导出的数据;指示由传感器设备10生成的各种情境参数的数据;以及由用户输入的数据。分析状态数据的特征在于应用某些实用工具或算法来将指示由传感器设备10生成的各种生理参数的数据、从指示各种生理参数的数据导出的数据、指示由传感器设备10生成的各种情境参数的数据和由用户输入的数据中的一个或多个转换为计算的保健、健康和生活方式指示器。作为另一示例,可以使用皮肤温度、心率、呼吸率、热流和/或GSR向用户提供期望时间段内的他或她的应激水平的指示器。作为另一示例,可以使用由诸如加速度计之类的设备检测的皮肤温度、热流、逐拍心率变异、心率、脉搏率、呼吸率、核心温度、皮肤电反应、EMG、EEG、EOG、血压、氧消耗、环境声音和身体移动或运动来向用户提供期望时间段内的他或她的睡眠模式的指示器。 
在上述多种实施例中,具体地预期由系统来输入或检测数据以便导出必要数据。本发明的一个方面涉及用于创建用于由从传感器设备400上的多个生理和/或情境传感器接收到的数据生成关于多种变量的信息的大量算法的尖端算法开发过程。在没有限制的情况下,此类变量可以包括VO2水平、能量消耗,包括静息、活动和总值、日常卡路里摄入、睡眠状态,包括在床上、睡眠开始、睡眠中断、睡醒和离开床以及活动状态,包括锻炼、坐着、乘汽车旅行和躺着,并且用于生成用于此类变量的值的算法可以基于来自上述实施例中的例 如2轴加速度计、热通量传感器、GSR传感器、皮肤温度传感器、近身周围温度传感器和心率传感器的数据。 
请注意,存在能够计算的多种类型的算法。例如,并且在没有限制的情况下,这些包括用于预测用户特性、连续(continual)测量、持续性(durative)情境、瞬时事件和累积条件的算法。用户特性包括佩戴者的永久性和半永久性参数,包括诸如体重、身高和佩戴者身份的方面。连续测量的示例是能量支出,其例如以分钟为基础不断地测量由佩戴者消耗的能量的卡路里数。持续性情境是诸如睡眠、驾车或漫步之类的持续某个时间段的行为。瞬时事件是在固定时间或非常短的时间段内发生的那些,诸如心脏病发作或倒下。累积条件是其中能够从某些人在某个先前的时间段内的行为推导出其条件的那些。例如,如果一个人在36个小时内没有睡觉且在10个小时内没有吃饭,则他们可能是疲劳的。表3示出特定个人特性、连续测量、持续性测量、瞬时事件和累积条件的许多示例。 
表3 
应认识到,在用于进行佩戴者的生理和情境状态的自动日志记录的方法中可以利用本发明。系统能够自动地产生用户从事于什么活动、发生什么事件、用户的生理状态随着时间的推移如何改变和用户何时经历或可能经历某些条件的日志。例如,除记录一天内的用户的水合水平、能量支出水平、睡眠水平和警觉水平之外,系统能够产生用户何时锻炼、驾车、睡觉、处于热应激的危险、或吃东西的记录。 
根据算法开发过程,构造将来自多个传感器的数据映射到期望变量的线性或非线性数学模型或算法。该过程由多个步骤组成。首先,相对于被测量的参数,由佩戴例如传感器设备400的对象(其被置于尽可能地接近于真实世界情形的情形)来收集数据,使得不危害该对象,并且使得同时能够使用例如高度准确的医学级实验室设备来可靠地测量提出的算法将预测的变量。第一步骤提供了随后被用作到算法开发过程的输入的以下两组数据:(i)来自传感器设备400的原始数据,以及(ii)由可检验地准确的数据测量结果和用更准确的实验室设备(诸如VO2测量设备或间接卡路里计)实现或从其计算的外推或导出数据组成的数据。此可检验数据变成标准,针对该标准来比较其它分析或测量数据。对于其中提出的算法要预测的变量涉及情境检测的情况下,诸如通过汽车旅行,由对象本身来提供可检验标准数据,诸如通过被手动地输入到传感器设备400、PC中或另外手动地记录的信息。收集的数据、即原始数据和相应的可检验标准数据这二者随后被组织到数据库中并被分成训练和测试组。 
接下来,使用训练组中的数据,构建使原始数据与相应的可检验标准数据相关的数学模型。具体地,使用多种机器学习技术来生成两种类型的算法:1)称为特征的算法,其是以允许预测用于数据点的某个子集的实验室测量参数的方式改变的导出的连续参数。特征通常不是有条件地独立于实验室测量的参数,例如来自代谢车的VO2水平信息、道格拉斯气袋或双标记的水,以及2)称为情境检测器的算法,其预测各种情境,例如跑步、锻炼、躺着、睡眠或驾驶,对总体的算法有用。在此步骤中可以使用许多众所周知的机器学习技术,包括人工神经网络、决策树、基于存储器的方法、推进(boosting)、通过交叉验证的属性选择以及诸如模拟退火和演进计算的随机搜索方法。 
在找到适当的一组特征和情境检测器之后,使用多个众所周知的机器学习方法来将特征和情境检测器组合成总体模型。在此阶段中使用的技术包括但不限于多线性回归、本地 加权回归、决策树、人工神经网络、随机搜索方法、支持向量机和模型树。使用交叉验证来评估这些模型以避免过拟合。 
在此阶段,模型例如以分钟为基础进行预测。接下来通过创建对逐分钟预测进行整合的总体模型来将分钟间效果考虑在内。在此步骤中可以使用众所周知或自定义窗口化和阈值最优化工具来利用数据的时间连续性。最终,可以在测试组上评估模型的性能,其尚未在算法的创建中使用。测试组上的模型的性能因此是算法在其它看不见的数据上的预期性能的良好估计。最后,算法可以经历对新数据的实况测试以用于进一步验证。 
可以在本发明中使用的非线性功能和/或机器学习方法的类型的其它示例包括以下各项:条件、情况语句、逻辑处理、概率或逻辑推理、神经网络处理、基于核的方法、包括kNN和SOM的基于存储器的查找、决策列表、决策树预测、支持向量机预测、集群、推进方法、级联相关、玻尔兹曼分类器、回归树、基于案例的推理、高斯、贝叶斯网络、动态贝叶斯网络、HMM、卡尔曼滤波器、高斯处理和算法预测器,例如由演进计算或其它程序合成工具学习。 
虽然能够将算法视作取原始传感器值或信号作为输入、执行计算以及然后产生期望的输出,但在一个优选实施例中将算法视作应用于原始传感器值的一系列推导是有用的。每个推导产生称为导出通道的信号。原始传感器值或信号也称为通道,具体地为原始通道而不是导出通道。也称为函数的这些推导可以是简单或复杂的,但是被按照预定次序应用于原始值和可能的已经存在的导出通道。当然,第一推导必须仅取原始传感器信号及其它可用基线信息(诸如手动地输入的数据和关于对象的人口统计信息)作为输入,但是后续推导可以取先前导出的通道作为输入。请注意,能够由推导的应用次序容易地确定用来推导给定导出通道的特定通道。还请注意,还可以包括用户在输入/输出或I/O设备上或以某种方式提供的输入作为能够被算法使用的原始信号。在一个实施例中,原始信号首先被总结成足够用于稍后推导且能够被高效地存储的通道。这些通道包括诸如加和、差的加和和平均值的推导。请注意,虽然将高速率数据总结成压缩通道对于压缩和存储有用特征而言都是有用的,但是根据应用的确切细节,也存储高速率数据的某些或所有段可能是有用的。在一个实施例中,然后校准这些总结通道以将制造中的微小可测量差考虑在内并以适当的尺度和正确的单位得到值。例如,如果在制造过程期间,特定温度传感器被确定为具有轻微偏移,则能够应用此偏移,得到以摄氏度为单位来表示温度的导出通道。 
出于本说明的目的,如果将推导或函数表示为其输入与某些偏移的加权组合,则其是线性的。例如,如果G和H是两个原始或导出通道,则A*G+B*H+C形式的所有推导 是线性推导,其中,A、B和C是常数。如果不能将推导表示为输入与恒定偏移的加权和,则其相对于其输入而言是非线性的。非线性推导的示例如下:如果G>7,则返回H*9,否则返回H*3.5+912。如果在计算通道时涉及的所有推导都是线性的,则线性地推导该通道,并且如果在产生通道时使用的任何推导是非线性的,则非线性地推导该通道。如果通道的值的变化改变了在推导中执行的计算,则通道非线性地调节推导,保持到推导的所有其它输入恒定。 
根据本发明的优选实施例,使用此过程开发的算法将具有在图14中在概念上示出的格式。具体地,算法将取如方框1600所示的从由传感器设备从各种传感器收集的传感器数据导出的通道和用于个体的人口统计信息作为输入。算法包括至少一个情境检测器1605,其产生被示为W1至WN的权值,表示在佩戴者处于多个可能情境中的每一个中时收集所收集的数据的给定部分(诸如在一分钟内收集)的概率。此类情境可以包括个体是静息的还是活动的。另外,对于每个情境而言,提供其中取原始或导出通道作为输入来计算连续预测的回归算法1610。单独的回归可以是多种回归方程和方法中的任何一个,包括例如多变量线性或多项式回归、基于存储器的方法、支持向量机回归、神经网络、高斯过程、任意程序函数等。每个回归是算法中的感兴趣参数的输出的估计,例如,能量支出。最终,用于每个情境的每个回归算法1610的输出(被示为A1至AN)和权值W1至WN在后处理器1615中被组合,后处理器1615输出由方框1620所示的算法测量或预测的感兴趣的参数。通常,后处理器1615可以由用于将单独的情境预测组合的许多方法中的任何组成,包括委员会方法(committee method)、推进、表决方法、一致性检查或基于情境的重组。 
参考图15,示出了用于测量个体的能量支出的示例性算法。本示例性算法可以在至少具有加速度计、热通量传感器和GSR传感器的传感器设备400或能够从此类传感器设备接收数据的I/O设备1200上运行,如在共同待决美国专利申请号10/682,759中公开的,其说明书通过引用结合到本文中。在本示例性算法中,校准来自传感器的原始数据,并产生基于该原始数据的许多值,即所导出的通道。特别地,由原始信号和人口统计信息来计算在图30中的1600处所示的以下导出通道:(1)纵向加速度计平均值或LAVE,基于加速度计数据;(2)平均差的横向加速度计和,或TSAD,基于加速度计数据;(3)热通量高增益平均方差或HFvar,基于热通量传感器数据;(4)绝对差或SAD的横向和纵向加速度计和的向量和,被识别为VSAD,基于加速度计数据;(5)皮肤电反应或GSR,在低和组合增益实施例两者中;以及(6)基础代谢率或BMR。情境检测器1605由使用LAVE、TSAD和HFvar导出通道来预测佩戴者是活动还是静息的朴素贝叶斯分类器组成。输出是概率权值, 用于两个情境静息和活动的W1和W2。对于静息情境而言,回归算法1610是组合从加速度计、热通量传感器、用户的人口统计数据和皮肤电反应传感器导出的通道的线性回归。通过算法设计过程获得的等式是A*VSAD+B*HFvar+C*GSR+D*BMR+E,其中,A、B、C、D和E是常数。除常数是不同的之外,用于活动情境的回归算法1610是相同的。用于本示例的后处理器1615将把每个情境回归的加权结果加在一起。如果A1是静息回归的结果且A2是活动回归的结果,则组合正好是W1*A1+W2*A2,其为在1620处所示的能量支出。在另一示例中,还可以将计算佩戴者是否正在驾车、亦即在所讨论的时间段驾车的导出通道输入到后处理器1615中。用来计算此导出驾车通道的过程是算法3。在这种情况下,后处理器1615可以施加这样的约束,即当由算法3将佩戴者预测为驾车时,在该时间段内使能量支出局限于等于某个因数的值,例如其逐分钟基础代谢率的1.3倍。 
本算法开发过程还可以用来创建使得传感器设备400能够检测并测量各种其它参数的算法,包括但不限于以下各项:(i)当个体遭受监禁时,包括无意识、疲劳、休克、瞌睡、热应激和脱水的状态;以及(ii)个体的敏捷状态、健康和/或代谢状态,诸如在军事环境中,包括脱水、营养不良和缺乏睡眠的状态。另外,可以出于其它目的开发算法,诸如用于由如本文所述的传感器设备测量的信号的滤波、信号净化和噪声消除。如将认识到的,使用本方法开发的实际算法或函数将高度依赖于所使用的传感器设备的特定细节,诸如特定传感器及其放置和传感器设备的整体结构和几何结构。因此,用一个传感器设备开发的算法将不会在结构基本上不与用来创建该算法的该传感器设备相同的传感器设备上同样地适用,即使有的话。 
本发明的另一方面涉及开发的算法处理各种不确定性的能力。数据不确定性指的是传感器噪声和可能的传感器故障。数据不确定性是当不能完全信任数据时。在这样的条件下,例如,如果例如加速度计的传感器出现故障,则系统可能推断佩戴者正在睡眠或静息或者没有发生运动。在这样的条件下,如果数据是坏的或者如果预测并作出结论的模型是错误的,则非常难以作出结论。当应用涉及模型和数据不确定性两者时,识别与数据和模型相关联的不确定性的相对大小是非常重要的。智能系统将注意到传感器似乎将产生错误数据并切换到替换算法,或者在某些情况下将能够在进行任何预测之前智能地填充间隙。当这些恢复技术中没有一个是可能的时,如前所述,返回不能返回准确值的清除语句常常远胜于从已经被确定为很可能错误的算法返回信息。确定传感器何时出现故障和数据同道何时不再可靠是重要的任务,因为出现故障的传感器有时可能产生可能看起来与某些其它传感器一致的读数,并且数据还可能落在传感器的正常操作范围内。 
临床不确定性指的是不同的传感器可能指示看起来矛盾的结论。临床不确定性是当不能确信从数据得到的结论时。例如,加速度计可能指示佩戴者是不动的,导致会得出用户静息的结论,皮肤电反应传感器可能提供非常高的响应,导致会得出用户活动的结论,热流传感器可能指示佩戴者仍在消散相当多的热量,导致会得出用户活动的结论,并且心率传感器可能指示佩戴者具有提升的心率,导致会得出用户活动的结论。低等系统可能简单地尝试在传感器之间表决或使用同样没有事实根据的方法来整合各种读数。本发明将重要的联合概率加权并确定适当的最可能结论,其对于本示例而言可能是佩戴者当前正在执行或最近已经执行诸如骑固定式自行车的低运动活动。 
根据本发明的另一方面,可以使用诸如传感器设备400之类的传感器设备来自动地测量、记录、存储和/或报告关于人的状态的参数Y,优选地为不能直接由传感器来测量的人的状态。状态参数Y可以是例如但不限于消耗的卡路里、能量支出、睡眠状态、水合水平、酮病水平、休克、胰岛素水平、体力透支和热衰竭等等。传感器设备能够观察由一个或多个传感器(其可以包括所有此类传感器或此类传感器的子集)的确定的输出组成的原始信号的向量。如上所述,也可以从原始传感器信号的向量导出某些信号,在这里也称为通道,相同的潜在术语问题。在本文中称为原始和导出通道X的这些原始和/或导出通道的某些的向量X将以取决于感兴趣的状态参数Y或Y的某个指示器(称为U)的状态、事件和/或水平或对其敏感的某种系统方式改变,其中,在Y与U之间存在关系,使得从U能够获得Y。根据本发明,使用传感器设备来创建第一算法或函数f1,该传感器设备取原始和导出通道X作为输入并给出预测且有条件地取决于(用符号来表示)(i)状态参数Y或指示器U,以及(ii)个体的某个或某些其它状态参数Z的输出。可以如下表示此算法或函数f1: 
或 
根据优选实施例,使用在本文其他地方描述的算法开发过程来开发f1,其使用从由传感器设备收集的信号导出的数据(具体地为原始和导出通道X)、关于使用被取作正确答案的方法(例如高度准确的医学级实验室设备)同时地测量的U或Y和Z的可检验标准数据,和各种机器学习技术根据所收集的数据来生成算法。在其中存在指示器U或状态参数Y(不管可能是哪种情况)的条件下创建算法或函数f1。如将认识到的,使用本方法开发的实际算法或函数将高度依赖于所使用的传感器设备的特定细节,诸如特定传感器及其放置和传感器设 备的整体结构和几何结构。因此,用一个传感器设备开发的算法将不会在在结构基本上不与用来创建该算法的该传感器设备相同的传感器设备上同样地适用,即使有的话,或者至少能够以已知的转换参数从设备转换到设备或从传感器转换到传感器。 
接下来,使用传感器设备来创建第二算法或函数f2,所述传感器设备取原始和导出通道X作为输入并给出输出,该输出预测且有条件地取决于除Y或U之外的由f1输出的一切(不管可能是哪种情况),并且有条件地独立于(用符号来指示)Y或U(不管可能是哪种情况)。构思是来自一个或多个传感器的原始和导出通道X的某些使得可以通过解释消除(explain away)或滤出来自非Y或非U相关事件的原始和导出通道X的变化。可以如下表示此算法或函数f2: 
f2(X)Z和(f2(X)Y或f2(X)
优选地,与f1类似,使用上文参考的算法开发过程来开发f2。然而,在其中U或Y不存在(不管可能是哪种情况)的条件下开发并验证f2。因此,用来产生f2的黄金标准数据是关于仅使用高度准确的医学级实验室设备测量的Z的数据。 
因此,根据本发明的该方面,将已经产生两个函数,其中的一个f1对U或Y敏感,其中的另一个f2对U或Y不敏感。如将认识到的,在将产生U或Y(不管可能是哪种情况)的f1和f2之间存在关系。换言之,存在函数f3,使得f3(f1,f2)=U或f3(f1,f2)=Y。例如,可以通过减去由两个函数(U=f1-f2或Y=f1-f2)产生的数据来获得U或Y。在其中根据f1和f2之间的关系确定U而不是Y的情况下,下一步骤涉及基于Y和U之间的关系从U获得Y。例如,Y可以是U的某个固定百分比,使得能够通过用U除以某个因数来获得Y。 
本领域的技术人员将认识到在本发明中,可以以上述方式用最后一个函数f_n将多于两个此类函数例如(f1,f2,f3,…f_n-1)组合。通常,本发明的这方面要求以指示感兴趣参数的方式将其输出相互不同的一组函数组合。还将认识到这里所使用的条件依赖性或独立性将被定义为近似的而不是精确的。 
已知的是总的身体代谢根据以下等式被测量为总能量支出(TEE): 
TEE=BMR+AE+TEF+AT, 
其中,BMR是基础代谢率,其为在诸如睡眠的静息期间身体所消耗的能量,AE是活动能量支出,其为在身体活动期间消耗的能量,TEF是食物的热效应,其为在消化并处理所吃的食物的同时消耗的能量,并且AT是适应性生热,其为身体用来针对极端温度改变值其代谢的机制。据估计处理食物使人损失所吃的食物的值的约10%。因此,估计TEF为消耗的总卡 路里的10%。因此,测量TEF的可靠且实用的方法将使得能够在不需要手动地跟踪和记录食物相关信息的情况下测量卡路里消耗。具体地,一旦测量了TEF,就能够通过将TEF除以0.1(TEF=0.1*所消耗的卡路里;所消耗卡路里=TEF/0.1)来准确地估计卡路里消耗。 
优选地,传感器设备与适合于生成指示运动的数据的身体运动传感器(诸如加速度计)、适合于生成指示个体的皮肤对电流的电阻的数据的皮肤电导传感器(诸如GSR传感器)、适合于生成指示离开身体的热流的数据的热通量传感器、适合于生成指示个体的心搏的速率或其它特性的数据的身体电位传感器(诸如ECG传感器)、适合于测量诸如葡萄糖和/或乳酸的代谢物水平的自由生活代谢物传感器以及适合于生成指示个体的皮肤的温度的数据的温度传感器进行通信。在本优选实施例中,除关于佩戴者的人口统计信息之外,这些信号构成信号的向量,由此导出原始和导出通道X。更优选地,信号的此向量包括指示运动、个体的皮肤对电流的电阻和离开身体的热流的数据。 
在一方面,本发明涉及用于测量心脏相关参数的方法和设备。可以从此测量信息导出诸如上文所述那些的危重护理参数。 
心脏病学/ECG领域中的常规思想是必须跨越心脏测量ECG信号,意指用放置在心脏的常规定义的径向和横向平面的两个不同象限中的电极。在本文中公开了一种设备和方法,其允许从位于人体的部位或区域内的某些成对点(先前认为其不适合于此类测量)测量ECG信号。本文公开的设备和方法集中于被用于电极位置的先前定义的等价区域内的身体的某些位置的识别。这些电极位置中的许多在单个象限内,即,当电极位置通过组织在几何上被直接地连接时,由此描述的线路不穿到另一象限中。换言之,一个象限内的某些点与按照惯例与不同象限相关联的ECG信号的电极电位相关,因为来自相对侧的电位已在内部通过穿过身体的看起来是低阻抗非均质电极电位或电气通道(可以将其类比为组织内的内部信号引线)被传输到该点。因此,这种方法集中于ECG信号的两个不同方面,而不是更窄地将这些方面定义为源自于身体的某些象限。因此,与现有技术的讲授内容相反,可以使用放置在单个象限内的成对电极来检测和测量ECG信号,但是检测两个点之间的显著电位差。换言之,两个点彼此之间是不等电位的。在大多数情况下,设想电极位置被放置在皮肤表面的独立区域内、被可以是平面或不规则的边界分离是更有帮助的。 
在本发明的优选实施例中,已经识别了左臂上或附近的成对位置以便放置电极以检测ECG信号的不同方面。应注意的是在人体上的无数位置处找到了等价区域内的类似地点,包括左和右臂、手臂下的腋区、骨盆附近的前大腿区域、颈的底部的背面和脊柱的底部。更具体地,左臂上的某些位置载送ECG信号的一方面且左臂上或附近的某些位置载送 ECG信号的不同方面。还应特别注意的是解剖名称、尤其是肌肉或肌肉群的名称用来识别或引用身体上的位置,尽管电极的放置只须应用于直接邻近于这些位置基准的皮肤表面且并不意图是侵入性的。现在参考图19A和19B,其分别是左臂的背面和正面的图,本发明人已经发现左腕1905、左三头肌19110和左肱肌1915是当与三角肌1920周围的位置配对时大圆肌1925和背阔肌1930能够产生与在两个象限之间测量的常规信号有关的电位信号的位置。更具体地,来自左臂上的这些成对点的信号同与心室的收缩相关联的QRS复合波相关。 
因此,通过将一个电极放置在腕195、三头肌1910或肱肌1915上并将第二电极放置在三角肌1920、大圆肌1925或背阔肌1930上,可以检测心脏的动作电位和因此检测ECG信号。电极优选地位于三角肌和三头肌的中心点附近,间隔开约130mm且更特别地分开70~80mm,并且以约30~45度从中线朝着手臂的后面倾斜,其中30度是最优选的。虽然左臂上或附近的某些特定优选位置已在本文中被描述为与ECG信号的第二方面的电极电位有关,但应认识到那些位置仅仅是示例性的,并且还可以通过进行电位测量来识别与ECG信号的第二方面的电极电位有关的左臂上或附近的其它位置。进一步应特别注意的是整个下臂部分5′被识别为与腕1905提供相同的信号。现在参考图19C,举例说明了四对特定的有效(operative)位置,两个位置在三角肌20上且两个位置在三头肌1910的各方面上。在一个实施例中,放置位置是二头肌和三角肌交汇的接合点。然后可以在三角肌上的任何位置放置第二电极。应注意的是位置之间的虚线指示操作配对,并且实心和白色圆点表示在那些位置处可获得的ECG信号的相关方面。示出了提供ECG信号的两个方面的四个可能组合。示出了无效(inoperative)对1913以指示仅仅选择特定肌肉或肌肉群不足以获得适当的信号,而是要求特定位置的谨慎选择。 
