CN102278952A - Three-dimensional micro-observation apparatus for smooth reflective surface on the basis of synthetic aperture in digital holography - Google Patents
Three-dimensional micro-observation apparatus for smooth reflective surface on the basis of synthetic aperture in digital holography Download PDFInfo
- Publication number
- CN102278952A CN102278952A CN 201010280758 CN201010280758A CN102278952A CN 102278952 A CN102278952 A CN 102278952A CN 201010280758 CN201010280758 CN 201010280758 CN 201010280758 A CN201010280758 A CN 201010280758A CN 102278952 A CN102278952 A CN 102278952A
- Authority
- CN
- China
- Prior art keywords
- light
- incident
- synthetic aperture
- plano
- convex lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Holo Graphy (AREA)
Abstract
本发明公开了一种光滑反射表面的合成孔径数字全息三维显微观测装置,该装置包括有光源、分光单元、空间滤波器、平凸透镜、平面反射镜、消偏振分光棱镜、光束调整器、旋转载物台、CMOS相机;本发明装置的光路为:光源出射的激光入射至分光单元中,经分光单元进行分光处理后输出照明光、参考光;两束光分别顺次经空间滤波器、平凸透镜进行扩束、整形;照明光经反射镜反射输出平行光透过消偏振分光棱镜,斜入射至旋转载物台上的观测目标的表面,物表面的反射光再入射至消偏振分光棱镜;参考光的角度和位置由光束调整器调整,也入射至消偏振分光棱镜;消偏振分光棱镜对入射的参考光、物光进行合光处理,得到合并光束,该合并光束形成的干涉全息图被CMOS相机的光敏面捕获。在获取中,通过旋转载物台的旋转,多次调整照明光的入射角度,得到包含有不同频率分量的物表面全息图,再进行融合,实现合成孔径数字全息三维显微观测。
The invention discloses a synthetic aperture digital holographic three-dimensional microscopic observation device with a smooth reflective surface. Reproduce the object stage and CMOS camera; the optical path of the device of the present invention is as follows: the laser light emitted by the light source is incident on the spectroscopic unit, and the illuminating light and reference light are output after the spectroscopic processing by the spectroscopic unit; The convex lens expands and shapes the beam; the illuminating light is reflected by the reflector, and the output parallel light passes through the depolarized beam splitter, obliquely incident on the surface of the observation target on the rotating stage, and the reflected light on the object surface is incident on the depolarized beam splitter again; The angle and position of the reference light are adjusted by the beam adjuster, and it also enters the depolarization beam splitter; the depolarization beam splitter combines the incident reference light and object light to obtain a combined beam, and the interference hologram formed by the combined beam is Captured by the photosensitive surface of a CMOS camera. During acquisition, through the rotation of the rotating stage, the incident angle of the illumination light is adjusted multiple times to obtain object surface holograms containing different frequency components, which are then fused to realize synthetic aperture digital holographic three-dimensional microscopic observation.
Description
技术领域 technical field
本发明涉及一种三维显微观测系统,更特别地说,是指一种针对光滑反射表面的合成孔径数字全息三维显微观测系统。The invention relates to a three-dimensional microscopic observation system, more particularly, to a synthetic aperture digital holographic three-dimensional microscopic observation system for smooth reflective surfaces.
背景技术 Background technique
数字全息技术是利用电荷耦合器件(Charge Coupled Device,CCD)或金属氧化物半导体(Complementary Metal-Oxide Semiconductor,CMOS)等光电成像探测器件来代替传统的成像胶片、干板等材料作为记录介质,数字化的记录全息图,再利用计算机模拟再现参考光对全息图进行照射,通过模拟全息图的光学衍射过程,以数字方法重构三维物光场,从而获得物光场的振幅和相位的信息,其优点包括:(1)以非接触方式获取物体三维信息,且无需对样品进行预处理,对观测样本影响非常小、系统结构简单等优点;(2)数字全息图的记录与再现过程都以数字化形式完成,因此能够以数字形式重构物光场并可以对物体三维信息进行定量分析;(3)在数字重构过程中,可方便的运用数字图像处理技术,矫正、补偿光学像差以及各种噪声和探测器非线性效应等的影响。Digital holography technology uses photoelectric imaging detection devices such as charge coupled devices (Charge Coupled Device, CCD) or metal oxide semiconductors (Complementary Metal-Oxide Semiconductor, CMOS) to replace traditional imaging films, dry plates and other materials as recording media. The hologram is recorded, and then the hologram is irradiated by the computer simulation reproduction reference light, and the three-dimensional object light field is digitally reconstructed by simulating the optical diffraction process of the hologram, so as to obtain the amplitude and phase information of the object light field. The advantages include: (1) The three-dimensional information of the object is obtained in a non-contact manner, and there is no need to preprocess the sample, the impact on the observed sample is very small, and the system structure is simple; (2) The recording and reproduction process of the digital hologram is digitalized form, so it can reconstruct the object light field in digital form and quantitatively analyze the three-dimensional information of the object; (3) in the process of digital reconstruction, digital image processing technology can be conveniently used to correct and compensate optical aberrations and various noise and detector non-linear effects.
