CN102270659B - 一种多栅指GaN HEMTs - Google Patents
一种多栅指GaN HEMTs Download PDFInfo
- Publication number
- CN102270659B CN102270659B CN201110229091A CN201110229091A CN102270659B CN 102270659 B CN102270659 B CN 102270659B CN 201110229091 A CN201110229091 A CN 201110229091A CN 201110229091 A CN201110229091 A CN 201110229091A CN 102270659 B CN102270659 B CN 102270659B
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- gate
- finger
- gan hemts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 3
- 230000002035 prolonged effect Effects 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 239000011295 pitch Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41758—Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种多栅指GaN HEMTs,属于半导体器件技术领域。该多栅指GaN HEMTs的栅指分为等温栅指和变温栅指,等温栅指的各个栅指之间的距离为变温栅指的各个栅指之间的距离为Lgg,OUT,i=Lgg,IN+a(4i3+3i2+i)。在上述基础上对GaN HEMTs的各个栅指位置进行设计,使得其在工作时,温度最高的栅指的温度降低,即GaN HEMTs的沟道温度降低,提高了GaN HEMTs的输出功率,延长了GaN HEMTs的工作寿命。
Description
技术领域
本发明涉及半导体器件技术领域,特别涉及一种多栅指GaN HEMTs。
背景技术
GaN HEMTs在功率放大领域具有非常广泛的应用前景,GaN HEMTs在工作过程中,受自热效应影响,沟道温度非常高,这也是导致GaN HEMTs性能下降、寿命缩短的主重要因素。目前,GaN HEMTs结构设计中,栅指的栅间距都是相等的,参见附图1,但是,由于各个栅指下方热源区互相耦合情况不同,并且,不同位置栅指散热条件不同,导致GaN HEMTs在工作时,各个栅指的温度不相等,内部栅指温度较高,外部栅指温度较低,参见附图2,而GaN HEMTs的沟道温度与温度最高的栅指的温度相同。较高的沟道温度将导致GaN HEMTs的输出功率减小,失效加快寿命缩短。为了抑制GaN HEMTs的自热效应,需要降低GaN HEMTs的沟道温度,即降低GaN HEMTs工作时温度最高的栅指的温度。
发明内容
为了解决上述问题,本发明提出了一种通过重新安排GaN HEMTs各个栅指之间的距离,使得其在工作时,温度最高的栅指的温度降低,从而,使GaN HEMTs沟道温度降低的多栅指GaN HEMTs。
本发明提供的多栅指GaN HEMTs,包括栅指,所述栅指分为等温栅指和变温栅指,
所述等温栅指的各个栅指之间的距离为:
其中,
Lgg,IN-多栅指GaN HEMTs等温栅指的各个栅指之间的距离,μm;
n1-多栅指GaN HEMTs等温栅指的单侧栅指间间隔的数量;
L0-等栅间距的GaN HEMTs的各个栅指之间的距离,μm;
WIN-等栅间距的GaN HEMTs等温栅指的单侧总长度,μm;
Wop-多栅指GaN HEMTs与等栅间距的GaN HEMTs相比,等温栅指的单侧补偿长度,μm;
所述变温栅指的各个栅指之间的距离为:
Lgg,OUT,i=Lgg,IN+a(4i3+3i2+i),
其中,
i-从多栅指GaN HEMTs中心向边缘对变温栅指之间的间隔进行计数时对应的索引值;
n2-多栅指GaN HEMTs的变温栅指的单侧栅指间间隔的数量;
i的取值范围从1到n2;
L0-等栅间距的GaN HEMTs各个栅指之间的距离,μm;
Lgg,OUT-多栅指GaN HEMTs变温栅指的各个栅指之间的距离,μm;
WOUT-多栅指GaN HEMTs变温栅指的单侧总长度,μm;
a-多栅指GaN HEMTs变温栅指的各个栅指之间距离的渐变系数。作为优选,所述a的计算公式为
其中,
a0-与用于制造GaN HEMTs的材质的热特性有关,取值范围从0到0.5;
