CN102238995A - 用于气体料流净化的集成的暖气体脱硫作用和气体轮换反应 - Google Patents
用于气体料流净化的集成的暖气体脱硫作用和气体轮换反应 Download PDFInfo
- Publication number
- CN102238995A CN102238995A CN200980148600XA CN200980148600A CN102238995A CN 102238995 A CN102238995 A CN 102238995A CN 200980148600X A CN200980148600X A CN 200980148600XA CN 200980148600 A CN200980148600 A CN 200980148600A CN 102238995 A CN102238995 A CN 102238995A
- Authority
- CN
- China
- Prior art keywords
- gas
- impurity
- carbon dioxide
- gas streams
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/58—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/64—Heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8603—Removing sulfur compounds
- B01D53/8612—Hydrogen sulfide
- B01D53/8618—Mixtures of hydrogen sulfide and carbon dioxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/864—Removing carbon monoxide or hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
- C01B3/16—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/308—Carbonoxysulfide COS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/406—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/408—Cyanides, e.g. hydrogen cyanide (HCH)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
- B01D2257/602—Mercury or mercury compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/706—Organometallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
- B01D2259/4009—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
- C01B2203/0288—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0435—Catalytic purification
- C01B2203/045—Purification by catalytic desulfurisation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0485—Composition of the impurity the impurity being a sulfur compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/82—Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/84—Energy production
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Industrial Gases (AREA)
- Gas Separation By Absorption (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明包括用于提纯气体料流的一种催化工艺方法,其包括,在250℃到550℃下通过除去硫化合物和包括将一氧化碳转化为二氧化碳的气体转换反应,来提纯气体料流,以便生产部分提纯的气体料流。该暖气体料流提纯包括将COS水解并氢化为H2S,H2S的移除,和CO转化为CO2的CO气体转换,以便生产部分提纯的料流。然后从部分提纯的气体料流中脱除二氧化碳和其它杂质。
Description
发明背景
本发明涉及从含有一氧化碳和各种污染物,包括二氧化碳,硫化氢和硫化羰的气体混合物中的提纯气体的生产。更具体地说,本发明涉及一种集成工艺方法,其在250℃到550℃下将含硫化合物除去,并进行气体轮换反应来将一氧化碳转换为二氧化碳,所述二氧化碳随后从气体料流中除去。
在现有技术和工业实践中,众所周知有很多方法来从含有酸性气体的气体混合物中除去酸性气体。在从气体料流中进行酸性气体脱除的这些已知方法中,包括那些使用CO2和/或H2S的物理吸收的方法,其与涉及化学反应的其它方法不同。当待处理的原料气能够在高压下得到,并且含有相对大量的酸性气体成分,以及需要进行选择性分离的时候,物理工艺方法是特别优选的。为了想要的吸收,已经建议或者使用了各种各样的有机溶剂。在已知工业工艺方法中使用的溶剂中,包括的有甲醇,其在LindeEngineering许可的Rectisol工艺方法中使用(US2,863,527);N-甲基-2-吡咯烷酮,在Lurgi Purisol工艺方法中使用(US3,505,784);碳酸亚丙基酯,在Fluor Solvent工艺方法中使用(US2,926,751);以及聚乙二醇二甲醚,在UOPSelexol工艺方法中使用(US2,649,166;US3,362,133)。除了前述使用的或者建议使用的用于从气体混合物中脱硫和除去CO2的许多不同类型吸收溶剂之外,在专利技术和公开技术文献中,在操作技术和工艺条件中有各种各样的差异。然而,一般说来,更广泛采纳的系统遵循可被称为常规的操作工序,如下所述。
在这些用于从气体混合物中脱硫和除去CO2的常规方法中,气体混合物诸如由于重油的部分氧化或由煤的气化而获得的那些,当使用物理吸收体系时,在原料中COS的存在在脱硫中导致了困难。在此类常规方法中,原料气加入吸收塔中,其中其与所选择来吸收H2S和COS的物理溶剂进行接触。该脱硫后的气体将与蒸汽进行催化轮换反应,使得CO转化为CO2,并获得氢。从轮换转换器中得到的气体排放物,用合适的吸收CO2的溶剂来处理,将得到的气体排放物冲入甲烷化区段来对残留CO和CO2进行氢化,获得富氢气体产品。得自脱硫吸收器的废液除去含有的H2S和COS,提供了一种气体产品,从其中可在Claus装置中回收硫价值(sulfurvalue),并且贫溶剂可以再循环来在原料气体的进一步处理中再次使用。来自CO2吸收器的用过的溶剂被进行闪蒸来除去一部分CO2,然后用空气或者惰性气体除去残余的CO2,在CO2吸收器塔中再循环除去过的液体以便再次使用。
对于此类常规工艺方法的操作的公用设施需求是相对成本高昂的。在一些常规方法中,在脱硫作用中除去COS需要的溶剂流导致了稀释的Claus气体(一般地含有11-12mol%的H2S),其对于用于回收硫价值的常规Claus装置而言过于稀释。因此,需要使用特殊昂贵的Claus装置,其需要高纯氧气代替空气,来燃烧一部分H2S变成SO2或来用于硫产品的再循环氧化。另外,此类方法需要特殊昂贵的Claus尾气单元。
用于原料气混合物脱硫作用的其它常规方法,诸如使用甲醇作为硫气体的溶剂的那些,已经被设计来生产足够高H2S含量的Claus气体,其可以被加入到常规Claus气体系统中。在此类Claus硫回收系统中,有一个热回收阶段,其中在反应炉中用空气或者氧气来燃烧酸性气体,将酸性气体中三分之一的硫化氢和任何烃类和氢进行燃烧。在反应阶段中,从燃烧反应得到的二氧化硫与未转化的硫化氢起反应形成元素硫。燃烧以及反应的产物在废料加热锅炉和热硫冷凝器中冷却,来回收硫。然而,这些系统,需要使用额外的塔来浓缩H2S。其它用于气体混合物脱硫作用的常规方法获得含有20%到超过50%H2S的Claus原料。一般用在此类方法中的溶剂,诸如,例如,甲醇,N-甲基吡咯烷酮或聚乙二醇二烷基醚,都是其中H2S溶解度远大于CO2溶解度,同时COS的溶解度处于这些中间的溶剂。当没有COS的时候,脱硫溶剂流速被设定来基本上完全脱除H2S,并且仅有一小部分CO2被共同吸收,从而获得想要浓度的Claus原料。然而,当存在COS时,需要基本上更高的溶剂流速来获得完全吸收和脱硫,由此增加了设备费用和公用设施需求。CO2的共吸收也通过更高的溶剂流速而被增加,必须使用富溶剂的深度闪蒸来获得令人满意的含有20%H2S最低需要量的Claus原料。除上述缺点之外,闪蒸蒸气的提高的压缩需求实际上也增加了更高的设备成本投资和更高的动力费用。
这些较早的已知用于气体混合物脱硫的工艺方法所具有的上文所述的困难和其它缺点,根据本发明的方法均可大大避免,并且有利地改进了操作的经济性,如下文所述。
不考虑碳源和气化过程,生成的燃料或合成气必须在燃气轮机中燃烧之前或者用于化学合成,例如甲醇,氨,脲生产,或者Fischer-Tropsch合成法之前,进行实质上的净化。高热值燃料气的净化避免了由于与使用化学或者物理溶剂的如上参考的湿法洗涤技术有关的冷却和后续的再加热的显热(sensible heat)损失。理想地,燃料气的净化在燃料气分配系统可以设计的最高温度时进行。这将大大改进整体的加工效率,然而,在所述高热值气体净化系统可以市购之前,仍有需要克服的重要障碍。仅有热微粒去除系统,即,烛形过滤器(candle filter)或烧结金属过滤器,已经在商业上在长期应用场合成功应用,在200℃到250℃下在位于荷兰的Nuon的Shell煤气化工厂,以及在370℃到430℃下在Wabash River工厂的E-气煤/焦炭气化系统中。全部大型暖脱硫作用示范装置均已失败,主要是由于不合适的硫清除剂材料。同样,对于目前热气净化系统的发展状况,在同样的高温条件下,无法除去除了硫化合物和固体颗粒之外的全部其它污染物。另外,由于可能的CO2法规,所有集成的气化联合循环(IGCC)气化器均将需要装备至少一个CO轮换反应器,由此需要将燃料气冷却到适合水煤气轮换催化反应的温度。
发明概述
本发明包括使用固体催化剂来提纯暖气体料流的方法。该气体料流处于250℃到550℃,优选处于400℃到500℃。该提纯包括硫化合物的脱除与转化一氧化碳为二氧化碳的CO气体轮换反应的结合,以便生产部分提纯的气体料流。该暖气体料流提纯包括将COS水解并氢化为H2S,H2S的移除,和CO转化为CO2的CO气体轮换,以便生产部分提纯的料流。随后,该二氧化碳和其它杂质能够被除去,来得到提纯的气体料流。
附图说明
图1显示了完全脱除含硫化合物加上CO轮换方法的集成装置,其中使用了溶剂型提纯单元来除去二氧化碳和其它杂质。
图2显示了完全脱除含硫化合物加上CO轮换方法的集成装置,其中使用了吸收剂床来除去二氧化碳和其它杂质。
发明详述
本发明包括了完全脱硫作用(H2S和COS脱除)方法与CO-轮换工艺方法的集成,其在250℃到550℃下使用固体催化剂来进行,以便最大化从燃料气中进行氢的生产,并由此促进了清洁的浓缩CO2的捕获。CO2料流能够在集成的脱硫和CO轮换单元的下游进行捕获和浓缩,其使用物理溶剂法(图1),或者备选地使用高温CO2吸收剂(图2)。该概念代表了下一代的合成气处理和应用,不仅仅在电力生产工业而且在化学品和燃料的生产中。
本发明包括了COS水解和加氢工艺方法,与H2S脱除方法,以及与CO轮换工艺方法的集成,其在250℃到550℃下使用固体催化剂来进行,以便最大化从燃料气中进行氢的生产,并由此促进了清洁的浓缩CO2的捕获。CO2料流能够在集成的脱硫和CO轮换单元的下游进行捕获和浓缩,其使用物理溶剂法,或者备选地使用高温CO2吸收剂。
由主要固体原料气化技术供应商提供的商业验证过的所有大型煤气化方法是淤浆进料或流体夹带干燥进料(dry-fed entrained-flow)的高温气化器。流体夹带(entrained-flow)气化器在气化市场占据主要地位,因为其具有最大的原料灵活性,最大化的CO和H2生成(高碳转化率和无焦油产生)以及惰性玻璃化矿渣的产生。另外,它们还允许比较便宜的CO轮换来降低氢的成本,其对煤到液体的方法和碳捕获是很重要的。然而,由于很高的操作温度,该流体夹带气化器具有比较高的需氧量和废热回收任务,因为在原料合成气中,很大量的原料能量被转化成显热。整体气化体系效率的最大化取决于该显热在合成气冷却器或在直接水骤冷步骤中的有效回收。骤冷模式设计显著地降低了合成气冷却的资金成本,同时热集成保持了良好的总体热效率。同时,如果需要合成气在下游大量轮换为CO2和H2,骤冷模式是有利的,因为原料合成气通过一部分骤冷水的蒸发产生的蒸汽而变得饱和。用直接水骤冷来进行的流体夹带淤浆进料的气化是优选的,并通常使用GE Energy的方案,并近来,考虑到未来潜在的CO2法规,甚至Shell,Lurgi和Siemens也提供了水骤冷冷却法。除了有效地冷却原料合成气并回收部分显热之外,在骤冷步骤中进行了有意义的污染物去除。在水骤冷步骤中,将固体颗粒,碱金属,非挥发性金属,氯化物,大量羰基金属和一部分氨全都被除去。在水骤冷步骤之后留在原料合成气中的污染物包括50-到100ppmv氨,1到4ppmv羰基Fe和Ni,50-到100ppmv HCN,Hg,As,和含硫的气体,包括H2S和COS。在合成气在燃气轮机中燃烧或者用于化学合成之前,所有这些污染物均要除去。
目前,在IGCC和化学合成应用场合均使用了可再生溶剂型酸性气体脱除方法。Selexol,UOP的物理溶剂酸性气体脱除方法在商业上主要用于IGCC应用场合以及在一个气化反应型的氨/脲装置。Selexol工艺方法可以以极高的整体单元成本来除去H2S和COS到低水平,其需要冷冻溶剂到4℃(40°F)。然而,因为吸收剂在COS和CO2之间的不良的选择性,更廉价的构型将允许大部分COS绕过吸收器。如果要达到高水平的COS移除,则仍需要一个COS水解单元。
我们提议的集成燃料气完全脱硫与水煤气轮换催化反应在一个加工单元中的概念,将解决上述与Selexol有关的问题。与该概念相关地,存在两个主要的优点:在一方面,设备成本将被大大降低,在另一方面,通过连续除去H2S,COS水解平衡将会完全移向右侧,同时通过CO轮换反应,氢的制造将最大化。这将促进在一个更简单/小巧的溶剂洗涤单元中清洁的浓缩CO2料流的捕捉,例如Selexol,或者备选地用高温CO2吸收剂。
聚乙二醇二甲醚和水,在Selexol中使用的物理溶剂,能够除去H2S和COS到极低的水平,如果冷冻到4℃(40°F)时,但其代价是明显的CO2的共吸收,非常高的溶剂再循环率和高的溶剂再生费用。这导致了要进入Claus单元的酸性气体的低H2S浓度,以及整体上,非常高的单元成本。如果需要深度脱硫和高的H2S对O2的选择性,要使用数个吸收,闪蒸和再生阶段。然而因为在COS和CO2之间的不良选择性,将导致进入Claus单元的酸性气体具有更高H2S含量的一种更廉价的构型将允许大部分COS绕过吸收器。如果同时需要酸性气体中高的H2S浓度(低CO2浓度)和高的COS移除,将需要一个COS水解单元。
我们的燃料气脱硫(H2S和COS移除)和水煤气轮换方法的集成将解决上述与溶剂型系统有关的问题。通过同时除去H2S,并进行COS水解反应,水解平衡将通过一个反应产物的连续移除而完全移动。同时,通过CO轮换反应,将最大化氢气的制造,并在一个更简单/小巧的溶剂洗涤单元中,或者备选地用高温CO2吸收剂,捕捉清洁的浓缩CO2料流。将脱硫作用与水煤气轮换反应在一个加工单元中结合的概念,对Selexol单元的整体复杂性具有显著影响。在常规Selexol单元中,位于主要H2S吸收器塔和CO轮换区段之后的H2S修整(trim)吸收器塔(需要使用它以除去任何在CO轮换区段通过COS水解反应形成的H2S)可以被取消。Selexol溶剂再生器和随后的再循环周期和溶剂循环率将显著降低,因为溶剂仅仅需要吸收CO2。更甚至,基于同样原因,溶剂可能不需要进行冷冻。用于硫回收的Claus单元将被取消,然而,在集成的脱硫作用和轮换方法中,仍然需要一个加工单元来管理产生的SO2。如果到单元中的原料没有COS和具有10ppmH2S,对Selexol单元的成本影响的估计,相比于基础情况,将降低35%。基础情况由如下组成,具有20.3MM m3进料速率,在原料中具有0.8体积%H2S和4040ppmv COS的单元。通过删除单元中不再需要的用于脱硫区段的设备、并保留溶剂再生器来加工循环溶剂的滑流(slip stream)到本体CO2脱除区段以消除污染物在循环周期中积存的可能性来作出估计。在该成本估计中,用于Selexol单元和Claus硫回收单元的冷冻装置没有取消。提议的集成的脱硫和CO轮换单元将由在吸收/轮换和再生之间交互的两个大的摆动床室(swing-bed chamber)组成。脱硫和CO轮换温度为250℃到550℃,压力为10到80巴,同时氧化再生温度可为350℃到600℃,压力为10到80巴。该氧化再生产生了具有在N2中的SO2料流。用于本发明的催化剂和吸收剂通过在升高的温度下使用空气或氧来烧掉或者除去杂质来进行再生,正如本领域技术人员公知的。
本发明的方法在图1和2中显示。图1显示了源自直接水骤冷煤气化器的气体料流的提纯,所述气化器包括集成的脱硫和一氧化碳轮换单元,一个附加的任选的一氧化碳轮换单元和溶剂型提纯单元,其操作温度高于250℃。图1显示了通过线路6将蒸汽送入骤冷气化器2。一部分压缩空气8进入空气分离单元12,除去氮气14,在其中氧气16进入骤冷气化器2,剩余的压缩空气从线10进入骤冷气化器2。煤18进入骤冷气化器2的顶部。黑泥4通过线4来除去。骤冷气化器的产品是骤冷的原料燃料气,在线路20中,其出口温度为240℃到285℃。该燃料气含有一氧化碳,二氧化碳,水,<0.1%的甲烷,和<2%的其它杂质,其包括氮气,硫化氢,硫化羰,氨,汞,砷,氰化氢和1-4ppmv羰基铁和镍。骤冷的原料燃料气然后根据需要通过热交换器22加热到250℃到550℃,然后通过线路24进入集成单元26来进行完全的H2S和COS移除和CO轮换。在集成单元中含有固体催化剂来促进这些反应。该固体催化剂可起到催化剂作用或者也可起到吸收剂作用。部分处理过的气体通过线路27离开集成单元26,通过热交换器22进入线30,通过热回收单元32和线34进入脱硫CO轮换反应器36(在250℃下工作),来增加部分CO成为CO2。稀释的SO2从线路28离开。脱硫气体料流在线38中离开到热回收单元40,到线42,然后到溶剂型提纯单元44,其在低于250℃的温度下工作,而一些溶剂型系统在40℃下工作。二氧化碳被显示在线路46中除去,其它污染物也在单元44中除去,包括汞,砷,硒,氨,氰化氢,羰基金属和氮气。被脱除的冷清洁气体58大部分由氢气组成,其可用于电能60或者化学品和燃料62的生产。
图2显示了源自直接水骤冷煤气化器的气体料流的提纯,所述气化器包括集成的脱硫和一氧化碳轮换单元,一个附加的任选的一氧化碳轮换单元和在250℃脱除其它杂质的单元。图2显示了通过线路6将蒸汽送入骤冷气化器2。一部分压缩空气8进入空气分离单元12,除去氮气14,从中氧气16进入骤冷气化器2,剩余的压缩空气从线10进入骤冷气化器2。煤18进入骤冷气化器2的顶部。黑泥4通过线4来除去。骤冷气化器的产品是骤冷的原料燃料气,在线路20中,其出口温度为240℃到285℃。该燃料气含有一氧化碳,二氧化碳,水,<0.1%的甲烷,和<2%的其它杂质,其包括氮气,硫化氢,硫化羰,氨,汞,砷,氰化氢和1-4ppmv羰基铁和镍。骤冷的原料燃料气然后根据需要通过热交换器22加热到250℃到550℃,然后通过线路24进入集成单元26来进行完全的H2S和COS移除和CO轮换。在集成单元中含有固体催化剂来促进这些反应。该固体催化剂可起到催化剂作用或者也可起到吸收剂作用。部分处理过的气体通过线路27离开集成单元26,通过热交换器22进入线30,通过热回收单元32和线34进入脱硫CO轮换反应器36(在250℃下工作),来增加CO成为CO2的部分。稀释的SO2从线路28离开。脱硫气体从线38中通过来到吸收剂床41中以便除去汞,砷和硒,到线43到吸收床45中来除去的氨和氰化氢,到线47到吸收床49来在46除去二氧化碳。在这些吸收剂床中,也除去了氮气和羰基金属。该吸收剂床用来在250℃时除去杂质。该吸收剂床可通过热空气或者氧气或者本领域技术人员已知的其它气体来进行再生。提纯气穿过线路54到烛形过滤器56,来除去微粒。被脱除的冷清洁气体58大部分由氢气组成,其可用于电能60或者化学品和燃料62的生产。
Claims (10)
1.一种提纯气体料流的方法,其包括:
a)在250℃到550℃下提纯所述气体料流,其中所述提纯包括使用固体催化剂来进行硫化合物的脱除与将一氧化碳转化为二氧化碳的CO气体轮换反应,以便生产部分提纯的气体料流;和
b)从所述部分提纯的气体料流中除去所述二氧化碳和其它杂质。
2.权利要求1的方法,其中所述气体料流是燃料气料流或者合成气料流。
3.权利要求1的方法,其中所述硫化合物包括H2S和COS,其中所述COS被转化为H2S。
4.权利要求1的方法,其中在所述提纯过的气体料流经过第二CO气体轮换反应之后,另外量的一氧化碳被转换为二氧化碳。
5.权利要求1的方法,其中所述部分提纯的气体料流被冷却,随后通过溶剂型提纯系统来进一步提纯,以便除去一氧化碳和其它杂质。
6.权利要求1的方法,其中所述部分提纯的气体料流被冷却到40℃,并通过含有聚乙二醇二甲醚混合物的物理溶剂来进行提纯,以便除去二氧化碳和其它杂质。
7.权利要求1的方法,其中所述其它杂质包括氨,氮气,氰化氢,痕量羰基金属,汞,砷,硒和它们的混合物。
8.权利要求1的方法,其中所述其它杂质通过250℃的一个或者多个吸收剂床来进行脱除。
9.权利要求7的方法,其中所述含有汞,砷和硒的杂质在第一吸收床进行脱除,所述氨和氰化氢在第二吸收床进行脱除,并且所述二氧化碳在第三吸收床进行脱除,来生产清洁的氢气流。
10.权利要求1的方法,其中在所述提纯方法中使用的催化剂的再生产生要被脱除的SO2料流。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/328,496 | 2008-12-04 | ||
US12/328,496 US7935324B2 (en) | 2008-12-04 | 2008-12-04 | Integrated warm gas desulfurization and gas shift for cleanup of gaseous streams |
PCT/US2009/060751 WO2010065196A2 (en) | 2008-12-04 | 2009-10-15 | Integrated warm gas desulfurization and gas shift for cleanup of gaseous streams |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102238995A true CN102238995A (zh) | 2011-11-09 |
Family
ID=42231306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980148600XA Pending CN102238995A (zh) | 2008-12-04 | 2009-10-15 | 用于气体料流净化的集成的暖气体脱硫作用和气体轮换反应 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7935324B2 (zh) |
EP (1) | EP2364202B1 (zh) |
CN (1) | CN102238995A (zh) |
AU (1) | AU2009322855B2 (zh) |
WO (1) | WO2010065196A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105567340A (zh) * | 2014-10-17 | 2016-05-11 | 中国石油化工股份有限公司 | 一种用于igcc电站的nhd净化系统 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2369511T3 (es) * | 2007-07-31 | 2011-12-01 | Shell Internationale Research Maatschappij B.V. | Proceso para producir gas purificado a partir de gas que comprende h2s, co2, y hcn y/o cos. |
US8007688B2 (en) * | 2008-10-22 | 2011-08-30 | Southern Research Institute | Process for decontaminating syngas |
JP4395542B1 (ja) | 2009-04-30 | 2010-01-13 | 三菱重工業株式会社 | ガス化ガスからの高純度co2回収方法およびシステム |
US8992640B2 (en) * | 2011-02-07 | 2015-03-31 | General Electric Company | Energy recovery in syngas applications |
RU2467788C1 (ru) * | 2011-06-02 | 2012-11-27 | Сергей Анатольевич Щелкунов | Способ очистки отходящих газов от диоксида серы |
US9505683B2 (en) * | 2013-05-31 | 2016-11-29 | Uop Llc | Removal of sulfur compounds from natural gas streams |
US10414649B2 (en) * | 2014-10-24 | 2019-09-17 | Research Triangle Institute | Integrated system and method for removing acid gas from a gas stream |
CN111054204A (zh) * | 2020-02-24 | 2020-04-24 | 上海三融环保工程有限公司 | 一种自循环脱硫装置、自循环脱硫系统及自循环脱硫方法 |
CN115873640A (zh) * | 2021-09-28 | 2023-03-31 | 昆明理工大学 | 一种高炉煤气的粗脱硫方法 |
CN114797387A (zh) * | 2022-05-31 | 2022-07-29 | 华能营口热电有限责任公司 | 一种回收余热的烟气深度碳捕集装置及方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039783A2 (en) * | 2006-09-25 | 2008-04-03 | The Ohio State University | Calcium looping process for high purity hydrogen production |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2863527A (en) | 1949-09-15 | 1958-12-09 | Metallgesellschaft Ag | Process for the purification of gases |
US2649166A (en) | 1950-05-02 | 1953-08-18 | Allied Chem & Dye Corp | Absorption of carbon dioxide from gases containing the same |
US2926751A (en) | 1958-09-22 | 1960-03-01 | Fluor Corp | Organic carbonate process for carbon dioxide |
US3382133A (en) * | 1965-02-26 | 1968-05-07 | Little Inc A | Means for corrugating webs transversely |
US3362133A (en) | 1965-10-25 | 1968-01-09 | Allied Chem | Process for hydrogen sulfide removal from gas mixtures containing h2s and co2 |
US3441393A (en) * | 1966-01-19 | 1969-04-29 | Pullman Inc | Process for the production of hydrogen-rich gas |
DE1494809C3 (de) | 1966-10-25 | 1974-01-17 | Metallgesellschaft Ag, 6000 Frankfurt | Verfahren zum Auswaschen von Kohlendioxid aus schwefelarmen oder schwefelfreien Gasen |
US4110359A (en) | 1976-12-10 | 1978-08-29 | Texaco Development Corporation | Production of cleaned and purified synthesis gas and carbon monoxide |
US4202167A (en) | 1979-03-08 | 1980-05-13 | Texaco Inc. | Process for producing power |
US4536381A (en) | 1983-12-20 | 1985-08-20 | Shell Oil Company | Process for the removal of H2 S and adjustment of the H2 /CO ratio in gaseous streams containing hydrogen sulfide, carbon monoxide, and hydrogen |
NL185225C (nl) | 1988-01-13 | 1992-03-16 | Comprimo Bv | Werkwijze voor het omzetten en verwijderen van zwavelverbindingen uit een co-bevattend gas. |
DE3842008A1 (de) | 1988-12-14 | 1990-06-21 | Hoechst Ag | Verwendung von triacylierten ehtanolaminen als fluessige, wassermischbare peroxidaktivatoren |
US5281445A (en) | 1990-07-30 | 1994-01-25 | Phillips Petroleum Company | Coating of components of sulfur absorbants |
US5130288A (en) | 1991-03-07 | 1992-07-14 | Phillips Petroleum Company | Cogelled mixtures of hydrated zinc oxide and hydrated silica sulfur sorbents |
EP0550242B1 (en) | 1991-12-30 | 1996-11-20 | Texaco Development Corporation | Processing of synthesis gas |
US5254516A (en) | 1992-03-26 | 1993-10-19 | Research Triangle Institute | Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance |
US5244641A (en) | 1992-04-28 | 1993-09-14 | Phillips Petroleum Company | Absorption of hydrogen sulfide and absorbent composition therefor |
US5710091A (en) | 1995-06-07 | 1998-01-20 | Phillips Petroleum Company | Sorbent compositions |
US6812189B1 (en) | 1998-02-24 | 2004-11-02 | Research Triangle Institute | Attrition resistant, zinc titanate-containing, reduced sulfur sorbents |
AU3914600A (en) * | 1999-03-24 | 2000-10-09 | University Of Wyoming | System for recovery of sulfur and hydrogen from sour gas |
EP1252092A1 (en) * | 2000-02-01 | 2002-10-30 | Texaco Development Corporation | Integration of shift reactors and hydrotreaters |
US20070130832A1 (en) * | 2005-12-13 | 2007-06-14 | General Electric Company | Methods and apparatus for converting a fuel source to hydrogen |
US20070283812A1 (en) * | 2006-06-09 | 2007-12-13 | General Electric Company | System and method for removing sulfur from fuel gas streams |
US7909913B2 (en) * | 2008-07-17 | 2011-03-22 | Air Products And Chemicals, Inc. | Gas purification by adsorption of hydrogen sulfide |
-
2008
- 2008-12-04 US US12/328,496 patent/US7935324B2/en not_active Expired - Fee Related
-
2009
- 2009-10-15 WO PCT/US2009/060751 patent/WO2010065196A2/en active Application Filing
- 2009-10-15 EP EP09830780.4A patent/EP2364202B1/en not_active Not-in-force
- 2009-10-15 AU AU2009322855A patent/AU2009322855B2/en not_active Ceased
- 2009-10-15 CN CN200980148600XA patent/CN102238995A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039783A2 (en) * | 2006-09-25 | 2008-04-03 | The Ohio State University | Calcium looping process for high purity hydrogen production |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105567340A (zh) * | 2014-10-17 | 2016-05-11 | 中国石油化工股份有限公司 | 一种用于igcc电站的nhd净化系统 |
Also Published As
Publication number | Publication date |
---|---|
AU2009322855A1 (en) | 2010-06-10 |
WO2010065196A2 (en) | 2010-06-10 |
WO2010065196A3 (en) | 2010-08-12 |
US20100143225A1 (en) | 2010-06-10 |
EP2364202A4 (en) | 2012-05-30 |
EP2364202A2 (en) | 2011-09-14 |
AU2009322855B2 (en) | 2014-04-17 |
US7935324B2 (en) | 2011-05-03 |
EP2364202B1 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102238995A (zh) | 用于气体料流净化的集成的暖气体脱硫作用和气体轮换反应 | |
US7618558B2 (en) | Process for cleaning gases from gasification units | |
CN106430116B (zh) | 一种利用煤气湿式氧化法产生的含硫废液制取硫酸的方法 | |
US8535613B2 (en) | Method and apparatus for separating acidic gases from syngas | |
CN109072104B (zh) | 用于包括甲烷化处理的发电系统和方法 | |
KR20170072911A (ko) | 가스 스트림으로부터 산 가스를 제거하기 위한 통합 시스템 및 방법 | |
CN105531222B (zh) | 通过co2还原法的合成气生产 | |
WO2014007173A1 (ja) | 排水処理システム及び複合発電設備 | |
JP2012522090A (ja) | 精製合成ガスを製造する方法 | |
CN101585511A (zh) | 一种硫磺回收工艺 | |
CN103979500B (zh) | 综合制氢的硫磺回收及尾气处理系统及工艺 | |
JP5217295B2 (ja) | 石炭ガス化ガス精製方法及び装置 | |
CN107321178B (zh) | 气体纯化设备和气体纯化方法 | |
CN115285941B (zh) | 一种低温催化直接还原烟气中so2制硫磺的方法 | |
JPH03238019A (ja) | 高温還元性ガスの精製方法 | |
JP2004075712A (ja) | ガス化ガス用のcos処理装置とcos処理方法 | |
KR100194555B1 (ko) | 고신뢰도 고효율 석탄가스화 복합발전 시스템 및전력발생방법 | |
KR102031836B1 (ko) | 황화수소를 포함하는 산성가스 정제방법 및 그 장치 | |
CN109562319B (zh) | 气体净化装置和气体净化方法 | |
KR101713606B1 (ko) | 합성가스 정제 시스템 및 방법 | |
CN205152117U (zh) | 一种采用流化床热法吸附脱硫净化合成气的甲醇生产系统 | |
KR101006967B1 (ko) | 가스화 공정에서 발생하는 타르수 처리방법 및 장치 | |
Sato et al. | System for recovering high-purity CO 2 from gasification gas containing CO, CO 2, COS and H 2 S | |
Supp | How to purify and condition methanol synthesis gas | |
JP6293472B2 (ja) | 水素製造装置および水素製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20111109 |