CN102222801A - 二次电池 - Google Patents

二次电池 Download PDF

Info

Publication number
CN102222801A
CN102222801A CN2011100966579A CN201110096657A CN102222801A CN 102222801 A CN102222801 A CN 102222801A CN 2011100966579 A CN2011100966579 A CN 2011100966579A CN 201110096657 A CN201110096657 A CN 201110096657A CN 102222801 A CN102222801 A CN 102222801A
Authority
CN
China
Prior art keywords
active material
material layer
electrode active
negative pole
secondary cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100966579A
Other languages
English (en)
Other versions
CN102222801B (zh
Inventor
佃至弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010092083A external-priority patent/JP5541957B2/ja
Priority claimed from JP2010109853A external-priority patent/JP5543269B2/ja
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN102222801A publication Critical patent/CN102222801A/zh
Application granted granted Critical
Publication of CN102222801B publication Critical patent/CN102222801B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/164Lids or covers characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B7/00Presses characterised by a particular arrangement of the pressing members
    • B30B7/02Presses characterised by a particular arrangement of the pressing members having several platens arranged one above the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

提供寿命特性优良的可靠性高的二次电池。该锂离子二次电池(二次电池)(100)具备:包含正极活性物质层(12)的正极(10)、包含负极活性物质层(22)且与正极(10)对向地配置的负极(20)、收纳正极(10)及负极(20)的外装盒(70)、和将该外装盒(70)封口的封口板(80)。正极(10)及负极(20)分别具有边缘部。在对除了边缘部的至少一部分的、正极活性物质层(12)及负极活性物质层(22)的区域施加压紧力的状态下,将正极(10)及负极(20)收纳在外装盒(70)内。

Description

二次电池
技术领域
本发明涉及二次电池。
背景技术
近年来,随着民用手机或便携式电子设备、便携式信息终端等快速的小型轻量化及多功能化,对于作为其电源的电池,强烈要求开发出小型轻量、高能量密度并且能够长期反复充放电的二次电池。作为满足这些要求的二次电池,最期待与其他二次电池相比能量密度高的锂离子二次电池,为了开发出更优良的锂离子二次电池,推行各种研究。
另外,近年来,鉴于地球温暖化等环境问题,锂离子二次电池开始被用于蓄电用途。进而,作为削减二氧化碳(CO2)或对能量问题的对策,对低燃料费用且低排气的混合动力汽车(HEV:Hybrid Electric Vehicle)或电动汽车(EV:Electric Vehicle)的普及的期待提高,也推进以车载用电池为目标的锂离子二次电池的开发及制品化。
这样的锂离子二次电池,通常将形成了正极活性物质层的正极和形成了负极活性物质层的负极在夹持隔膜对向地配置的状态下收纳在外装体(收纳容器)内,然后注入非水电解液而形成。通过使锂离子在正极和负极之间移动,进行充放电。需要说明的是,上述锂离子二次电池的一个例子例如记载在特许登录第3482604号公报中。
如上所述,锂离子二次电池不仅作为手机等便携式设备,而且作为电动汽车等大型动力用的需求也正在提高。随着锂离子二次电池的需求增加,要求大容量、并且500次循环以上的长寿命。
但是,上述锂离子二次电池中,有时因充放电时的活性物质层的膨胀收缩等,使得活性物质从活性物质层上剥离或脱落,由此导致内部短路。这样,由该内部短路的产生,引起电池寿命降低的不良情况。由此引发寿命特性或可靠性降低的问题。
发明内容
本发明是为了解决上述课题而进行的,本发明的一个目的在于提供寿命特性优良的可靠性高的二次电池。
为了实现上述目的,本发明的第1方面的二次电池,具备:包含正极活性物质层的正极、包含负极活性物质层且与正极对向地配置的负极、收纳正极和负极的收纳容器、将收纳容器封口的封口体。上述正极及负极分别具有边缘部。在对除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域施加压紧力的状态下,将上述正极和负极收纳在收纳容器内。
该第1方面的二次电池中,如上所述通过对正极活性物质层及负极活性物质层的区域施加压紧力,可以使正极与负极密合。由此,可以使循环特性提高,因此能够提高寿命特性。另外,通过对正极及负极施加压紧力可以抑制电极错位,由此,也可以提高循环特性。因此,通过如上所述地构成,能够使寿命特性及可靠性提高。
另外,在第1方面中,通过以对正极及负极施加压紧力时压紧正极及负极的除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域的方式构成,能够抑制由于在电极边缘部产生的毛刺突起等使得正极和负极发生电短路的不良情况。由此,能够抑制电池组装时内部短路的发生,因此能够提高成品率。另外,通过提高成品率,在制造大容量的二次电池时,能够容易地实现制品的价格降低。
进而,在第1方面中,通过如上所述地构成,能够以对正极及负极的边缘部的至少一部分施加压紧力的方式构成。因此,在伴随电池充放电的活性物质层的膨胀收缩时,能够抑制在电极的边缘部(端部)发生内部短路。因此,也能够由此提高循环特性。而且也可以提高可靠性。