Lgg,IN-多栅指GaN HEMTs等温栅指的各个栅指之间的距离;
n2-多栅指GaN HEMTs变温栅指的单侧栅指间间隔的数量。
本发明提供的多栅指GaN HEMTs的有益效果在于:
本发明提供的多栅指GaN HEMTs,对GaN HEMTs的各个栅指位置进行设计,使得其在工作时,温度最高的栅指的温度降低,即GaN HEMTs的沟道温度降低,提高了GaN HEMTs的输出功率,延长了GaN HEMTs的工作寿命。
附图说明
图1为现有等栅间距的GaN HEMTs结构示意图;
图2为现有等栅间距的GaN HEMTs单侧的栅指温度-X-方向位置曲线图;
图3为本发明实施例提供的GaN HEMTs结构示意图;
图4为本发明实施例提供的GaN HEMTs单侧各个栅指位置与现有等栅间距的GaN HEMTs各个栅指位置的比较示意图;
图5为本发明实施例提供的GaN HEMTs单侧的栅指温度-X-方向位置曲线图。
具体实施方式
为了深入了解本发明,下面结合附图及具体实施例对本发明进行详细说明。
为了计算和表达方便,本发明实施例将下述计算数值在误差范围内进行了适当的修约。
参见附图3,本发明实施例提供的多栅指GaN HEMTs包括20个栅指,该20个栅指分为等温栅指1和变温栅指2,
参见附图4,
等温栅指1的各个栅指之间的距离为
其中,
Lgg,IN-本发明实施例提供的多栅指GaN HEMTs等温栅指的各个栅指之间的距离,μm;
n1-本发明实施例提供的多栅指GaN HEMTs等温栅指的单侧栅指间间隔的数量,本实施例中n1=7;
L0-现有等栅间距的GaN HEMTs各个栅指之间的距离,本实施例中L0=30μm,现有等栅间距的GaN HEMTs各个栅指之间的距离之和为30×19=570μm;
WIN-现有等栅间距的GaN HEMTs等温栅指的单侧总长度,本实施例中WIN=195μm;
Wop-本发明实施例提供的多栅指GaN HEMTs与现有等栅间距的GaNHEMTs相比,等温栅指的单侧补偿长度,本实施例中,Wop=13μm;
将上述n1=7,L0=30μm,WIN=195μm,Wop=13μm分别代入公式
得出,Lgg,IN=32μm。
变温栅指的各个栅指之间的距离为
Lgg,OUT,i=Lgg,IN+a(4i3+3i2+i)
其中,
i-从本发明实施例提供的多栅指GaN HEMTs中心向边缘对变温栅指之间的间隔进行计数时对应的索引值;
n2-本发明实施例提供的多栅指GaN HEMTs变温栅指的单侧栅指间间隔的数量,本实施例中,n2=3;
i的取值范围从1到n2,本实施例中,i的取值可以分别为1、2、3;
L0-现有等栅间距的GaN HEMTs各个栅指之间的距离,本实施例中,Lgg,IN=32μm;
Lgg,OUT-本发明实施例提供的多栅指GaN HEMTs变温栅指的各个栅指之间的距离,本实施例中,分别为附图4中所示的Lgg,OUT,1、Lgg,OUT,2、Lgg,OUT,3,μm;
WOUT-本发明实施例提供的多栅指GaN HEMTs变温栅指的单侧总长度,本实施例中,WOUT=74.8μm;
a-本发明实施例提供的多栅指GaN HEMTs变温栅指的各个栅指之间距离的渐变系数,本实施例中,a=-0.1。
将Lgg,IN=32μm,a=-0.1,i分别为1、2、3代入公式
Lgg,OUT,i=Lgg,IN+a(4i3+3i2+i)
得出,
Lgg,OUT,1=32-0.1×(4×13+3×12+1)=32-0.8=31.2μm
Lgg,OUT,2=32-0.1×(4×23+3×22+2)=32-4.6=27.4μm
Lgg,OUT,3=32-0.1×(4×33+3×32+3)=32-13.8=16.2μm验证,得
其中,a的计算公式为
其中,
a0-与用于制造GaN HEMTs的材质的热特性有关,取值范围从0到0.5,本实施例中,a0≈0.0844;
Lgg,IN-本发明提供的多栅指GaN HEMTs等温栅指的各个栅指之间的距离,μm;
n2-本发明实施例提供的多栅指GaN HEMTs变温栅指的的单侧栅指间间隔的数量,本实施例中,n2=3;
将a0=0.0844,Lgg,IN=32μm,n2=3代入公式
得出,
由于计算过程中修约造成的误差,为了计算和表达方便,本发明实施例对上述计算所得的Lgg,OUT,3进行了适当调整,将Lgg,OUT,3由16.2μm调整为18.4μm。
即,
Lgg,IN=32μm,
Lgg,OUT,1=31.2μm,Lgg,OUT,2=27.4μm,Lgg,OUT,3=18.4μm。
以本发明提供的多栅指GaN HEMTs在x方向的中轴线为纵轴,计算本发明提供的多栅指GaN HEMTs单侧的各个栅指在x方向的位置坐标分别为
x1=16μm、x2=48μm,x3=80μm,x4=112μm,x5=144μm,x6=176μm,x7=208μm,x8=239.2μm,x9=266.6μm,x10=285μm。