然而,由于生产技术的制约,数字全息再现物光场的分辨率受光电图像传感器(CCD、CMOS)性能指标的制约,主要表现在两个方面:(1)光电图像传感器的像素尺寸较大(约3.5~10微米),无法记录较高的空间频率,仅能够记录与参考光夹角较小(约小于1°)的物光;(2)光电图像传感器光敏面的面积较小(约1cm×1cm),在同样的参物光夹角下,无法记录更高的空间频率。由于上述因素,特别是在长距离原位检测中,数字全息的分辨率受到了严重的制约。针对图像传感器光敏面积较小的特点,为了在保持一定工作距离的基础上获取较高分辨率的图像,数字全息中普遍利用合成孔径的方法来扩展光电成像探测器的等效分辨率和等效孔径。合成孔径的主要原理是分别采用不同方向的照明光照射观测目标的表面来获取全息图,再分别对多个全息图分别进行再现,进而将多幅再现图叠加,从而融合更多不同空间频率分量的物光信息,提高数字全息显微观测的分辨率。However, due to the constraints of production technology, the resolution of the light field of digital holographic reconstruction objects is restricted by the performance indicators of photoelectric image sensors (CCD, CMOS), mainly in two aspects: (1) the pixel size of photoelectric image sensors is large ( about 3.5-10 microns), unable to record higher spatial frequencies, and can only record object light with a small angle (less than 1°) with the reference light; (2) The area of the photosensitive surface of the photoelectric image sensor is small (about 1cm ×1cm), under the same angle between the reference light and the object light, higher spatial frequencies cannot be recorded. Due to the above factors, especially in long-distance in situ detection, the resolution of digital holography is severely restricted. In view of the characteristics of the small photosensitive area of the image sensor, in order to obtain a higher resolution image on the basis of maintaining a certain working distance, the method of synthetic aperture is generally used in digital holography to expand the equivalent resolution and equivalent resolution of the photoelectric imaging detector. aperture. The main principle of synthetic aperture is to irradiate the surface of the observation target with different directions of illumination light to obtain holograms, and then reproduce multiple holograms separately, and then superimpose multiple reconstructed images to fuse more different spatial frequency components. The object light information can improve the resolution of digital holographic microscopic observation.
现有的多照明合成孔径方法主要针对的是漫反射物体,其反射光分布范围较广,即使在多照明条件下图像传感器仍可以在同一位置进行全息图的获取。然而,若观测目标为光滑表面物体,则其反射光具有较强的指向性,在多方向光的照明下,图像传感器无法有效获取观测目标的被测面全息图。Existing multi-illumination synthetic aperture methods are mainly aimed at diffuse reflective objects, and the reflected light has a wide distribution range, and the image sensor can still acquire holograms at the same position even under multi-illumination conditions. However, if the observation target is an object with a smooth surface, the reflected light has strong directivity. Under the illumination of multi-directional light, the image sensor cannot effectively acquire the hologram of the measured surface of the observation target.
发明内容 Contents of the invention
本发明的目的是提出一种基于合成孔径数字全息的光滑表面三维显微观测装置,该装置一方面采用同轴旋转观测目标的方法实现对其的多角度照明;另一方面,为了消除物光偏移,在参考光路中设置了光束调整器;第三方面以非接触、原位探测的方式获取观测目标的光滑表面的三维信息。The object of the present invention is to propose a smooth surface three-dimensional microscopic observation device based on synthetic aperture digital holography. Offset, a beam adjuster is set in the reference optical path; the third aspect obtains the three-dimensional information of the smooth surface of the observation target in a non-contact and in-situ detection manner.