在另一实施例中,识别用于放置电极以检测ECG信号的右臂上或附近的成对位置。参考图20A和20B,斜方肌1935、胸肌2040和三角肌2020的底部是与ECG信号的第二方面的电极电位有关的位置,意味着那些位置处于与心脏的常规定义的右侧动作电位有关的电位。三头肌1910(尤其是其横向头部区域)和二头肌2045是与ECG信号的第一方面的电极电位有关的位置,意味着那些位置处于与心脏的常规定义的左侧动作电位有关的电位,即使那些位置在象限III中。因此,如上文所述的左臂实施例的情况一样,通过将一个电极放置在三头肌10并将第二电极放置在三角肌1920上,可以检测心脏的动作电位和因此检测ECG信号。再次地,虽然右臂上或附近的某些特定优选位置在本文中已被描述为与ECG信号的第一方面的电极电位有关,但应认识到那些位置仅仅是示例性的,并且还可以通过进行 电位测量来识别与ECG信号的第一方面的电极电位有关的右臂上或附近的其它位置。 
现在参考图20C、20D和20E,举例说明了一系列电极对位置。在图30C和20D中,以大体上将躯干二等分的点划线示出常规定义的径向平面2和横向平面3。如在图19C中一样用实心和白点和点划线来标识每个有效对。用X指示器和点划线来示出无效对。如前所述,无效对被示为指示位置的仅随机选择或独立肌肉或肌肉群的选择不足以对有效位置对进行定位。在如下表4中识别了如在已知有效和优选实施例内识别的特定位置: 
表4 
类似地,应理解的是本发明不限于在左臂或右臂上放置用于从象限I或III内测量ECG的成对电极,因为此类位置仅仅意在是示例性的。替代地,可以在单个象限内放置其它位置。在没有限制的情况下,此类位置可以包括颈部、胸侧面和骨盆部位上的成对位置,如上所述,其彼此之间是不等电位的。因此,不应将本发明视为局限于任何特定位置,而是其替代适用于单个象限内的任何两个不等电位位置。 
检测这些信号的主要挑战之一是两个位置之间的相对小的振幅或差。另外,这些低振幅信号由移动的身体产生的电噪声以及由设备本身产生的噪声更显著地掩蔽和/或失真。在本上下文中,噪声指的是由此类移动及身体和设备的交互产生的接触噪声以及被作为到达传感器的信号的一部分检测的电子噪声。用于消除噪声的重要考虑因素是增大期望信号与噪声之间的区别。一种方法涉及通过使一个传感器或传感器阵列延伸超过手臂、达到胸部或仅仅超过肩关节来增加信号强度。关于传感器放置必须对两个竞争的期望结果进行考虑:增加的信号强度/区别和传感器阵列或覆盖区(footprint)的紧凑性。当然,紧凑性与容纳或支撑传感器的设备的最终尺寸密切相关。如本文中更特别地描述的,替换实施例包括通过结合转到位于与设备本身相距某个短距离的传感器位置点的架空引线(fly-lead)(诸如在左肩(其仍在象限I内)或者甚至到另一手臂)来力求在增加传感器之间的距离的同时保持用于设备的紧凑外壳的传感器布置。该系统还包括电子放大电路以处理低振幅信号。 
参考图21,示出了用于检测ECG信号且用于由此计算诸如心率之类的其它心脏参数的电路2100的方框图。可以在诸如在为本发明的受让人所拥有的美国专利号6,605,038和美国申请序号10/682,293中描述的臂章身体监视设备的可佩戴身体监视设备中实现和包含电路2100,所述专利和申请的公开被通过引用结合到本文中。从左向右解说图21,电路2100包括电极2105A和2105B,其中的一个被连接到如本文所述的与ECG信号的第一方面的电极电位有关的位置,其中的另一个被连接到与ECG信号的第二方面的电极电位有关的身体上的位置,即使电极2105A和2105B被放置在单个象限内。皮肤与第一级放大器2115之间的界面是关键的,因为这确定有多好地检测心率信号。当设计第一级放大器块和相关联的偏置/耦合网络时,电极接触阻抗和伽伐尼电位是重要的设计考虑。 
抵靠着皮肤保持电极2105A和2105B以感测指示心肌活动的相对小的电压,在这种情况下约为20μV。适当的电极包括由3M出售的Red DotTM粘附电极,其为用后即可丢弃的一次性使用电极,或者由例如不锈钢、导电碳化橡胶或某种其它导电衬底(诸如来自加拿大的Advanced Bioelectric的某些产品)支撑的已知可再使用电极。应注意的是,不同于Advanced Bioelectric开发,大多数当前的可再使用电极通常具有能够影响电路2100的性能的较高耦合阻抗。因此,为了抵抗此问题,当被与皮肤相接触地放置以降低皮肤的接触阻抗时,可以与电极2105A和2105B相结合地使用凝胶或洗液,诸如由新泽西州泽西市的Get Rhythm公司制造的Buh-Bump。另外,电极105可以提供有多个微针,其特别地用于增强与皮肤的电接触并提供对表皮中和下面的间隙液体的实时访问。微针通过穿透皮肤的角质层达到表皮来增强电接触。在位于表皮下面的位置处进行ECG信号测量是有益的,因为如上 所述,电压是小的,约为20μV,并且信号通过表皮常常引入噪声伪象。微针的使用因此为测量信号提供更好的信噪比并使皮肤准备最小化。此类微针在本领域中是众所周知的,并且可以由金属、硅或塑料材料制成。例如在由Procter和Gamble公司所拥有的美国专利号6,312,612中描述了现有技术微针。基于特定的应用,微针的数目、密度、长度、点或底部处的宽度、分布和间距将改变。还可以对微针进行镀敷以获得导电性、低过敏性质量,并且甚至以生化方式进行涂敷以便在仍增强用于ECG测量的电位的同时还探测/感测其它生理电化学信号或参数。微针还可以适合于同时对通过与微级毛细管连通以便在表皮中传输液体的通道的间隙液体进行采样以便以电学、化学或电化学方式进行感测。微针还增强电极在用户移动期间仍适当地位于皮肤上的能力。然而,微针的使用可能限制传感器被安装在较大设备或外壳上的能力,因为较大设备的重量可能促使微针在移动期间折断。在这种情况下,可以如在本文的多个实施例中所示地将微针增强传感器单独地附着到身体。还可以预期使用粘合剂来补充微针的使用,或者单独地在基本传感器上使用粘合剂。如在本文中将进一步讨论的,使用不同柔性的材料或结合合成橡胶或类似弹簧的响应性或存储器可以进一步改善传感器接触和位置稳定性。 
在某些情况下,出于遵守协议或其它指示的目的,确定设备在整个使用时间期间是否保持在原位对于临床医生或用户的其他观察者而言是重要的。可以利用某些粘合剂或与具有胶带性质的塑料或布耦合的粘合剂的使用来将设备附着于皮肤,粘合剂将被损坏或以其他方式指示已经发生或尝试对设备的去除。 
为了使佩戴者准确地或更有效地将系统放置在其手臂上,可能至少需要检查设备位于适当的取向和位置,即使电极的期望位置包括具有相对于位置的显著公差的区域。在本发明的一个特定实施例中,在佩戴者的身体的初始位置上放置了具有电极阵列105的设备,诸如上述臂章监视设备300,每个电极105在初始身体接触位置上。然后,设备如上所述地进行心率或其它心脏相关参数测量,并将测量信号与将是用于具有佩戴者的物理性质的人的预期信号测量结果的项目相比较,如本文更全面地描述的,所述物理性质先前已被输入到系统中,诸如身高、年龄、体重和性别。如果测量信号被比预期信号(其将是预设阈值)明显更多地劣化,如由信噪比或搏动高度与噪声高度的比确定的,则设备向佩戴者发出信号(诸如触觉、声学、视觉或其它信号)以尝试用于设备的新放置位置和因此用于电极2105的新接触位置。然后在新位置处进行第二测量,并将测量信号与预期信号相比较。如果测量信号被比预期信号明显更多地劣化,则再一次向佩戴者发出新的位置信号。重复此过程,直至测量信号被设备确定为可接受为止。当测量信号被确定为可接受时,该设备生成命令佩戴者将设 备留在当前放置位置的第二成功信号。设备可以自动地或在手动请求时发起此操作。 
电路2100还包括为了方便起见被示为图21中的两个方框的偏置/耦合网络110以及第一级放大器2115。如本领域的那些技术人员将认识到的,当检测到时,由电极2105A和2105B检测的约20μv电位差的信号将被偏置得过于接近下述第一级放大器2115的极限。因此,提供偏置/耦合网络2110以增加此信号的偏置以使其在用于第一级放大器2115的可容许输入范围内。 
如在本文中将更全面地描述的,在图22A和22B中示出了为放大器输入端提供偏置电流的两种方法。优选地,偏置/耦合网络2110将移动信号的偏置直至第一级放大器2115的中间范围。在优选实施例中,如下所述,第一级放大器2115是具有等于0V和3V的轨的轨到轨放大器。因此,偏置/耦合网络2110将优选地将电极2105A和2105B的电压电位差信号的偏置增加至约1.5V。 
虽然未具体地描述,偏置/耦合网络可以是动态的,因为可以基于当设备被第一次使用时或在变化的情境条件下产生信号来进行调整。该动态能力还将适应由于用户尺寸或其它物理性质而引起的用于类似设备的不同放置的振幅的个体差异。实验已经显示出基于距离的信号强度的某种程度的变化。此外,基于设备相对于手臂进行的运动量、电极的弯曲及其与皮肤的接触、皮肤接触点下面或周围的肌肉的收缩和松弛及身体的移动,可预期信号的变化。 
优选地,偏置/耦合网络2110采用电容性输入耦合来去除电极2105A和2105B被放置在身体上时其两端的任何伽伐尼电位(DC电压),其将迫使第一级放大器2115的输出在其有用操作范围之外。另外,第一级放大器115的非零输入偏置电流要求电流源/宿防止输入端浮置至电源轨。在一个实施例中,偏置/耦合网络2110可以采取图22A所示的形式。在图22A所示的实施例中,偏置耦合网络2110包括分别被连接到电极2105A和2105B的电容器2120A和2120B(其在0.1μF至1.0μF的范围内)以及如所示地连接的电阻器2125A和2125B,其具有在2MΩ至20MΩ之间的值。如将认识到的,电阻器2125A和2125B提供了用于第一级放大器2115的偏置电流,其遵循欧姆定律V=IR。另外,偏置/耦合网络2110包括电容器2130A、2130B和2130C,其目的是滤出可以耦合到电路中的放大器之前的高阻抗线的环境RF。优选地,电容器2130A、2130B和2130C约为1000pF。还提供了1.5伏中电源基准电压2122以保持信号以放大器的有用输入范围为中心。 
参考图22B,示出了偏置/耦合网络2110的替换实施例,其中,电阻器2125A和2125B每个已被替换为被背对背地连接的两个二极管,其分别被示为二极管2135A和2140A 及2135B和2140B。在此结构中,在没有从电极2105A和2105B施加的输入信号的情况下,二极管2135A、2135B、2140A和2140B提供第一级放大器115所需的电流并使每个输入偏置为略微远离1.5V基准2122。当向电极105A和2105B施加信号时,非常小的电压变化(通常为20μV)导致通过二极管的电流的非常小的变化,从而保持高输入阻抗。此结构在需要大的调整时允许呈指数地更高的电流快速地对第一级放大器2115进行偏置,诸如电极2105A和2105B到身体的初始应用期间的情况。此类结构的附加益处是1.5V基准电压2122上的通过二极管向相当大的电容器(未示出)提供的增加的静电放电保护路径。实际上,此电容器具有在4.7和10μF之间的值并能够吸收显著的静电放电。 
再次参考图21,第一级放大器2115的目的是在使用滤波器2150对从偏置/耦合网络2110接收到的信号进行滤波之前将其放大。滤波器2150的主要目的是消除电极2105A和2105B在与用户的身体接触时拾取的环境50/60Hz噪声。此噪声常常称为电源哼声。滤波器2150将向被滤波的信号添加某些噪声,通常在1μV范围内。因此,第一级放大器2115的目的是在使用滤波器2150对从偏置/耦合网络2110接收到的信号进行滤波之前将其放大,使得由滤波过程添加的任何噪声将不会压倒信号。如将认识到的,由偏置/耦合网络2110输出的信号约为20μV,在没有首先使用第一级放大器2115将信号放大的情况下用滤波器2150进行滤波将导致被由滤波器2150添加的噪声压倒的信号。因此,第一级放大器2115用来以优选地在100与10,000之间、最优选地255的增益对信号放大。 
在图22C中示出了第一级放大器2115的适当示例,其包括可编程增益放大器2116,其优选地是由马萨诸塞州诺伍德的Analog Devices公司出售的型号AD627和由加利福尼亚州米尔皮塔斯市的Linear Technology公司出售的型号LTll68。由被耦合到放大器的适当输入端的增益选择电阻器来确定这些放大器的增益。因此,可以使用诸如由Analog Devices公司出售的型号ADG608复用器的输入复用器2117在测试时段期间选择性地接入和转出用于被用于第一级放大器2115的可编程增益放大器的许多(优选地8个)增益选择电阻器中的一个以确定用于放大器的适当增益选择电阻器。一旦使用处于测试模式的输入复用器确定了候选增益,就可以选择用于增益的单个固定电阻器以便与被用作第一级放大器2115的可编程增益放大器相结合地使用。 
选择用于第一级放大器2115的放大器时的关键参数是输入偏置电流、输入偏移电流和输入偏移电压。输入偏置电流乘以偏置/耦合网络的输入阻抗给出到第一级放大器2115的正和负输入端的共模输入偏移电压。必须小心保持第一级放大器2115的输入端距离电源轨足够远以防止对期望输出信号进行削波(clip)。如偏置/耦合网络的情况一样,替换设计可 以包括电路,该电路能够基于活动类型(诸如通电、到手臂的初始附着或某些高运动量活动)来动态地限制输入电压、使得在正常条件下的输入电压将是最佳的。本领域的技术人员将认识到某些削波可以是可接受的。用于检测心率或其它心脏参数的算法能够在存在一定量的削波的情况下工作,假设信噪比仍是相对高的。 
输入偏移电流参数乘以偏置阻抗给出被施加于第一级放大器2115的差动输入电压。此差动电压是除放大器所固有的输入偏移电压参数之外的,并且总输入偏移仅仅是两者的和。总差动输入电压乘以增益确定输出偏移。再次地,必须小心保持输出信号距离电源轨足够远以防止放大器输出的饱和。作为示例,诸如上述的型号AD627的双极放大器具有10nA的输入偏置电流、inA的输入偏移电流最大值和150μV的输入偏移电压(所有值是在25℃下的最坏情况最大值)。为了将共模输入偏移保持在小于0.5V,偏置阻抗必须不超过0.5V/10nA=50MΩ。然而,输入偏移电流规定:为了保持最大0.5V的输出偏移电压,必须提供不超过0.5V/增益/1nA的输入阻抗。对于100的增益而言,这转化为5MΩ。对于500的增益而言,这转化为1MΩ。供作为第一级放大器2115之用的另一候选放大器是具有FET输入端的德克萨斯仪器公司型号1NA321可编程序增益放大器。此放大器具有10pA的输入偏置电流和10pA(最大值)的输入偏移电流。为了将共模输入偏移保持在小于0.5V,必须提供不超过0.5V/10pA=50GΩ的阻抗。然而,输入偏移电流规定:为了保持最大0.5V的输出偏移电压,必须提供不超过0.5V/增益/10nA的输入阻抗。对于100的增益而言,这转化为500MΩ。对于1000的增益而言,这转化为50MΩ。 
作为替换,如本领域的技术人员将认识到的,可以在低成本分立运算放大器的网络中实现第一级放大器2115。此类实施方式将可能降低与第一级放大器2115相关联的成本和功率消耗。还如本领域的技术人员将认识到的,放大器输入偏置电流、输出饱和度和输入偏置/耦合的相同分析适用于此类替换实施方式。 
再次参考图21,滤波器150是优选地包括单独的低通和高通滤波器部分的带通网络。低通滤波器部分的目的是消除由电极2105A和2105B在与身体接触时拾取的环境50/60Hz噪声。优选地,使用多极滤波器来实现高度的衰减。高通滤波器部分消除了由于电极105A和105B中的伽伐尼效应而引起的信号基线的DC偏移(DC wander),允许由硬件或软件装置来更容易地检测构成所测量ECG信号的一部分的心搏尖峰。 
在一个实施例中,滤波器2150包括具有可调整截止频率以允许进行实验的开关电容器低通和高通滤波器。可以使用由Linear Technology公司出售的型号LTC1164_6低通滤波器芯片、后面是由Linear Technology公司出售的型号LTC1164高通滤波器芯片来构造此类 滤波器2150,所述芯片提供具有非常锐利的截止特性的八阶椭圆滤波器。用此实施方式的实验已经显示30Hz的低通截止频率和0.1Hz与3Hz之间的高通截止频率很好地工作。虽然考虑到灵活性,但本实施方式是相对昂贵的,并且被发现消耗大量的功率。 
在图23中示出用于滤波器2150的替换实施方式。图23所示的电路在多反馈拓扑结构中使用分立的运算放大器来实现六阶有源滤波器。图23所示的电路比上述开关电容器设计消耗更少的电流并且成本明显更低。可以使用诸如由德克萨斯仪器公司提供的FilterPro包的软件树包来选择用于图23所示的电阻器和电容器的值。如本领域的技术人员将认识到的,可以简单地通过改变组件值来实现诸如巴特沃恩、贝塞尔和椭圆的不同滤波器样式。FilterPro包还提供在选择图23所示的放大器时有用的信息,包括用于每级的必需带宽。适当的放大器包括由德克萨斯州达拉斯市的德克萨斯仪器公司出售的型号TLV2764和OPA4347四重组装放大器(quad amplifier)。构成图23所示的电路的一部分的三级(前三个运算放大器)六阶滤波器提供适当的60Hz滤波,从而允许将电路中的第四运算放大器用于图21所示和下文描述的第二级放大器155。另外,将低通滤波器的第三级运算放大器耦合到第四运算放大器(增益级)的图21所示的R-C网络提供如上所述的消除DC漂移的高通网络。 
再次参考图21,电路2100包括用于将由滤波器2150输出的信号放大至能够直接被模数转换器2160采样的水平的第二级放大器2155。具体地,如果第一级放大器2115的增益在100与10,000之间,则由滤波器2150输出的信号的振幅将在2mV至200mV范围内。优选地,第一级放大器2115的增益是500,因此,由滤波器2150输出的信号的振幅将约为10mV。为了允许由模数转换器2160实现较高的采样分辨率,使用第二级放大器2155来进一步将信号放大。优选地,第二级放大器具有约为30的增益,因此,在优选实施例中将10mV信号放大成300mV信号。然而,第二级放大器2115的增益还可以约为10至100。如第一级放大器2115的情况一样,可以将可编程增益放大器用于第二级放大器2155。可替换地,如上所述,可以将图24所示的滤波器150实施方式中的未使用(第四)运算放大器用于第二级放大器2155。 
模数转换器2160将由第二级放大器2155输出的模拟波形转换成数字表示,该数字表示然后能够被一个或多个算法处理,如本文更全面地描述的,以由此确定诸如心率的心脏相关参数。可以使用在每秒32~256个样本下使用具有3V基准的12位模数转换器来实现模数转换器2160。此类设备被集成到德克萨斯仪器MSP430F135处理器中。模数转换器2160被连接到中央处理单元2165,其读取已转换数字信号并执行以下功能中的一个:(i)其将原 始数字信号存储到存储器(诸如闪存或SRAM)以用于后续分析;(ii)其将多个原始数字信号存储到存储器并随后将其有线或无线地传送到远程计算机以用于如本文所述的分析和/或显示,诸如实时地显示;或者(iii)其使用在中央处理单元2165上提供的本文所述算法来处理原始数字信号以确定心脏相关参数,诸如心搏、心率和/或逐拍变异的各种大小和定时。相对于此最后一个功能,一旦已确定了心搏和/或心率,中央处理单元2165就可以对每次搏动执行各种任务,诸如使LED闪烁或将心率信息存储到存储器。可选地,中央处理单元可以提供操作控制或至少音频播放器设备2166的选择。如对于本领域的技术人员来说将显而易见的,音频播放器166是存储和播放或单独地播放所存储的音频媒体的类型。设备可以控制音频播放器2166的输出,如下文更详细地描述的,或者可以仅仅提供用户界面以允许由佩戴者来控制音频播放器2166。 
还可以依次独立地执行这些功能。例如,能够在被同时地分析并输出的同时将数据实时地存储在数据存储介质中。后续过程能够允许系统获取先前存储的数据并尝试利用可替换算法技术或滤波器来获取不同的信息。另外,能够同时地存储和比较或单独地分析来自上述的过滤过程中的不同点的数据以检测在该过程中的某些点处丢失的信号信息。 
参考图24,示出了用于测量ECG信号的替换电路2200,其中使用多个电极的阵列2105,例如四个电极2105A至2105D。本实施例中的电极2105被成对地分组,并且如图24所示的电路2100的情况一样,每对的一个电极被放置在与ECG信号的右侧的电极电位有关的位置上,并且每对中的另一个电极被放置在与ECG信号的左侧的电极电位有关的位置。可以将每对中的第一电极放置在相互接近的位置上以尝试从特定的一般位置获得良好的信号,或者可以放置在被相互移开的位置上,如用以下更多细节描述的特定实施例中所示,以从不同的位置拾取信号。可以类似地放置每对中的第二电极。每对电极2105被如上所述地连接到偏置/耦合网络110,并且输出被如上所述地连接到第一级放大器2115。在图24、25A~D和25F所示的实施例中,每个第一级放大器2115的输出被馈送到求和电路2170,其例如可以是电阻器网络。求和电路2170将第一级放大器2115的输出加在一起。求和的信号然后通过滤波器2150、第二级放大器2115并到达如上所述的模数转转器2160和中央处理单元2165。 
应特别注意的是可以在最少成本和组件实施例中实现该电路,这可以最适用于设备的一次性应用。在本实施例中,该设备未提供有处理器,只有用于拾取电压差的电气分离电极、用于差动地使与电压尖峰(诸如QRS信号)相关联的电流通过的选通机制和用于显示已通过电流的特性的机制。可以用运动、电池或太阳能来对此设备进行供电。另一选择是直 接从被测量的电压电位对设备进行供电。显示机构可以是化学、LCD或其它低功耗设备。电压尖峰用非常缓慢的涓流释放来对电容器充电;简单的LED显示器显示出电容器中的电量。在另一实施例中,由电池来对简单的模拟显示器供电。简单设备利用数字处理但没有明确的处理器;作为替代,基于以上说明,如对于本领域的技术人员而言将显而易见的,门、阈值电路和累积器电路的简单集合控制必要的预编程逻辑。 
图24和25A~F所示的实施方式(其利用电极阵列2105)是特别有用和有利的,因为由电极2105检测的信号有时能够由于身体的肌肉活动而饱和,诸如其中电极2105被放置在手臂的位置上的实施例中的手臂中的肌肉活动。由电极2105检测的信号的心搏相关部分是相干的,意指高度相关,而信号的肌肉活动噪声部分趋向于是不相干的,意指不相关的。因此,由于信号的不同部分的此相干/不相干性质,当由电极2105生成的信号被求和电路2170求和、相减、求平均值、相乘等时,心搏相关分量将彼此相加,从而产生具有较高信噪比的更好的心搏尖峰脉冲,而肌肉噪声相关分量将趋向于相互冲消或抵消,因为那些信号中的“小山”和“山谷”趋向于相互异相。结果是具有较少肌肉相关噪声的更强的心搏相关信号。 
图25A至25F举例说明结合了图24所示的多个电极的系统的替换实施例。图25举例说明由开关2111可互换地路由到第一级差动放大器2115输入端中的任何一个以允许电极减法和加法的不同组合的三个电极2105B-F。此布置假设将始终在正的意义上对待一个电极。图25B举例说明类似于图25A的布置,然而,利用3×3开关矩阵2112而不是图25A所示的分立开关。图25C举例说明4×4开关矩阵2113,其允许完全控制电极对加法/减法,并且在概念上是最简单的。在某些实施例中,可以减少开关矩阵113的功能以仅许可某些配对以便获得更干净的信号。图25D举例说明6×4开关矩阵2114,其允许完全控制电极对加法/减法并允许从全套的电极中选择两对。图25D包括附加电极2105E-F以举例说明完全的三对此类电极的可选择性。如图25C所示的实施例的情况一样,可以减少开关的功能以仅许可某些配对。这可以在概念上扩展至期望的那么多的电极。图25E举例说明提供电极屏蔽的实施例,并且能够对单独的电极对进行采样,并且然后在后续分析期间相加和/或相减,可以简单地选择最强的一对,或者可以取信号阵列的平均值。此布置还可能要求50~60Hz滤波和较高的第一级放大器增益以保持高的信噪比。图25F举例说明其中CPU通过AGC电路2167来控制第一级放大器的增益、使得系统能够调整具有较弱ECG信号的对象或不良电极放置的实施例。这些实施例允许从多对电极中选择最强的一对或最好的信号以进行分析。除了仅信号强度之外,这还可以根据多个方法来实现。这些包括分析信号的所有配 对和组合或计算所有信号的平均值或识别失真最严重的信号、考虑肌肉伪象噪声等以及利用其作为将被从识别的最好信号减去的滤波器信号。 
存在可能影响被输入到图21、24和25A~F所示的模数转换器2160中的放大信号的多个噪声源。例如,如上所述,电源哼声和DC偏移噪声能够影响信号。在图21、24和25A~F所示的实施例中,使用滤波器2150来去除此噪声。在替换实施例中,作为使用类似于2150的硬件解决方案从已从电极2105接收到的电压电位差信号去除50/60Hz电源哼声和/或DC偏移噪声的替代,可以在由模数转换器2160数字化之后使用在驻留于在构成身体监视设备的一部分的CPU2165上或接收数字化信号的单独计算机上的软件中实现的已知软件技术来将此噪声中的某些或全部从信号滤出。在本实施例中,将消除滤波器2150,并且在电路2100或2200中将仅使用诸如第一级放大器2115的具有约500至2500的增益的单个放大器。还可以利用两级放大器,其具有50~500的第一级增益和10~50的第二级增益。这些步骤(在硬件或软件实施方式中)实际上去除具有被视为过高或过低而不能组成心脏相关信号的频率的信号的分量,其中典型的ECG信号具有在0.5~4Hz范围内的频率。 
系统被具体地设计为使由被处理且从主信号减去或滤出的噪声产生的处理时间延迟和中断最小化。因为处理噪声并消耗处理器资源,必须存储并在稍后的时间处理数据。尽可能快地返回同时监视从而避免数据积压的积累是重要的。该系统利用诸如上文所述的多个测量技术来快速地识别并提取原始信号且迅速地返回至实时监视。更特别地,电路被设计为在心脏的三次搏动内使DC偏移最小化。 
另外,可能影响被输入到模数转换器2160中的信号的另一噪声源是由肌肉的电活动引起的肌肉噪声。肌电图描记法或EMG是肌肉纤维内的电活动的测量,根据上述失真最严重的信号的减法或滤波的方法,通常主动地对其进行测量,还可以被动地对其进行测量,因为其受肌肉伪象的影响最大和/或具有微乎其微的关于心脏相关电活动的任何信号。在对象在运动中的同时,用于测量ECG的电极2105也可以同时地拾取并测量EMG信号。此类同时地测量的EMG信号是ECG信号的噪声。因此,根据本发明的方面,能够通过使用单独的电极优选地从具有最小或难以检测的ECG信号的身体位置具体地测量EMG信号来改善ECG信号测量。然后可以使用此单独测量的EMG信号来使用各种信号处理技术减少或消除存在于单独地和同时地测量的ECG信号中的EMG噪声。在许多情况下,EMG信号的振幅可能压倒该ECG信号,使得滤波或利用上述方法的可能得不到可用的ECG信号。在这些情况下,可以与电极相结合地利用非电极传感器的使用以便检测相对静止ECG信号。此传感器甚至可以取代搏动检测,如果其在主电信号削波、变得过饱和或被EMG信号压倒时检测 到ECG峰值的话。示例性传感器是微多普勒系统,作为单个拾音器(pick-up)或阵列,其被设计为拾取血液等的机械急流,使多普勒信号通过,产生其中可以将峰值识别并定时为搏动的脉搏波。本实施例可以调谐至特定的位置或利用被调谐至不同深度的不同传感器的阵列以便对用于每个用户的最好信号进行最优化和定位。还可以通过不同信号和信号强度的监视利用此阵列以通过众所周知的可听或可见反馈机制将设备定位于手臂上的最好位置处。还可以将设备调谐至在评估的初步时段内检测的某些个体特性或在一段时间段动态地调谐。在某些高噪声情况下,可以用机械信号取代电ECG信号作为计算的一部分。为了进行机械和电波对准,将必须计算定时和相移差并纳入峰值或搏动识别算法中。还可以利用本系统进行佩戴者的脉搏渡越时间或PTT的检测和测量,如本文中更全面地描述的,允许导出或计算血压的相对和/或绝对测量。 
脉搏渡越时间或PTT是由心搏产生的脉压波形传播通过给定长度的动脉系所花费的时间。脉压波形是由来自心脏的左心室的血压喷射得到的,并且以大于血液本身的向前移动的速度穿过动脉系,波形在血液前面沿着动脉行进。可以通过测量使用ECG信号的R波检测的心搏的峰值与由诸如脉搏血氧仪或其它类型的压力检测器的设备测量的对应压力波处在身体上的位置(诸如手指、手臂或脚趾)处的到达之间的时间延迟来确定PTT。随着血压增加,由动脉壁施加更多的压力,并且脉压波形的速度增加。脉压波形的速度取决于动脉壁的张力;动脉壁越具有刚性或收缩,波速越快。结果,对于固定动脉血管距离而言,在PTT增加且脉压波形速度减小时,血压增加,并且在PTT减小和脉压波形速度增加时,血压增加。因此,能够测量PTT并用来指示实时血压中的突变。 
在一个实施例中,同一臂章设备包括检测ECG信号并结合抵靠着身体的微多普勒阵列一起产生PTT测量结果的能力。本发明的一个方面涉及PTT的测量和监视。具体地,可以使用如本文所述的电极105使用ECG信号来确定心搏峰值的时间。可以使用多个压力传感器中的任何一个来测量对应压力波到达身体上的给定位置处的时间。此类压力传感器可以包括但不限于脉搏血氧仪、多普勒阵列、单压电传感器、声学压电传感器、光纤声学传感器、血容量压力或BVP传感器、光学体积描记传感器、微功率脉冲雷达检测器和地震检波器。根据本发明的优选实施例,使用提供有上述压力传感器中的一个或多个的臂章身体监视设备300来测量并监视PTT以指示血压的变化。因此,在本实施例中,在从上臂获得ECG信号并测量脉压波形在上臂上的位置处的到达的单个设备中测量PTT。可替换地,压力传感器可以与臂章身体监视设备300分开地位于不同位置处,诸如手指或手腕,关于到达时间的信息被传送到臂章身体监视设备300以进行计算。还可以在手指产品或其它第三产品处进行 此计算,或者在上述各项的任何组合之间共享。如本领域的技术人员众所周知的,在有线或无线实施例中可以提供每个设备之间的通信,或者通过佩戴者的皮肤来传送。 
在一个特定实施例中,可以将电极2105放置在左臂的三角肌和三头肌上以便测量ECG信号,其将可能包含肌肉相关噪声,并且根据下文更全面地描述的设备的多个实施例中的至少一个,可以将单独的电极2105放置在每个三头肌上一个或在三头肌上放置一个且在肱肌上放置一个以便收集几乎不具有ECG分量的EMG信号。然后可以使用此EMG信号来处理和改进测量的ECG信号以去除EMG噪声,如本文所述。此类配置的示例是下文结合设备的特定替换实施例和更具体地图31描述的臂章身体监视设备300,其中,电极2105A和2105B将测量可能包含肌肉相关噪声的ECG信号,并且电极2105C和2105D测量几乎不具有ECG分量的EMG信号。 
虽然能够如所述地使用单独的EMG传感器来减少肌肉噪声,但已经发现虽然努力消除或减少此类噪声,此噪声在一定程度上常常最终仍留在被输入到模数转换器2160中的信号中。所收集信号中的实际心搏尖峰(其包括ECG信号的QRS波部分)的振幅可以在整个信号上改变,并且剩余肌肉噪声可能使信号中的心搏尖峰模糊,或者本身可能看起来像一个或多个心搏尖峰。因此,本发明的方面涉及在软件中实现的用于识别并减少存在于由模数转换器2160输出的数字信号中的噪声并从该信号识别心搏和心搏图案的各种过程和技术。另外,尽管进行了处理努力,可能存在包含过多噪声并因此没有可辨别的心脏相关信号的信号部分。本发明的另一方面涉及用于处理此类部分并内插提供连续且准确的输出所需的数据的过程和技术。 
根据本发明的一个实施例,由模数转换器2160输出的信号可以首先经历使用存在于CPU2165上或信号已被发送到的单独计算机上的软件的一个或多个降噪步骤。例如,在一个可能的降噪实施方式中,首先处理信号以识别信号中的每个峰值,意指增加的振幅部分,后面是最大振幅部分,后面是减小的振幅部分。此类峰值的示例在图26中示出,并包括点A、B和C,其中,X轴是时间且Y轴是信号强度或振幅。对于每个识别的峰值而言,然后计算峰值的高度(以振幅为单位)和峰值的宽度(以时间为单位)。优选地,如下确定用于每个峰值的高度:min(BY-AY/,BY-CY)并且,如下确定用于每个峰值的宽度(CX-AX)。另外,建立并存储心搏尖峰(包括QRS波)的标准高度和宽度分布(profile),并且消除在所存储分布的外部的信号中存在的已识别峰值,这意味着信号的那些部分被标记为被进一步的处理步骤所忽视,因为其构成噪声。在优选实施例中,当使用128Hz模数采样率且使用信号的12位编码时,所存储的分布中的标准高度约为400个点,并且当使用128Hz模数采样率 且使用信号的12位编码时,所存储的分布中的标准宽度约为3至15个点。在一个特定实施例中,该分布可以形成被存储并用于识别要消除的信号中的尖峰的自适应高度和/或宽度,诸如基于先前测量的移动平均的一定百分比的高度和/或宽度。另外,也可以消除撞击由模数转换器160输出的最大和最小值轨的信号中的峰值。如果峰值在给定周围信号上下文的情况下将指示不太可能的心率,则也可以将其从信号中消除,即将导致在可能最大值之上的所计算心率的非常接近的其它峰值。最后,基于使用优选地提供有实现图21所示的电路100或图24所示的电路2200的身体监视设备的附加传感器(包括但不限于加速度计或用于检测运动或张力的其它运动检测传感器、音频传感器)或者使用肌肉噪声的时谱特征,能够去除噪声。 
图24A至24D举例说明从检测的信号获得并提取ECG数据和心搏的渐进步骤。现在参考图24A,与由常规ECG监视器同时记录的同一心搏的基准信号2076相结合地举例说明所检测信号2075。所检测信号2075基本上没有显著的特征,并且整个心脏相关信号被噪声掩蔽。图24A中的最普遍的是也存在于基准信号中的60Hz电源哼声2077。图24B举例说明用30Hz滤波器滤波之后的相同的两个信号。基准信号2076揭示出基本上完好且清楚的ECG信号。所检测信号揭示出某些周期性特征,但是具有最小的振幅或信号强度。图24C举例说明放大之后的所检测信号75的修正。基准信号2075已被修正。如本文更全面地描述的,图24D仅举例说明峰值2077的附加信号处理和识别之后的所检测信号2075。 
用于消除噪声的另一方法是在存在于CPU165上或信号已被发送到的单独计算机上的软件中对信号进行滤波的方法。在优选实施例中,此滤波由被设计为加强噪声与心搏之间的差的非线性滤波器组成。图24E示出应用此滤波器的结果。在处于未滤波状态的方框2080中和滤波之后的方框2079中示出所检测信号2075。 
虽然这些降噪步骤很可能从已从模数转换器2160接收到的信号去除了大量的噪声,但尽管有此处理,很可能仍存在仍留在信号中的噪声。此噪声使得出于进一步处理(诸如计算心率或其它心脏相关参数)的目的从信号识别实际心搏尖峰的任务变得困难。因此,本发明的另一方面涉及同样在存在于CPU2165或单独计算机上的软件中实现的用于从信号识别心搏尖峰(尽管有任何剩余噪声)的各种过程和技术。如将认识到的,这些过程和技术虽然优选地在上述降噪步骤中的一个或多个之后执行,但还可以用已经执行的任何在先降噪步骤来执行。 
如在现有技术中众所周知的,Pan-Tompkins方法使用一组信号处理频率滤波器来首先仅使可能由心搏生成的信号通过,然后继续对通过的信号进行求导、求平方和执行移动窗 口积分。Pan,J.和Tompkins,W.J.在IEEE Transactions on Biomedical Engineering,32,230~236(1985)中的“A Real-time QRS Detection Algorithm”中描述了Pan-Tompkins方法,其公开被通过引用结合到本文中。 
根据本发明的此方面,首先将具有过多噪声的(即太多噪声而不能实际上从信号检测可接受心搏尖峰)由模数转换器2160输出的信号中的区域(在有或没有上述降噪的情况下)识别和标记为在处理中忽视。这可以通过例如识别具有预定数目的轨撞击的信号中的区域或两个或更多轨撞击中的例如1/4秒的预定时间窗内的信号的区域来完成。接下来,处理剩余区域、即由于存在太多噪声而未被消除的那些(在本文中称为非噪声信号)以识别可接受心搏尖峰以供在计算诸如心率的各种心脏参数时使用。 
在本发明的一个实施例中,通过如上所述地首先识别并随后计算非噪声信号中的每个峰值的高度和宽度来识别非噪声信号中的可接受心搏尖峰。接下来,将每个峰值的宽度与宽度的预定可接受范围相比较,并且如果宽度被确定为在可接受范围内,则将峰值的高度与等于先前峰值的高度的移动平均的0.75的自适应阈值高度相比较。优选地,宽度的可接受范围在使用128Hz模数采样率时是3至15个点,并表示ECG信号的QRS部分的典型宽度范围。接下来,如果当前峰值的宽度在可接受范围内,并且如果峰值的高度大于自适应阈值,则将峰值视为将是可接受峰值的候选以用于进一步的处理。不满足这些要求的峰值被忽视。接下来,对于在彼此相距预定时间帧(优选地,彼此相距3/16秒)内的候选可接受峰值而言,将峰值的高度相互比较并忽视该时间帧中的较低峰值。如果在该时间帧内仅存在一个候选可接受峰值,则将该峰值视为候选可接受峰值。在这里,将已识别多个候选可接受峰值。接下来,对于每个已识别候选可接受峰值而言,针对具有比当前候选可接受峰值的高度的0.75大的高度的任何其它信号峰值检验该峰值与上一个(在时间上直接在前面)候选可接受峰值之间的区域。如果识别了超过预定数目、优选地2个此类峰值,则当前候选可接受峰值作废且对于进一步处理而言被忽视。另外,如果在上一个候选可接受峰值与当前候选可接受峰值之间存在如上所述的轨的任何撞击,则当前候选可接受峰值作废且对于进一步处理而言被忽视。当这些步骤完成时,在信号中将已识别多个可接受峰值,每个被视为可以用来由此计算包括但不限于心率的心脏相关参数的可接受心搏尖峰。 
根据用于识别可接受心搏尖峰的替换实施例,首先识别非噪声信号中的每个上下上序列(可能的QRST序列)。如本文所使用的,上下上序列指的是具有增加的振幅部分、后面是最大振幅部分、后面是减小的振幅部分、后面是最小振幅部分、后面是增加的振幅部分的非噪声信号上的序列。此类上下上序列的示例在图27中示出,并包括点A、B、C和D, 其中,X轴是时间且Y轴是信号强度或振幅。在识别了每个上下上序列之后,计算每个上下上序列的高度(就振幅而言)和宽度(就时间而言)。优选地,如下确定用于每个上下上序列的高度:(BY-AY)+(BY-CY)+(DY-CY),并且如下确定用于每个峰值的宽度:(DX-AX)。 
接下来,将每个上下上序列的高度与预定阈值相比较,优选地诸如先前高度的移动平均的某个百分比(例如75%)的自适应阈值,并将每个上下上序列的宽度与预定阈值范围相比较,优选地在使用128Hz模数采样率时等于4至20个点,其表示ECG信号的QRST序列的典型宽度范围。如果高度大于阈值且宽度在预定阈值范围内,则将该上下上序列视为候选可接受QRST序列。接下来,对于非噪声信号中的每个已识别候选可接受QRST序列而言,检验具有预定长度(优选地,3/16秒)的周围时间段窗口,并将该时间段窗口中的当前候选可接受QRST序列的高度与该时间段窗口中的所有其它已识别候选可接受QRST序列相比较。验证该时间段窗口中的具有最大高度的候选可接受QRST序列,其可以是也可以不是当前候选可接受QRST序列,并且使该时间段窗口中的其它候选可接受QRST序列(其可以包括当前候选可接受QRST序列)作废且对于进一步处理而言被忽视。一旦此步骤已经完成,在非噪声信号中将已识别多个可接受QRST序列。接下来,对于已经识别的每个可接受QRST序列而言,测量到在时间上直接在前面的可接受QRST序列和在时间上直接的下一个QRST序列的距离(就时间而言)。优选地测量从一个序列的R点到另一序列的R点的每个距离。每个可接受QRST序列中的R点对应于图27所示的点B,即最高振幅点。另外,针对每个可接受QRST序列计算两个标准偏差。第一标准偏差是当前可接受QRST序列的T点(其对应于图27所示的点D)与在时间上直接的下一个可接受QRST序列的Q点(其对应于图27所示的点A)之间的所有采样点的振幅的标准偏差。另一标准偏差是当前可接受QRST序列的Q点(其对应于图27所示的点A)与在时间上直接在前面的QRST序列的T点(其对应于图27所示的点D)之间的所有采样点的振幅的标准偏差。接下来,将两个测量的距离、两个标准偏差和每个可接受QRST序列的所计算的高度和宽度输入到简单心搏分类器中,其判定可接受QRST序列和周围区域是合格的心搏还是噪声过多。例如,心搏分类器可以是已经使用先前获得且加标签的心搏数据训练的决策树。可替换地,心搏分类器可以是任何已知分类器机制,包括但不限于决策树、人工神经网络、支持向量机、贝叶斯信念网络、朴素贝叶斯和决策列表。 
忽视被确定为噪声过多的那些序列。因此,在此步骤完成时,将已识别一组可接受QRST序列,每个的QRS(其对应于图26中的点A、B和C)部分被视为可以用来由此计 算各种心脏相关参数(包括但不限于心率)的可接受心搏尖峰。 
根据用于识别可接受心搏尖峰的替换实施例,首先识别已滤波信号中的每个上下上序列(可能的QRST序列)。然后计算序列的分量的高度。要求候选QRST综合波的允许振幅至少是信号噪声的估计振幅的两倍。另外,序列的宽度不可超过200毫秒,即用于可信QRST综合波的上限。接下来,如果候选QRS综合波仍是可行的,则检查给定当前心率估计的情况下的用于该综合波的时间位置的似真性。如果候选搏动所暗示的心率变化小于百分之五十,则将该序列识别为心搏。图24F示出利用所检测信号2075的此过程,其在方框2081被绘图为形成QRST综合波的一系列互连数据点。信号边界框2083识别所检测信号2075中的两个QRST综合波,其被消除,因为其未通过上述50%测试。在方框2082中示出心搏峰值点2084,其表示来自方框2081的被识别为搏动的QRST综合波。注意相应位置处的心搏峰值点的缺失。另外,可以从ECG波形提取包括呼吸率的呼吸数据。呼吸导致所观察的ECG中的规则且可检测的振幅变化。根据心电活动的等效偶极子模型,呼吸引发沿着平均心电轴的方向的明显调制。 
给出用于分析和显示心率数据的附加方法。在这些方法中的每一个中,基于所识别的QRST序列将信号连续地分段成一组重叠时间片。每个时间片优选地精确地以序列的R点为中心,并在该序列的R点的任一侧包含固定的时间窗,例如1.5秒。每个时间片可以包含不止一个QRST序列,但是在时间片的中心将包含至少一个。虽然以数学方式执行分析,但图形说明将向本领域的技术人员提供最清楚的理解。接下来,对于给定时间点而言,给定时间片之前和之后的一定数目的时间片被合并在一起或重叠在同一图表上。在一个特定实施例中,给定点之前和之后的10个时间片被重叠在同一图表上,根据图形显示,所述图形显示为如何可以将此数据以输出的形式呈现给用户,使时间片段重叠,由此将一定数目的QRST序列或时间片段叠加在同一图表上。时间片段(优选地1.5秒)内的每个所检测的主QRST序列和相邻序列被叠加在该窗口中的其他搏动上。例如,在图27A中,使一系列信号2050与在重叠信号之间对准的主搏动2055相互重叠。这被称为基于AND的重叠搏动图表。还计算并显示所有叠加搏动的平均值2060。在图表的中心处,在主搏动2055被对准的情况下,搏动看起来是非常类似的,并且清楚的信号是可辨别的。还请注意相邻搏动2065紧密地成簇,具有一定的偏差,其为逐拍变异的指示器。本领域的技术人员将认识到通过查看中心QRS综合波与相邻综合波的中心之间的距离,容易从此类图表提取用于这组搏动的心率。当信号非常清楚时,如在本示例中那样,此计算的实用性受到限制。然而,当信号有噪声且检测到许多假搏动时,本技术能够允许在信号本身噪声过多而不能使用过于简单的方 法或观察法时找到心率。 
重叠搏动图表的另一实施例涉及使用基于ADD的方法来进行重叠。在此型式中,如图27B所示,当搏动和相邻信号重叠时,结果得到的图表中的像素的强度被增加重叠点的数目。图27B举例说明用于在其中基色是黑色且重叠的每个信号使得色彩更亮的情况下所示的ECG信号的示例。再次地,利用主搏动2055来使时间片段对准,并且相邻搏动2065被示为比在图27A中更多的点云。此点云的宽度与正在讨论中的信号的逐拍变异有关。即使可能未可靠地检测到单独搏动且重叠的图表可能未在行中显示清楚的图案,也可以利用如图27A所示的平均值2060来识别清楚的相邻QRS综合波。由此,能够根据从时间片的中心到表示相邻QRS序列的点云的中心的距离来确定速率。可以在存在显著噪声的情况下利用ADD图表来识别用于相邻QRS综合波的不同尖峰以增强系统的能力。在替换实施例中,可以使该显示更大程度地朝着具有更多重叠点的那些像素偏置,使得如果重叠点的数目在特定像素处是X,则可以将其强度表示为X1.5,从而更加选择性地突出显示最多重叠点。 