另外,第1方面的二次电池,优选为还具备对电解液具有膨润性的膨润性树脂的构成。另外,第1方面的二次电池也可以为分散有对电解液具有膨润性的膨润性树脂的构成。进而,第1方面的二次电池具备对电解液具有膨润性的膨润性树脂时,更优选该膨润性树脂形成为板状。
上述第1方面的二次电池中,优选正极及负极分别在除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的区域被施加压紧力。此处,通过涂布形成正极活性物质层及负极活性物质层时,有时在涂布始端及涂布终端形成隆起部分(突出部)。此时,如果对隆起部分(突出部)施加压紧力,则有时发生内部短路。但是,如果如上所述地构成,则能够抑制对隆起部分(突出部)施加压紧力,因此可以抑制在隆起部分(突出部)发生内部短路。由此能够有效地抑制短路的发生,因此能够容易地提高成品率。
在上述第1方面的二次电池中,优选通过收纳容器及封口体对正极活性物质层及负极活性物质层的区域施加压紧力。如果这样地构成,则能够容易地对正极及负极施加压紧力。
上述第1方面的二次电池中,优选还具备配置在正极与负极之间的隔膜,通过依次层叠正极、隔膜及负极而构成层叠体。通过收纳容器及封口体在层叠方向上对层叠体施加压紧力。如果这样地构成,则能够以高成品率得到寿命特性优良的可靠性高的层叠型二次电池。
此时,优选层叠体具有各自多个的正极及负极,上述正极及负极交替层叠。如果这样地构成,则能够容易地实现层叠型二次电池的大容量化。
上述第1方面的二次电池中,优选正极及负极中的被施加压紧力的区域是距正极活性物质层的外缘1mm以上的内侧的区域、或者距负极活性物质层的外缘1mm以上的内侧的区域。如果这样地构成,则能够容易地抑制内部短路的发生。
上述第1方面的二次电池中,优选正极活性物质层具有比负极活性物质层小的平面积,正极及负极中的被施加压紧力的区域是距正极活性物质层的外缘1mm以上的内侧的区域。如果这样地构成,则能够更容易地抑制内部短路的发生。
上述第1方面的二次电池中,优选对距正极活性物质层或负极活性物质层的外缘5mm以上的内侧的区域施加压紧力。如果这样地构成,则能够更容易地抑制内部短路的发生。
上述第1方面的二次电池中,优选正极及负极中的被施加压紧力的区域的面积是正极活性物质层的平面积的10%以上且99%以下。
上述第1方面的二次电池中,正极及负极中的被施加压紧力的区域的面积如果是正极活性物质层的平面积的20%以上且98%以下,则更优选。
上述第1方面的二次电池中,收纳容器及封口体可以分别由金属材料构成。
上述第1方面的二次电池中,优选正极及负极与封口体对向地配置,封口体具有向正极及负极突出的第1凸部,通过该第1凸部对正极及负极施加压紧力。如果这样地构成,则能够容易地对正极及负极的除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域施加压紧力。
此时,在上述封口体上也可以形成多个第1凸部。
在上述封口体具有第1凸部的构成中,优选上述第1凸部与封口体一体地形成。如果这样地构成,则能够容易地在封口体上形成第1凸部。而且,即使在封口体上形成第1凸部时,也可以抑制部件个数增加。
在上述封口体具有第1凸部的构成中,优选上述第1凸部具有对正极及负极施加压紧力的近似平面状的压紧面。如果这样地构成,则能够抑制压紧力集中在一点,因此能够抑制压紧力集中施加到一点而导致活性物质层上形成裂纹的不良情况。由此,能够抑制由裂纹形成而导致的循环特性降低。另外,例如凸部的顶端陡峭时,导致容易发生内部短路的不良情况,另一方面,如上所述通过使压紧面为近似平面状,能够避免上述不良情况。
上述第1方面的二次电池中,优选收纳容器包含与正极及负极对向的底面部,收纳容器的底面部具有向正极及负极突出的第2凸部,通过第2凸部对正极及负极施加压紧力。如果这样地构成,则能够容易地对正极及负极的除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域施加压紧力。
此时,也可以在上述收纳容器的底面部形成多个第2凸部。
在上述收纳容器的底面部具有第2凸部的构成中,优选上述第2凸部与收纳容器的底面部一体地形成。如果这样地构成,则能够容易地在收纳容器的底面部形成第2凸部。而且,即使在收纳容器的底面部形成第2凸部时,也能够抑制部件个数增加。
在上述收纳容器的底面部具有第2凸部的构成中,优选上述第2凸部具有对正极及负极施加压紧力的近似平面状的压紧面。如果这样地构成,则能够抑制压紧力集中施加到活性物质层的一点。而且,能够抑制内部短路的发生。
在上述收纳容器的底面部具有第2凸部的构成中,优选正极及负极与封口体对向地配置,并且封口体具有向正极及负极突出的第1凸部。此时,优选上述第2凸部在与第1凸部对应的位置上形成。
在上述第1方面的二次电池中,优选正极及负极与封口体对向地配置,并且收纳容器包含与正极及负极对向的底面部,在正极及负极与封口体之间、以及在正极及负极与收纳容器的底面部之间的至少一处,配置用于对正极及负极施加压紧力的压紧构件。如果这样地构成,则能够通过上述压紧构件容易地对正极及负极的除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域施加压紧力。
此时,压紧构件优选由绝缘材料构成。
在具备上述压紧构件的构成中,压紧构件可以由高分子材料构成。
在具备上述压紧构件的构成中,压紧构件可以分别配置在正极及负极与封口体之间、以及正极及负极与收纳容器的底面部之间。
在上述第1方面的二次电池中,优选正极及负极与封口体对向地配置,在封口体的电池内部侧,以在平面上观察覆盖正极活性物质层的边缘部及负极活性物质层的边缘部的方式形成第1凹部。如果这样地构成,则能够以没有通过第1凹部对正极活性物质层的边缘部及负极活性物质层的边缘部施加压紧力的方式构成。
在上述第1方面的二次电池中,优选收纳容器包含与正极及负极对向的底面部,在收纳容器的底面部的电池内部侧以在平面上观察覆盖正极活性物质层的边缘部及负极活性物质层的边缘部的方式形成第2凹部。如果这样地构成,则能够以没有通过第2凹部对正极活性物质层的边缘部及负极活性物质层的边缘部施加压紧力的方式构成。
在上述第1方面的二次电池中,收纳容器及封口体的至少一个可以在该电池内部侧的面上包覆高分子层压材料。需要说明的是,用高分子层压材料的包覆可以对电池内部侧及电池外部侧的双面实施。
上述第1方面的二次电池中,优选收纳容器形成为方形,并且面积最大的面成为底面部,正极及负极与底面部对向地收纳在收纳容器内。如果这样地构成,则可以容易地得到大容量的方形二次电池。另外,如果这样地构成,则能够改善在收纳容器内收纳正极及负极时的作业性。
本发明的第2方面的二次电池,具备:包含正极活性物质层的正极、包含负极活性物质层且与正极对向地配置的负极、正极及负极交替层叠的层叠体、包含收纳层叠体的收纳容器和将该收纳容器封口的封口体的外装容器、和配置在外装容器内且对电解液具有膨润性的膨润性树脂。上述层叠体利用通过将电解液注入外装容器内而膨润的膨润性树脂在层叠方向上施加压紧力。