本发明的一种光滑反射表面的合成孔径数字全息三维显微观测装置,包括有光源、CMOS相机、分光单元、第一空间滤波器、第一平凸透镜、第三平面反射镜、光束调整器、旋转载物台、第二空间滤波器、第二平凸透镜、消偏振分光棱镜;其中,第一空间滤波器与第二空间滤波器的结构相同;第一平凸透镜与第二平凸透镜的结构相同;所述合成孔径数字全息三维显微观测装置的光路连接为:光源出射的激光通过分光单元分别输出照明光和参考光;A synthetic aperture digital holographic three-dimensional microscopic observation device with a smooth reflective surface of the present invention includes a light source, a CMOS camera, a spectroscopic unit, a first spatial filter, a first plano-convex lens, a third plane mirror, a beam adjuster, A rotating stage, a second spatial filter, a second plano-convex lens, and a depolarizing beamsplitter; wherein, the first spatial filter has the same structure as the second spatial filter; the first plano-convex lens has the same structure as the second plano-convex lens The optical path connection of the synthetic aperture digital holographic three-dimensional microscopic observation device is: the laser light emitted by the light source outputs the illumination light and the reference light respectively through the light splitting unit;
照明光顺次经过第一空间滤波器、第一平凸透镜和第三平面反射镜后,输出平行照明光入射至消偏振分光棱镜上;After the illumination light passes through the first spatial filter, the first plano-convex lens and the third plane reflector in sequence, the output parallel illumination light is incident on the depolarization beam splitter;
参考光顺次经过第二空间滤波器、第二平凸透镜和光束调整器后,输出调节后参考平行光入射至消偏振分光棱镜上;After the reference light passes through the second spatial filter, the second plano-convex lens and the beam adjuster in sequence, the output-adjusted reference parallel light is incident on the depolarization beam splitter;
平行照明光入射至消偏振分光棱镜的透射部分对放置于旋转载物台上的观测目标进行照明,被测表面反射的物光入射至消偏振分光棱镜上;The parallel illumination light is incident on the transmission part of the depolarization beam splitter to illuminate the observation target placed on the rotating stage, and the object light reflected by the measured surface is incident on the depolarization beam splitter;
物光入射至消偏振分光棱镜的反射部分与调节后参考平行光入射至消偏振分光棱镜的透射部分汇合为合成光束,该光束形成全息干涉图,并由CMOS相机的光敏面进行接收记录。The reflected part of the object light incident on the depolarizing beamsplitter prism and the transmitted part of the adjusted reference parallel light incident on the depolarizing beam splitting prism merge into a composite beam, which forms a holographic interferogram and is received and recorded by the photosensitive surface of the CMOS camera.
本发明的数字全息三维显微观测装置具有如下优点:The digital holographic three-dimensional microscopic observation device of the present invention has the following advantages:
①分光单元2可以精确控制照明光束21和参考光束22的偏振态方向和光强比。① The
②运用独立的光束调整器6,而非分光棱镜,来实现物光7a与调节后参考平行光6a的夹角调节,避免了在调节过程中物光的偏移,使得灵活快速的光路调节成为可能。② Using an independent beam adjuster 6 instead of a beam splitter prism to realize the adjustment of the angle between the
③采用旋转观测目标的方法,可以灵活快速地实现在不同入射角度的平行反射光10a照射观测目标的光滑表面的条件下,记录多幅数字全息图,从而为实现高分辨率的三维合成孔径成像提供多幅存在互补信息的再现物光场。③Using the method of rotating the observation target, it can flexibly and quickly record multiple digital holograms under the condition that the parallel reflected
④采用两路光(调节后参考平行光6a和物光7a)在消偏振分光棱镜10上进行合光处理输出合并光10b,可以通过数字全息记录方式获取待观测物体的三维信息。④Using two paths of light (reference
⑤本发明观测装置结构紧凑,操作方便。⑤ The observation device of the present invention is compact in structure and easy to operate.
附图说明 Description of drawings
图1是本发明三维显微观测装置的结构框图。Fig. 1 is a structural block diagram of the three-dimensional microscopic observation device of the present invention.
图1A是本发明分光单元的结构图。Fig. 1A is a structural diagram of the light splitting unit of the present invention.
图1B是本发明消偏振分光棱镜对光路的调整示意图。Fig. 1B is a schematic diagram of the adjustment of the optical path by the depolarization beam splitter prism of the present invention.
图2是本发明光束调整器结构图。Fig. 2 is a structural diagram of the beam adjuster of the present invention.
图2A是本发明光束调整器中第一夹具的分解图。Fig. 2A is an exploded view of the first clamp in the beam adjuster of the present invention.
图2B是本发明第一夹具中三角镜架的另一视角结构图。Fig. 2B is another structural view of the triangle frame in the first fixture of the present invention.
图3是本发明可旋转载物台的结构图。Fig. 3 is a structural diagram of the rotatable stage of the present invention.
图3A是本发明可旋转载物台中夹杆夹的结构图。Fig. 3A is a structural view of the clamp rod clamp in the rotatable stage of the present invention.