本发明提供的多栅指GaN HEMTs另一侧的各个栅指在x方向的位置坐标分别为
x1=-16μm、x2=-48μm,x3=-80μm,x4=-112μm,x5=-144μm,x6=-176μm,x7=-208μm,x8=-239.2μm,x9=-266.6μm,x10=-285μm。
本发明提供的多栅指GaN HEMTs各个栅指之间的距离之和为285×2=570μm。
附图5为本发明实施例提供的GaN HEMTs单侧的栅指温度-X-方向位置曲线图,与附图2进行比较,在附图5中温度最高的栅指的最高温度降低,即GaNHEMTs的沟道温度降低。
本发明提供的多栅指GaN HEMTs,对GaN HEMTs的各个栅指位置进行设计,使得其在工作时,温度最高的栅指的温度降低,即GaN HEMTs的沟道温度降低,提高了GaN HEMTs的输出功率,延长了GaN HEMTs的工作寿命。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (1)
1.一种多栅指GaN HEMTs,包括栅指,其特征在于,所述栅指分为等温栅指和变温栅指,
所述等温栅指的各个栅指之间的距离为:
其中,
Lgg,IN-多栅指GaN HEMTs等温栅指的各个栅指之间的距离,μm;
n1-多栅指GaN HEMTs等温栅指的单侧栅指间间隔的数量;
L0-等栅间距的GaN HEMTs的各个栅指之间的距离,μm;
WIN-等栅间距的GaN HEMTs等温栅指的单侧总长度,μm;
Wop-多栅指GaN HEMTs与等栅间距的GaN HEMTs相比,等温栅指的单侧补偿长度,μm;
所述变温栅指的各个栅指之间的距离为:
Lgg,OUT,i=Lgg,IN+a(4i3+3i2+i),
其中,
i-从多栅指GaN HEMTs中心向边缘对变温栅指之间的间隔进行计数时对应的索引值;
n2-多栅指GaN HEMTs的变温栅指的单侧栅指间间隔的数量;
i的取值范围从1到n2;
L0-等栅间距的GaN HEMTs各个栅指之间的距离,μm;
Lgg,OUT-多栅指GaN HEMTs变温栅指的各个栅指之间的距离,μm;
WOUT-多栅指GaN HEMTs变温栅指的单侧总长度,μm;
a-多栅指GaN HEMTs变温栅指的各个栅指之间距离的渐变系数;
所述a的计算公式为
其中,
a0-与用于制造GaN HEMTs的材质的热特性有关,取值范围从0到0.5;
Lgg,IN-多栅指GaN HEMTs等温栅指的各个栅指之间的距离;
n2-多栅指GaN HEMTs变温栅指的单侧栅指间间隔的数量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110229091A CN102270659B (zh) | 2011-08-11 | 2011-08-11 | 一种多栅指GaN HEMTs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110229091A CN102270659B (zh) | 2011-08-11 | 2011-08-11 | 一种多栅指GaN HEMTs |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102270659A CN102270659A (zh) | 2011-12-07 |
CN102270659B true CN102270659B (zh) | 2012-09-26 |
Family
ID=45052888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110229091A Active CN102270659B (zh) | 2011-08-11 | 2011-08-11 | 一种多栅指GaN HEMTs |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102270659B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9331154B2 (en) * | 2013-08-21 | 2016-05-03 | Epistar Corporation | High electron mobility transistor |
CN110416296B (zh) * | 2018-04-26 | 2021-03-26 | 苏州能讯高能半导体有限公司 | 半导体器件、半导体芯片及半导体器件制作方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07142512A (ja) * | 1993-11-12 | 1995-06-02 | Hitachi Ltd | 半導体装置 |