建立用于用户的心搏信号的形态(morphology)的数据库或其它参考的方法将必要地包括将心搏图案分类并识别某些形态的能力。然后可以使这些图案和形态与某些活动或条件相关联。然而,第一步骤是识别形态和图案,如下所述。 
例如,可以选择一组N个ECG波形。识别搏动之间的平均距离,并且之前的搏动间时段的时间段1/2和之后的搏动间时段1/2的将对每个波形进行截断。具体地请注意,可以有其它削波(clipping)距离,并且其是可变的。如上文的搏动匹配的描述一样,该过程的图形描述是最具说明性的。在削波模式下检测N个信号波形并进行建模,如上述ADD图表一样,通过强度或亮度来测量信号特征。为信号分配强度或数值。周围区域不具有值。识别每个波形的赤道线(equator line)(其为水平线),使得此线之上和之下的区域是相等的。针对每个波峰将子午线识别为将QRS尖峰细分成两片(在信号的峰值处分裂)的垂直线。使全部的N个图像重叠,使得所有赤道线是重合的,并且所有子午线是重合的。对用于N个信号中的每个点的所有强度或数值标准化,使得所有值在两个已知边界值(诸如0和1000)之间。该结果是捕捉那个人在该时间段内的平均心搏形态的表示,在非重合区域内包括其中波形趋向于最多地重合、具有最高值和最少地重合、具有最低值的信号段。另外,可以在重叠之前对N个图像中的每一个进行缩放,其中,每个波形的R点的高度形成常数。另外,可以通过选择成行的X个波形中的X个段并用X个波形的序列而不是仅仅用一个来执行上述分析而增加准确度。 
如本领域的技术人员将认识到的,由于电极2150的放置,由模数转换器2160输出 的信号与从ECG信号预期的相比可以使其极性反转,在这种情况下否则将是信号中的峰值的值将表现为信号中的波谷。在这种情况下,可以通过首先使信号的极性反转来成功地对信号执行上述处理。在本发明的一个实施例中,可以如上所述地将由模数转换器2160输出的信号处理两次,第一次不使其极性反转,并且随后再次在其极性已经被反转之后,最好的输出被用于如本文所述的进一步处理。另外,可以利用多个传感器(诸如加速度计或替换电极对)的使用来在信号处理期间指引可变增益和动态信号阈值或条件以便更好地调整要应用的处理的类型或性质。另外,可以采用诸如由加利福尼亚州弗里蒙特市的Salutron制造的峰值检测器电路。 
另外,系统可以检测已知和可识别上下文或信号模式,其将简单地不呈现可被用于搏动的算法及其它身体电位相关特征检测所辨别的可接受信号。在这些情况下,该系统简单地识别此条件并记录数据流,诸如在EMG或运动振幅处于峰值水平时,根据某些预置或动态地计算的条件或阈值,系统检测此条件并停止尝试处理信号直至接收到下一个适当的信号为止。在某些情况下,可以利用其它传感器的输出来确认诸如过度身体运动之类的条件的存在,其将确认系统正在适当地操作,但是没有相干信号,以及提供用于内插来自遗漏的时间段的数据的基础。在这些条件下,相对于返回错误的心脏信息而言,来自不可以可靠地收集心脏信息的系统的返回值本身具有价值。 
一旦已经使用本文所述的方法之一从由模数转换器2160输出的信号识别了可接受心搏尖峰,就可以使用可接受心搏尖峰来使用多种方法中的任何一个来计算心率。虽然仅仅计算特定时间段(诸如分钟)内的可接受心搏尖峰的数目可能看起来是计算心率的可接受的方式,但将认识到此类方法实际上将由于多个搏动将可能已如上所述地作为噪声被作废的事实而对心率估计不足。因此,必须以计及作废搏动的方式来计算心率及其它心脏相关参数,诸如逐拍变异和呼吸率。根据一个实施例,可以通过确定在信号中识别的每组的两个连续可接受心搏尖峰之间的时间方面的距离并用六十秒除以此时间来得到用于每组两个连续可接受心搏尖峰的局部心率来根据所识别的可接受心搏尖峰计算心率。然后,可以在给定时间段内计算所有此类局部心率的中值和/或峰值并用作所计算的心率值。 
在遇到其中没有可用于搏动检测的最低质量水平的信号的时间段的情况下,必须开发用来估计此时间段的事件的方法。该系统提供产生此遗漏时间段内的关于某些心脏参数(包括心率)的准确陈述。通过利用先前学习的数据和关于心率随着时间的推移如何改变的概率,基于可靠的在先数据对心搏频率分配概率。这不限于直接在遗漏时间段之前的时间段,虽然这可能是遗漏部分的最好指示器。还可以进行与已经被存储和/或分类的在先时间 段的比较,或者通过与关于某些条件下的心脏参数的信息的数据库的匹配进行。该系统还可以在这些概率计算中利用与设备相结合地利用的其它传感器。例如,如果加速度计传感器的方差高,则可以利用心搏通道上的遗漏心搏的概率。这使得能够非常准确地评估不同的速率序列并允许计算可能的心率。当存在某个最小数目的所检测搏动时,这种方法是最成功的。 
估计遗漏时间段期间的活动的附加方法是首先使用上文所讨论的方法中的一个来识别候选搏动。可以使用还产生强度值的任何检测技术。在优选实施例中,检测器将使被定位的搏动实际上是心搏的概率相关联。可以通过将强度值1用作真来使用二元真/假检测器。接下来,将所有成对的电位搏动组合以获得一组搏动间空隙(gap)。每个搏动间空隙定义加权函数,该加权函数的值是基于空隙的大小、自从检测到空隙以来已经过去的时间量、识别的强度和加权函数系列所需的任何元参数的组合。在优选实施例中,此加权函数是逆凹口函数(notch function)。以秒为单位的搏动间空隙确定凹口的峰值的位置。由识别的强度(strength)、自从识别了空隙以来的时间长度(作为年龄(age))和称为寿命(1ifetime)的超参数来驱动凹口的高度。由超参数宽度(width)来定义凹口的宽度。图24G示出包括凹口峰值2087和凹口宽度89的此逆凹口函数。函数本身被以数学方式表示为: 
w(X.gap.strength.age.lifetime,width)=max(0,(1-age/lifetime)*strength*(1-abs(X-gap)/width)) 
在第三步骤中,将单独的加权函数求和以获得总加权函数。最终,以编程方式来分析结果得到的函数以获得心率的估计。 
在优选实施例中,将真搏动间空隙的估计取为函数达到其第一局部最大值时的值。图24H示出结果得到的函数并指示第一局部最大值2091。一旦选择了搏动间空隙,就根据公式心率=60/搏动间空隙来确定心率。 
为了使与总加权函数的评估相关联的处理负荷最小化,消除其搏动间空隙比生理上可能的大或小的那些单独加权函数。另外,还消除其年龄已经超过寿命超参数的值的单独函数。 
另一实施例在经允许的搏动间空隙上利用概率滤波器而不是如上所述的硬截断。这些概率滤波器除ECG信号之外还取一个或多个信号作为输入,并确定用于可允许心搏的概率范围。其一个实例是根据非ECG信号来确定佩戴者的情境,并且然后针对每个情境应用特定的高斯分布,其中参数由该情境、佩戴者的身体参数以及ECG信号本身确定。对于此偏置而言,也可以容易地利用其它概率分布。然后可以将此概率与每个搏动间空隙的概率相乘以产生后验分布,由此能够容易地确定最可能的心搏。 
本发明的另一方面是在某些心脏参数由于噪声而不可计算的时间期间,还可以根据在时间上邻近的一组测量值和在其它传感器上进行的其它测量的序列来估计这些参数。本方法的一个此类实施例是与用于能量支出的类似的情境预测器,但是被替代地用来根据加速度计数据、皮肤电反应数据、皮肤温度和覆盖温度数据以及采取的步骤及其它导出的生理和情境数据来预测心率。这种方法首先识别佩戴者的活动,并且然后对该活动应用适当的推导。在优选实施例中,根据正在执行该活动的概率来应用并组合用于所有活动的所有推导。 
本发明的附加方面是通过使用多个有噪声信号随时间推移针对特定用户进行适配的方法,所述多个有噪声信号提供关于其它导出信号的质量的反馈。查看这一点的另一方式是作为用于给定用户的校准方法。首先,计算给定导出参数,其表示佩戴者的某个生理状态。其次,计算第二导出参数,其表示同一生理状态。比较这两个导出参数,并用来根据针对每个导出度量计算的置信度来相互调整。计算被设计为接受反馈信号以允许对其进行训练或调谐。在一个实施例中,这包括仅仅利用梯度下降来基于公认地有噪声反馈信号而调谐参数。在另一实施例中,这涉及基于概率推理的系统来更新在计算中利用的一组常数。 
根据本发明的一方面,使用如上文详细地描述的算法开发过程来产生用于由从臂章身体监视设备300上的多个生理和/或情境传感器接收到的数据生成关于多种变量的连续信息的范围广泛的算法,如至此在表I中识别的,包括使用用来计算心率及其它心脏相关参数的电极2105生成的ECG信号,其中的许多不能单独地从图形数据输出和诊断来通过视觉辨识进行区别。这些包括心率变异、心率偏差、平均心率、呼吸率、心房颤动、心律不齐、搏动间间隔、搏动间间隔变异等。另外,与实时地对数据加事件或时间戳的能力耦合的这种类型的连续监视提供用滴定法测量药物或其它疗法的应用并观察其即时和长期效果的能力。此外,提供了通过数据输出的模式识别和分析基于在先事件来预测诸如心脏病心律不齐的某些条件的能力。在没有限制的情况下,此类变量可以包括能量支出,包括静息、活动和总值;日常卡路里摄入;睡眠状态,包括在床上、睡眠开始、睡眠中断、醒来和离开床;以及活动状态,包括锻炼、坐着、乘汽车旅行和躺着。在本文所述的实施例中,用于生成用于此类变量的值的算法可以基于来自例如2轴加速度计的一个轴或两个轴、热通量传感器、GSR传感器、皮肤温度传感器、近身环境温度传感器和心率传感器的数据。另外,通过上述模式检测和预测能力,系统可以通过在某些事件的一个此类急性发作期间建立一组已知条件参数并检测类似的事件前参数来预测此类事件的开始,诸如晕厥、心律不齐和某些生理心理健康状态。可以在再发生与在先事件匹配的该特定的参数组时向用户呈现警报或其它反馈。 
作为另一示例,可以开发具有在概念上在图11中示出的格式的算法,以便测量个体 的能量支出,其利用从由臂章身体监视设备300从2轴加速度计和电极105收集的传感器数据(由此计算心率和/或其它心脏相关参数)导出的通道作为输入。从这些运动和心率传感器类型导出的参数在很大程度上是正交的,并且非常能描述用户的活动。具有在概念上在图14中示出的格式的算法中的这两个传感器的组合提供容易地区别可能对于单个传感器会混淆的不同活动类别的能力,诸如应激性事件(其中的某些可以由高心率和低运动来识别)、车辆运动事件(其中的某些可以由低心率和高运动来识别)和锻炼事件(其中的某些可以由高心率和高运动来识别)。如图11所示,在本实施例中,首先使用由来自这两个传感器的传感器数据导出的通道来检测用户的情境。然后使用一个或多个适当的函数基于心率和运动数据两者来预测能量支出。作为另一替换,还可以使用从构成臂章身体监视设备300的一部分的附加传感器(诸如热流量传感器)导出的通道作为到算法中的附加输入。由于许多原因,在算法中使用心率来预测能量支出能够得到更好、更准确的预测。例如,诸如骑自行车或举重的某些低运动锻炼对于使用来自加速度计的手臂运动作为唯一输入的能量支出算法提出了问题。并且,衣服可能负面地影响由热通量传感器进行的测量,其继而可能负面地影响能量支出预测。将心率或其它心脏相关参数结合到算法中帮助缓解此类问题。很明显,除供在此类算法中使用之外,单独地在心率及其它心脏相关参数的纯粹检测、分析和报告中存在相当大的实用性。此外,心率在某个人入睡时通常缓慢,并且在REM时段期间上升。因此,依照本发明可以开发用于预测某个人是否正在睡觉和其处于什么睡眠阶段的算法,其连同其它传感器数据,利用由臂章身体监视设备300从电极2105收集的数据(由此计算心率和/或其它心脏相关参数)以及在本文中识别的其它检测数据类型作为输入。还可以在用于检测诸如睡眠呼吸暂停的各种睡眠障碍的算法中使用此类心脏相关数据。类似地,当在压力下时,一个人的心率常常在没有伴随的运动或身体热量的增加的情况下上升。用于个体的此类数据的逐天或逐时间段比较将帮助识别可以用于进一步的模式检测或预测的某些模式或条件。依照本发明可以开发用于检测压力的算法,其利用从电极2105收集的数据(由此计算心率和/或其它心脏相关数据)以及诸如来自加速度计的数据的其它传感器数据。虽然识别压力的适用性在回顾过去的活动并尝试使检测和导出的参数与生命活动或其它不可检测事件相关的情境下是最有可能的,但检测压力的能力作为将通过外部条件或仅仅全神贯注从佩戴者识别可能被掩蔽的条件的同时测量可能是有效的。在不存在体力运用或活动的情况下经历应力的情况下尤其如此。 
其它重要的反馈实施例包括通过心脏相关参数来检测REM睡眠并使佩戴者进入此类睡眠的机会最大化的能力。作为常规警报在预先约定的时间唤醒用户的替代,警报可以在预 设的REM睡眠量之后、并且进一步地在此类睡眠的适当端点处或在某个特定睡眠阶段期间或刚好在之后唤醒佩戴者。 
在最优选实施例中,臂章身体监视设备300包括适合于生成指示运动的数据的身体运动传感器(诸如加速度计)、适合于生成指示个体的皮肤对电流的电阻的数据的皮肤电导传感器(诸如GSR传感器)、适合于生成指示离开身体的热流的数据的热通量传感器、用于生成可以由此生成指示个体的心搏的速率或其它特性的数据的ECG信号的电极以及适合于生成指示个体的皮肤的温度的数据的温度传感器和/或与之通信。在本优选实施例中,除关于佩戴者的人口统计信息之外,这些信号构成信号的向量,由此导出原始和导出通道X。更优选地,信号的此向量包括指示运动、个体的皮肤对电流的电阻、离开身体的热流和心率的数据。 
其中可以利用本发明的另一特定实例涉及检测一个人何时疲劳。可以以至少两种方式来执行此类检测。第一方式涉及使用传感器设备和使用两个函数(f1和f2)方法来准确地测量诸如其卡路里摄入、水合水平、睡眠、压力和能量支出水平的参数以提供疲劳的估计。第二方式涉及使用结合图14和15描述的直接推导方法来直接尝试对疲劳进行建模。第一方式举例说明预测佩戴者的生理状态的复杂算法本身能够被用作到其它更复杂算法的输入。用于本发明的此类实施例的一个潜在应用将是用于第一反应者,例如消防队员、警察、士兵,其中,佩戴者显著地经受极端的条件和性能问题。例如,如果热通量在太长的时间段内过低,但是皮肤温度持续上升,则佩戴者很可能经历严重的热应激。另外,检测佩戴者的水合水平和该水平的劣化的影响的能力是非常有用的,并且可以利用多个传感器和由系统导出的参数来导出。当人变得脱水时,其通常经历最初高水平的排汗,然后是散去。身体失去其冷却的能力,并且检测到热通量变化。另外,身体温度上升。在这里,心血管系统在输送氧时变得不那么高效,并且心率增加以进行补偿,可能差不多10~20%,使得需要增加呼吸。在稍后阶段,用户经历周围血管性衰竭,其降低血压并导致活动、意识和行为的退化。将能够跟踪并测量水合水平的监视系统与ECG检测相结合地工作,其通过与消耗的能量相结合地测量振幅随着时间推移的相对变化,将识别并确认振幅的变化是意外的,或者由于到当前时间的事件而是预期的。 
将认识到算法可以使用经校准的传感器值和复杂的导出算法。这在预测某些生理条件的端点或阈值并将时间或其它活动的近似度量告知佩戴者或其它观察者直至很可能到达端点为止时是有效的。 
本发明的另一应用是作为用于进行佩戴者指纹识别和认证的设备中的组件。128-Hz 心率信号是丰富信号(rich signal),并且诸如静息心率、逐拍变异、对刺激的响应和适合性的个人特性将在信号中出现。识别个人特性的这些能够用来检验佩戴者事实上是设备的批准佩戴者,或者识别一定范围的可能批准佩戴者中的哪一个当前正在佩戴该设备。在本发明的本方面的一个实施例中,仅利用128-hz信号和来自该信号的导出参数进行识别。在另一个中,监视器中的所有传感器被一起用作识别算法的输入。 
在本发明的该方面的另一应用中,可以在军事或第一反应者系统中利用认证臂章作为朋友或敌人识别系统中的组件。 
还可以预期与其它设备的交互。该系统能够增加其它产品和计算机系统的意识以及智能。这允许相关联设备共同地知道关于其用户的更多信息并能够适当地起反应,诸如自动地在睡眠时开大或开小住宅中的恒温器或在醒来时打开灯。在娱乐情境下,可以利用某些压力和心脏相关参数的检测来影响游戏、电影或其它类型的交互式娱乐中的声音、光及其它效果。另外,可以利用用户的条件来改变音乐编程,诸如增加与锻炼或沉思期间的用户的变化的心率一致的音乐的拍子。其它示例包括当人在驾驶的同时由于其正在寻找地址而受到压力时调小汽车收音机;当人疲劳时促使器具准备有咖啡因的饮料;对处于相同情绪或具有相同品味的社会环境中的人进行匹配;利用警觉和压力指示器来调谐教学系统,诸如智能导师或飞行模拟器,以使学生的进步最大化;基于人的身体状态去除人的特权或对其提供特权,例如不让卡车司机再次开动他的车,直至其具有8小时的睡眠为止;基于生物计量指纹识别来提供到诸如佩戴者的个人计算机的系统的自动登录;并且产生部分地或完全由用于诸如自闭症儿童的身心障碍个体的大致身体状态引导的新用户接口。 
此外,可以将新的人机交互设想为使用生物状态来调整计算机如何对人作出反应。例如,人对机器人臂进行远程操作。系统能够看到他很疲劳,并因此消除其某些运动以针对由于其疲劳而引起的某些预期的抽筋进行调整。 
具有疑似心律不规则的个体将常常经历某种类型的家庭或流动ECG监视。个体的症状常常不频繁地且不规则地出现,诸如一天一次、一周一次、一月一次或者甚至频率更低。在这种情况下,不可能在其中采取典型ECG测量的对医生的访问期间将检测到症状。因此,需要家庭或流动ECG监视来尝试捕捉此类不频繁的急性发作。最常见的家庭或流动ECG监视方法是Holter监视、事件记录和连续循环记录,如上所述。 
根据本发明的另一方面,可以将测量ECG信号的本文描述的设备适配并配置为执行Holter监视器、事件记录器或连续循环记录器的功能。优选地,此类设备可以是如本文所示和所述的臂章身体监视设备300。此类设备可以被在延长的时间段内舒适地佩戴,不同于肢 体(在臂章身体监视设备300的情况下诸如上臂)上的方便位置上的Holer监视器或事件记录器。另外,可以依照本文所述的本发明的其它方面将记录的ECG信号与由此类设备同时测量的其它数据组合,包括可以使用本文所述的算法来预测和测量的各种生理参数和/或情境,以自动地提供有心脏相关信息注释的情境和/或参数。例如,如图28A所示,可以连同用于一时间段的诸如能量支出2075的测量参数或者甚至原始传感器值和诸如行走、驾驶和静息的所检测情境2080一起映射或呈现用于相同时间段的所测量ECG信号2070。ECG信号的此有注释的视图对保健提供者将是有利的,因为其将识别在某些心脏症状发生的同时个体正在做什么,并将提供可以帮助诊断和治疗的某些其它生理参数。这可以例如通过将测量的ECG信号、一个或多个测量的参数和所检测的情境下载到诸如PC的计算设备(其随后产生适当的显示)来完成。 
还众所周知的是某些心律不齐或导致心脏相关压力的条件存在昼夜节律模式。例如心脏骤停在一大早具有高发生率。因此可以预期可以在某些时间段期间增强检测,或者可以由监视系统来提示其它设备以避免某些重合或不适当的活动或交互。例如,起搏器可以随着佩戴者从睡眠醒来根据预置协议提高速率,或者在睡眠的REM阶段结束时安静地唤醒用户。 
系统还可适用于诊断背景,诸如药物治疗的校准、术后或复原环境或药物输送监视,连续地且非侵入式地监视这些医疗应用和程序的即时和实时效果。 
还可以在群众紧急事件或其它危机情况下利用此类应用,其中受害者被聚集在一个位置(例如体育馆)并由护士、EMT、医生、志愿者看护-其中,此工作人员对于此类情况或对所有受害者现在的病人进行诊断或保持警惕的监视而言基本上是人员短缺的(某些人受伤相当严重并且其它人在损伤或休克在身体/触觉/视觉症状方面被延迟的情况下正在观察中)。可以在每个受害者进入监视时分配具有诊断心脏相关能力和可选的水合、低温、压力或休克的系统。该系统的设计(缓解了去除大多数衣服以进行监视的需要)将使护理者应用设备的能力加速且容易。此系统可以向机构的中央系统发送其中序号被突出显示的警报,并且警告陪护人员条件已被触发、条件的性质以及优先级。在此协作臂章方案内,条件感测/触发臂章周围的所有臂章还可以不同地哔哔响或发出信号以使陪护人员的注意力更容易地集中于该方向。另外,如下所述,某些技术将允许所有臂章连续地交互地与周围臂章进行协调并验证它们的相对位置,允许中央监视站对任何特定臂章的位置位于机构中的什么地方和具体地哪些人是需要最及时关注的个体进行定位。 
更具体地,可以将设备设计为是作为设备网络对网络中的每个设备的精确或相对位 置求解的设备网络的一部分。在本实施例中,每个设备将具有用于确定其本身与网络中的另一设备的相对位置的一个或多个机制。这如何可以完成的示例包括在设备之间发送RF、IR或声信号并使用诸如飞行时间和/或相移的某些技术来确定设备之间的距离。诸如这些的方法在真实世界情况下易于发生错误且在诸如相移方法的某些情况下为接收设备提供相对距离问题的无穷多的周期解是已知的问题。同样典型的是,此类设备(由于功率限制、来自环境的偶尔干扰等)将失去且稍后恢复与网络中的其他设备的接触,使得在任何一个时间每个设备可能仅与网络中的其它设备的子集通信。 
给定在每个时刻确定每对设备之间的相对距离的此能力以及设备与网络中的所有其它设备共享其知道的信息的能力,对于用于N个设备的网络而言,存在要测量的总共(N*(N-1))/2个距离,并且每个设备可以通过将其知道的信息传递给其在该时刻能够与之通信的所有设备来达到其中网络中的所有设备具有可以测量的所有可用相对距离(其将是要测量的(N*(N-1))/2个可能距离的某个子集)的状态并且可以具有相对于佩戴者相互之间变化的速度而言相当频繁的对此数目列表的更新(例如每分钟几次)是实用的。 
一旦每个设备具有这些距离的列表,则每个设备实际上具有等式和未知数的系统。例如:A距离B约X米,B距离C约Y米,C距离A约Z米,A与D相距U米,B与D相距T米,C与D相距Y米。可替换地,在仅相移模型下,这些等式可以如下:A与B相距六英寸的某个整数倍,B与C相距八英寸的某个整数倍,C与D相距一英尺的某个整数倍,并且D与A相距七英寸的某个整数倍。在网络中存在冗余信息的程度上,如在刚刚给出的示例中,并且用关于佩戴者位于其上的拓扑结构的可能附加假设(诸如平面区域、不比6%的坡度更快地上升/下降的斜坡等),每个设备能够对等式和未知数或等式和错误值的此系统求解以显著地改进每对设备之间的距离的估计。然后可以在设备之间共享这些结果,使得所有设备具有最准确、最新的信息,并且在每个时刻全部同意其相对位置是什么。可以通过诸如动态编程的过程或诸如奇异值分解的矩阵解形式来完成此等式求解。在这些计算中可以如下包括每个佩戴者的设备具有的用于其到所有其它设备的距离的先前值以利用诸如A在五秒钟之前是否与B相距十英尺的事,A现在与B相距两百英尺是非常不可能的,即使那是等式和未知数系统的可能解中的一个。 
替换实施例涉及利用概率推理来跟踪每个佩戴者的相对位置的概率估计并用于考虑可能的传感器噪声和预期运动。卡尔曼滤波器是在跟踪单个移动实体时常常应用的这种推理的示例;可实现到多个交互实体的扩展。 
如果这些设备还装配有不时地知道或被告知其实际或近似全球位置的能力(诸如通 过嵌入的GPS芯片),则还可以将此信息与网络中的所有其它设备共享,使得针对其相对距离进行调整,每个设备然后将知道其全球位置。 
为了辅助此过程,优选的是提供其中相对位置对于整个网络而言已知的至少一个间隔。这连同频繁的更新一起相对于其相互之间的移动速率、到设备的相对距离减少用于这些等式系统的可能解并从而改善该过程的准确性。可以实现设备的此同步以例如针对在每个设备自己启程一段时间之前的片刻使其一起处于相同位置。 
现在参考图29和30,臂章身体监视设备300被提供有用于感测佩戴者的各种生理和/或情境参数的附加生理和/或情境传感器,包括但不限于用于测量皮肤对电流的电阻的GSR传感器2315、与热通量皮肤接口组件320进行热连通以便测量离开身体的热流的热通量传感器、与皮肤温度皮肤界面组件325进行热连通以便测量皮肤温度的皮肤温度传感器、用于测量关于身体移动的数据的身体运动传感器(诸如加速度计)(未示出)和用于测量佩戴者的近身温度的环境温度传感器(未示出)。参考图29,提供了至少一个且优选地两个电极支撑连接器218以用于到一系列电极支撑模块中的任何一个的临时和可去除附着。参考图30,可以提供包括电极2105A至105D的电路2200作为通过绝缘线2310被连接到外壳2305和电路2200的诸如在为本发明的受让人所拥有的上述美国专利号6,605,038和美国申请序号10/682,293(参见例如在′038专利和/或′293申请中描述的传感器设备400、800和1201)中描述的臂章身体监视设备2300的一部分。在图29、30和33中在外壳或支撑构件上的各个位置处的替换位置处示出了电极2105′。应特别注意,可以出于占用身体上的相应适当位置以便检测适当强度和方面的信号的目的将电极放置在外壳上的任何适当位置处或与之相关联。相对于图29,替换电极2105′位于GSR传感器2315内。相对于图30,替换电极2105′被直接安装在外壳2305内。 
臂章身体监视设备2300被设计为佩戴在上臂的背面,特别是在上臂、最优选地左臂的三头肌上。参考图30所示的特定实施例,当被佩戴在左上臂上时,电极2105A与三角肌接触,电极2105B与三头肌接触,电极2105C和电极2105D与可以不产生可检测的心脏相关信号但允许检测基线EMG噪声的肌肉区域接触。优选地,第一和第二假想对角线以与垂线成约31度的角度分别将电极2105A连接到电极2105B并将电极2105C连接到电极2105D。在本实施例中,可以如上所述地将电极2105A和2105B相互配对以检测第一信号,并且可以将电极2105C和2105相互配对以检测第二信号,所述信号被电路2200的求和电路2170加和在一起。 
现在参考图31,示出了图30所示的设备的替换实施例。出于在物理上支撑传感器或 传感器支撑外壳以及与之建立电通信的目的提供电极支撑连接器2318。电极支撑连接器2318可以是插销式(pin type)的插件或咬合连接器,其将在允许传感器或传感器外壳在被安装在身体上的同时的一定程度的移动或旋转的同时提供良好的物理支撑。优选地,设备和传感器或传感器支撑件适当地被集成以获得最好的物理和电连接。还根据常规手段提供多通道电连接,通常利用支撑连接器的多个独立绝缘段。如图31所示,可以提供传感器支撑外壳2322以用于电极2105的支撑和定位,或者可以将电极2105或其它传感器直接地且独立地安装到电极支撑连接器2318。在本实施例中,支撑外壳2322在相同的物理布置中完全被电极2105本身取代。电极2105可以位于支撑外壳2322的表面上的任何点处,并且不需要位于中心,如图31所示。另外,传感器不需要是信息的点源,如其被常规地应用和利用的那样。传感器还可以包括很宽的一段敏感材料,其覆盖外壳表面的相当大的一部分以便使用于传感器的表面区域内的信号检测的适当点的位置最大化。在利用支撑外壳322的情况下,利用柔性材料来允许外壳适应该外壳被安装在其上的手臂的表面以保证与皮肤和底层组织的良好接触。这同样适用于图30所示的实施例。还应特别注意的是本文所述和所示的传感器、电极和支撑外壳实施例中的每一个是可互换的,针对特定的应用来选择某些形状或其它物理参数。另外,应理解的是传感器、电极和支撑外壳的数目和布置不受附图所示的实施例的限制,而是也可以被互换。最后,为了确定传感器、电极或其阵列的特定几何结构,如上所述,可以出于改善信号的目的将设备的外壳305修改为在任何特定维度上被延长或减小。 
参考图32,示出了附加替换实施例,其提供如图31所示的电极的类似取向,其中支撑外壳2322具有更细长的几何结构。通常,更细长或外侧的电极放置将使得需要将更坚固的材料用于支撑外壳2322,以便保持良好的皮肤接触。应特别注意的是所示和举例说明的任何外壳实施例还可以包括柔性或部分柔性的外壳段,其在弯曲实施例中被预模制以便对皮肤施加压力。 
图33举例说明具有横向支撑臂2323的支撑外壳2322的不对称布置,横向支撑臂2323意图具体地将上和下电极2105分别放置为邻近于人上臂的三头肌的三角肌和肱肌部分。还可以使横向支撑臂3223沿着图中所指示的点划线部分与支撑外壳2322分离并通过限制器(restraint)2324附于翼状物(wing)2311。外壳2305或翼状物2311还可以被延伸超过附图所示的大体上卵形的形状成为啮合(engage)身体上的适当位置所需的任何特定形状。更特别地,可以预期外壳2305或翼状物2311的不规则扩展以安装替换电极2105′。 
图34举例说明具有特定卵形形状的支撑外壳2322。 
图35举例说明与图30所示的类似的替换实施例,然而仅利用了一个外侧或外部电 极2105,其提供有通过绝缘线2310进行的电通信。可以利用任何先前识别的电极几何结构进行到第二电极支撑连接器2318的附着。被连接到绝缘线2310(有时被识别为架空引线)的外侧电极2105的使用适合于身体的远处部分上的特定位置,所述远处部分使得臂章身体监视设备2300的集成外壳2305的产生不切实际。图36举例说明被安装在人上臂A上的图30的实施例。臂章身体监视设备2300被以适当位置邻近皮肤放置,并且松紧带2309环绕手臂并被拉紧到足以在不减少血流的情况下牢固地固定外壳。传感器支撑外壳2322支撑电极2105(未示出)并通过用于将支撑外壳2322安装到皮肤的粘性支撑件2323保持在合适位置。应特别注意的是支撑外壳的位置不限于图36所示的位置,而是可以延伸到身体的任何部分,包括佩戴者的另一手臂。最优选的实施例设法使绝缘线2310的使用和长度最小化。 
图37举例说明向电极2105、支撑外壳2322和外壳2305之间的接口呈现更模块化方法的替换实施例。外壳2305提供有如图29所示的类似皮肤啮合面(未示出)。可以是一次性的集成可去除支撑外壳2322包括用于在抵靠着皮肤的支撑外壳2322的下侧上的电极(未示出)上施加适当的力的支撑材料、电极本身以及电极与外壳2305之间的电子连接。支撑外壳提供有用于与外壳进行电子啮合的至少一个电极触点2324,并且可以适合于与电极支撑连接器2318或GSR传感器2315(其已经具体地适合于与支撑外壳2324相结合地与电极2105通信)啮合。还可以在支撑外壳2322的下侧上提供可选粘性支撑件2323。在替换实施例中,粘性支撑件2323可以提供用于将外壳2305保持在用户的手臂上的唯一手段。还可以唯一地通过外壳305在被松紧带2309限制在手臂上时的力将支撑外壳2322支撑在皮肤上,或者与其它外壳或外衣支撑设备相结合地支撑在皮肤上,如美国专利申请号10/227,575所述,其说明书被通过引用结合到本文中。在本文中在外壳305的上表面上示出输出屏幕2327以便向用户显示某些性能或其它状态信息。应特别注意的是输出屏幕可以任何类型的,包括但不限于电化学或LCD屏,可以是一次性的,并且还可以在本文所示的任何实施例上提供。 
图38A~C举例说明设备的另一实施例,其包括更细长的外壳2305,所述外壳2305提供有用于与此不相关的功能的孔2329。粘性支撑件2323被半赤道地(semi-equatorially)安装,并且可以包含也可以被安装在外壳2305的下侧上的电极2105。在操作中,通过使用在粘性支撑件2323上提供的粘合剂将外壳附着于人体,这保持外壳2305和/或电极2105和/或被包含在外壳2305内的任何其它相关传感器与身体之间的一致的接触。应特别注意的是此粘合剂实施例可以被安装在人体上的任何点处,并且不限于任何特定附肢或位置。 
本文所述的实施例的附加方面是选择每个设备的某些方面并将其放置在设备的一次性段中的机会,如特别地在图37中所示。这可以与永久性或耐久性外壳2305相结合地使用,其包含设备的功能的其余方面。另外,可以以一次性的形式提供整个设备,这预期用于每个系统的有限的连续佩戴时间。在本实施例中,如前所述,可以在类似于贴片的柔性外壳、聚合物、膜、纺织品或其它支撑封套中提供整个设备,其全部可以是类似弹簧的,并且可以被安装在身体上的任何位置处。这包括纺织材料,其具有被编织进材料本身内的电极及其它电子装置,并且其对人体施加足够的力以保持适当的接触以便接收信号。诸如Aracon的织物、具有凯夫拉尔的强度特性的金属包层纺织品(两者均由DuPont制造)能够在其中载送电流或信号。来自Eleksen有限公司的ElekTex是适合于在衣服或床上用品中使用的软纺织品,其包含电极和/或能够检测运动或压力的传感器。可以与可穿着的衬衫或其它衣服中的设备组件(其可以感测适当的信号以及提供用于可以位于衣服内的各种方便位置处的各种电气组件的互连的网络)相结合地使用这些织物。 
从任何等价类区域内部收集的ECG波形将不一定具有标准ECG波形的形状。当情况如此时,能够在在单个等价类区域内获取的ECG波形与在等价类区域之间获取的ECG波形之间产生映射。这可以使用上述算法开发过程来完成,从而产生函数,该函数在被显示为标准ECG波形时使等价类区域内部扭曲以便更清楚。 
在附加方面中,本发明中的设备和方法利用使生理参数的测量结果与氧支出和氧债相关的数学公式和/或算法的开发。在一个实施例中,这些变量的计算操作等同于OD的水平。此分析可以包括从基线开始在曲线氧消耗水平下面的区域的确定。这些参数的采样频率越高,OD的导出度量与OD的传统度量的相关性越大。准确度和精确度的水平使得由此公式确定的OD的度量能够替换由Bland-Altman分析的此类方法确定的传统度量。 
允许测量与能量支出有关的某些生理参数的技术在本领域中是已知的。在一个实施例中,能够在其中乳酸与特定的嵌入化学组分反应的生物相容基质中以电流方式实现传统氧债相关的度量。此反应产生与其浓度成比例的电流响应。反应平台的生物相容性允许其在保持其功能的同时在多种生物环境中的植入。在一个方面,本发明包括设备直接到组织和血管中的放置。在被植入时,如上所述地以电感方式对设备供电,并且记录数据并报告给远程位置。可以将设备植入组织中以用于隙间监视、放置在血管系统中(包括骨髓腔)中以用于实时全身血液监视,并且甚至可能被佩戴以用于皮下液体的采样。使用先前存在的算法来实现诊断和后续治疗。在一个实施例中,本发明的设备和方法将导出个体的情境,如下文详细地描述的。例如,设备将确定个体在休息。个体的氧消耗或能量支出在那个人不活动或躺着的 同时正在增加的确定指示该个体进入危重状态。 
在替换实施例中,该设备包括可佩戴设备,其使用如上文在表1中所述的各种变量的数据融合,包括GSR、热通量、加速度计/活动记录仪度量、心率、皮肤温度、皮肤温度与环境温度差及其它度量。还可以使用通过诸如光谱学以及荧光性的各种方法确定的诸如组织C02水平、组织血红蛋白氧饱和水平和组织NADH水平的其它指示器来确定能量支出,并且然后导出氧债,尤其是在对数据应用数据融合和计算方法时。这些技术中的某些在将来可以是可植入或可佩戴的。 
由于整体地应用于人体的OD的原理还将应用于个体器官,所以很可能的是这些方法可以用来预测寿命或功能方面的个体器官损伤的后果,如果可以在感兴趣器官内测量作为时间函数的氧消耗的话。如果可以比较器官的VO2与体循环之间的差,这将是尤其有价值的。 
诸如由宾夕法尼亚州匹兹堡市的BodyMedia制造的那些的此类设备使用这些变量以及数据融合和算法的技术一起来测量氧消耗。然而,其已被针对身体健全用途而不是作为诸如氧债的危重身体功能的度量而出售。具有新算法的这些设备的新型使用产生一种通过用基础水平减去当前氧消耗并将这些结果累积来实时地测量氧债的方法。 
如前所述,本发明允许实时地测量所述生理因数并传送到用户或远程站点以进行监视和决策。前述设备和方法被特别地在平民和战斗背景中的大量伤亡情况下使用。当与诸如心率变异、血压、呼吸率及其它非侵入式度量的其它指示器耦合时,可以设想结果的强大的预测性指示器和治疗指导。 
动物和临床数据都支持这样的发现,即首先,晚期结果与休克的严重程度和持续时间强相关,并且其次,氧债及其代谢代用品是结果的最佳预测者。为了理解氧债的概念,描述正常灌注期间和休克中的氧输送和氧消耗之间的关系是有用的。在正常的健康对象体内,由于组织在微循环的水平调整来自血液的氧提取的能力,整个身体氧消耗与心输出量和因此的DO2无关。然而,如果DO2下降至低于某个阈值,则临界氧输送DO2crit提取不再是适当的,并且VO2与DO2的减少成比例地下降;然后是局部缺血代谢不足。此不足的标记是周围血液中的诸如乳酸的代谢物的浓度的增加。 
当DO2下降到低于DO2crit时,发生缺氧,因为组织所需的氧量与供给不适当地匹配;这是休克的标准定义。因此,可以将缺氧计算为基线“正常”氧消耗VO2与在休克时段期间的给定时间处测量的VO2之间的差。然而,由于存在显著的相关联时间维度,所以不能仅仅由任何一个时间的灌注状态的缺氧“快照”来评估休克;休克状态必须计及 (account for)来自损伤点的随着时间推移累积的短缺量。随着时间的推移累积的短缺是债务。换言之,氧债是随着时间推移的多个缺氧的累积,并且因此表示所产生的所有短缺的和。作为示例,假设基线VO2、组织需氧的估计是200ml/min,并且后面是VO2以略大于三分之一减小到134mL/min。由于缺氧是从基线起的VO2的变化,因此缺氧等于基线VO2(VO2,0)与此新时间点t处的VO2之间的差,或者 
缺氧=VO2,0-VO2,t
在本示例中,VO2的减少导致(200-134)=66mL/min的缺氧。如果此短缺维持达一个小时的时间段,则结果得到的氧债将等于在时间上积分的缺氧的乘积(66mL/min×60min)或3.96L。 
当从设备获取数据时,系统可以提供半自动界面。系统提供有无线地和用有线USB连接来与设备进行通信的能力。系统提示用户在获取数据之前选择通信模式。可以预期最常见的使用模型可以是无线获取。如果使用无线获取,则主要可以使用有线连接以用于设备中的固件的现场升级。每个设备与特定用户相关联,并且设备被个性化,使得其不能在不同的用户之间被互换。 
该系统将使用由设备收集的数据来计算总OD。使用包含在软件内的算法来计算此值。数据库存储OD值的每分钟估计、步骤数目、设备正在运行的时间量、氧消耗和血糖和/或乳酸水平值。 
由设备提供的允许某些生理参数水平的连续测量的反馈在进行诊断并指导治疗以延长患者的生存时间时是有帮助的。例如,全身葡萄糖水平的紧密调节已被证明是改善来自多种危重疾病损伤的后果中的因素。监视这些水平的能力允许卡路里摄入和胰岛素或其它激素服用(administration)的连续调整以防止全身葡萄糖水平的宽幅摆动。这些值继而为保健提供者提供能够连续地用来评估损伤或疾病的严重程度、治疗的效果并最终预测结果的信息。 
对于本领域的技术人员来说将清楚的是上述方法和设备(虽然针对作为休克的结果的氧债的特定确定进行描述)不需要局限于该特定事件。该过程还可以在没有限制的情况下适合于并应用于其它疾病状态,包括但不限于: 
1)创伤 
2)充血性心力衰竭 
3)脓毒症 
4)器官移植 
5)心肺分流手术 
6)糖尿病 
7)个体处于危重疾病和损伤的风险 
8)战斗背景 
9)大量伤亡 
10)疗养院病人 
系统将使用由臂章收集的数据来估计总能量支出。使用包含在软件内的算法来计算此值。存在可以用来将氧消耗转换成能量支出或燃烧的卡路里的多个计算。最广泛使用的方法是基于“Lusk等式”。此等式使用VO2和VCO2,消耗的二氧化碳。首先,使用以下等式来计算称为RQ或呼吸商、有时也称为RER(呼吸交换率)的项: 
RQ=VCO2/VO2
如果RQ小于0.707,则RQ被设置为0.707,并且如果RQ大于1,则RQ被设置为1。因此,RQ可以在0.707与1之间的范围内。然后使用称为“Lusk表”的表来将RQ值转换成Kcal值。以下是Lusk表的一个图示: 
表5 
使用线性内插来估计用于RQ的中间值的相应Kcal值。 
如果VCO2的值不可用,则不可能计算RQ项。在这种情况下,使用以下等式以使用VO2测量结果来估计KCal(ACSM第6版第300页)。 
VO2(单位为L/min)*5=Kcal/min 
数据库存储能量支出值的每分钟估计、步骤的数目、设备被佩戴的时间量、活动能量支出值、用户的习惯,其在优选实施例中被存储为典型的每小时非身体活动能量支出、在不佩戴设备的同时的其报告的锻炼以及主动花费的时间。 
除生理和情境参数的监视之外,还可以监视环境参数以确定对用户的影响。这些参数可以包括臭氧、花粉计数和湿度。 
系统还可以包括报告特征以提供一段时间内的VO2和OD水平或氧债的总结。可以为用户提供界面以便以图形方式使这些数字可视化并进行分析。用于氧债计算的输入值是基于由设备收集的数据的乳酸水平。可以以等式形式并在视觉上为用户提供此信息。提供用于一般使用的总结时间段,诸如每天、昨天、最近7天、最近30天和从开始以来等。可以以连续或间歇形式向用户提供该信息。 
还可以以多种方式对报告进行自定义,包括用户在过去要求看什么或用户实际上已干了什么。可以由第三方规范或由用户选择来对报告进行自定义。用户还可以要求看过去反馈的日记以查看先前接收到的反馈的类型。本领域的技术人员将认识到可以以能够增强反馈引擎的所有方式来增强报告,并且可以将其视为反馈引擎的扩展。 
关于OD的计算,臂章传感器设备连续地测量人的能量支出。在白天期间,人体连续地燃烧卡路里。人体消耗能量的最小速率称为静息代谢率或RMR。对于普通人而言,每日RMR约为1500卡路里。对于体型较大的人而言更多。 
能量支出不同于RMR,因为一个人知道在一天内到目前为止已经燃烧了多少卡路里(休息时和活动时两者)。在用户观看能量支出信息时,两件事是已知的。首先,由臂章传感器设备记录的从午夜直至该当日时间的该个体的卡路里燃烧。其次,从当前时间直至一天结束为止的用户的RMR。这些数字的和是用户在该天期间消耗的卡路里的最低量的预测。 
可以通过将倍增因数应用于RMR来改善此估计。一个人的生活方式对其消耗的能量的量贡献很大。不锻炼的久坐的人燃烧仅略多于其RMR消耗的那些的卡路里。不断地活动的运动员燃烧明显比RMR更多的卡路里。可以将这些生活方式对RMR的影响估计为在对于久坐的人而言的1.1至对于运动员而言的1.7的范围内的针对RMR的倍增因数。还可以基于一天的时间或一年的时间由一个人的佩戴时间的平均测量来计算此倍增因数,或者可以根据用户已经在日期和时间管理程序中输入的信息来确定,如上所述。使用此类因数大大地改善了用于个体的估计每天支出的预测性质。 
示出了传感器设备10的特定实施例,其采取适合于由个体在他或她的上臂上、在肩膀与肘之间佩戴的臂章的形式,如图5~11所示。虽然可以在个体的身体的其它部分上佩戴类似传感器设备,但这些位置对于单个或多传感器测量而言和对于用户的活动或状态的自动检测和/或识别而言具有相同的功能。出于本公开的目的,为了方便起见图5~10所示的传感器设备10的特定实施例将被称为臂章传感器设备400。臂章传感器设备400包括计算机 外壳405、柔性翼主体(wing body)410、以及如图10所示的松紧带415。计算机外壳405和柔性翼主体410优选地通过模制工艺由柔性尿烷材料或诸如橡胶或橡胶-硅树脂混合物之类的弹性材料制成。柔性翼主体410包括第一和第二翼状物418,其每个具有位于其末端425附近的通孔420。第一和第二翼状物418适合于缠绕在佩戴者的上臂的一部分周围。 
松紧带415用来将臂章传感器设备400可去除地附着于个体的上臂。如图10所示,松紧带415的底面426沿着其一部分提供有Velcro环416。松紧带415的每个末端427提供有在底面426上的Velcro钩状贴片428和在顶面430上的拉片429。每个拉片429的一部分延伸超过每个末端427的边缘。 
为了佩戴臂章传感器设备400,用户将松紧带415的每个末端427插入柔性翼主体410的相应通孔420中。然后用户将其手臂放置为通过由松紧带415、柔性翼主体410和计算机外壳405产生的环中。通过拉动每个拉片429并使Velcro钩状贴片428在沿着松紧带415的底面426的期望位置处与Velcro环416啮合,用户能够将松紧带415调整为舒适地合身。由于能够在沿着底面426的几乎任何位置处使Velcro钩状贴片428与Velcro环416啮合,所以能够将臂章传感器设备400调整为适合各种尺寸的手臂。并且,可以以各种长度来提供松紧带415以适应较宽范围的手臂尺寸。如本领域的技术人员将认识到的,可以使用紧固并调整松紧带的尺寸的其它手段,包括但不限于按扣、按钮或扣子。还可以使用通过包括Velcro、按扣、按钮、扣子等的多个常规手段中的一个来紧固的两个松紧带或者仅仅被附着于翼状物418的单个松紧带。 
可替换地,作为在翼状物418提供通孔420的替代,可以用多个常规手段中的一个将未示出的具有字母D的形状的环附着于翼状物418的末端425。例如,可以通过末端425插入未示出的销,其中,销啮合每个环的每个末端。在此结构中,D状环将充当用于松紧带415的连接点,有效地在每个翼状物418的每个末端425与每个环之间产生通孔。 
如图11所示,其为臂章传感器设备400的分解图,计算机外壳405包括顶部435和底部440。包含在计算机外壳405内的是印刷电路板或PCB445、可再充电电池450、优选地锂离子电池和用于向佩戴者提供触觉反馈的振动电动机455,诸如在寻呼机中使用的那些,其适当的示例是由英国的MG电动机公司出售的型号12342和12343电动机。 
计算机外壳405的顶部435和底部440沿着O形环437被装配到其中的凹槽436密封地配合,并且可以通过未示出的螺钉而相互附着,所述螺钉通过螺钉孔438a和底部440的加强杆(stiffener)438b及PCB445中的孔439并进入顶部435的螺纹接纳加强杆451中。可替换地,可以将顶部435和底部440用按扣配合在一起或用粘合剂相互附着。优选 地,组装计算机外壳405具有足够的耐水性以允许在不负面地影响其性能的情况下在游泳的同时佩戴臂章传感器设备400。 
如在图6中可以看到的,底部440在其底侧上包括升高平台430。被附着于升高平台430的是热流或通量传感器460,其适当示例是由新罕布什尔州哈德森市的RdF公司出售的微箔热通量传感器。热通量传感器460充当自生热电堆换能器,并且优选地包括由聚酰胺膜制成的载体。底部440可以在其顶侧上(即在与热通量传感器460被附着到的一侧相反的一侧上)包括由诸如铝的适当金属材料制成的未示出的热沉。还被附着于升高平台430的是GSR传感器465,优选地包括由诸如导电碳化橡胶、金或不锈钢的材料制成的电极。虽然在图6中示出了两个GSR传感器465,但本领域的技术人员应认识到GSR传感器465的数目及其在升高平台430上的放置可以改变,只要单独GSR传感器465、即电极被相互电隔离即可。通过被附着于升高平台430,热通量传感器460和GSR传感器465适合于在臂章传感器设备400被佩戴时与佩戴者的皮肤接触。计算机外壳405的底部440还可以在不包括升高平台430和螺钉孔438a的其表面的一部分上提供有未示出的可去除和可替换的软泡沫织物垫。该软泡沫织物意图接触佩戴者的皮肤并使得臂章传感器设备400佩带起来更加舒适。 
可以以各种已知方法中的一个实现热通量传感器460、GSR传感器465和PCB455之间的电耦合。例如,可以将未示出的适当布线模制到计算机外壳405的底部440并随后诸如通过焊接将其电连接到PCB445上的适当输入位置及热通量传感器460和GSR传感器465。可替换地,作为将布线模制到底部440的替代,可以在底部440中提供适当的布线可以从中通过的通孔。该通孔优选地提供有水密封以保持计算机外壳405的完整性。 
作为如图6所示被附着于升高平台430的替代,可以将热通量传感器460和GSR传感器465中的一者或两者附着于翼状物418中的一者或两者上的柔性翼主体410的内部466,从而在臂章传感器设备400在被佩戴时与佩戴者的皮肤接触。在此类结构中,可以通过适当的布线(未示出)来实现热通量传感器460与GSR传感器465(情况可能是任何一个)与PCB445之间的电耦合,所述布线被模制到通过计算机外壳405中的一个或多个通孔的柔性翼主体410中并通过诸如焊接被电连接到PCB445上的适当输入位置。再次地,通孔优选地提供有水密封以保持计算机外壳405的完整性。可替换地,作为在计算机外壳405中提供布线从中通过的通孔的替代,可以在下述过模制过程期间在计算机外壳405中捕获布线,并最终焊接到PCB445上的适当输入位置。 
如图5、9、10和11所示,计算机外壳405包括被耦合到并适合于激活PCB445上的瞬时开关585的按钮470。可以使用按钮470来激活臂章传感器设备400以供使用,以标 记事件发生的时间或请求诸如电池水平和存储器容量之类的系统状态信息。当按钮470被按下时,瞬时开关585使电路闭合并向PCB445上的处理单元490发送信号。根据按钮470被按下的时间间隔,生成的信号触发刚刚描述的事件中的一个。计算机外壳405还包括LED475,其可以用来指示电池水平或存储器容量或向佩戴者提供视觉反馈。作为LED475的替代,计算机外壳405还可以包括液晶显示器或LCD以向佩戴者提供电池水平、存储器容量或视觉反馈信息。还可以触觉地或可听地向用户提供电池水平、存储器容量或反馈信息。如对于本领域的技术人员来说显而易见的,电路被放置在臂章身体监视设备400的外壳405内部,并且在本文中识别的各种电极和传感器被电连接到那里。电路的CPU165在本实施例中将优选地是构成在美国专利号6,605,038和美国申请序号10/682,293中描述的臂章身体监视设备电路的一部分的处理单元,两者的说明书都被通过引用结合到本文中。 
臂章传感器设备400可以适合于在GSR传感器465或热通量传感器460中的任何一个感测到指示臂章传感器设备400已被放置为与用户的皮肤接触的特定条件时被激活以供使用,即收集数据。并且,臂章传感器设备400可以适合于在热通量传感器460、GSR传感器465、加速度计495或550或与臂章传感器设备400通信的任何其它设备中的一个或多个单独地或组合地感测到指示臂章传感器设备400已被放置为与用户的皮肤接触以供使用的一个或多个特定条件时被激活以供使用。在其它时间,臂章传感器设备400将被去激活,因此节省电池电量。 
计算机外壳405适合于出于对可再充电电池450再充电的目的被耦合到图12所示的电池再充电器单元480。计算机外壳405包括图5、9、10和11所示的再充电器触点485,其被耦合到可再充电电池450。可再充电触点485可以由诸如黄铜、金或不锈钢的材料制成,并且适合于在臂章传感器设备400被放置在其中时与在电池再充电器单元400中提供的未示出的电触点配合并被电耦合到所述电触点。可以将在电池再充电器单元480中提供的电触点耦合到在电池再充电器单元480内部提供的再充电电路481a。在此结构中,可以诸如借助于包括被附着或可附着于电池再充电器单元480的适当插头的布线将再充电电路481耦合到壁装电源插座。可替换地,可以将电触点480耦合到被附着于或可附着于电池再充电器单元480的布线,电池再充电器单元480又被耦合到在电池再充电器单元480外部的再充电电路481b。此结构中的布线还包括适合于被插入常规壁装电源插座中的未示出的插头。 
在电池再充电器单元480内部还提供了适合于从和向在计算机外壳405中提供并在图12中示出的RF收发机565接收和传送信号的RF收发机483。RF收发机483适合于例如用适当的电缆耦合到诸如图1所示的个人计算机35的设备的诸如RS232端口或USB端 口的串行端口。因此,可以使用RF收发机483和RF收发机565从和向臂章传感器设备400上传和下载数据。应认识到虽然在图12和13中示出了RF收发机483和565,但可以使用其它形式的无线收发机,诸如红外收发机。可替换地,计算机外壳405可以提供有未示出的附加电触点,其将适合于在臂章传感器设备400被放置在其中时与在电池再充电器单元480中提供的未示出的附加电触点配合并被电耦合到该附加电触点。计算机外壳405中的附加电触点将被耦合到处理单元490且在电池再充电器单元480中提供的附加电触点将被耦合到适当的电缆,该电缆又将被耦合到诸如个人计算机35的设备的串行端口,诸如RS R32端口或USB端口。此结构因此提供用于使用物理连接从和向臂章传感器设备400上传数据和下载数据的替换方法。在一个非限制性示例中,该连接可以是通过USB连接器、GSR或ECG电极、无线数据或无线功率。 
图13是示出臂章传感器设备400的系统架构、特别是在PCB445上或被耦合到PCB445的每个组件的示意图。 
如图10、11和13所示,PCB445包括处理单元490,其可以是微处理器、微控制器或能够适合于执行本文所述功能的任何其它处理设备。处理单元490适合于提供结合图2所示的微处理器20描述的所有功能。PCB445还在其上面具有双轴加速度计495,其适当示例是由马萨诸塞州诺伍德市的Analog Devices公司出售的型号ADXL210加速度计。双轴加速度计495优选地被以使得在臂章传感器设备400被佩戴时其感测轴以基本上等于45度的角度从PCB445的纵轴和因此的佩戴者手臂的纵轴偏移的角度安装在PCB445上。佩戴者的手臂的纵轴指的是由从佩戴者的肩膀到佩戴者的肘所绘制的直线限定的轴。双轴加速度计495的输出信号被传递通过缓冲器500并被输入到模数转换器505中,所述模数转换器505又被耦合到处理单元490。GSR传感器465被耦合到PCB445上的放大器510。放大器510提供放大和低通滤波功能,其适当示例是由马萨诸塞州诺伍德市的Analog Devices公司出售的型号AD8544放大器。由放大器510输出的经放大和滤波的信号被输入到放大器/偏移515中以提供进一步的增益并去除任何偏压并进入滤波器/调节电路520中,其每个又被耦合到模数转换器505。热通量传感器460被耦合到差动输入放大器525,诸如由亚利桑那州图森的Burr-Brown公司出售的型号INA放大器,并且结果得到的经放大信号在被输入到模数转换器505之前被传递通过滤波器电路530、缓冲器535和放大器540。放大器540被配置为提供进一步的增益和低通滤波,其适当示例是由马萨诸塞州诺伍德市的Analog Devices公司出售的型号AD8544放大器。PCB445还在其上面包括监视可再充电电池450的剩余功率水平的电池监视器545。电池监视器545优选地包括具有低通滤波器的分压器以提供平均电池 电压。当用户以适合于请求电池水平的方式按下按钮470时,处理单元490检查电池监视器545的输出并优选地通过LED475向用户提供其指示,但是还可能通过振动电动机455或振铃器575提供其指示。还可以使用LCD。 
作为双轴加速度计495的替代或除此之外,PCB445可以包括三轴加速度计550。三轴加速度计向处理单元490输出信号。三轴加速度计的适当示例是由亚利桑那州的斯科特斯德市出售的μPAM产品。优选地以相对于双轴加速度计495所述的方式使三轴加速度计550倾斜。 
PCB445还包括被耦合到处理单元490的RF接收器555。可以使用RF接收器555来接收由佩戴臂章传感器设备400的个体佩戴或位于其附近的能够进行无线传输的另一设备(在图13中被示为无线设备558)输出的信号。本文所使用的位于附近意指在无线设备558的传输范围内。例如,无线设备558可以是安装在胸部的心率监视器,诸如由芬兰奥卢市的Polar Electro出售的Tempo产品。使用此类心率监视器,能够由臂章传感器设备400来收集指示佩戴者的心率的数据。天线560和RF收发机565被耦合到处理单元490并出于向中央监视单元30上传数据和接收从中央监视单元30下载的数据的目的而被提供。RF收发机565和RF收发机555可以例如采用蓝牙技术作为无线传输协议。并且,可以使用其它形式的无线传输,诸如红外传输。 
振动电动机455通过振动器驱动器570被耦合到处理单元490,并向佩戴者提供触觉反馈。类似地,振铃器575(其适当示例是由俄亥俄州的代顿市的Proiects Unlimited公司出售的型号SMT916A振铃器)通过振铃器驱动器580(其适当示例是由伊利诺斯州绍姆堡的摩托罗拉公司出售的型号MMBTA14CTI达林顿晶体管驱动器)被耦合到处理单元490,并向佩戴者提供可听反馈。反馈可以包括例如祝贺、警告或其它阈值或事件驱动消息,诸如当佩戴者达到在健身期间燃烧的卡路里水平时。 
在PCB445上提供并被耦合到处理单元490的还有瞬时开关585。瞬时开关585也被耦合到按钮470以便激活瞬时开关585。用来向佩戴者提供各种类型的反馈信息的LED475通过LED锁存器/驱动器590被耦合到处理单元490。 
振荡器595在PCB445上提供并向处理单元490供应系统时钟。可通过计算机外壳405的侧面中的销孔接近并触发的复位电路600被耦合到处理单元490并使得处理单元490能够复位到标准初始设置。 
作为用于臂章传感器设备400的主电源的可再充电电池450通过电压调节器605被耦合到处理单元490。最终,由在PCB445上提供的SRAM610(其存储关于臂章传感器设 备400的佩戴者的数据)和闪速存储器615(其存储程序和配置数据)为臂章传感器设备400提供存储器功能。SRAM610和闪速存储器615被耦合到处理单元490且每个优选地具有至少512K的存储器。 
在制造并组装臂章传感器设备400时,优选地首先形成计算机外壳405的顶部435,诸如用常规模制过程,并且然后在顶部435之上对柔性翼主体410进行过模制。也就是说,将顶部435放置到被适当成形的模具(即当顶部435被放置在其中时具有根据柔性翼主体410的期望形状成形的剩余腔体的模具)中,并在顶部435之上对柔性翼主体410进行模制。结果,柔性翼主体410和顶部435将合并或结合在一起,形成单个单元。可替换地,可以将计算机外壳405的顶部435和柔性翼主体410形成在一起,诸如通过单个模具中的模制,以形成单个单元。然而,然后可以将形成的单个单元翻转,使得顶部435的下侧朝上,并且可以将计算机外壳405的内含物放置到顶部435中,并且可以将顶部435和底部440相互附着。作为另一替换,可以诸如用常规模制工艺来单独地形成柔性翼主体410,并且可以用多种已知方法中的一个将计算机外壳405以及特别地,计算机外壳405的顶部435附着到柔性翼主体410,诸如通过粘合剂、通过按扣装接或通过用螺钉将两块连接在一起。然后,如上所述地组装计算机外壳405的其余部分。应认识到作为在顶部435已被附着到柔性翼主体410之后组装计算机外壳405的其余部分的替代,可以首先组装计算机外壳405,并且然后附着于柔性翼主体410。 
现在将描述本发明的设备的替换实施例。下面讨论BodyMedia臂章。图16A和16B所示的设备被佩戴在上臂上。该臂章使用五个传感器:双轴加速度计跟踪上臂和身体的移动并提供关于身体位置的信息。热通量传感器1814通过沿着皮肤与臂章的侧面上的出口之间的热传导路径测量热损失来测量由人体耗散的热量。还由敏感热敏电阻来测量皮肤温度1816和臂章附近温度1818。 
臂章1824还测量由于出汗和情绪刺激而变化的皮肤电反应或GSR1820。臂章1824还包含收发机无线电或一般为本领域的技术人员已知的类型和USB端口1822,允许数据的无线传输和传送以及有线下载。如前所述,臂章包含将被用来对事件加时间戳的按钮1829。每个传感器每秒被采样32次,并且在一段时间内跟踪数据(通常为一分钟,但是这可以通过软件来调整)。当前,此多维原始数据流的41个不同特征被作为单独的通道来收集。例如,热通量的方差是一个通道,与热通量值的平均值一样。某些通道是相当标准的特征,例如标准偏差,并且其它的是复杂的专有算法。然后,通常,存储用于每个时期的这些概要特征并将原始数据丢弃以节省存储器。 
系统连续地从佩戴传感器系统的人收集生理数据。在设备内调节、分析并存储所获得的数据,并且稍后可以用直接或无线连接以电子方式传输到计算机,在那里其被一套综合算法分析和解释以揭示感兴趣的关键生理度量,诸如能量支出或氧消耗、睡眠、压力或体力活动。图16B举例说明被佩戴在对象的手臂上的臂章。 
传感器设备400包括允许臂章与其它设备安全且无线地通信的2.4GHz无线技术,所述其它设备包括诸如手表和小亭的计算设备显示设备,以及其它医疗设备,诸如血糖仪、体重秤、血压袖带和脉搏血氧仪。用收发机来启用这些设备,允许它们与臂章通信,并将测量结果连同其自己所记录的数据一起存储在臂章中。然后可以经由连接到PC上的USB端口的无线通信器将所有记录数据传送到PC。可替换地,可以经由无线网关将数据上传到web(网络)服务器,根据应用,所述无线网关包含标准或蜂窝式调制解调器。 
如上所述的此相同算法开发过程用来开发上文公开的算法以用于检测心搏、用于确定心率并用于在前文已描述的存在噪声的情况下估计心率。对本领域的技术人员而言应清楚的是可以利用此相同过程来结合其它传感器以改善心脏相关参数的测量结果或将心脏相关参数结合到诸如能量支出的其它生理参数的测量结果中。 
示例 
示例1
如图39A~39H所示的以下数据举例说明LBNP(上文所述的下体负压)协议(或锻炼协议)的严重程度如何影响臂章传感器值。对于每个图而言,X轴表示严重程度阶段:阶段0是基线阶段,并且其余阶段在严重程度方面逐渐增加。这些图表中的Y轴表示在图表中所述的特定传感器的单位。(例如,在COVER(环境温度)的第一图表中,单位是摄氏度)。 
图表中的每个点是在跨越所有对象求平均的该特定阶段下面的所有分钟的平均值(存在经历LBNP协议的总共28个对象,并且存在参与锻炼协议的总共14个对象)。图39A是环境温度(COVER)的测量结果;图39B是皮肤电反应(GSR)的度量;图39C是热通量(HF)的度量;图39D是心率(HR)的度量;图39E是心率变异的度量;图39F是对每分钟求平均的纵向加速度计的度量;图39G是纵向平均绝对差值的度量(如在美国专利申请2007/0100666中所述,其内容被整体地通过引用结合到本文中);并且图39H是能量支出(EE)的度量。由(-○-)指示的线表示用于锻炼协议的臂章传感器的平均值,由(-▲-)指示的线指示用于LBNP协议的臂章传感器的平均值。图表中的最后LBNP阶段(阶段6)密切地模拟出血性休克的效果。 
示例2
如图40A和40B所示的以下数据表示用于LBNP协议的臂章信号的典型特性。每个网格由6列组成:每列表示臂章信号(从左到右-HR(心率)、ECGMAD(由臂章收集的原始ECG信号的平均绝对差)、HF(热通量)、SKIN(皮肤)温度;HR(心率变异);以及GSR(皮肤电反应)。网格的每行表示特定的对象。第一行具有用于对象180的所有图表,第二行具有用于对象181的所有图表等等。每个图表中的X轴表示约为40分钟的协议持续时间(每个阶段约为5分钟长,并且对象平均前进至阶段6-导致X轴上的30分钟+基线水平的5分钟+恢复的5分钟)。Y轴表示正在讨论中的臂章变量的相应单位的值(例如,对于SKIN而言-Y轴表示摄氏度)。 
示例3
检测出血性休克的分类器被分两层设计。第一层对LBNP和锻炼进行区别。一旦进行了此区别,分类器的第二层就判定LBNP的严重程度。检测严重的LBNP水平与检测出血性休克类似。 
对于分类器的第一层而言:能量支出、心率和GSR在LBNP和锻炼协议两者中都逐渐地上升,因为存在严重程度的增加。然而,加速度计值对于两个协议而言表现不同。甚至对于仰卧和诸如仰卧位骑行之类的其他低运动相关锻炼而言,在加速度计变量中观察到增加的运动量,而在LBNP期间,加速度计变量在整个持续时间期间保持静态。这指示尽管没有运动但EE、GSR等正在增加的清楚指示。 
表6和7举例说明分类器的结果。这些表格表示分类器模型的混淆矩阵和准确性统计。表6描述了在同一组(的14个用户)被用于构建分类器并然后用于测试时的结果。表7包括留一法交叉验证的结果。在此方案中:一个用户被排除在外,并且对剩余用户构建分类器模型。对被排除在外的用户执行测试。对所有用户重复此程序。这种技术更适合于测量该模型对看不到的数据进行概括的能力。 
表6 
表7 
分类器的第二层检测LBNP水平的严重程度(假如已经使用分类器的第一层将事件检测为LBNP事件,协议是LBNP协议是预先已知的)。对于此分类器而言,从心率、皮肤温度、GSR和热通量导出的变量是有用的。表8和9表示用于严重程度检测分类器的混淆矩阵和准确度统计。 
表8 
表9 
示例4
佩戴具有不包括ECG和心搏识别的电流传感器的SenseWear Pro2的6个病人中的初步数据证明了由臂章测量的能量支出(EE)或氧消耗与用代谢车测量的EE很好地相关,如图17A和17B所示。利用针对一般、自由生活、日常生活方式应用组统计地开发的算法来获得这些结果。图17A举例说明在对象休息的同时估计的能量支出的计算如何有效地与由用于实验室会话中的一个的代谢车所计算的真实能量支出相关。图17B描绘所测量能量支出对比所估计能量支出的散布图。不同的散布图标签表示不同的对象。如可以看到的,该算法能够令人印象深刻地跟踪用于所示的全部5个对象的能量支出。此数据已允许开发改进的算法以解决针对此条件的臂章的估计不足。理解受伤之前的受伤对象的生理条件可以对用于治疗的数据解释和临床推断具有深远的影响。例如,可以使用氧消耗的度量来确定可能具有预测结果的显著能力的氧债并因此提供强大的筛余手段;因为氧债已经是预测幸存、具有器官衰竭的幸存和死亡的最具有指示性的生理变量之一。 
示例5
在经历下体负压(LBNP)的对象上使用SenseWear臂章。使用LBNP作为出血的代用品模型以便检验对中央失容的人类生理反应以及开发监视受伤战士的远程筛余和治疗的新手段。在此模型中,有意识的对象经历最终导致前晕厥状态的LBNP的连续定时增加。在此时间期间,测量许多生理变量,包括连续血压和心率。来自经历LBNP的6个对象的数据证明了GSR、温度和热通量的低水平信号能够用来产生算法的原理的第一级证据,所述算法产生密切地跟踪实时地测量的值的预测休克指数和脉压值。SenseWear臂章不执行心率监视。 
在被研究的对象上,所述算法能够如图18A和18B所示地以非常高的相关性和准确度来预测休克指数和脉压。这些图证明了“平均对象”上的预测性能。图表中的每个点是跨越全部的六个用户取平均的变量的值。图表中的所测量数据点是跨越全部的六个用户取平均的分别用于图18A和B的脉压和休克指数参数的实际量。分别用于图18A和18B的预测脉压和休克指数值是跨越全部六个用户求平均的。 
在本文中已经采用的术语和表达被用作描述且不是作为限制的术语,并且在此类术语和表达的使用中不存在排除所示和所述特征或其部分的等价物的意图,应认识到的是在要求保护的本发明的范围内可以进行各种修改。虽然在前述详细说明中已经举例说明了本发明的特定实施例,但应进一步理解的是本发明不仅限于公开的实施例,而是其能够实现许多重新布置、修改和替换。 

Claims (15)

1.一种用于准确地导出和报告个体的危重护理参数的系统,包括:
与所述个体的身体相关联的可佩戴传感器设备中的用于生成传感器输出信号的至少一个生理传感器; 
存储器电路,其包含用于从所述传感器输出信号识别所述个体的危重护理参数的存储的数学运算;所述存储的数学运算根据来自多个测试对象中每一个的测试数据来构造,其中每个测试对象的测试数据包括在一段时间内在模拟的危重状态期间来自与所述至少一个生理传感器类似的传感器的测试传感器输出信号和使用另一种感测技术在该测试对象处于所模拟的危重状态时连续地收集的与危重护理参数有关的生理数据,其中测试对象的测试传感器输出信号与同时收集的生理数据经由所述数学运算与危重护理参数相关; 
处理器,其与所述传感器和所述存储器电路进行电子通信以便:(i)从所述至少一个传感器接收所述传感器输出信号,以及(ii)对所述传感器输出信号应用所述存储的数学运算以导出所述个体的危重护理参数;以及
显示器,其与所述处理器进行电子通信以便显示用于所述个体的导出的定量危重护理参数。
2.权利要求1的系统,其中,所述存储器电路还包括所收集的关于所测量生理数据的传感器输出信号。
3.权利要求1的系统,其中,所述处理器依照所述个体的所述定量危重护理参数的值的导出来修改所述数学运算,使得所述经修改的一系列数学运算在所定义公差范围内一致地等价于所述收集的生理数据。
4.权利要求1的系统,其中,通过生理参数的定量测量来确定所述危重护理参数。
5.权利要求1的系统,其中,所述危重护理参数指示选自由以下各项组成的组的危重疾病或损伤的存在:非创伤性出血、创伤性出血、包括心肌梗塞和急性心律不齐的急性和慢性心力衰竭、心跳停止和心源性休克、细菌性感染、病毒性感染、真菌感染、肺炎、脓毒症、脓毒性休克、创伤、烧伤、甲状腺机能亢进和减退、肾上腺机能不全、糖尿病性酮酸中毒、体温过高、体温过低、惊厥前期、惊厥、癫痫发作、癫痫持续状态、溺水、急性呼吸衰竭、肺栓塞、创伤性脑损伤、脊髓损伤、中风、脑动脉瘤;肢体缺血、凝血性疾病、急性神经肌肉疾病/衰竭、急性中毒、血管堵塞危象和肿瘤溶解综合征。
6.权利要求4的系统,其中,生理参数选自由以下各项组成的组:心搏逐拍变异、随时间推移的心脏的电活动、呼吸率、皮肤温度、身体核心温度、热流、皮肤电反应、肌肉的电活动、生物阻抗、光学体积描记术、压电运动、大脑的自发性电活动、眼球运动、血压、体脂肪、活动、氧消耗、葡萄糖水平、一氧化碳水平、NADH水平、组织血红蛋白氧饱和水平、身体位置、肌肉压力、UV辐射吸收和乳酸水平。
7.权利要求4的系统,其中,由选自由以下各项组成的组的方法来确定生理参数:测量心率、皮肤表面电位、胸廓容积变化、表面温度探测器、食道或直肠探测器、热通量、皮肤电导、EMG皮肤表面电位、EEG皮肤表面电位、眼球运动、非侵入式科罗特科夫氏音、身体阻抗、身体移动、氧摄入、电化学测量、光谱学、荧光光谱学、汞开关阵列、薄膜压电传感器、UV敏感光电池。
8.权利要求1的系统,其中,所述危重护理参数是氧消耗。
9.权利要求1的系统,其中,所述危重参数是氧债。
10.一种用于确定危重护理参数的系统,包括: 
a. 可佩戴传感器设备,其包括用于生成传感器输出信号的至少一个非侵入式传感器;
b. 存储器电路,其包含在被执行时从所述传感器输出信号导出个体的危重护理参数的存储指令;所述存储指令根据来自多个测试对象中每一个的测试数据来构造,其中每个测试对象的测试数据包括在一段时间内在模拟的危重状态期间来自与所述至少一个非侵入式传感器类似的传感器的测试传感器输出信号和使用另一种感测技术在该测试对象处于所模拟的危重状态时同时收集的与危重护理参数有关的生理数据,其中测试对象的测试传感器输出信号和同时收集的生理数据经由所述存储指令与危重护理参数相关;以及
c. 处理器,其与所述传感器和所述存储器电路进行电子通信以便:(i)从所述非侵入式传感器接收所述传感器输出信号,以及(ii)应用所述存储指令以导出所述个体的所述危重护理参数。
11.权利要求10的系统,其中,所述非侵入式传感器是皮肤电反应传感器。
12.权利要求10的系统,其中,所述传感器生成指示心脏相关参数的数据。
13.权利要求10的系统,进一步包括生成传感器输出信号的附加传感器。
14.权利要求13的系统,其中,所述存储器电路包括在被执行时还导出所述个体的情境并在导出所述危重护理参数时利用所述情境的附加存储指令;以及 
其中,所述处理器还用于(i)接收所述附加传感器输出信号,(ii)应用所述附加指令来确定所述情境,(iii)利用所述情境来导出所述危重护理参数。
15.权利要求14的系统,其中,所述情境是个体基本上是久坐的。
CN200980154809.7A 2008-11-20 2009-11-20 用于确定危重护理参数的方法和设备 Expired - Fee Related CN102281816B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11636408P 2008-11-20 2008-11-20
US61/116364 2008-11-20
PCT/US2009/006234 WO2010065067A1 (en) 2008-11-20 2009-11-20 Method and apparatus for determining critical care parameters

Publications (2)

Publication Number Publication Date
CN102281816A CN102281816A (zh) 2011-12-14
CN102281816B true CN102281816B (zh) 2015-01-07

Family

ID=42233510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980154809.7A Expired - Fee Related CN102281816B (zh) 2008-11-20 2009-11-20 用于确定危重护理参数的方法和设备

Country Status (6)

Country Link
US (1) US20120245439A1 (zh)
EP (1) EP2358266A4 (zh)
CN (1) CN102281816B (zh)
HK (1) HK1164675A1 (zh)
IL (2) IL213004A (zh)
WO (1) WO2010065067A1 (zh)

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
WO2009048659A1 (en) * 2007-07-13 2009-04-16 University Of Massachusetts Physical performance monitoring and monitors
US11382571B2 (en) 2008-10-29 2022-07-12 Flashback Technologies, Inc. Noninvasive predictive and/or estimative blood pressure monitoring
US8512260B2 (en) 2008-10-29 2013-08-20 The Regents Of The University Of Colorado, A Body Corporate Statistical, noninvasive measurement of intracranial pressure
US20110172545A1 (en) * 2008-10-29 2011-07-14 Gregory Zlatko Grudic Active Physical Perturbations to Enhance Intelligent Medical Monitoring
US11478190B2 (en) 2008-10-29 2022-10-25 Flashback Technologies, Inc. Noninvasive hydration monitoring
US11406269B2 (en) 2008-10-29 2022-08-09 Flashback Technologies, Inc. Rapid detection of bleeding following injury
US11395634B2 (en) 2008-10-29 2022-07-26 Flashback Technologies, Inc. Estimating physiological states based on changes in CRI
US11857293B2 (en) 2008-10-29 2024-01-02 Flashback Technologies, Inc. Rapid detection of bleeding before, during, and after fluid resuscitation
US11395594B2 (en) 2008-10-29 2022-07-26 Flashback Technologies, Inc. Noninvasive monitoring for fluid resuscitation
WO2011007569A1 (ja) * 2009-07-15 2011-01-20 国立大学法人筑波大学 分類推定システムおよび分類推定プログラム
US11562323B2 (en) * 2009-10-01 2023-01-24 DecisionQ Corporation Application of bayesian networks to patient screening and treatment
US8758262B2 (en) * 2009-11-25 2014-06-24 University Of Rochester Respiratory disease monitoring system
US8979539B1 (en) * 2010-01-11 2015-03-17 Humana Inc. Hydration level measurement system and method
US20110201905A1 (en) * 2010-02-12 2011-08-18 David Spencer Decision support method for casualty treatment using vital sign combinations
WO2011109716A2 (en) * 2010-03-04 2011-09-09 Neumitra LLC Devices and methods for treating psychological disorders
US8744808B2 (en) 2010-03-20 2014-06-03 The Nielsen Company (Us), Llc Electroencephalogram (EEG) cluster electrodes
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US10216893B2 (en) 2010-09-30 2019-02-26 Fitbit, Inc. Multimode sensor devices
RU2452393C1 (ru) * 2010-10-08 2012-06-10 Федеральное государственное учреждение "Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения и социального развития Российской Федерации" Способ расчета питания у доношенных новорожденных при помощи воздухозамещающей плетизмографии
FR2965951B1 (fr) * 2010-10-11 2013-10-04 Olea Medical Systeme et procede pour estimer une quantite d'interet d'un systeme dynamique artere/tissu/veine
JP5733499B2 (ja) * 2010-10-29 2015-06-10 株式会社デルタツーリング 生体状態推定装置及びコンピュータプログラム
AU2011320072B2 (en) 2010-10-29 2016-05-19 Orpyx Medical Technologies Inc. Peripheral sensory and supersensory replacement system
EP2641151A4 (en) * 2010-11-19 2018-04-18 Spacelabs Healthcare LLC Self-contained patient monitor
ES2398866B1 (es) * 2010-12-21 2014-01-27 Universidad De Murcia Dispositivo que comprende un sensor de posición y actividad corporal, un sensor de temperatura periférica y un sensor de luz para ofrecer información del estado del sistema circadiano.
US9629566B2 (en) 2011-03-11 2017-04-25 Spacelabs Healthcare Llc Methods and systems to determine multi-parameter managed alarm hierarchy during patient monitoring
US9861293B2 (en) * 2011-04-28 2018-01-09 Myolex Inc. Sensors, including disposable sensors, for measuring tissue
US20120315382A1 (en) 2011-06-10 2012-12-13 Aliphcom Component protective overmolding using protective external coatings
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20140089672A1 (en) * 2012-09-25 2014-03-27 Aliphcom Wearable device and method to generate biometric identifier for authentication using near-field communications
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
US20120316458A1 (en) * 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
KR200466320Y1 (ko) * 2011-07-13 2013-04-12 (주)아모레퍼시픽 안면 마사지기
TWI498106B (zh) * 2011-07-20 2015-09-01 Crystalvue Medical Corp 非侵入式檢測裝置及其運作方法
WO2013016212A1 (en) 2011-07-22 2013-01-31 Flashback Technologies, Inc. Hemodynamic reserve monitor and hemodialysis control
US9201812B2 (en) 2011-07-25 2015-12-01 Aliphcom Multiple logical representations of audio functions in a wireless audio transmitter that transmits audio data at different data rates
KR200467410Y1 (ko) 2011-08-19 2013-06-12 (주)아모레퍼시픽 안면 마사지기
US20130053728A1 (en) * 2011-08-25 2013-02-28 Man Lok Systems and methods related to waste discharging for aiding patients concerning prostate irregularities
US8740793B2 (en) * 2011-08-29 2014-06-03 General Electric Company Radar based systems and methods for monitoring a subject
US9700222B2 (en) 2011-12-02 2017-07-11 Lumiradx Uk Ltd Health-monitor patch
US9734304B2 (en) * 2011-12-02 2017-08-15 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
JP2015505694A (ja) * 2011-12-07 2015-02-26 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 行動トラッキングおよび修正システム
EP2795538A4 (en) * 2011-12-21 2016-01-27 Nokia Technologies Oy PROCESS, DEVICE AND COMPUTER SOFTWARE FOR CONTEX IDENTIFICATION
KR101426591B1 (ko) * 2012-03-13 2014-08-06 연세대학교 산학협력단 생체 신호의 노이즈 제거 장치 및 방법
ITMI20120494A1 (it) * 2012-03-27 2013-09-28 B10Nix S R L Apparato e metodo per l'acquisizione ed analisi di una attivita' muscolare
US20150126873A1 (en) * 2013-11-04 2015-05-07 Robert A. Connor Wearable Spectroscopy Sensor to Measure Food Consumption
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US8954135B2 (en) 2012-06-22 2015-02-10 Fitbit, Inc. Portable biometric monitoring devices and methods of operating same
US11029199B2 (en) 2012-06-22 2021-06-08 Fitbit, Inc. Ambient light determination using physiological metric sensor data
US9044171B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. GPS power conservation using environmental data
US9044149B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. Heart rate data collection
US9597014B2 (en) 2012-06-22 2017-03-21 Fitbit, Inc. GPS accuracy refinement using external sensors
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US9049998B2 (en) 2012-06-22 2015-06-09 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US9042971B2 (en) 2012-06-22 2015-05-26 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US9636025B2 (en) * 2012-08-15 2017-05-02 Nanyang Technological University Systems and methods for pedal revascularization assessment
EP2892429B1 (en) * 2012-09-10 2019-07-24 Koninklijke Philips N.V. Device and method to improve dependability of physiological parameter measurements
US9314159B2 (en) * 2012-09-24 2016-04-19 Physio-Control, Inc. Patient monitoring device with remote alert
US20140089673A1 (en) * 2012-09-25 2014-03-27 Aliphcom Biometric identification method and apparatus to authenticate identity of a user of a wearable device that includes sensors
US20140085101A1 (en) * 2012-09-25 2014-03-27 Aliphcom Devices and methods to facilitate affective feedback using wearable computing devices
CN103815966A (zh) * 2012-11-19 2014-05-28 深圳迈瑞生物医疗电子股份有限公司 生理参数处理装置和方法
US9526437B2 (en) 2012-11-21 2016-12-27 i4c Innovations Inc. Animal health and wellness monitoring using UWB radar
US10981034B1 (en) * 2012-12-19 2021-04-20 Alert Core, Inc. Companion device to support qualifying movement identification
CA2895982A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
WO2014105520A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US9500635B2 (en) 2012-12-31 2016-11-22 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US11206990B2 (en) 2013-01-23 2021-12-28 Pedra Technology Pte Ltd Deep tissue flowmetry using diffuse speckle contrast analysis
KR102059346B1 (ko) * 2013-03-05 2020-02-11 삼성전자주식회사 근전도 센서 시스템 및 근전도 센서 시스템의 동작 방법
WO2014159793A1 (en) * 2013-03-13 2014-10-02 Aptima, Inc. User state estimation systems and methods
US20160049820A1 (en) * 2013-03-14 2016-02-18 Ramon Anthony Caamaño Electrical Energy Storage Systems, Electric Drive Systems, Controllers, and Electrical Power Management Systems
US20150182113A1 (en) * 2013-12-31 2015-07-02 Aliphcom Real-time fatigue, personal effectiveness, injury risk device(s)
US10098585B2 (en) 2013-03-15 2018-10-16 Cadwell Laboratories, Inc. Neuromonitoring systems and methods
US10149617B2 (en) 2013-03-15 2018-12-11 i4c Innovations Inc. Multiple sensors for monitoring health and wellness of an animal
US8976062B2 (en) 2013-04-01 2015-03-10 Fitbit, Inc. Portable biometric monitoring devices having location sensors
US9226707B2 (en) * 2013-04-26 2016-01-05 Chiming Huang Device and system to reduce traumatic brain injury
US8961440B2 (en) * 2013-04-26 2015-02-24 Chiming Huang Device and system to reduce traumatic brain injury
US20140340217A1 (en) * 2013-05-15 2014-11-20 Collar ID, LLC Apparatus and methods for sensing a parameter with a restraint device
EP2999398B8 (en) 2013-05-21 2020-12-16 Orpyx Medical Technologies Inc. Pressure data acquisition assembly
GB2516214B (en) * 2013-05-22 2018-01-17 Rosnes Ltd Smart wearables
US10987026B2 (en) 2013-05-30 2021-04-27 Spacelabs Healthcare Llc Capnography module with automatic switching between mainstream and sidestream monitoring
US20140364702A1 (en) * 2013-06-06 2014-12-11 Valeriy Nasedkin Apparatus and method for functional state and/or performance assessment and training program adjustment
KR101501661B1 (ko) * 2013-06-10 2015-03-12 한국과학기술연구원 착용형 근전도 센서 시스템
US10512407B2 (en) 2013-06-24 2019-12-24 Fitbit, Inc. Heart rate data collection
WO2014209937A2 (en) * 2013-06-25 2014-12-31 Zoll Medical Corporation Integrated resuscitation apparatus and method including perfusion monitor
US20190223806A1 (en) * 2013-07-01 2019-07-25 Mayo Foundation For Medical Education And Research Sensor types and sensor positioning for a remote patient monitoring system
DE102013011141A1 (de) * 2013-07-03 2015-01-08 Dräger Medical GmbH Messvorrichtung zur Messung einer Körperfunktion und Verfahren zum Betrieb einer solchen Messvorrichtung
PL224517B1 (pl) * 2013-09-03 2017-01-31 Silvermedia Spółka Z Ograniczoną Odpowiedzialnością System rejestracji i obróbki sygnałów do diagnostyki układu słuchowego i sposób rejestracji i obróbki sygnałów do diagnostyki układu słuchowego
JP6384035B2 (ja) * 2013-10-11 2018-09-05 セイコーエプソン株式会社 携帯型電子機器
US9295403B1 (en) 2013-12-19 2016-03-29 Verily Life Sciences Llc Multipurpose wearable electrical contact
US10321829B2 (en) 2013-12-30 2019-06-18 JouZen Oy Measuring chronic stress
US20150181840A1 (en) * 2013-12-31 2015-07-02 i4c Innovations Inc. Ultra-Wideband Radar System for Animals
CA2931274A1 (en) * 2014-01-21 2015-07-30 California Institute Of Technology Portable electronic hemodynamic sensor systems
DE102014203429A1 (de) * 2014-02-26 2015-08-27 Siemens Aktiengesellschaft Redundierbare Eingangsschaltung, Eingangsschaltungseinheit mit mindestens einer Eingangsschaltung und Verfahren zum Betrieb einer solchen Eingangsschaltungseinheit
WO2015139980A1 (en) * 2014-03-17 2015-09-24 Koninklijke Philips N.V. Heart rate monitor device
US10898075B2 (en) * 2014-04-25 2021-01-26 Halo Wearables, Llc Wearable stress-testing device
US9974488B2 (en) 2014-06-27 2018-05-22 The Regents Of The University Of Michigan Early detection of hemodynamic decompensation using taut-string transformation
US10398369B2 (en) * 2014-08-08 2019-09-03 Medtronic Xomed, Inc. Wireless stimulation probe device for wireless nerve integrity monitoring systems
EP3180717B1 (en) 2014-08-11 2020-07-22 Ascensia Diabetes Care Holdings AG Reconfigurable measurement system
JP2016047155A (ja) * 2014-08-27 2016-04-07 セイコーエプソン株式会社 生体情報計測装置
WO2016037068A1 (en) * 2014-09-04 2016-03-10 D Lima Darryl Shoulder monitoring and treatment system
CN104173059A (zh) * 2014-09-04 2014-12-03 电子科技大学 一种光学非侵入式休克监护仪及其检测方法
CN104248426B (zh) * 2014-09-24 2016-05-18 浙江海圣医疗器械有限公司 一种血压传感器及其装配方法
US20160117937A1 (en) * 2014-10-27 2016-04-28 Bloom Technologies NV System and method for providing biometric and context based messaging
US10687729B2 (en) * 2014-11-24 2020-06-23 Koninklijke Philips N.V. Apparatus and method for estimating a value of a physiological characteristic
CN105686820A (zh) * 2014-11-24 2016-06-22 铂元智能科技(北京)有限公司 便携式无线心电监测模块
US10188311B2 (en) * 2015-12-04 2019-01-29 Chiming Huang Device to reduce traumatic brain injury
US11298040B2 (en) * 2014-12-05 2022-04-12 Chiming Huang Device to reduce traumatic brain injury
US20160166152A1 (en) * 2014-12-12 2016-06-16 Polar Electro Oy Heart rate measurement
PL3240785T3 (pl) 2014-12-29 2021-12-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inhibitory drobnocząsteczkowe dehydrogenazy mleczanowej i sposoby ich wykorzystania
US10154460B1 (en) 2015-02-17 2018-12-11 Halo Wearables LLC Power management for wearable devices
US10039915B2 (en) 2015-04-03 2018-08-07 Medtronic Xomed, Inc. System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a surgical tool
EP3280318A1 (en) * 2015-04-09 2018-02-14 Koninklijke Philips N.V. Vital signs monitoring system
US9392946B1 (en) 2015-05-28 2016-07-19 Fitbit, Inc. Heart rate sensor with high-aspect-ratio photodetector element
CN108024720A (zh) * 2015-08-10 2018-05-11 皇家飞利浦有限公司 使用可穿戴设备确定代谢参数
CN108348745B (zh) * 2015-08-18 2022-06-10 奥利克斯医疗保健有限公司 预测医疗保健事件的系统和方法
WO2017032873A2 (en) * 2015-08-26 2017-03-02 Resmed Sensor Technologies Limited Systems and methods for monitoring and management of chronic desease
US10709371B2 (en) * 2015-09-09 2020-07-14 WellBrain, Inc. System and methods for serving a custom meditation program to a patient
US11272864B2 (en) 2015-09-14 2022-03-15 Health Care Originals, Inc. Respiratory disease monitoring wearable apparatus
CN113008385B (zh) * 2015-10-05 2023-04-07 海曼传感器有限责任公司 具有单片集成信号处理的高分辨率热电堆红外传感器阵列
US9981385B2 (en) * 2015-10-12 2018-05-29 The Boeing Company Dynamic automation work zone safety system
US10339273B2 (en) 2015-11-18 2019-07-02 Warsaw Orthopedic, Inc. Systems and methods for pre-operative procedure determination and outcome predicting
US10445466B2 (en) 2015-11-18 2019-10-15 Warsaw Orthopedic, Inc. Systems and methods for post-operative outcome monitoring
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US10568525B1 (en) 2015-12-14 2020-02-25 Fitbit, Inc. Multi-wavelength pulse oximetry
US20190005397A1 (en) * 2015-12-16 2019-01-03 The Regents Of The University Of California Energy-efficient, modularized uncertainty quantification and outcome prediction in mobile devices
US10716478B2 (en) * 2015-12-29 2020-07-21 Motorola Mobility Llc Wearable device heart monitor systems
US20170188843A1 (en) * 2016-01-05 2017-07-06 Tosense, Inc. Handheld physiological sensor
US20170188873A1 (en) * 2016-01-05 2017-07-06 Tosense, Inc. Handheld physiological sensor
US20170188864A1 (en) * 2016-01-06 2017-07-06 Healmet, Inc. Spherical handheld biosensor array device for physiological status monitoring
EP3247263A4 (en) * 2016-01-08 2018-08-29 Heartisans Limited Wearable device for assessing the likelihood of the onset of cardiac arrest and method thereof
CN105549940B (zh) * 2016-01-26 2018-10-02 深圳市科曼医疗设备有限公司 监护系统重点监护界面显示方法和系统
WO2017156169A1 (en) * 2016-03-08 2017-09-14 Stapelfeldt Wolf Monitoring oxygen uptake of a patient under anesthesia
TWI584781B (zh) * 2016-03-23 2017-06-01 美盛醫電股份有限公司 血壓量測裝置及血壓量測方法
JP6847585B2 (ja) * 2016-03-30 2021-03-24 日東電工株式会社 貼付製剤の管理方法、貼付製剤の管理モジュールおよび貼付製剤デバイス
CN105958965B (zh) * 2016-04-27 2018-11-30 华中科技大学 一种应用于人体生理信号的低通滤波器
US11179095B2 (en) * 2016-04-29 2021-11-23 University Of Virginia Patent Foundation Method, system, and apparatus for remote patient monitoring or tracking of sepsis-related indicators
US10433739B2 (en) 2016-04-29 2019-10-08 Fitbit, Inc. Multi-channel photoplethysmography sensor
US10955269B2 (en) 2016-05-20 2021-03-23 Health Care Originals, Inc. Wearable apparatus
KR102570069B1 (ko) * 2016-05-26 2023-08-23 삼성전자주식회사 Ecg 센서 신호의 잡음을 제거하는 방법 및 그 장치
US10010471B2 (en) * 2016-06-28 2018-07-03 Isomer, Inc. Cooling garments, warming garments, and related methods
US9756604B1 (en) * 2016-07-21 2017-09-05 Immersion Corporation Haptic functionality for network connected devices
CN106249711A (zh) * 2016-08-03 2016-12-21 海南警视者科技开发有限公司 一种多功能智能机器人
CN106137169A (zh) * 2016-08-04 2016-11-23 杭州同泉物联网技术有限公司 一种穿戴式多生理参数监测方法及其装置
KR20180017690A (ko) 2016-08-10 2018-02-21 삼성전자주식회사 생체 정보 검출 장치 및 방법
US10918907B2 (en) 2016-08-14 2021-02-16 Fitbit, Inc. Automatic detection and quantification of swimming
EP3503797A4 (en) * 2016-08-26 2020-09-09 Ami Research&development, LLC VITAL PARAMETER MONITORING VIA A TOUCH SCREEN USING BIOELECTRIC IMPEDANCE
CN109328029B (zh) * 2016-09-05 2022-03-08 深圳迈瑞生物医疗电子股份有限公司 生命体征数据统计系统和监护仪
US10849517B2 (en) 2016-09-19 2020-12-01 Medtronic Xomed, Inc. Remote control module for instruments
US11647967B2 (en) * 2016-09-22 2023-05-16 Vital Connect, Inc. Generating automated alarms for clinical monitoring
CN108078555A (zh) * 2016-11-23 2018-05-29 南京理工大学 一种基于卡尔曼滤波和目标跟踪的生命体征远程监测装置
CH713267A1 (de) * 2016-12-21 2018-06-29 Greenteg Ag Sensoreinheit für ein tragbares Computersystem und Integration der Sensoreinheit in das Gehäuse des Computersystems.
US10014960B1 (en) * 2016-12-30 2018-07-03 Intel Corporation Methods and systems for determining a human body channel sensor position
US9935395B1 (en) 2017-01-23 2018-04-03 Cadwell Laboratories, Inc. Mass connection plate for electrical connectors
US11185270B1 (en) * 2017-02-03 2021-11-30 Yongwu Yang Wearable device and method for monitoring muscle tension and other physiological data
US11622716B2 (en) 2017-02-13 2023-04-11 Health Care Originals, Inc. Wearable physiological monitoring systems and methods
DK3592213T3 (da) * 2017-03-08 2023-05-22 Abbott Diabetes Care Inc System til overvågning og styring af velvære og ernæring under anvendelse af analytdata
US11123014B2 (en) 2017-03-21 2021-09-21 Stryker Corporation Systems and methods for ambient energy powered physiological parameter monitoring
US11051706B1 (en) 2017-04-07 2021-07-06 Fitbit, Inc. Multiple source-detector pair photoplethysmography (PPG) sensor
US10945661B2 (en) * 2017-04-21 2021-03-16 Physio-Control, Inc. Physiological feedback systems and methods
CN110650681B (zh) 2017-05-15 2023-08-15 布鲁姆技术公司 用于监测胎儿健康的系统和方法
WO2018217633A1 (en) 2017-05-21 2018-11-29 Oncodisc, Inc. Low profile implantable medication infusion port with electronic localization, physiologic monitoring, and data transfer
US10978203B2 (en) 2017-06-20 2021-04-13 International Business Machines Corporation Power-efficient health affliction classification
CN110996766B (zh) 2017-07-19 2023-11-28 布鲁姆技术公司 监测子宫活动和评估早产风险
WO2019025901A1 (en) * 2017-08-02 2019-02-07 Mor Research Applications Ltd. SYSTEMS AND METHODS FOR PREDICTING THE APPEARANCE OF A SEPSIE
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US11344235B2 (en) 2017-09-13 2022-05-31 Medtronic Minimed, Inc. Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output
US10497250B1 (en) 2017-09-27 2019-12-03 State Farm Mutual Automobile Insurance Company Real property monitoring systems and methods for detecting damage and other conditions
CN107704594B (zh) * 2017-10-13 2021-02-09 东南大学 基于SparkStreaming的电力系统日志数据实时处理方法
US11389063B2 (en) * 2017-11-20 2022-07-19 Welch Allyn, Inc. Modular vital signs monitor
CN107808493A (zh) * 2017-11-24 2018-03-16 四川大学 一种基于bds的濒危呼叫护腕
WO2019113562A1 (en) * 2017-12-08 2019-06-13 The United States Of America As Represented By The Secretary Of The Army Systems and methods for monitoring subjects in potential hypoxic distress
DE102018000883B4 (de) 2018-02-03 2022-08-25 Louis Samuel Seidel Biofeedbacksystem zur Verwendung in einem Verfahren zur Prävention, Diagnose und Therapie von Stress und kognitivem Leistungsabfall bedingt durch der Unterhaltung, Kommunikation und Datenverarbeitung dienende, elektronische Bildschirmgeräte
CN108514409A (zh) * 2018-02-07 2018-09-11 南京唐潮科技有限公司 一种多参数人体检测设备
CN108420413B (zh) * 2018-02-07 2020-12-25 广东中科慈航信息科技有限公司 一种测量心率的方法及其装置
WO2019165004A1 (en) * 2018-02-21 2019-08-29 Patchd, Inc. Systems and methods for subject monitoring
US11253182B2 (en) 2018-05-04 2022-02-22 Cadwell Laboratories, Inc. Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
CN108564179B (zh) * 2018-06-20 2023-09-26 上海翰临电子科技有限公司 佩戴检测系统、方法、电子终端、及计算机可读存储介质
US11443649B2 (en) 2018-06-29 2022-09-13 Cadwell Laboratories, Inc. Neurophysiological monitoring training simulator
CN108612821B (zh) * 2018-07-02 2020-12-04 安徽思源三轻智能制造有限公司 一种储能结构及安装有该储能结构的变速箱
CN109344365A (zh) * 2018-08-09 2019-02-15 咪咕数字传媒有限公司 一种信息标注方法及装置
RU187279U1 (ru) * 2018-08-15 2019-02-28 Арташес Георгиевич Армаганов Устройство длительного мониторинга электрокардиограммы
CN109009028B (zh) * 2018-08-31 2020-01-03 江苏盖睿健康科技有限公司 一种反映人体疲劳程度的穿戴式设备
CN109102892A (zh) * 2018-09-04 2018-12-28 广州小楠科技有限公司 一种基于人体信息检测的健康调节仪
US11681886B2 (en) * 2018-09-06 2023-06-20 John P. Peeters Genomic and environmental blockchain sensors
CN109377723A (zh) * 2018-10-22 2019-02-22 深圳市浅水科技有限公司 防溺水监控方法及系统
CN111134636A (zh) * 2018-11-05 2020-05-12 巧连科技股份有限公司 生理检测模块及其具有生理检测模块的穿戴式电子装置
US11096582B2 (en) * 2018-11-20 2021-08-24 Veris Health Inc. Vascular access devices, systems, and methods for monitoring patient health
US10820810B2 (en) * 2018-11-26 2020-11-03 Firstbeat Analytics, Oy Method and a system for determining the maximum heart rate of a user of in a freely performed physical exercise
WO2020132826A1 (zh) * 2018-12-24 2020-07-02 深圳迈瑞生物医疗电子股份有限公司 监护设备及其生理体征监测方法
US11918386B2 (en) 2018-12-26 2024-03-05 Flashback Technologies, Inc. Device-based maneuver and activity state-based physiologic status monitoring
US11867568B2 (en) * 2019-01-04 2024-01-09 Verily Life Sciences Llc Body-mountable temperature monitor accounting for ambient conditions
US20220134048A1 (en) * 2019-02-13 2022-05-05 Sensei Wellness Holdings, Inc. Systems and methods for virtual-reality enhanced quantitative meditation
KR102243824B1 (ko) * 2019-02-27 2021-04-23 주식회사 에이티센스 이종의 생체 신호의 동시 측정 장치 및 그 측정 방법
KR20210024874A (ko) * 2019-08-26 2021-03-08 삼성전자주식회사 인체 삽입형 모니터링 기기 및 그 동작 방법
CN114072054A (zh) * 2019-08-30 2022-02-18 住友理工株式会社 存在与否判定装置
FI128739B (en) * 2019-09-23 2020-11-13 Lappeenrannan Lahden Teknillinen Yliopisto Lut Method and device for estimating energy consumption
JP7431026B2 (ja) * 2019-12-13 2024-02-14 日本光電工業株式会社 容態判別装置、およびコンピュータプログラム
US20210196206A1 (en) * 2019-12-26 2021-07-01 Dexcom, Inc. Systems and methods for sepsis risk evaluation
AU2021205882A1 (en) * 2020-01-06 2022-07-21 Cubic Corporation Chirp signal filtering for digital gateway
CN111135445A (zh) * 2020-01-17 2020-05-12 吉林大学第一医院 一种失血性休克重症患者用实时温监测护装置
US20220061742A1 (en) * 2020-08-28 2022-03-03 Covidien Lp Determining composite signals from at least three electrodes
CN112432719B (zh) * 2020-11-06 2022-04-15 中国空气动力研究与发展中心超高速空气动力研究所 一种热电堆热流传感器
KR102506052B1 (ko) * 2020-11-18 2023-03-06 재단법인 오송첨단의료산업진흥재단 온도센서, 온도센서를 포함하는 웨어러블 디바이스, 및 온도센서를 이용한 심부온도 측정방법
US20220160309A1 (en) * 2020-11-20 2022-05-26 Poltorak Technologies Llc Multiple partially redundant biometric sensing devices
CN112716504B (zh) * 2020-12-22 2023-12-15 沈阳东软智能医疗科技研究院有限公司 心电数据的处理方法、装置、存储介质和电子设备
CN113017568A (zh) * 2021-03-03 2021-06-25 中国人民解放军海军军医大学 一种严重创伤患者生理变化及死亡风险预测方法及系统
CN112957017B (zh) * 2021-03-24 2021-10-19 南通市第一人民医院 一种昏迷患者的实时体征监测方法及系统
US20220361788A1 (en) * 2021-05-11 2022-11-17 Mahir Shah System and method for measuring acute and chronic stress
CN113633280B (zh) * 2021-08-13 2023-08-22 上海跃扬医疗科技有限公司 在床离床检测方法、检测系统、设备及存储介质
CN114548259B (zh) * 2022-02-18 2023-10-10 东北大学 一种基于半监督Semi-KNN模型的PISA故障识别方法
US11882237B1 (en) 2022-11-30 2024-01-23 Gmeci, Llc Apparatus and methods for monitoring human trustworthiness
CN116269249B (zh) * 2023-02-14 2023-11-17 国家康复辅具研究中心 一种脑卒中风险预测方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101108125A (zh) * 2007-08-02 2008-01-23 张志强 一种身体体征动态监测系统
CN101198277A (zh) * 2005-02-22 2008-06-11 海尔思-斯玛特有限公司 用于生理学和心理生理学监控的方法和系统及其应用
US20080171921A1 (en) * 2002-10-09 2008-07-17 Eric Teller Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827195A (en) * 1997-05-09 1998-10-27 Cambridge Heart, Inc. Electrocardiogram noise reduction using multi-dimensional filtering
US6312612B1 (en) 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
KR20030066325A (ko) * 2000-05-13 2003-08-09 오메가웨이브 엘엘씨 인간의 현재 기능적 상태와 적응성 반응의 비관혈적 측정장치 및 방법
US7367950B1 (en) * 2000-05-13 2008-05-06 Omegawave, Llc Distributed apparatus and method for non-invasive measurement of functional state and adaptive response
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20060074282A1 (en) * 2000-07-13 2006-04-06 Ward Kevin R Nitric-oxide detection using Raman spectroscopy
EP1316010A4 (en) * 2000-08-09 2004-11-24 Clinical Care Systems Inc METHOD AND SYSTEM FOR DISTRIBUTED ANALYSIS AND DIAGNOSIS SOFTWARE IN AN INTRANET OR INTERNET ENVIRONMENT
US6840904B2 (en) * 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20070100666A1 (en) 2002-08-22 2007-05-03 Stivoric John M Devices and systems for contextual and physiological-based detection, monitoring, reporting, entertainment, and control of other devices
US7536214B2 (en) * 2005-10-26 2009-05-19 Hutchinson Technology Incorporated Dynamic StO2 measurements and analysis
US11636408B2 (en) 2015-01-22 2023-04-25 Visier Solutions, Inc. Techniques for manipulating and rearranging presentation of workforce data in accordance with different data-prediction scenarios available within a graphical user interface (GUI) of a computer system, and an apparatus and hardware memory implementing the techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080171921A1 (en) * 2002-10-09 2008-07-17 Eric Teller Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
CN101198277A (zh) * 2005-02-22 2008-06-11 海尔思-斯玛特有限公司 用于生理学和心理生理学监控的方法和系统及其应用
CN101108125A (zh) * 2007-08-02 2008-01-23 张志强 一种身体体征动态监测系统

Also Published As

Publication number Publication date
IL213004A (en) 2014-04-30
CN102281816A (zh) 2011-12-14
WO2010065067A1 (en) 2010-06-10
EP2358266A1 (en) 2011-08-24
IL231968A0 (en) 2014-05-28
EP2358266A4 (en) 2012-10-03
US20120245439A1 (en) 2012-09-27
HK1164675A1 (zh) 2012-09-28
IL213004A0 (en) 2011-07-31

Similar Documents

Publication Publication Date Title
CN102281816B (zh) 用于确定危重护理参数的方法和设备
US20210000347A1 (en) Enhanced physiological monitoring devices and computer-implemented systems and methods of remote physiological monitoring of subjects
US9339188B2 (en) Methods from monitoring health, wellness and fitness with feedback
Anliker et al. AMON: a wearable multiparameter medical monitoring and alert system
US9392939B2 (en) Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison
US9204798B2 (en) System for monitoring health, wellness and fitness with feedback
US8870766B2 (en) Apparatus for providing derived glucose information utilizing non-invasive physiological sensors
JP5174348B2 (ja) 心臓関連状態パラメータのモニター方法及び装置
US8968196B2 (en) Method and apparatus for deriving and reporting a physiological status of an individual utilizing physiological and contextual parameters
US9398854B2 (en) System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison
US20120123232A1 (en) Method and apparatus for determining heart rate variability using wavelet transformation
US20110245633A1 (en) Devices and methods for treating psychological disorders
CA2747057A1 (en) Method and apparatus for determining heart rate variability using wavelet transformation
US9526422B2 (en) System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system
JP2007505412A (ja) 対話式及び個人専用の計画、介入及び報告能力を含む体重及び他の生理学的状態のモニター及び管理システム
CA2744215A1 (en) Method and apparatus for determining critical care parameters
KR102556663B1 (ko) 생체신호 모니터링 시스템 및 방법
Anand et al. Remote Patient Monitoring: An Overview of Technologies, Applications, and Challenges
MXPA06002838A (es) Metodo y aparato para medir los parametros relacionados con el corazon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1164675

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1164675

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150107

Termination date: 20151120

EXPY Termination of patent right or utility model