在该第2方面的二次电池中,如上所述,将对电解液具有膨润性的膨润性树脂配置在外装容器内,由此可以通过向外装容器内注入电解液使上述膨润性树脂膨润。通过注入电解液而膨润的膨润性树脂,可以对收纳在外装容器内的层叠体施加压紧力。由此,能够在外装容器内固定上述层叠体,从而能够抑制层叠体的错位。因此,在伴随电池的充放电的活性物质层的膨胀收缩时等,能够抑制由在层叠体上发生错位而引起的内部短路的发生。结果能够提高循环特性。
另外,在第2方面中,利用通过将电解液注入外装容器内而膨润的膨润性树脂,能够对上述层叠体施加压紧力,因此能够利用该压紧力使正极与负极密合。因此,也能够由此提高循环特性。
因此,第2方面的二次电池中,通过如上所述地构成,能够提高寿命特性及可靠性。
在上述第2方面的二次电池中,优选正极及负极分别具有边缘部,并且在除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域被施加压紧力。如果这样地构成,则能够抑制由于在电极边缘部产生的毛刺突起等使得正极和负极发生电短路的不良情况。由此,能够抑制电池组装时的内部短路的发生,从而能够提高成品率。另外,通过提高成品率,在制造大容量的二次电池时,能够容易地实现制品价格的降低。另外,如果这样地构成,则能够有效地抑制在伴随电池的充放电的活性物质层的膨胀收缩时在电极的边缘部(端部)发生内部短路。由此,能够有效地提高循环特性。而且,能够进一步提高可靠性。
在上述第2方面的二次电池中,优选正极及负极分别在除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的区域被施加压紧力。此处,通过涂布形成正极活性物质层及负极活性物质层时,有时在涂布始端及涂布终端形成隆起部分(突出部)。此时,如果对隆起部分(突出部)施加压紧力,则有时发生内部短路。但是,如果如上所述地构成,则由于能够抑制对上述隆起部分(突出部)施加压紧力,因此能够抑制在隆起部分(突出部)发生内部短路。由此,能够有效地抑制短路的发生,从而能够更容易地提高成品率。
在上述第2方面的二次电池中,优选在正极活性物质层及负极活性物质层的至少一个中分散膨润性树脂。如果这样地构成,则可以通过在外装容器内注入电解液,使分散有膨润性树脂的活性物质层膨润。可以通过因注入电解液而膨润的活性物质层对收纳在外装容器内的层叠体施加压紧力。由此,能够容易地提高循环特性。
在上述第2方面的二次电池中,优选在封口体与层叠体之间及收纳容器与层叠体之间的至少一处配置由膨润性树脂构成的板状构件。如果这样地构成,则可以通过在外装容器内注入电解液,使由膨润性树脂构成的板状构件膨润,容易地对收纳在外装容器内的层叠体施加压紧力。
此时,优选板状构件形成为与除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的活性物质层的区域对应的大小。如果这样地构成,则可以容易地对除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的区域施加压紧力,因此能够有效地抑制内部短路的发生。由此,能够在提高循环特性的同时,提高可靠性及成品率。
在上述第2方面的二次电池中,可以还具备配置在正极与负极之间的隔膜,将隔膜由上述膨润性树脂构成。如果这样地构成,则可以通过在外装容器内注入电解液,使隔膜膨润,从而容易地对收纳在外装容器内的层叠体施加压紧力。需要说明的是,也能够以如下方式构成,在正极与负极之间以外也配置上述隔膜,使配置在正极与负极之间以外的隔膜膨润,对收纳在外装容器内的层叠体施加压紧力。
此时,优选层叠体具有各自多个的正极、隔膜及负极,通过依次层叠正极、隔膜及负极而构成层叠体,多个隔膜中的至少一部分具有与其他隔膜不同的厚度。如果这样地构成,则能够容易地调节对层叠体施加的压紧力,因此能够对层叠体施加所希望的压紧力。
在上述第2方面的二次电池中,优选通过封口体及收纳容器在层叠方向上对层叠体中的正极及负极施加压紧力。如果这样地构成,则能够更容易地对层叠体(正极及负极)施加压紧力。
在上述第2方面的二次电池中,膨润性树脂优选包含选自丁腈橡胶、苯乙烯丁二烯橡胶、羧甲基纤维素、聚偏氟乙烯、聚乙烯醇、聚环氧乙烷、环氧丙烷、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种。
在上述第2方面的二次电池中,可以成为在注入电解液前在封口体与层叠体之间或在收纳容器与层叠体之间形成间隙的状态。此时,间隙的间隔C优选设定为0mm<C<5mm。
在上述第2方面的二次电池中,优选正极及负极中的被施加压紧力的区域是距正极活性物质层的外缘1mm以上的内侧的区域、或者距负极活性物质层的外缘1mm以上的内侧的区域。如果这样地构成,则可以容易地抑制内部短路的发生。
在上述第2方面的二次电池中,优选正极活性物质层具有比负极活性物质层小的平面积,正极及负极中的被施加压紧力的区域是距正极活性物质层的外缘1mm以上的内侧的区域。如果这样地构成,则能够更容易地抑制内部短路的发生。
在上述第2方面的二次电池中,优选对距正极活性物质层及负极活性物质层的外缘5mm以上的内侧的区域施加压紧力。如果这样地构成,则可以更容易地抑制内部短路的发生。
在上述第2方面的二次电池中,收纳容器及封口体可以分别由金属材料构成。
在上述第2方面的二次电池中,优选正极及负极与封口体对向地配置,并且收纳容器包含与正极及负极对向的底面部,在封口体及收纳容器的底面部的至少一个上形成向正极及负极突出的凸部。如果这样地构成,则能够容易地对正极及负极的除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域施加压紧力。
此时,优选上述凸部具有与除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的活性物质层的区域对应的、近似平面状的压紧面。如果这样地构成,则能够更容易地对正极及负极的除了边缘部的至少一部分之外的、正极活性物质层及负极活性物质层的区域施加压紧力。需要说明的是,通过以近似平面状的压紧面对层叠体施加压紧力,能够抑制压紧力集中在一点,因此能够抑制由于压紧力集中在一点施加、而在活性物质层上形成裂纹的不良情况发生。由此,能够抑制由裂纹形成引起的循环特性的降低。另外,例如,在凸部的顶端尖锐时,出现容易发生内部短路的不良情况,另一方面,通过如上所述地使压紧面为近似平面状,能够避免上述不良情况。
在具备上述凸部的构成中,优选上述凸部与封口体及收纳容器的底面部的至少一个一体地形成。如果这样地构成,则可以容易地在封口体及收纳容器的底面部的至少一个上形成凸部。而且,即使在形成了上述凸部的情况下,也可以抑制部件个数增加。
在上述第2方面的二次电池中,优选收纳容器及封口体的至少一个在该电池内部侧的面上包覆高分子层压材料。需要说明的是,用高分子层压材料的包覆可以对电池内部侧及电池外部侧的双面实施。
在上述第2方面的二次电池中,优选收纳容器形成为方形,并且面积最大的面成为底面部,正极及负极与底面部对向地收纳在外装容器内。如果这样地构成,则能够容易地得到大容量的方形二次电池。另外,如果这样地构成,则能够改善在收纳容器中收纳电极(正极及负极)时的作业性。
如上所述,根据本发明,能够容易地得到寿命特性优良的可靠性高的二次电池。
附图说明
图1是本发明的第1实施方式的锂离子二次电池的分解立体图。