EP2088620B1 (en) * | 2006-11-02 | 2016-03-16 | Kabushiki Kaisha Toshiba | Semiconductor device |
KR100873892B1 (ko) * | 2007-02-27 | 2008-12-15 | 삼성전자주식회사 | 멀티 핑거 트랜지스터 |
JP5106041B2 (ja) * | 2007-10-26 | 2012-12-26 | 株式会社東芝 | 半導体装置 |
JP2010278280A (ja) * | 2009-05-29 | 2010-12-09 | Toshiba Corp | 高周波半導体装置 |
-
2011
- 2011-08-11 CN CN201110229091A patent/CN102270659B/zh active Active
Non-Patent Citations (2)
Title |
---|
JP特开2010-278280A 2010.12.09 |
JP特开平7-142512A 1995.06.02 |
Also Published As
Publication number | Publication date |
---|---|
CN102270659A (zh) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramasubramaniam et al. | Mn-doped monolayer MoS 2: An atomically thin dilute magnetic semiconductor | |
JP7217236B2 (ja) | 半導体電力変換デバイス用の集積ゲートレジスタ | |
CN102270659B (zh) | 一种多栅指GaN HEMTs | |
WO2021017348A1 (zh) | Igbt物理模型参数提取方法 | |
WO2009054315A1 (ja) | 排ガス浄化用触媒 | |
WO2019157820A1 (zh) | 具有复合栅的igbt芯片 | |
WO2015178050A1 (ja) | 電界効果トランジスタ | |
CN104134666A (zh) | 半导体器件的标准单元 | |
CN101800212B (zh) | 半导体器件栅氧化层完整性的测试结构 | |
JP2015167185A (ja) | 半導体装置 | |
Zhang et al. | Electrical performances degradations and physics based mechanisms under negative bias temperature instability stress for p-GaN gate high electron mobility transistors | |
CN108899318B (zh) | 一种增加vdmos沟道密度的蛇形布图结构和布图方法 | |
CN109478875B (zh) | 弹性波装置以及梯型滤波器 | |
JP5611110B2 (ja) | 高周波増幅器 | |
CN102194559A (zh) | 热敏电阻元件及其制造方法 | |
JP5708508B2 (ja) | 半導体装置のシミュレーション方法 | |
Nautiyal et al. | Workfunction engineered stepped gate SJ UMOS with reduced specific resistance for high speed applications | |
CN111682069B (zh) | 一种SiC金属氧化物半导体场效应晶体管芯片 | |
Li et al. | An improved MATLAB/simulink model of SiC power MOSFETs | |
TWM473040U (zh) | 散熱板及使用此散熱板之電路模組 | |
CN103531587B (zh) | 半导体装置 | |
WO2019223481A1 (zh) | 半导体功率器件 | |
TW202038065A (zh) | 觸控裝置 | |
CN103856191A (zh) | Cmos延迟电路以及抑制cmos延迟电路温漂的方法 | |
CN112630613A (zh) | 一种多层堆叠的环栅场效应晶体管沟道温度预测的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |