CN102230971B - Gps多天线测姿方法 - Google Patents

Gps多天线测姿方法 Download PDF

Info

Publication number
CN102230971B
CN102230971B CN2011100763771A CN201110076377A CN102230971B CN 102230971 B CN102230971 B CN 102230971B CN 2011100763771 A CN2011100763771 A CN 2011100763771A CN 201110076377 A CN201110076377 A CN 201110076377A CN 102230971 B CN102230971 B CN 102230971B
Authority
CN
China
Prior art keywords
antenna
satellite
angle
gps
carrier phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011100763771A
Other languages
English (en)
Other versions
CN102230971A (zh
Inventor
沈峰
党超
徐定杰
薛冰
吕东泽
王兆龙
周宇
盖猛
贺锐
单志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2011100763771A priority Critical patent/CN102230971B/zh
Publication of CN102230971A publication Critical patent/CN102230971A/zh
Application granted granted Critical
Publication of CN102230971B publication Critical patent/CN102230971B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明的目的在于提供GPS多天线测姿方法,包括以下步骤:首先采集GPS多天线观测数据、GPS卫星星历和各天线在载体坐标系的坐标;利用载波相位观测值对C/A码观测数据进行平滑;计算载体平台粗略姿态角、主天线在当地水平坐标系坐标、各天线共视卫星仰角和方向角、主天线到从天线间在当地水平坐标系的基线向量;在水平坐标系中各天线间基线向量和卫星到接收机间基线向量的几何关系,求解同一卫星不同天线的单差整周模糊度值,选取基准卫星,对单差整周模糊度值作差得到整周模糊度双差值;将得到载波相位双差值代入载波相位双差模型反解精确的各天线坐标分量;由取得的各天线坐标分量解算得到精确的姿态参数进而实现GPS多天线测姿。

Description

GPS多天线测姿方法
技术领域
本发明涉及的是一种利用卫星导航系统对载体测姿的方法。
背景技术
GPS多天线测姿是指利用在载体上一定几何分布的多个GPS信号接收天线(通常由3或4个GPS天线集成),应用一定算法和数据处理技术实现载体姿态测量。通常由两个接收天线间距离组成的一个基线可以得到两个姿态角,通过两个共面、不平行的基线可以得到载体三维姿态角,然而,要在GPS姿态测量中得到高精度的偏航角、俯仰角、横滚角,载波相位观测值的利用必不可少,进而需要快速求解载波相位整周模糊度。
基于GPS多天线测姿系统具有许多传统的姿态测量系统(惯性导航系统或平台罗经系统)所没有的优点:(1)GPS多天线测姿系统具有GPS本身特有的优点,不仅能提供载体的位置、航向、速度等基本信息,而且能提供载体姿态信息;(2)GPS测姿精度高,因为测姿系统利用的是GPS卫星信号的载波相位观测值;(3)没有累积误差,传统的惯性器件的测量误差会随着时间积累,而GPS不会;(4)受环境影响小,如传统的磁罗盘测姿系统,受周围磁场影响较大,惯性器件等受温度的影响较大;(5)不需要给定初始值,传统的惯性测量系统常常需要长时间的初始对准;可以说GPS多天线测姿系统是多种设备功能集于一身,具有体积小、重量轻、稳定性高且成本低廉等优点。
基于GPS多天线测姿的核心技术是快速解算载波相位整周模糊度技术,GPS载波相位整周模糊度是指在载波相位测量中,如果对一颗卫星进行连续跟踪观察,则所有载波相位测量中均包含有未知的初始历元整周模糊度,只有准确的确定它,才能获得高精度的定位结果。因此要由GPS各天线高精度的定位结果得到载体平台的三维姿态角参数,必须先快速解算得到载波相位整周模糊度。目前,载波相位整周模糊度的确定方法分为以下三类:一是观测域的模糊度分解技术,这一类模糊度的分解技术最为简单,它直接利用C/A码或P码伪距观测确定载波相位模糊度,但是,C/A码或P码原始伪距观测精度通常不能满足模糊度分解技术要求;二是坐标域的模糊度搜索技术,主要指模糊度函数法,这种算法虽然出现的较早,但始终被人们关注,该算法由于仅利用载波相位观测值的非整数部分,因此,模糊度数值与整周模糊度无关,但由于算法的运算量较大,实现效果并不好;三是模糊度域的搜索技术,目前已经成为整周模糊度分解研究的热点,提出了大量的技术实施手段,主要有基于整数最小二乘参数估计法和基于双频或三频采用宽巷/窄巷法的模糊度解算方法,前一种方法大致可分为三步,也就是参数的浮点解计算、整周模糊度估计和参数的固定解计算,后一种方法可以说是前一种方法的特例,是在模糊度搜索区域内寻求最优的特解。
发明内容
本发明的目的在于提供基于几何算法快速解算载波相位整周模糊度的GPS多天线测姿方法。
本发明的目的是这样实现的:
本发明GPS多天线测姿方法,其特征是:
(1)首先采集GPS多天线观测数据、GPS卫星星历和各天线在载体坐标系的坐标;
(2)在GPS多天线观测数据中利用载波相位观测值对C/A码观测数据进行平滑;
(3)计算载体平台粗略姿态角、主天线在当地水平坐标系坐标、各天线共视卫星仰角和方向角、主天线到从天线间在当地水平坐标系的基线向量;
(4)利用粗略的姿态参数,在水平坐标系中各天线间基线向量和卫星到接收机间基线向量的几何关系,求解同一卫星不同天线的单差整周模糊度值,选取基准卫星,对单差整周模糊度值作差得到整周模糊度双差值;
(5)将得到载波相位双差值代入载波相位双差模型反解精确的各天线坐标分量;
(6)由取得的各天线坐标分量解算得到精确的姿态参数进而实现GPS多天线测姿。
附图说明
图1为本发明天线位置在载体坐标系中的分布示意图;
图2为本发明几何解算载波相位双差整周模糊度原理图;
图3为本发明GPS多天线系统测姿过程的实施框图。
具体实施方式
下面结合附图举例对本发明做更详细地描述:
C/A码粗解姿态参数
C/A码粗解姿态参数前要完成GPS单点定位,起始先利用载波相位观测值对C/A码伪距数据进行数据平滑,这样可以有效地平均信号的多径误差,同时消除C/A码数据中大的噪音数据。在GPS系统SA影响关闭后,使用C/A码数据进行单点定位的三维精度误差可能在几米或十几米的范围内;又由于姿态定位中各天线间距离在几米或几十米的范围内,所以各接收天线所对应的卫星误差、电离层误差、对流层误差可以视为等效,即使GPS单点定位对各天线准确位置坐标影响较大,但设定主天线为当地水平坐标系的原点,那么如此大的单点定位误差在当地水平坐标系中对各从天线的位置影响只在厘米级左右,这说明不会因为C/A码伪距进行单点定位误差大而使姿态参数的精度有较大的降低。因此,完全可以利用C/A码数据完成姿态初步解算。这里在C/A码伪距平滑的基础上,完成GPS单点定位,式(1)给出了C/A码伪距定位的原理方程:
ρ j = ( X - X j ) 2 + ( Y - Y j ) 2 + ( Z - Z j ) 2 + c · Δt - - - ( 1 )
式中:ρj为第j颗卫星到接收机的伪距观测量;(X,Y,Z)为接收机的三维坐标位置;(Xj,Yj,Zj)为第j颗卫星的三维坐标位置;c为光速;Δt为接收机钟差;且本发明忽略了电离层和对流层对C/A码伪距数据的影响。
当每个天线同时接收到四颗以上的卫星信号时,将把每颗卫星伪距数据代入(1)式,联立4个以上方程即可解得每个天线在ECEF坐标系(地心地固坐标系)中的位置坐标,利用从ECEF坐标系到当地水平坐标系(也称东、北、天坐标系)的转换矩阵,计算得到在当地水平坐标系中各天线的位置坐标。
接着,进行C/A码伪距粗解姿态角,由于当地水平坐标系与载体固定坐标系不完全重合,那么对应于三维姿态角的偏量就存在三个姿态变换矩阵,以一定的次序将这三个姿态变换矩阵相乘可以组成一个坐标变换矩阵,下面的公式就是利用这个坐标变换矩阵完成从当地水平坐标系到载体固定坐标系的变换,次序是绕当地水平坐标系Z轴旋转偏航角α度,再绕当地水平坐标系X轴旋转俯仰角γ度,最后绕当地水平坐标系Y轴旋转横滚角β度得到:
b i = R 2 ( β ) · R 1 ( γ ) · R 3 ( α ) · l i
Figure BDA0000052626110000033
式中:R3(α)代表绕当地水平坐标系Z轴旋转偏航角α度的姿态变换矩阵;R2(β)代表绕当地水平坐标系Y轴旋转横滚角β度的姿态变换矩阵;R1(γ)代表绕当地水平坐标系X轴旋转俯仰角γ度的姿态变换矩阵;bi代表第i个天线在载体坐标系中的坐标;li代表第i个天线在当地水平坐标系中的坐标;α、β、γ分别代表偏航角、横滚角、俯仰角;
Figure BDA0000052626110000041
矩阵为坐标变换矩阵。
如图1所示,在载体固定坐标系中,主天线1坐标为b1=[0 0 0]T,从天线2和3可以分别表示成b2=[0 b12 0]T和b3=[x3,b y3,b 0]T,b12表示主天线1到从天线2的基线距离,根据姿态转换矩阵的正交性,由公式(2),将载体坐标系中从天线2的坐标b2转换到当地水平坐标系中得到l2
Figure BDA0000052626110000042
那么就可以得到偏航角α和俯仰角γ:
α = - tan - 1 ( x 2 , l y 2 , l ) - - - ( 4 )
γ = sin - 1 ( z 2 , l b 12 ) = tan - 1 ( z 2 , l x 2 , l 2 + y 2 , l 2 ) - - - ( 5 )
同理根据姿态转换矩阵的正交性,由公式(2),将载体坐标系中从天线3的坐标b3转换到当地水平坐标系中得到l3
Figure BDA0000052626110000045
为了方便计算横滚角β,前面已经得到了偏航角α和俯仰角γ,这里将天线3的当地水平坐标l3绕当地水平坐标系Z轴旋转偏航角α度,再绕当地水平坐标系X轴旋转俯仰角γ度,此时天线3的坐标为l′3,转换过程为:
Figure BDA0000052626110000051
可以得到横滚角β:
β = - tan - 1 ( z 3 , l ′ x 3 , l ′ ) - - - ( 8 )
几何算法解算双差整周模糊度
在C/A码粗解姿态角中,已知主天线在每一个历元中可视的卫星号,并且可以得到每一颗可视卫星的星历数据,计算得到各卫星在ECEF坐标系中坐标,通过GPS伪距单点定位可知主天线在ECEF坐标系中的坐标,通过坐标系转换矩阵可以得到在以主天线为原点的当地水平坐标系中各卫星的坐标,进而可以得到各颗可视卫星在当地水平坐标系中的偏向角和俯仰角。
本发明由C/A码粗解算姿态参数中得到了载体的粗略三维姿态角为:偏航角α、横滚角β、俯仰角γ,将其代入公式(2),求得当地水平坐标系向载体坐标系的坐标转换矩阵
Figure BDA0000052626110000053
由坐标转换矩阵的正交性可得载体坐标系向当地水平坐标系的坐标转换矩阵
Figure BDA0000052626110000054
且已知在载体坐标系中天线1到天线2的基线向量b2=[0 b12 0]T和天线1到天线3的基线向量b3=[x3,b y3,b 0]T,利用公式(3)和(6)计算得到基线向量b2、b3在当地水平坐标系中的投影向量l2和l3
利用已知各颗可视卫星在以主天线为原点的当地水平坐标系中的偏向角、俯仰角和基线在当地水平坐标系中的向量l2、向量l3,求解双差(先在天线之间单差,再在卫星之间双差)载波相位整周模糊度,图2为几何解算载波相位双差整周模糊度原理图。
在图2中,以主天线为原点O建立当地水平坐标系,OA为主天线到从天线的基线,且A点的坐标值由计算已知,S1和S2分别代表可视卫星1和可视卫星2,在前面已经得到了各颗卫星的偏向角和俯仰角,∠1、∠3代表卫星S1的偏向角ψ1和俯仰角φ1,∠2、∠4代表卫星S2的偏向角ψ2和俯仰角φ2
参照图2过A点向OS1做垂线交于B点,由于在GPS多天线姿态测量中各基线的长度一般在几米或几十米左右,而卫星S1到主天线O点的距离一般在2×107米这个数量级上,故∠OS1A近似为零度,所以可以认为S1A和S1B的长度相等,那么OB的长度LOB就是卫星S1到主天线和从天线的单差距离了,将LOB的距离除以GPS信号载波的波长λ就得到单差载波相位整周模糊度了;同理,过A点向OS2做垂线交于C点,那么OC的长度LOC就是卫星S2到主天线和从天线的单差距离了,将LOC的距离除以GPS信号载波的波长λ就得到单差载波相位整周模糊度
Figure BDA0000052626110000056
了;选取卫星S1作为基准卫星,于是可得到从天线与主天线的双差载波相位整周模糊度
Figure BDA0000052626110000061
下面给出计算过程:
首先,已知卫星S1的偏向角ψ1、俯仰角φ1和卫星S2的偏向角ψ2、俯仰角φ2求取
Figure BDA0000052626110000063
单位向量:
Figure BDA0000052626110000064
Figure BDA0000052626110000065
然后计算得到
Figure BDA0000052626110000066
向量,当A点是第一个从天线时:向量为
Figure BDA0000052626110000068
当A点是第二个从天线时:
Figure BDA0000052626110000069
向量为
Figure BDA00000526261100000610
Figure BDA00000526261100000611
最后计算载波相位双差整周模糊度
Figure BDA00000526261100000613
计算得到
Figure BDA00000526261100000614
Figure BDA00000526261100000615
的夹角θ1的余弦值cosθ1
Figure BDA00000526261100000616
的夹角θ2的余弦值cosθ2
Figure BDA00000526261100000619
已知GPS信号载波的波长为λ,选取卫星S1作为基准卫星,进而可以得到载波相位双差整周模糊度:
▿ Δ N AO 21 = Δ N AO 2 - Δ N AO 1 = L OC cos θ 2 λ - L OB cos θ 1 λ - - - ( 15 )
基于载波相位双差方程解算姿态角
假设主天线和从天线可以同时观测k+1颗GPS卫星,选取其中一颗卫星作为参考卫星,这样就可以构造k个双差观测方程,双差相位通常定义为同一历元上主天线和从天线观测两颗卫星Sj和Sk得到的接收机间单差相位差,考虑观测误差时,其线性化双差观测方程可以表示为:
y=A·a+B·b+e                       (16)
式中:
Figure BDA0000052626110000071
表示双差相位观测矢量;
Figure BDA0000052626110000072
表示双差载波相位整周模糊度矢量;
b=[δX2 δY2 δZ2]T表示导航定位信息;
Figure BDA0000052626110000073
e=[e1 e2··ek]T是观测噪音矢量,设其方差矩阵为R。
在载波相位双差方程中,双差整周模糊度
Figure BDA0000052626110000074
几何模型可以计算得到,那么方程可以改写为:
h=y-A·a=B·b+e                                (17)
这就是典型的最小二乘模型,h为观测矢量,e为观测误差,B·b为模型化的观测量,为方便应用,最小二乘估计需要应用泰勒展开并将其线性化得到观测方程:
Z=h-B·b0=B·db+e                                (18)
式中残差e是均值为“0”、方差为R的随机变量,则参数矢量b的加权最小二乘估计值为:
b · = b 0 + d b · = b 0 + ( B T R - 1 B ) - 1 · B T · R - 1 · Z - - - ( 19 )
式中:b0代表主天线的坐标,从天线坐标减去主天线的坐标偏量,估计值即为从天线的坐标了。由得到的天线准确坐标,通过坐标系转换矩阵即可指到各从天线在以主天线为原点的当地水平坐标系中具体坐标,再利用公式(4)、(5)、(7)、(8)得到精准的载体三维姿态角。
如图1所示,在载体固定坐标系中,取主天线作为原点O,主天线和第一个从天线组成的基线称Y轴,方向由主天线指向从天线,X轴垂直于Y轴并处在由三个天线确定的平面内,Z轴垂直于X轴和Y轴并指向向上,X轴、Y轴、Z轴符合右手坐标系原则。那么三根天线在载体坐标系中坐标依次为(0,0,0)、(0,b12,0)、(x3,b,y3,b,0)。
图2中,以主天线为原点O建立当地水平坐标系,OA为主天线到从天线的基线,且A点的坐标值由计算已知,S1和S2分别代表可视卫星1和可视卫星2,在前面已经得到了各卫星在以原点O建立当地水平坐标系中的偏向角和俯仰角,∠1、∠3代表卫星S1的偏向角ψ1和俯仰角φ1,∠2、∠4代表卫星S2的偏向角ψ2和俯仰角φ2。利用几何模型解算载波相位双差值过程为:过A点向OS1做垂线交于B点,由于在GPS多天线姿态测量中各基线的长度一般在几米或几十米左右,而卫星S1到主天线O点的距离一般在2×107米这个数量级上,故∠OS1A近似为零度,所以可以认为S1A和S1B的长度相等,那么OB的长度LOB就是卫星S1到主天线和从天线的单差距离了,将LOB的距离除以GPS信号载波的波长λ就得到单差载波相位整周模糊度
Figure BDA0000052626110000081
了;同理,过A点向OS2做垂线交于C点,那么OC的长度LOC就是卫星S2到主天线和从天线的单差距离了,将LOC的距离除以GPS信号载波的波长λ就得到单差载波相位整周模糊度
Figure BDA0000052626110000082
了;选取卫星S1作为基准卫星,于是可得到从天线与主天线的双差载波相位整周模糊度 ▿ Δ N AO 21 = Δ N AO 2 - Δ N AO 1 .
结合图3,本发明利用几何算法快速求解载波相位整周模糊度进而完成GPS多天线系统测姿的过程如下:
(1)首先采集GPS多天线观测数据、GPS卫星星历和各天线在载体坐标系的坐标;
(2)在GPS多天线观测数据中利用载波相位观测值对C/A码观测数据进行平滑;
(3)计算载体平台粗略姿态角、主天线在当地水平坐标系坐标、各天线共视卫星仰角和方向角、主天线到从天线间在当地水平坐标系的基线向量;
(4)利用粗略的姿态参数,在水平坐标系中各天线间基线向量和卫星到接收机间基线向量的几何关系,求解同一卫星不同天线的单差整周模糊度值,选取基准卫星,对单差整周模糊度值作差得到整周模糊度双差值;
(5)将得到载波相位双差值代入载波相位双差模型反解精确的各天线坐标分量;
(6)由取得的各天线坐标分量解算得到精确的姿态参数进而实现GPS多天线测姿。

Claims (1)

1.GPS多天线测姿方法,其特征是:
(1)首先采集GPS多天线观测数据、GPS卫星星历和各天线在载体坐标系的坐标;
(2)在GPS多天线观测数据中利用载波相位观测值对C/A码观测数据进行平滑;
(3)计算载体平台粗略姿态角、主天线到从天线间在当地水平坐标系的基线向量、各颗可视卫星在以主天线为原点的当地水平坐标系中的偏向角和俯仰角;
(4)利用已知各颗可视卫星在以主天线为原点的当地水平坐标系中的偏向角、俯仰角,以及在当地水平坐标系中的主天线到从天线间的基线向量和卫星到主天线间的向量的几何关系,求解同一卫星不同天线的单差载波相位整周模糊度值,选取基准卫星,对单差载波相位整周模糊度值作差得到双差载波相位整周模糊度:
以主天线为原点O建立当地水平坐标系,OA为主天线到从天线的基线,S1和S2分别代表可视卫星1和可视卫星2,∠1、∠3代表卫星S1的偏向角ψ1和俯仰角φ1,∠2、∠4代表卫星S2的偏向角ψ2和俯仰角φ2,过A点向OS1做垂线交于B点,∠OS1A近似为零度,所以认为S1A和S1B的长度相等,OB的长度LOB就是卫星S1到主天线和从天线的单差距离,将LOB的距离除以GPS信号载波的波长λ得到单差载波相位整周模糊度
Figure FDA00001897566300011
同理,过A点向OS2做垂线交于C点,OC的长度LOC就是卫星S2到主天线和从天线的单差距离,将LOC的距离除以GPS信号载波的波长λ得到单差载波相位整周模糊度
Figure FDA00001897566300012
选取卫星S1作为基准卫星,得到从天线与主天线的双差载波相位整周模糊度
Figure FDA00001897566300013
(5)将得到的双差载波相位整周模糊度代入载波相位双差模型反解精确的各天线坐标分量;
(6)由取得的各天线坐标分量解算得到精确的姿态参数进而实现GPS多天线测姿。
CN2011100763771A 2011-03-29 2011-03-29 Gps多天线测姿方法 Expired - Fee Related CN102230971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100763771A CN102230971B (zh) 2011-03-29 2011-03-29 Gps多天线测姿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100763771A CN102230971B (zh) 2011-03-29 2011-03-29 Gps多天线测姿方法

Publications (2)

Publication Number Publication Date
CN102230971A CN102230971A (zh) 2011-11-02
CN102230971B true CN102230971B (zh) 2012-10-31

Family

ID=44843557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100763771A Expired - Fee Related CN102230971B (zh) 2011-03-29 2011-03-29 Gps多天线测姿方法

Country Status (1)

Country Link
CN (1) CN102230971B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565834B (zh) * 2011-11-30 2015-09-16 重庆九洲星熠导航设备有限公司 一种单频gps测向系统及其测向定位方法
CN102901484B (zh) * 2012-10-18 2014-07-23 毕诗捷 天线测姿传感器以及天线测姿方法
CN103728641B (zh) * 2013-12-27 2016-06-01 苍穹数码技术股份有限公司 基于北斗系统的三天线阵高精度定向方法及系统
CN104252004B (zh) * 2014-09-11 2017-01-11 上海卫星工程研究所 利用单天线导航接收机测量自旋卫星姿态的系统及方法
CN104502887B (zh) * 2014-12-25 2017-04-12 湖南航天电子科技有限公司 一种基于卫星定向的方位标定方法
CN107003386B (zh) * 2015-10-20 2019-06-28 深圳市大疆创新科技有限公司 一种卫星导航测姿方法和装置及无人机
CN105445772B (zh) * 2015-11-19 2017-12-22 南京航空航天大学 多gnss天线组合平台位姿一体化的确定装置及方法
CN105403904B (zh) * 2015-11-26 2018-06-26 中国航天时代电子公司 一种基于天线阵列的卫星导航单频测姿方法
CN105807293B (zh) * 2016-05-27 2019-04-16 重庆卓观科技有限公司 基于soc的单板多天线定姿接收机
CN106970406A (zh) * 2017-04-11 2017-07-21 北京七维航测科技股份有限公司 机载双天线测向方法及装置
CN107102346B (zh) * 2017-06-08 2020-02-07 中国电子科技集团公司第五十四研究所 一种基于北斗系统的多天线测姿方法
CN107512264A (zh) * 2017-07-25 2017-12-26 武汉依迅北斗空间技术有限公司 一种车辆车道的保持方法和装置
US10775513B1 (en) 2018-04-18 2020-09-15 Topcon Positioning Systems, Inc. High performance positioning system based on GNSS receiver with multiple front ends
CN108534653A (zh) * 2018-06-26 2018-09-14 深圳市北斗云信息技术有限公司 一种一机多天线gnss位移监测系统和监测方法
CN108873044A (zh) * 2018-07-05 2018-11-23 北京航空航天大学 一种用gps接收机测直升机螺旋桨相对机身姿态的方法
CN109116396B (zh) * 2018-08-09 2022-10-21 大连理工大学 一种多天线gnss差分定位方法
CN109655854B (zh) * 2019-02-21 2022-12-02 哈尔滨工程大学 一种基于零基线约束的多接收机ppp快速重收敛技术
CN109669196B (zh) * 2019-02-21 2022-07-12 哈尔滨工程大学 一种顾及基线形变的多天线gnss载波相位精密测姿方法
CN110068847B (zh) * 2019-04-01 2021-05-11 和芯星通科技(北京)有限公司 一种gnss多天线接收机定位测姿的方法和装置
CN110579787A (zh) * 2019-08-28 2019-12-17 安徽继远软件有限公司 基于北斗多天线姿态测量的电力铁塔高精度倾斜监测方法
CN110609310A (zh) * 2019-10-16 2019-12-24 中国科学院重庆绿色智能技术研究院 一种固定基线长度与水平的gnss测向方法
CN113093236A (zh) * 2019-12-23 2021-07-09 中国石油天然气集团有限公司 动态后处理的方法和装置
CN111504311A (zh) * 2020-05-15 2020-08-07 杭州鸿泉物联网技术股份有限公司 多传感器融合实时定位导航装置及方法
CN111796311B (zh) * 2020-07-17 2024-01-26 广东星舆科技有限公司 目标对象状态的监测方法、装置及计算机可读介质
CN111891395B (zh) * 2020-08-12 2021-04-23 中国科学院微小卫星创新研究院 极简卫星及其控制方法
CN112325842B (zh) * 2020-10-30 2022-07-01 中国电子科技集团公司第五十四研究所 一种多天线平面投影加权测姿方法
CN113064195B (zh) * 2021-03-16 2023-09-01 西南交通大学 一种利用多天线几何特征的高精度低计算载体测姿方法
CN113126022B (zh) * 2021-04-14 2023-11-03 成都金诺信高科技有限公司 一种双天线定位测向方法
CN114339993B (zh) * 2022-03-16 2022-06-28 北京瑞迪时空信息技术有限公司 基于天线距离约束的陆基定位方法、装置、设备和介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598009B2 (en) * 2001-02-01 2003-07-22 Chun Yang Method and device for obtaining attitude under interference by a GSP receiver equipped with an array antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292185B2 (en) * 2005-10-04 2007-11-06 Csi Wireless Inc. Attitude determination exploiting geometry constraints

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598009B2 (en) * 2001-02-01 2003-07-22 Chun Yang Method and device for obtaining attitude under interference by a GSP receiver equipped with an array antenna

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"基于最小二乘法的GPS多天线测姿及精度分析";王立红 等;《测试技术学报》;20070131;第21卷(第1期);第1-5页 *
王立红 等."基于最小二乘法的GPS多天线测姿及精度分析".《测试技术学报》.2007,第21卷(第1期),第1-5页.
谭颖 等."使用GPS对大坝进行姿态测量的研究".《重庆邮电大学学报(自然科学版)》.2007,第19卷(第5期),第579-583页.
谭颖 等."使用GPS对大坝进行姿态测量的研究".《重庆邮电大学学报(自然科学版)》.2007,第19卷(第5期),第579-583页. *

Also Published As

Publication number Publication date
CN102230971A (zh) 2011-11-02

Similar Documents

Publication Publication Date Title
CN102230971B (zh) Gps多天线测姿方法
CN106990424B (zh) 一种双天线gps测姿方法
CN107003386B (zh) 一种卫星导航测姿方法和装置及无人机
CN106842268B (zh) 双gnss接收机载波相位双差整周模糊度浮点解向量估计方法
CN105425261B (zh) 基于GPS/Beidou2/INS的组合导航与定位方法
US7292185B2 (en) Attitude determination exploiting geometry constraints
CN105807300B (zh) 一种用北斗双频接收机进行高精度动态单点定位的方法
CN102998690B (zh) 一种基于gps载波双差方程的姿态角直接求解方法
CN107272039A (zh) 一种基于双天线gps的定位测姿方法
CN107064980A (zh) 载波相位模糊度固定方法和装置、卫星导航接收机
CN109782313A (zh) 地面精密单点定位数据处理方法
CN101743453A (zh) 任务后高精确度定位和定向系统
CN105158783A (zh) 一种实时动态差分定位方法及其设备
CN110174104A (zh) 一种组合导航方法、装置、电子设备及可读存储介质
CN102253399B (zh) 一种利用载波相位中心值的多普勒差分补偿测速方法
CN103675861A (zh) 一种基于星载gnss多天线的卫星自主定轨方法
CN104898145B (zh) 一种基于半周模糊度的模糊度固定方法和系统
CN110988955B (zh) 一种导航定位的方法及装置
CN110058282A (zh) 一种基于双频gnss智能手机的ppp高精度定位方法
CN104199061B (zh) 一种建立gps系统和bds系统载波相位频率标准的方法
CN103364803A (zh) 选星方法及应用该选星方法的卫星导航定位方法
CN110749907A (zh) 一种基于北斗动定位中接收机的钟差补偿方法及其系统
CN106526629A (zh) 卫星导航设备及其定向方法及装置
CN103235321A (zh) Gps单站伪距定位精密授时方法
CN107544075A (zh) 基于精密单点定位与调和分析估计海潮负荷位移参数方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121031

Termination date: 20180329