具体实施方式 Detailed ways
下面将结合附图和实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
参见图1所示,本发明是一种针对光滑反射表面的合成孔径数字全息三维显微观测装置,该装置主要包括有光源1、分光单元2、第一空间滤波器3、第一平凸透镜4、第三平面反射镜5、消偏振分光棱镜10、CMOS相机11、第二空间滤波器8、第二平凸透镜9、光束调整器6、旋转载物台7;其中,第一空间滤波器3与第二空间滤波器8的结构相同;第一平凸透镜4与第二平凸透镜9的结构相同。Referring to Fig. 1, the present invention is a synthetic aperture digital holographic three-dimensional microscopic observation device for smooth reflective surfaces. The device mainly includes a
(一)光源1(1)
在本发明中,光源1用于提供532nm的激光1a,即光信息,该光源提供了中心波长为532nm的单纵模激光,可以选取中国长春新产业光电技术有限公司的MSL-532nm半导体泵浦全固态激光器。In the present invention, the
(二)分光单元2(2)
参见图1A所示,分光单元2包含有A半波片201、偏振分光棱镜202、B半波片203、连续可调衰减器204;其中,A半波片201与B半波片203的结构相同。分光单元2一方面用于接收从光源1出射的中心波长为532nm的激光1a,另一方面将接收到的激光1a分为传播方向垂直、偏振方向相同的照明光21和参考光22。B半波片203放置于偏振分光棱镜202和连续可调衰减器204之间。其中,A半波片201用于将光源发射的激光1a进行偏振方向的调整,对照明光21和参考光22的光强比(1∶5~5∶1)进行初步调节;而B半波片203用于将经偏振分光棱镜202反射的激光进行偏振方向的调整,从而保证照明光21和参考光22的偏振方向相同;同时通过调节连续可调衰减器204可以进一步调节照明光21和参考光22的光强比,进而控制平行参考光10a和由待测物面反射的具有表面形貌信息的物光11a的光强比。A半波片201和B半波片203用于改变入射线偏振光的偏振方向,可以选取大恒新纪元科技股份有限公司生产的GCL-060411型号的石英零级半波片。1A, the
在本发明中,偏振分光棱镜202具有将一束入射光分为两束传播方向垂直、偏振方向正交的光。可以选取大恒新纪元科技股份有限公司生产的GCC-401102型号的偏振分光棱镜。In the present invention, the
在本发明中,连续可调衰减器204可根据圆盘的旋转而线性改变出射空间光光功率,可以是大恒新纪元科技股份有限公司生产的GCO-0704M圆形可调衰减器/分光镜。In the present invention, the continuously
(三)第一空间滤波器3(3) The first
在本发明中,空间滤波器3能够对一束入射的激光光束进行空间滤波,得到均匀的出射光斑,选取大恒新纪元科技股份有限公司生产的GCM-01M型空间滤波器。In the present invention, the
在本发明中,空间滤波器8能够对一束入射的激光光束进行空间滤波,得到均匀的出射光斑,选取大恒新纪元科技股份有限公司生产的GCM-01M型空间滤波器。In the present invention, the
(四)第一平凸透镜4(4) The first plano-
在本发明中,平凸透镜4用于对空间滤波器3的近似点光源出射光扩束为一定尺寸的平行光。选用大恒新纪元科技股份有限公司生产的GCL-010115型K9平凸透镜。In the present invention, the plano-
在本发明中,平凸透镜9用于对空间滤波器4的近似点光源出射光扩束为一定尺寸的平行光。选用大恒新纪元科技股份有限公司生产的GCL-010115型K9平凸透镜。In the present invention, the plano-
平凸透镜4和平凸透镜9分别安装在大恒新纪元科技股份有限公司生产的GCM-2701381M型号透镜/反射镜支架上。The plano-
(五)第三平面反射镜5(5) The third
在本发明中,反射镜5用于调整照明光的照明方向和位置,可以选取大恒新纪元科技股份有限公司生产的GCC-102102型号反射镜,安装在大恒新纪元科技股份有限公司生产的GCM-082305M型号二维调整架。In the present invention, the
(六)消偏振分光棱镜10(6)
在本发明中,消偏振分光棱镜10具有将两束传播方向垂直的入射光合成一束光。选取新加坡Edmund Optics Singapore Pte Ltd.公司生产的NT49-004型号消偏振分光棱镜。In the present invention, the depolarizing beam-splitting
参见图1B所示,照明平行光5a透过消偏振分光棱镜10后转换成平行反射光10a,该平行反射光10a照射在被放置于旋转载物台7上的观测目标72的光滑表面上,在所述光滑表面发生反射形成物光7a,物光7a被消偏振分光棱镜10反射后并与调节后参考平行光6a进行部分汇合输出合并光10b,该合并光10b能够被CMOS相机11接收,成为全息图(即观测目标72的光滑表面的三维信息)。在本发明中,采用消偏振分光棱镜10与观测目标72的光滑表面形成镜面反射关系,利用调节后参考平行光6a与物光7a合并,使得合并光10b能够在CMOS相机11的接收光敏面发生干涉,形成全息图。Referring to Fig. 1B, the illuminating
(七)CMOS相机11(7)
在本发明中,CMOS相机7可以选取加拿大Lumenera公司生产、型号为LU125M-WOIR、分辨率为1280×1024像素、帧频为15fps、光敏面尺寸为2/3英寸、信号接口为USB2.0。In the present invention, the
(八)光束调整器6(8)
参见图2所示,光束调整器6包括有齿轮齿条平移台、第一夹具63、第二夹具64、第一支撑杆65、升降杆66、第二支撑杆67、第一平面反射镜68和第二平面反射镜69;其中,第一夹具63与第二夹具64的结构相同;第一平面反射镜68与第二平面反射镜69的结构相同。第一夹具63安装在第一支撑杆65上,第二夹具64安装在第二支撑杆67上。2, the
第一支撑杆65、升降杆66和第二支撑杆67为圆筒结构,升降杆66的一端上安装第一支撑杆65,升降杆66的另一端上安装第二支撑杆67。通过安装在升降杆66内的长度(第一支撑杆65、第二支撑杆67各自的长度)来调节第一平面反射镜68与第二平面反射镜69之间的高度。第一支撑杆65的另一端穿过第一夹具63的夹持架634的A通孔634a后安装在齿轮齿条平移台的Y轴向基座62上。The
参见图2A所示,第一夹具63包括有三角镜架631、U形架632、转台633和夹持架634;Referring to FIG. 2A , the
第一平面反射镜68安装在三角镜架631的圆盘631a内;The
参见图2B所示,三角镜架631一侧的侧板上设有A销孔(图2A中未示出),三角镜架631另一侧的侧板上设有B销孔631b,三角镜架631的底板上设有锁紧杆631c;A销孔内安装有U形架632上A凸耳632a,B销孔631b内安装有U形架632上B凸耳632b,锁紧杆631c插入U形架632的矩形孔632c内,并通过螺钉顶紧;三角镜架631通过两侧侧板上的两个销孔与U形架632上的两个凸耳实现活动安装,为了调整第一平面反射镜68与第二平面反射镜69之间的相对位置,通过螺钉顶紧锁紧杆631c实现。即第一夹具63上的第一平面反射镜68向上抬起的仰视角度,第二夹具64上的第二平面反射镜69向下的俯视角度,这都是为了保证照射在第一平面反射镜68镜面上参考平行光9a能够照射在第二平面反射镜69上后形成调节后参考平行光6a。Referring to Fig. 2B, the side plate on one side of the
U形架632的一侧立板上设有A凸耳632a,U形架632的另一侧立板上设有B凸耳632b,U形架632的底部设有一圆台(图2A中未示出);A凸耳632a安装在三角镜架631的A销孔内,B凸耳632b安装在三角镜架631的B销孔内631b,圆台安装在转台633的圆孔633a内;One side vertical plate of
夹持架634上设有A通孔634a、B通孔634b和限位槽634c;A通孔634a用于第一支撑杆65的一端穿过,并通过螺钉使第一夹具63夹紧安装在第一支撑杆65上;B通孔634b内安装有转台633,转台633上的A限位板633b和B限位板633c置于限位槽634c内;A限位板633b和B限位板633c与螺钉的配合能够实现第一平面反射镜68在圆台(设在U形架632的底部)的轴向上的调节。The
齿轮齿条平移台包括X轴向基座61和Y轴向基座62,Y轴向基座62垂直安装在X轴向基座61上,Y轴向基座62上安装有第一支撑杆65的一端;The rack and pinion translation table includes an
本发明设计的光束调整器6用于调整参考平行光9a的角度和位置,从而控制调节后参考平行光6a与物光7a的夹角。当参考平行光9a照射到第一平面反射镜68时,参考平行光9a经反射后照射至第二平面反射镜69上,再反射后形成调节后参考平行光6a出射;通过调节两个反射镜的旋转、俯仰能够使经第二平面反射镜69反射的调节后参考平行光6a达到最佳的出射角度。在本发明中,通过改变第一夹具63与第二夹具64之间的相对高度,在不改变参考平行光9a方向的前提下,分别粗调、细调出射光束的高度;然后通过调整齿轮齿条平移台调节出射光束的照明横向位置。The
在本发明中,光束调整器6中的齿轮齿条平移台(包括有X轴向基座61、Y轴向基座62)可以选用大恒新纪元科技股份有限公司的GCM-150101M型齿轮齿条平移台。In the present invention, the rack and pinion translation stage (including the
在本发明中,光束调整器6中的第一平面反射镜68与第二平面反射镜69的可以选用大恒新纪元科技股份有限公司的GCO-11光束提升器中的可调反射镜机构。In the present invention, the
(九)旋转载物台7(9)
参见图3所示,旋转载物台7包括有三维调节镜架71、第四支撑杆73、支杆夹74、第三支撑杆75、磁性底座76。Referring to FIG. 3 , the
参见图3A所示,支杆夹74上设有X轴向通孔741和Y轴向通孔742;X轴向通孔741用于第四支撑杆73穿过,当第四支撑杆73穿过后,通过螺钉使第四支撑杆73锁紧在X轴向通孔741内;穿过X轴向通孔741的第四支撑杆73的一端安装在三维调节镜架71上;Y轴向通孔742用于第三支撑杆75穿过,当第三支撑杆75穿过后,通过螺钉使第三支撑杆75锁紧在Y轴向通孔742内;穿过Y轴向通孔742的第三支撑杆75的一端安装在磁性底座76上。Referring to FIG. 3A , the
观测目标72安装在三维调节镜架71的载物台上。The
在本发明中,旋转载物台7用以调整观测目标72的表面反射光的角度,同时通过旋转,可以使得在反射物光角度不变的情况下,获得观测目标表面不同角度照明的物光,实现光滑反射表面的多照明合成孔径全息记录。In the present invention, the
在本发明中,旋转载物台7中的三维角度调节镜架71可以选用北京北光世纪仪器有限公司的PM301型三维角度调节镜架。In the present invention, the three-dimensional angle
磁性底座76放置于铁制平台上,位置调整完毕后,可通过磁性开关进行位置固定;支杆夹74安装在第二支撑杆75上,可进行高度调节,并通过拧紧螺钉锁止,第四支撑杆73安装于支杆夹74上,与第三支撑杆75相互垂直,同样通过拧紧螺钉锁止。The
本发明设计的针对光滑反射表面的合成孔径数字全息三维显微观测装置的光路连接为:光源1出射的532nm激光1a通过分光单元2,分别输出照明光21和参考光22;The optical path connection of the synthetic aperture digital holographic three-dimensional microscopic observation device designed for smooth reflective surfaces in the present invention is as follows: the 532nm laser light 1a emitted by the
照明光21顺次经过空间滤波器3、平凸透镜4和反射镜5后,输出平行照明光5a,该照明光5a入射至消偏振分光棱镜10;After the illuminating light 21 passes through the
参考光22顺次经过空间滤波器8、平凸透镜9和光束调整器6后,输出调节后参考平行光6a,该调节后参考平行光6a入射至消偏振分光棱镜10;After the reference light 22 passes through the
平行照明光5a入射至消偏振分光棱镜10的透射部分10a对放置于旋转载物台7上的观测目标体进行照明,被测表面反射的物光11a入射至消偏振分光棱镜10;The parallel illuminating light 5a is incident on the
物光11a入射至消偏振分光棱镜10的反射部分与调节后参考平行光6a入射至消偏振分光棱镜10的透射部分汇合为合成光束10b,该光束形成全息干涉图,并由CMOS相机7的光敏面进行接收记录。The reflected part of the object light 11a incident on the depolarizing beam-splitting
本发明中,由分光耦合单元2分出的空间平行光21顺次经第一空间滤波器3、第一平凸透镜4、反射镜5后,形成的平行光5a入射至消偏振分光棱镜10,透射部分10a照射在放置于旋转载物台7上的观测目标体表面后,反射形成具有物面信息的物光11a,入射至消偏振分光棱镜10,该路光路可以称为物光光路。In the present invention, after the spatially parallel light 21 separated by the light
本发明中,由分光耦合单元2分出的空间平行光22经空间滤波器8、平凸透镜9、光束调节器10后,形成的平行光10a入射至消偏振分光棱镜10,该路光路可以称为参考光路。In the present invention, after the spatially parallel light 22 separated by the light
通过调整所述物光光路中旋转载物台的角度,可以改变照射在待观测物体的入射角,从而使CMOS相机11记录多幅数字全息图。之后通过对CMOS相机11采集的多幅数字全息图运用数字方法合成、重构,从而扩展所获得的物光频谱范围,增大系统的等效孔径,从而获得高分辨率、低噪声的物体三维立体像。By adjusting the angle of the rotating stage in the optical path of the object light, the incident angle irradiated on the object to be observed can be changed, so that the
本法明设计的物光光路中,照明光对放置于旋转载物台7的待观测物体采用非接触工作方式,通过旋转待测物体,多角度原位获取物体的三维信息,且无透镜相差影响。In the object light path designed by Faming, the illumination light adopts a non-contact working mode for the object to be observed placed on the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102807587A CN102278952B (en) | 2010-09-14 | 2010-09-14 | Three-dimensional micro-observation apparatus for smooth reflective surface on the basis of synthetic aperture in digital holography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102807587A CN102278952B (en) | 2010-09-14 | 2010-09-14 | Three-dimensional micro-observation apparatus for smooth reflective surface on the basis of synthetic aperture in digital holography |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102278952A true CN102278952A (en) | 2011-12-14 |
CN102278952B CN102278952B (en) | 2012-09-05 |
Family
ID=45104543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102807587A Expired - Fee Related CN102278952B (en) | 2010-09-14 | 2010-09-14 | Three-dimensional micro-observation apparatus for smooth reflective surface on the basis of synthetic aperture in digital holography |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102278952B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102589417A (en) * | 2012-03-13 | 2012-07-18 | 北京航空航天大学 | All-fiber pre-amplification digital holography three-dimensional microscopic observation device |
CN103224131A (en) * | 2013-04-27 | 2013-07-31 | 国家电网公司 | Automatic calibration device for transverse shift during steel plate transportation process |
CN103292690A (en) * | 2013-05-29 | 2013-09-11 | 浙江大学 | Synthetic aperture microscopy method and device on basis of light field selection |
CN103335592A (en) * | 2013-06-21 | 2013-10-02 | 南京师范大学 | Double Lloyd's mirror digital holographic microscopic measurement method |
CN103913127A (en) * | 2013-11-26 | 2014-07-09 | 北京航空航天大学 | Digital holography spherical surface type detection device based on subaperture phase stitching |
CN105300312A (en) * | 2015-11-30 | 2016-02-03 | 北京航空航天大学 | High-numerical-aperture hemispherical detection system based on digital holography |
CN106791464A (en) * | 2016-12-02 | 2017-05-31 | 中国科学院光电技术研究所 | Digital coaxial holographic microscopic control system |
CN108713127A (en) * | 2016-05-26 | 2018-10-26 | Ckd株式会社 | Three-dimensional measuring apparatus |
CN109540093A (en) * | 2018-12-26 | 2019-03-29 | 江阴市中兴光电实业有限公司 | A kind of high-speed rail monitoring spherical prism regulating device |
CN111538130A (en) * | 2020-05-09 | 2020-08-14 | 白城师范学院 | A kind of adjustment mechanism of quantum optical module and adjustment method thereof |
CN115267823A (en) * | 2022-08-24 | 2022-11-01 | 中国科学院长春光学精密机械与物理研究所 | Pore size synthesis method |
CN116299933A (en) * | 2023-05-18 | 2023-06-23 | 北京盛镭科技有限公司 | Optical adjustment frame, adjustment method, optical assembly and optical system |
CN119165641A (en) * | 2024-11-25 | 2024-12-20 | 成都曙创大能科技有限公司 | A multi-axis rotation center coplanar microscope and debugging method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07117366B2 (en) * | 1985-08-22 | 1995-12-18 | 株式会社トプコン | Holographic interferometer |
US5671050A (en) * | 1994-11-07 | 1997-09-23 | Zygo Corporation | Method and apparatus for profiling surfaces using diffracative optics |
EP1714111A1 (en) * | 2004-02-11 | 2006-10-25 | Qinetiq Limited | Surface shape measurement apparatus and method |
CN101089550A (en) * | 2007-07-13 | 2007-12-19 | 上海大学 | Apparatus and method for shape measurement of transparent or reflective objects based on digital micromirror and data synthesis technology |
CN101514892A (en) * | 2009-04-03 | 2009-08-26 | 北京航空航天大学 | In-situ three-dimensional microscopic observation device with long working distance based on digital holography |
CN101629813A (en) * | 2009-07-29 | 2010-01-20 | 天津大学 | Measuring method of 3D profilometry of free-form surface based on computer-generated hologram |
CN101634548A (en) * | 2009-09-01 | 2010-01-27 | 北京航空航天大学 | Digital hologram three-dimensional microscopy observation device with optical fiber-space light synthetic aperture |
CN101788273A (en) * | 2010-02-05 | 2010-07-28 | 北京航空航天大学 | Digital holographic three-dimensional microscopic observation device based on multi-polarization state synthesis |
-
2010
- 2010-09-14 CN CN2010102807587A patent/CN102278952B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07117366B2 (en) * | 1985-08-22 | 1995-12-18 | 株式会社トプコン | Holographic interferometer |
US5671050A (en) * | 1994-11-07 | 1997-09-23 | Zygo Corporation | Method and apparatus for profiling surfaces using diffracative optics |
EP1714111A1 (en) * | 2004-02-11 | 2006-10-25 | Qinetiq Limited | Surface shape measurement apparatus and method |
CN101089550A (en) * | 2007-07-13 | 2007-12-19 | 上海大学 | Apparatus and method for shape measurement of transparent or reflective objects based on digital micromirror and data synthesis technology |
CN101514892A (en) * | 2009-04-03 | 2009-08-26 | 北京航空航天大学 | In-situ three-dimensional microscopic observation device with long working distance based on digital holography |
CN101629813A (en) * | 2009-07-29 | 2010-01-20 | 天津大学 | Measuring method of 3D profilometry of free-form surface based on computer-generated hologram |
CN101634548A (en) * | 2009-09-01 | 2010-01-27 | 北京航空航天大学 | Digital hologram three-dimensional microscopy observation device with optical fiber-space light synthetic aperture |
CN101788273A (en) * | 2010-02-05 | 2010-07-28 | 北京航空航天大学 | Digital holographic three-dimensional microscopic observation device based on multi-polarization state synthesis |
Non-Patent Citations (1)
Title |
---|
《光学精密工程》 20080531 于瀛洁等 基于全息图放大的数字全息显微结构测量 827-831 第16卷, 第5期 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102589417B (en) * | 2012-03-13 | 2013-12-18 | 北京航空航天大学 | All-fiber pre-amplification digital holography three-dimensional microscopic observation device |
CN102589417A (en) * | 2012-03-13 | 2012-07-18 | 北京航空航天大学 | All-fiber pre-amplification digital holography three-dimensional microscopic observation device |
CN103224131A (en) * | 2013-04-27 | 2013-07-31 | 国家电网公司 | Automatic calibration device for transverse shift during steel plate transportation process |
CN103224131B (en) * | 2013-04-27 | 2016-07-06 | 国家电网公司 | Lateral shift self-checking device in a kind of steel plate transport process |
CN103292690A (en) * | 2013-05-29 | 2013-09-11 | 浙江大学 | Synthetic aperture microscopy method and device on basis of light field selection |
CN103292690B (en) * | 2013-05-29 | 2016-01-20 | 浙江大学 | A kind of synthetic aperture microscope equipment selected based on light field |
CN103335592A (en) * | 2013-06-21 | 2013-10-02 | 南京师范大学 | Double Lloyd's mirror digital holographic microscopic measurement method |
CN103335592B (en) * | 2013-06-21 | 2016-01-27 | 南京师范大学 | Two Lloyd's mirror digital holographic micro-measuring method |
CN103913127A (en) * | 2013-11-26 | 2014-07-09 | 北京航空航天大学 | Digital holography spherical surface type detection device based on subaperture phase stitching |
CN105300312B (en) * | 2015-11-30 | 2017-12-15 | 北京航空航天大学 | A kind of high-NA hemisphere face shape detecting system based on digital hologram |
CN105300312A (en) * | 2015-11-30 | 2016-02-03 | 北京航空航天大学 | High-numerical-aperture hemispherical detection system based on digital holography |
CN108713127B (en) * | 2016-05-26 | 2021-06-29 | Ckd株式会社 | Three-dimensional measuring device |
CN108713127A (en) * | 2016-05-26 | 2018-10-26 | Ckd株式会社 | Three-dimensional measuring apparatus |
CN106791464A (en) * | 2016-12-02 | 2017-05-31 | 中国科学院光电技术研究所 | Digital coaxial holographic microscopic control system |
CN109540093A (en) * | 2018-12-26 | 2019-03-29 | 江阴市中兴光电实业有限公司 | A kind of high-speed rail monitoring spherical prism regulating device |
CN109540093B (en) * | 2018-12-26 | 2024-03-29 | 江阴市中兴光电实业有限公司 | Spherical prism adjusting device for monitoring high-speed rail |
CN111538130A (en) * | 2020-05-09 | 2020-08-14 | 白城师范学院 | A kind of adjustment mechanism of quantum optical module and adjustment method thereof |
CN111538130B (en) * | 2020-05-09 | 2022-02-25 | 白城师范学院 | A kind of adjustment mechanism of quantum optical module and adjustment method thereof |
CN115267823A (en) * | 2022-08-24 | 2022-11-01 | 中国科学院长春光学精密机械与物理研究所 | Pore size synthesis method |
CN116299933A (en) * | 2023-05-18 | 2023-06-23 | 北京盛镭科技有限公司 | Optical adjustment frame, adjustment method, optical assembly and optical system |
CN116299933B (en) * | 2023-05-18 | 2023-07-21 | 北京盛镭科技有限公司 | Optical adjustment frame, adjustment method, optical assembly and optical system |
CN119165641A (en) * | 2024-11-25 | 2024-12-20 | 成都曙创大能科技有限公司 | A multi-axis rotation center coplanar microscope and debugging method |
Also Published As
Publication number | Publication date |
---|---|
CN102278952B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102278952A (en) | Three-dimensional micro-observation apparatus for smooth reflective surface on the basis of synthetic aperture in digital holography | |
TWI671501B (en) | Method and white light interferometer for characterizing a sample, method for processing white light interferometric data from a sample with a patterned structure, and white light interferometer for measuring a sample with a patterned structure | |
CN101514892B (en) | A Long Working Distance In-Situ 3D Microscopic Observation Device Based on Digital Holography | |
CN102278951B (en) | Digital holography-based three-dimensional micro-observation apparatus for cell dynamic of living organism | |
KR101152798B1 (en) | 3d measurement apparatus using dual wave digital holography | |
CN105066908B (en) | A kind of digital hologram three-dimensional Shape measure device based on multi-wavelength and multi-polarization state | |
CN101634548B (en) | A Digital Holographic 3D Microscopic Observation Device of Optical Fiber-Space Light Synthetic Aperture | |
CN103092049A (en) | All-solid digital holography imaging system capable of reducing speckle noise | |
CN106403836B (en) | Deformation and slope simultaneous measurement device and measurement method based on digital speckle interference | |
CN101788273B (en) | Digital holographic three-dimensional microscopic observation device based on multi-polarization state synthesis | |
CN101983313A (en) | Apparatus and method for measuring surface topography of an object | |
CN104006763A (en) | Digital holographic three-dimensional appearance detecting device based on multiple wavelengths | |
CN102425998B (en) | Full parameter detection apparatus of polished surface quality of optical element and detection method thereof | |
CN102288128A (en) | Three-dimensional microscopic observing device for recording and synthesizing digital hologram through rotating polarizing state of linearly polarized light | |
JP2000510951A (en) | Optical measurement | |
CN105159044A (en) | Reflective microscopic imaging device based on dual-wavelength digital holographic technology | |
CN112945130A (en) | Ultrafast microscopic imaging system for simultaneously obtaining depth and surface information | |
KR20230043060A (en) | Systems and methods for concurrent measurements of interferometric and ellipsometric signals of multi-layer thin films | |
CN105277136B (en) | Transmission microscope imaging device and method based on dual-wavelength digital holography technology | |
CN201407997Y (en) | A three-dimensional microscope observation device | |
CN100492179C (en) | Interferometer | |
CN103217209A (en) | Micro-vibration real-time surface detection device based on digital holography | |
CN107923735B (en) | Method and device for deducing the topography of an object surface | |
CN105676614A (en) | Three-viewing-angle single-hologram multi-beam combination recording system | |
JP2016148569A (en) | Image measuring method and image measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20130914 |