图2是本发明的第1实施方式的锂离子二次电池的分解立体图。
图3是本发明的第1实施方式的锂离子二次电池的整体立体图。
图4是本发明的第1实施方式的锂离子二次电池的平面图。
图5是表示本发明的第1实施方式的锂离子二次电池的电极组的构成的立体图。
图6是表示本发明的第1实施方式的锂离子二次电池的正极的构成的立体图。
图7是表示本发明的第1实施方式的锂离子二次电池的正极的构成的平面图。
图8是表示本发明的第1实施方式的锂离子二次电池的负极的构成的立体图。
图9是表示本发明的第1实施方式的锂离子二次电池的负极的构成的平面图。
图10是表示本发明的第1实施方式的锂离子二次电池的外装盒的构成的立体图。
图11是表示本发明的第1实施方式的锂离子二次电池的外装盒的构成的平面图。
图12是示意地表示本发明的第1实施方式的锂离子二次电池的截面图。
图13是从背面侧观察本发明的第1实施方式的锂离子二次电池的封口板的平面图。
图14是示意地表示本发明的第1实施方式的锂离子二次电池的截面图(沿图3的B1-B1线的截面图)。
图15是示意地表示本发明的第1实施方式的锂离子二次电池的截面图。
图16是示意地表示本发明的第1实施方式的锂离子二次电池的截面图(沿图3的A1-A1线的截面图)。
图17是本发明的第2实施方式的锂离子二次电池的分解立体图。
图18是本发明的第2实施方式的锂离子二次电池的平面图。
图19是示意地表示本发明的第2实施方式的锂离子二次电池的截面图。
图20是示意地表示本发明的第2实施方式的锂离子二次电池的截面图(沿图18的B2-B2线的截面图)。
图21是示意地表示本发明的第2实施方式的锂离子二次电池的截面图(沿图18的A2-A2线的截面图)。
图22是本发明的第2实施方式的锂离子二次电池的外装盒的平面图。
图23是本发明的第3实施方式的锂离子二次电池的分解立体图。
图24是本发明的第3实施方式的锂离子二次电池的整体立体图。
图25是示意地表示本发明的第3实施方式的锂离子二次电池的截面图(沿图24的A3-A3线的截面图)。
图26是示意地表示本发明的第3实施方式的锂离子二次电池的截面图(沿图24的B3-B3线的截面图)。
图27是从背面侧观察本发明的第3实施方式的锂离子二次电池的封口板的平面图。
图28是用于说明本发明的第3实施方式的锂离子二次电池的注液动作的示意图。
图29是本发明的第4实施方式的锂离子二次电池的分解立体图。
图30是本发明的第4实施方式的锂离子二次电池的平面图。
图31是示意地表示本发明的第4实施方式的锂离子二次电池的截面图(沿图30的A4-A4线的截面图)。
图32是示意地表示本发明的第4实施方式的锂离子二次电池的截面图(沿图30的B4-B4线的截面图)。
图33是本发明的第5实施方式的锂离子二次电池的分解立体图。
图34是本发明的第5实施方式的锂离子二次电池的平面图。
图35是示意地表示本发明的第5实施方式的锂离子二次电池的截面图(沿图34的A5-A5线的截面图)。
图36是示意地表示本发明的第5实施方式的锂离子二次电池的截面图(沿图34的B5-B5线的截面图)。
图37是本发明的第6实施方式的锂离子二次电池的分解立体图。
图38是本发明的第6实施方式的锂离子二次电池的平面图。
图39是示意地表示本发明的第6实施方式的锂离子二次电池的截面图(沿图38的A6-A6线的截面图)。
图40是示意地表示本发明的第6实施方式的锂离子二次电池的截面图(沿图38的B6-B6线的截面图)。
图41是本发明的第6实施方式的锂离子二次电池的外装盒的平面图。
图42是本发明的第7实施方式的锂离子二次电池的分解立体图。
图43是本发明的第7实施方式的锂离子二次电池的整体立体图。
图44是示意地表示本发明的第7实施方式的锂离子二次电池的截面图(沿图43的A7-A7线的截面图)。
图45是示意地表示本发明的第7实施方式的锂离子二次电池的截面图(沿图43的B7-B7线的截面图)。
图46是本发明的第8实施方式的锂离子二次电池的分解立体图。
图47是本发明的第8实施方式的锂离子二次电池的截面图。
图48是本发明的第8实施方式的锂离子二次电池的截面图。
图49是本发明的第9实施方式的锂离子二次电池的分解立体图。
图50是本发明的第9实施方式的锂离子二次电池的整体立体图。
图51是示意地表示本发明的第9实施方式的锂离子二次电池的截面图(沿图50的A9-A9线的截面图)。
图52是示意地表示本发明的第9实施方式的锂离子二次电池的截面图(沿图50的B9-B9线的截面图)。
图53是本发明的第10实施方式的锂离子二次电池的分解立体图。
图54是本发明的第10实施方式的锂离子二次电池的立体图。
图55是示意地表示本发明的第10实施方式的锂离子二次电池的截面图(沿图54的A10-A10线的截面图)。
图56是示意地表示本发明的第10实施方式的锂离子二次电池的截面图(沿图54的B10-B10线的截面图)。
图57是示意地表示本发明的第10实施方式的锂离子二次电池的平面图。
图58是示意地表示本发明的第11实施方式的锂离子二次电池的截面图。
图59是示意地表示本发明的第12实施方式的锂离子二次电池的截面图。
图60是示意地表示本发明的第13实施方式的锂离子二次电池的截面图。
图61是简略地表示实施例1的锂离子二次电池的部分截面图。
图62是简略地表示实施例2的锂离子二次电池的部分截面图。
图63是简略地表示实施例3的锂离子二次电池的部分截面图。
图64是简略地表示实施例4的锂离子二次电池的部分截面图。
图65是简略地表示实施例5的锂离子二次电池的部分截面图。
图66是简略地表示实施例6的锂离子二次电池的部分截面图。
图67是简略地表示实施例7的锂离子二次电池的部分截面图。
图68是简略地表示实施例8的锂离子二次电池的部分截面图。
图69是简略地表示实施例9的锂离子二次电池的部分截面图。
图70是简略地表示实施例10的锂离子二次电池的部分截面图。
图71是简略地表示实施例11的锂离子二次电池的部分截面图。
图72是简略地表示实施例12的锂离子二次电池的部分截面图。
图73是简略地表示实施例13的锂离子二次电池的部分截面图。
图74是简略地表示比较例1的锂离子二次电池的部分截面图。
图75是简略地表示比较例2的锂离子二次电池的部分截面图。
图76是简略地表示比较例3的锂离子二次电池的部分截面图。
图77是本发明的第14实施方式的锂离子二次电池的分解立体图。
图78是本发明的第14实施方式的锂离子二次电池的分解立体图。
图79是本发明的第14实施方式的锂离子二次电池的整体立体图。
图80是本发明的第14实施方式的锂离子二次电池的平面图。
图81是表示本发明的第14实施方式的锂离子二次电池的电极组的构成的立体图。
图82是表示本发明的第14实施方式的锂离子二次电池的正极的构成的立体图。
图83是表示本发明的第14实施方式的锂离子二次电池的正极的构成的平面图。
图84是表示本发明的第14实施方式的锂离子二次电池的负极的构成的立体图。
图85是表示本发明的第14实施方式的锂离子二次电池的负极的构成的平面图。
图86是表示本发明的第14实施方式的锂离子二次电池的外装盒的构成的截面图。
图87是表示本发明的第14实施方式的锂离子二次电池的外装盒的构成的平面图。
图88是从背面侧观察本发明的第14实施方式的锂离子二次电池的封口板的平面图。
图89是示意地表示本发明的第14实施方式的锂离子二次电池的截面图(表示非水电解液注液前的状态的图)。
图90是示意地表示本发明的第14实施方式的锂离子二次电池的截面图(沿图79的B-B线的截面图)。
图91是示意地表示本发明的第14实施方式的锂离子二次电池的截面图(沿图79的A-A线的截面图)。
图92是本发明的第15实施方式的锂离子二次电池的分解立体图。
图93是示意地表示本发明的第15实施方式的锂离子二次电池的截面图(与沿图79的B-B线的截面对应的图)。
图94是示意地表示本发明的第15实施方式的锂离子二次电池的截面图(与沿图79的A-A线的截面对应的图)。
图95是本发明的第16实施方式的锂离子二次电池的分解立体图。
图96是简略地表示实施例14的锂离子二次电池的部分截面图(表示非水电解液注液前的状态的图)。
图97是简略地表示实施例14的锂离子二次电池的部分截面图(表示非水电解液注液后的状态的图)。
图98是简略地表示实施例15的锂离子二次电池的部分截面图(表示非水电解液注液前的状态的图)。
图99是简略地表示实施例15的锂离子二次电池的部分截面图(表示非水电解液注液后的状态的图)。
图100是简略地表示实施例16的锂离子二次电池的部分截面图(表示非水电解液注液前的状态的图)。
图101是简略地表示实施例16的锂离子二次电池的部分截面图(表示非水电解液注液后的状态的图)。
具体实施方式
以下基于附图详细说明将本发明具体化的实施方式。需要说明的是,在以下的实施方式中,对于将本发明用于作为二次电池的一个例子的层叠型锂离子二次电池的情况进行说明。
(第1实施方式)
图1及图2是本发明的第1实施方式的锂离子二次电池的分解立体图。图3是本发明的第1实施方式的锂离子二次电池的整体立体图。图4是本发明的第1实施方式的锂离子二次电池的平面图。图5~图16是用于说明本发明的第1实施方式的锂离子二次电池的图。需要说明的是,图4中,去掉本来设置的封口板80进行描绘以便看清楚锂离子二次电池的内部。首先,参照图1~图16说明本发明的第1实施方式的锂离子二次电池100。
第1实施方式的锂离子二次电池100,如图1~图4所示,具有方形扁平形状(参照图3),具备:包含正极10(参照图1)及负极20(参照图1)的电极组50(参照图1及图2)、和将该电极组50与非水电解液一同封入的金属制外装容器60。
电极组50如图1及图5所示还具备用于抑制正极10和负极20的短路的隔膜30。正极10及负极20夹持隔膜30彼此对向地配置。另外,电极组50分别具备多个正极10、负极20及隔膜30,通过依次层叠正极10、隔膜30及负极20而构成为层叠结构(层叠体50a)。需要说明的是,正极10及负极20一个一个地交替层叠。另外,上述电极组50以1个正极10位于相邻的2个负极20之间的方式构成。再在上述电极组50中的最外侧配置隔膜30。
具体而言,上述电极组50例如包含24片正极10、25片负极20、50片隔膜30而构成,正极10及负极20夹持隔膜30交替层叠。
构成电极组50的正极10,如图6及图7所示,具有在正极集电体11的两面上负载有正极活性物质层12的构成。
正极集电体11具有进行正极活性物质层12的集电的功能。该正极集电体11例如由铝、钛、不锈钢、镍、铁等金属箔、或包含它们的合金的合金箔构成,具有约1μm~约500μm(例如约20μm)的厚度。需要说明的是,正极集电体11优选为铝箔或铝合金箔,其厚度优选为20μm以下。
另外,正极集电体11除上述之外,例如为了提高导电性及耐氧化性,可以使用将铝或铜等的表面用碳、镍、钛或银等处理后的材料。对于这些,也可以对表面进行氧化处理。另外,可以使用铜和铝的覆层材料(クラツド材)、不锈钢和铝的覆层材料、或者组合有上述金属的镀层材料等。也可以使用贴合有2个以上金属箔的集电体。进而,上述正极集电体11除了箔状以外,还可以为膜状、片状、网状、实施了冲孔或扩展的形状、板条体、多孔体、发泡体、纤维组的形成体等形状。
正极活性物质层12包含能够吸附、释放锂离子的正极活性物质而构成。作为正极活性物质,例如可以举出含有锂的氧化物。具体而言,可以举出LiCoO2、LiFeO2、LiMnO2、LiMn2O4、以及将上述氧化物中的过渡金属的一部分用其他金属元素置换后的化合物等。其中,在通常的使用中,优选将在电池反应中能够利用正极保有的锂量的80%以上的物质用于正极活性物质。由此能够提高二次电池对过充电等事故的安全性。作为上述正极活性物质,例如可以举出LiMn2O4这样的具有尖晶石结构的化合物、或由LiMPO4(M是选自Co、Ni、Mn、Fe中的至少1种以上的元素)表示的具有橄榄石结构的化合物等。其中,从成本的观点考虑,优选包含Mn及Fe中的至少一种的正极活性物质。进而,从安全性及充电电压的观点考虑,优选使用LiFePO4。由于LiFePO4的全部氧(O)通过强固的共价键与磷(P)键合,因此难以引起由温度上升导致的氧释放。因此,安全性优良。
需要说明的是,上述正极活性物质层12的厚度优选为约20μm~约2mm,更优选为约50μm~约1mm。
另外,只要上述正极活性物质层12至少包含正极活性物质即可,对其构成没有特别限定。例如,正极活性物质层12除了正极活性物质以外还可以包含导电材料、增稠材料、粘合材料等其他材料。
导电材料只要是对正极10的电池性能没有不良影响的电子传导性材料即可,没有特别限定,例如可以使用碳黑、乙炔黑、科琴黑、石墨(天然石墨、人造石墨)、碳纤维等碳质材料或导电性金属氧化物等。其中,作为导电材料,从电子传导性及涂布性的观点考虑,优选为碳黑及乙炔黑。
作为增稠材料,例如可以使用聚乙二醇类、纤维素类、聚丙烯酰胺类、聚N-乙烯基酰胺类、聚N-乙烯基吡咯烷酮类等。其中,作为增稠材料,优选为聚乙二醇类、羧甲基纤维素(CMC)等纤维素类等,特别优选为CMC。
粘合材料发挥维系活性物质粒子及导电材料粒子的作用,例如可以使用聚偏氟乙烯(PVdF)、聚乙烯基吡啶、聚四氟乙烯等氟类聚合物、聚乙烯、聚丙烯等聚烯烃类聚合物、苯乙烯丁二烯橡胶等。
作为使正极活性物质、导电材料、粘合材料等分散的溶剂,例如可以使用N-甲基-2-吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、甲基乙基酮、环己酮、乙酸甲酯、丙烯酸甲酯、二乙三胺、N,N-二甲基氨基丙胺、环氧乙烷、四氢呋喃等有机溶剂。
对于上述正极10,例如将正极活性物质、导电材料、增稠材料及粘合材料混合,加入适当的溶剂,制成糊状的正极合剂,将其在正极集电体11的表面上涂布干燥,根据需要为了提高电极密度进行压缩而形成。
另外,上述正极10如图7所示,在平面上观察具有矩形形状,具有4个边缘部14(X方向的2个边缘部14a、Y方向的2个边缘部14b)。需要说明的是,在第1实施方式中,上述正极10的Y方向的宽度w1例如为约146mm,X方向的长度g1例如为约208mm。另外,正极活性物质层12的涂布区域(形成区域)中,Y方向的宽度w11与正极10的宽度w1相同,例如为约146mm,X方向的长度g11例如为约196mm。因此,形成在涂布区域的正极活性物质层12,在平面上观察形成为矩形形状,具有4个边缘部13(沿X方向的2个边缘部13a、沿Y方向的2个边缘部13b)。
另外,上述正极10在X方向的一端具有没形成正极活性物质层12而使正极集电体11的表面露出的集电体露出部11a。在该集电体露出部11a上电连接用于使电流流出到外部的、后述集电引线5(参照图4及图12)。需要说明的是,正极活性物质层12中的4个边缘部13,除了沿Y方向的2个边缘部13b中的一侧(集电体露出部11a侧的边缘部13b),与上述正极10中的边缘部14大致一致。
构成电极组50的负极20,如图8及图9所示,具有在负极集电体21的两面上负载有负极活性物质层22的构成。
负极集电体21具有进行负极活性物质层22的集电的功能。该负极集电体21例如由铜、镍、不锈钢、铁、镍镀层等的金属箔、或者包含它们的合金的合金箔构成,具有约1μm~约100μm(例如约16μm)的厚度。需要说明的是,负极集电体21优选为由铜或不锈钢构成的金属箔,其厚度优选为4μm以上且20μm以下。
另外,上述负极集电体21除了箔状以外,可以为膜状、片状、网状、实施了冲孔或扩展的形状、板条体、多孔体、发泡体、纤维组的形成体等形状。
负极活性物质层22包含能够吸附、释放锂离子的负极活性物质而构成。作为负极活性物质,例如由含锂的物质、或能够吸附、释放锂的物质构成。另外,为了构成高能量密度电池,优选吸附、释放锂的电位接近金属锂的析出、溶解电位。作为其典型例,可以举出:粒子状(鳞片状、块状、纤维状、晶须状、球状、粉碎粒子状等)的天然石墨或人造石墨。需要说明的是,作为负极活性物质,可以使用将中间相碳微球、中间相沥青粉末、各向同性沥青粉末等石墨化而得到的人造石墨。另外,也可以使用表面附着有非晶碳的石墨粒子。进而,也可以使用锂过渡金属氧化物、锂过渡金属氮化物、过渡金属氧化物及氧化硅等。作为锂过渡金属氧化物,例如使用以Li4Ti5O12为代表的钛酸锂时,由于负极20的劣化变少,因此能够实现电池的长寿命化。
需要说明的是,上述负极活性物质层22的厚度优选为约20μm~约2mm,更优选为约50μm~约1mm。
另外,上述负极活性物质层22只要至少包含负极活性物质即可,对其构成没有特别限定。例如,负极活性物质层22除了负极活性物质以外,也可以包含导电材料、增稠材料、粘合材料等其他材料。需要说明的是,导电材料、增稠材料、粘合材料等其他材料可以使用能够用于正极活性物质层12的材料。
对于上述的负极20,例如将负极活性物质、导电材料、增稠材料及粘合材料混合,加入适当的溶剂,制成糊状的负极合剂,将其在负极集电体21的表面上涂布干燥,根据需要为了提高电极密度进行压缩而形成。
另外,上述负极20如图9所示,在平面上观察具有矩形形状,具有4个边缘部24(X方向的2个边缘部24a、Y方向的2个边缘部24b)。另外,上述负极20形成比正极10(参照图7及图8)大的平面积。需要说明的是,在第1实施方式中,上述负极20的Y方向的宽度w2比正极10的宽度w1(参照图7)大,例如为约150mm,X方向的长度g2比正极10的长度g1(参照图7)长,例如为约210mm。另外,负极活性物质层22的涂布区域(形成区域)的Y方向的宽度w21与负极20的宽度w2相同,例如为约150mm,X方向的长度g21例如为约200mm。因此,形成在涂布区域的负极活性物质层22在平面上观察形成为矩形形状,具有4个边缘部23(沿X方向的2个边缘部23a、沿Y方向的2个边缘部23b)。
另外,上述负极20与正极10同样地在X方向的一端具有没形成负极活性物质层22而使负极集电体21的表面露出的集电体露出部21a。在该集电体露出部21a上电连接用于将电流引出到外部的、后述集电引线5(参照图4及图12)。需要说明的是,负极活性物质层22中的4个边缘部23,除了沿Y方向的2个边缘部23b中的一侧(集电体露出部21a侧的边缘部23b)之外,与上述负极20中的边缘部24基本一致。
构成电极组50的隔膜30可以是强度充分并且能够保持大量电解液的隔膜,从这一观点考虑,优选厚度为10μm~50μm且空隙率为30%~70%的包含聚乙烯、聚丙烯或乙烯-丙烯共聚物的微多孔膜或无纺布等。
另外,隔膜30除了上述材料以外,例如可以使用由聚偏氟乙烯、聚偏氯乙烯、聚丙烯腈、聚丙烯酰胺、聚四氟乙烯、聚砜、聚醚砜、聚碳酸酯、聚酰胺、聚酰亚胺、聚醚(聚环氧乙烷、聚环氧丙烷)、纤维素(羧甲基纤维素、羟丙基纤维素)、聚(甲基)丙烯酸、聚(甲基)丙烯酸酯等高分子构成的微多孔膜等。进而,也可以使用重合了上述微多孔膜的多层膜。
作为隔膜30的厚度,优选为5μm~100μm,更优选为10μm~30μm。另外,作为隔膜30的空隙率,优选为30%~90%,更优选为40%~80%。如果隔膜30的厚度小于5μm,则隔膜30的机械强度不足,成为电池内部短路的原因。另一方面,如果隔膜30的厚度大于100μm,则正极负极间的距离变长,电池的内部电阻提高。另外,如果空隙率低于30%,则非水电解液的含量减少,电池的内部电阻提高。另一方面,如果空隙率高于90%,则导致正极10和负极20发生物理接触,成为电池内部短路的原因。另外,隔膜30根据厚度和空隙率,考虑机械强度、非水电解液的含量、电池的内部电阻或电池内部短路的容易性等,也可以重叠多片进行使用。
另外,上述隔膜30具有比正极活性物质层12的涂布区域(形成区域)及负极活性物质层22的涂布区域(形成区域)大的形状。具体而言,上述隔膜30例如形成为纵向的长度(与X方向对应的方向的长度)为约154mm、横向的长度(与Y方向对应的方向的长度)为约206mm的矩形形状。
上述正极10及负极20,如图1及图5所示,以正极10的集电体露出部11a和负极20的集电体露出部21a彼此位于相反侧的方式进行配置,在正极负极间隔着隔膜30层叠。
与电极组50一同封入外装容器60内的非水电解液没有特别限定,作为溶剂,例如可以使用:碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸二乙酯(DEC)、碳酸二甲酯、碳酸甲基乙酯、γ-丁内酯等酯类;四氢呋喃、2-甲基四氢呋喃、二氧杂环己烷、二氧戊环、乙醚、二甲氧基乙烷、二乙氧基乙烷、甲氧基乙氧基乙烷等醚类;二甲基亚砜、环丁砜、甲基环丁砜、乙腈、甲酸甲酯、乙酸甲酯等极性溶剂。上述溶剂可以单独使用,也可以将2种以上混合用作混合溶剂。
另外,非水电解液中可以含有电解质支持盐。作为电解质支持盐,例如可以举出LiClO4、LiBF4(氟硼化锂)、LiPF6(六氟化磷酸锂)、LiCF3SO3(三氟甲磺酸锂)、LiF(氟化锂)、LiCl(氯化锂)、LiBr(溴化锂)、LiI(碘化锂)、LiAlCl4(四氯化铝酸锂)等锂盐。上述支持盐可以单独使用,也可以将2种以上混合进行使用。
需要说明的是,电解质支持盐的浓度没有特别限定,优选为0.5mol/L~2.5mol/L,更优选为1.0mol/L~2.2mol/L。电解质支持盐的浓度不足0.5mol/L时,有可能非水电解液中搬运电荷的载体浓度变低,非水电解液的电阻增高。另外,电解质支持盐的浓度高于2.5mol/L时,有可能盐本身的解离度变低,非水电解液中的载体浓度并不提高。
封入电极组50的外装容器60是大型的扁平方形容器,如图1~图3所示,包含收纳电极组50等的外装盒70和将该外装盒70封口的封口板80而构成。另外,收纳了电极组50的外装盒70用封口板80双重折边封口。需要说明的是,外装盒70是本发明的“收纳容器”的一个例子,封口板80是本发明的“封口体”的一个例子。
外装盒70例如通过对金属板实施深拉深加工等而形成,具有底面部71和侧壁部72。另外,如图10~图12所示,在外装盒70的一端(底面部71的相反侧)设置用于插入电极组50(参照图12)的开口部73。另外,上述外装盒70形成为方形盒,面积最大的面成为底面部71。
外装盒70的内径尺寸是能够收纳电极组50使其电极面与底面部71对向的大小。具体而言,上述外装盒70例如使纵向的长度(图11的Y方向的长度L)形成为约164mm,横向的长度(图11的X方向的长度W)形成为约206mm。另外,如图12所示,外装盒70的深度D例如形成为约20mm。
另外,如图10及图11所示,上述外装盒70在Y方向的一侧的侧壁部72上形成电极端子74。进而,在外装盒70的开口部73中的周围边缘设置用于进行双重折边封口的容器折边部75。
封口板80例如通过对金属板进行加压加工而形成。该封口板80如图12及图13所示,具有:堵塞外装盒70的开口部73的近似平板状的面板部81、连接在面板部81的外周端向上方延伸的卡盘壁部82、和连接在卡盘壁部82的外周端的折边部83。进而,如图1及图13所示,在X方向的一侧形成用于注入非水电解液的注液孔84。该注液孔84例如形成为2mm的大小。
需要说明的是,外装盒70及封口板80,例如可以使用铁、不锈钢、铝等金属板、对铁实施镀镍后的钢板或实施镀铝后的钢板等形成。由于铁是廉价的材料,因此从价格的观点考虑是优选的,为了确保长期可靠性,更优选使用由不锈钢、铝等构成的金属板、或对铁实施镀镍后的钢板或实施镀铝后的钢板等。另外,除了上述以外,也可以使用将金属板的表面用高分子材料层压后的高分子层压材料(层压板)。此时,优选至少对成为电池内部侧的面实施包覆处理。需要说明的是,金属板的厚度例如可以为约0.4mm~约1.2mm(例如约1.0mm)。
另外,如图4及图12所示,上述电极组50以正极10(参照图1)及负极20(参照图1)与外装盒70的底面部71对向的方式收纳在外装盒70内。收纳的电极组50中,正极10的集电体露出部11a(参照图7)及负极20的集电体露出部21a(参照图9)分别经由集电引线5与外装盒70的电极端子74电连接。需要说明的是,集电引线5可以使用与集电体相同材质的材料,但也可以为不同的材质。另外,还可以在正极10及负极20上分别连接集电极(集电构件),经由该集电极将电极组50和电极端子74电连接而构成。
如图14及图16所示,外装盒70的开口部73通过上述封口板80双重折边封口。具体而言,封口板80的折边部83的顶端部分以卷入外装盒70的容器折边部75中的方式进行压接,由此将封口板80安装在外装盒70上。
另外,封口板80的面板部81通过卡盘壁部82与外装盒70的开口部73中的周围边缘仅相距规定距离而位于下侧(底面部71侧)。由此,电极组50(层叠体50a)在收纳于外装容器60内的状态下,通过外装盒70和封口板80在层叠方向(外装盒70的深度方向;Z方向)上被施加压紧力,成为正极10和负极20夹持隔膜30密合的状态。
非水电解液在外装盒70的开口部73用封口板80封口后,从注液孔84例如进行减压注液。例如,将与注液孔84大致相同直径的金属球90(参照图3)设置在注液孔84上后,通过电阻焊接或激光焊接等将注液孔84封口。
需要说明的是,在第1实施方式的锂离子二次电池100中,在过充电时或高温状态下电池内压升高时,为了避免电池爆炸(起火)等危险,设置用于释放电池内压的安全阀(未图示)。以该安全阀工作前外装容器60不开放的方式,在封口部分的耐压达到安全阀的工作压以上的封口强度下安装封口板80。
此处,在第1实施方式中,通过外装盒70和封口板80,对除了正极10的边缘部(端部)14及负极20的边缘部(端部)24之外的、正极活性物质层12及负极活性物质层22的区域施加压紧力。即,对正极活性物质层12及负极活性物质层22中的、正极10的边缘部(端部)14及负极20的边缘部(端部)24以外的区域(活性物质层形成区域)施加压紧力。具体而言,在第1实施方式中,对除了正极活性物质层12的4个边缘部13及负极活性物质层22的4个边缘部23之外的、正极活性物质层12的区域15(图6及图7的阴影部分)内及负极活性物质层22的区域25(图8及图9的阴影部分)内施加压紧力。
正极10及负极20中的被施加压紧力的区域,如图7及图9所示为距正极活性物质层12的外缘仅为距离a(a1~a4)的正极活性物质层12的内侧的区域15内、或者距负极活性物质层22的外缘仅为距离b(b1~b4)的负极活性物质层22的内侧的区域25内。距正极10中的正极活性物质层12的外缘的距离a及距负极20中的负极活性物质层22的外缘的距离b,分别优选在1mm以上,更优选为5mm以上。需要说明的是,在第1实施方式中,与负极20相比,正极10的平面积更小,因此正极10及负极20中的被施加压紧力的区域,优选为距正极活性物质层12的外缘仅为5mm以上的距离a的正极活性物质层12的内侧的区域15内。如果这样地构成,则在负极20中也对距负极活性物质层22的外缘仅为5mm以上的距离b的负极活性物质层22的内侧的区域25内施加压紧力。
另外,在第1实施方式中,如图12、图14及图16所示,为了对除了正极10的边缘部(端部)14及负极20的边缘部(端部)24之外的、正极活性物质层12及负极活性物质层22的区域施加压紧力,在封口板80上形成凸部85。需要说明的是,形成在封口板80上的上述凸部85是本发明的“第1凸部”的一个例子。
具体而言,第1实施方式的锂离子二次电池100中,上述封口板80与电极(正极10及负极20)对向地构成,在封口板80的面板部81上形成向电极组50(正极10及负极20)(在Z方向)突出的上述凸部85。该凸部85通过加压加工等与封口板80一体地形成,具有近似平面状的压紧面85a。用凸部85的压紧面85a,在层叠方向(Z方向)上压紧电极组50,对除了正极活性物质层12的4个边缘部13及负极活性物质层22的4个边缘部23之外的、正极活性物质层12的区域15内及负极活性物质层22的区域25内施加压紧力。因此,第1实施方式中如图14~图16所示,通过凸部85施加压紧力的区域P1位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
上述凸部85的压紧面85a如图13所示,在平面上观察具有近似矩形形状,形成为比正极活性物质层12(参照图7)的平面积小的平面积。需要说明的是,上述压紧面85a的X方向的长度L11比正极活性物质层12的X方向的长度g11(参照图7)小,例如形成为约194mm。另外,上述压紧面85a的Y方向的长度L12比正极活性物质层12的Y方向的宽度w1(参照图7)小,例如形成为约144mm。
另外,在第1实施方式中,通过上述凸部85,对距正极活性物质层12的外缘仅为距离a的正极活性物质层12的内侧的区域15或距负极活性物质层22的外缘仅为距离b的负极活性物质层22的内侧的区域25的几乎整个面施加压紧力。需要说明的是,正极10及负极20中的被施加压紧力的区域的面积,优选为正极活性物质层12的平面积的10%以上且99%以下,更优选为20%以上且98%以下。
另外,对电极组50施加的压紧力通过用封口板80的压入量(压缩量)控制,为了得到规定的压紧力,调节凸部85的突出量。需要说明的是,凸部85的突出量,优选设定成相对于电极组50的层叠方向的厚度(正极10、负极20及隔膜30的合计厚度)的压入量(压缩量)的比例为约5%~约15%(例如10%)。
第1实施方式的锂离子二次电池100中,如上所述,以在对正极10及负极20施加压紧力时压紧除了正极10的边缘部(端部)14及负极20的边缘部24之外的、正极活性物质层12及负极活性物质层22的区域的方式构成,由此能够抑制对正极10的边缘部14及负极20的边缘部24施加压紧力。
此处,上述正极10及负极20,均使用长条的带状集电体片,通过规定的方法将正极活性物质层12或负极活性物质层22涂布在这些集电体片上,然后,切断成与各电极对应的长度,由此来制作。在该集电体片上活性物质层的涂布,例如使用所谓间歇式涂布的方法(以下称为“间歇涂布法”),其中,仅涂布形成1个电极所需的相应长度后,设置没有涂布活性物质层的集电体露出部11a及21a,再涂布下一个电极份的活性物质层,重复该操作进行涂布。另外,作为其他涂布方法,例如也有时使用使集电体露出部11a及21a位于与长度方向垂直侧的一端连续地进行涂布的涂布法(以下称为“连续涂布法”)。
采用上述连续涂布法时,在将长条的集电体片切断时,活性物质层及支撑活性物质层的集电体同时被切断。因此,在集电体的切断面产生毛刺突起的同时,由于切断时的冲击使得活性物质层的切断面及切断面附近成为不稳定的状态,因此在活性物质层的端部,活性物质层的一部分容易滑落。
另一方面,采用间歇涂布法时,由于在集电体露出部11a及21a处进行切断,因此难以发生活性物质层滑落的问题。但是,间歇涂布法的情况下,虽然也取决于合剂糊的粘度等,但有时在活性物质层的涂布始端及涂布终端形成隆起部分。即,有时在活性物质层的端部(边缘部)形成突出部。另外,在集电体的无涂布部(集电体露出部)与活性物质层的边界部分有时产生阶差。
因此,在第1实施方式中,如上所述,以对正极10的边缘部(端部)14及负极20的边缘部(端部)24不施加压紧力(对电极的切断面不施加压紧力)的方式构成,由此在正极10及负极20的形成工序(切断工序)中,即使在正极10及负极20的切断面上产生毛刺突起的情况下,也能够抑制由该毛刺突起导致正极10和负极20短路。另外,由于切断时的冲击使得活性物质层的切断面及切断面附近成为不稳定的状态,在活性物质层的端部上,即使活性物质层的一部分容易滑落,也能够抑制对这样的部分施加压紧力,因此能够抑制活性物质的滑落等。由此,能够抑制由滑落的活性物质贯通隔膜30而引起的内部短路的发生。结果,在电池组装时等能够抑制内部短路的发生,因此能够以高成品率得到大容量的锂离子二次电池100。
需要说明的是,希望实现锂离子二次电池的大容量化时,使用非常大量的昂贵的正极活性物质或电解液等,因此如果成品率低,则导致制品价格上升。另外,近年来,对低价格的要求提高,要求高成品率。因此,锂离子二次电池中的制造成品率的提高非常重要。
另外,在第1实施方式中,通过对正极活性物质层12及负极活性物质层22的区域施加压紧力,能够成为正极10与负极20隔着隔膜30密合的状态。由此,能够提高循环特性等寿命特性。另外,通过对正极10及负极20施加压紧力,能够抑制电极的错位,因此,也能够提高循环特性。因此,通过如上所述地构成,能够使寿命特性及可靠性提高。
另外,在第1实施方式中,通过外装盒70及封口板80,分别对除了正极活性物质层12的4个边缘部13及负极活性物质层22的4个边缘部23之外的、正极活性物质层12的区域15内及负极活性物质层22的区域25内施加压紧力,由此,即使在活性物质层的涂布始端及涂布终端形成突出部的情况下,也能够抑制对这样的突出部施加压紧力。而且,即使在集电体露出部与活性物质层的边界部分产生阶差的情况下,也能够抑制对该阶差部分施加压紧力。因此,能够抑制由于对形成突出部或阶差等的区域施加压紧力而导致隔膜30损伤的不良情况发生。由此,能够抑制由隔膜30损伤引起的正极活性物质层12与负极活性物质层22的接触,因此也能够抑制内部短路的发生。
进而,在第1实施方式中,通过如上所述地构成,能够以不对正极10的边缘部14及负极20的边缘部24施加压紧力的方式构成,因此能够抑制在伴随电池的充放电的活性物质层的膨胀收缩时在电极的边缘部(端部)发生内部短路。由此也可以使循环特性提高。而且,也可以使可靠性提高。
这样,在第1实施方式的锂离子二次电池100中,能够使寿命特性及可靠性提高,而且,也能够使成品率提高,因此能够以低价格提供大容量且电池寿命长的锂离子二次电池100。
另外,在第1实施方式中,通过在将外装盒70的开口部73封口的封口板80上形成向正极10及负极20突出的凸部85,能够通过该凸部85容易地对除了正极10的边缘部(端部)14及负极20的边缘部(端部)24之外的、正极活性物质层12及负极活性物质层22的区域施加压紧力。
另外,在第1实施方式中,将上述凸部85与封口板80一体地形成,由此能够容易地在封口板80上形成上述凸部85。而且,即使在封口板80上形成凸部85时,也能够抑制部件个数增加。
另外,在第1实施方式中,通过以具有近似平面状的压紧面85a的方式形成上述凸部85,用封口板80的凸部85(压紧面85a)施加压紧力时,能够抑制压紧力集中施加在活性物质层的一点上。因此,能够抑制由压紧力集中施加在一点而导致活性物质层上出现裂纹的不良情况发生。由此,能够抑制由活性物质层上出现裂纹导致的循环特性降低。需要说明的是,凸部的顶端尖锐时(例如凸部的顶端尖时),内部短路容易发生,另一方面,如上所述,通过使凸部85的压紧面85a为近似平面状,能够抑制内部短路的发生。
如上所述地构成的第1实施方式的锂离子二次电池100能够优选用作要求长寿命的固定用的蓄电用蓄电池。另外,也可以优选用作混合动力汽车(HEV)或电动汽车(EV)等的车载用蓄电池。另外,第1实施方式的锂离子二次电池100适合于单电池容量在10Ah以上的蓄电池,特别适合于单电池容量在50Ah以上的大容量蓄电池。
(第2实施方式)
图17是本发明的第2实施方式的锂离子二次电池的分解立体图。图18是本发明的第2实施方式的锂离子二次电池的平面图。图19是示意地表示本发明的第2实施方式的锂离子二次电池的截面图。图20~图22是用于说明本发明的第2实施方式的锂离子二次电池的图。下面,参照图7、图9及图17~图22,说明本发明的第2实施方式的锂离子二次电池200。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
第2实施方式的锂离子二次电池200,如图17所示,在上述第1实施方式的构成中,在外装盒70的底面部71也形成凸部210。即,该第2实施方式是在外装盒70及封口板80上分别形成凸部的构成。需要说明的是,形成在外装盒70上的上述凸部210是本发明的“第2凸部”的一个例子。
另外,上述凸部210如图19~图21所示,以向电极组50(Z方向)突出的方式与外装盒70的底面部71一体地形成。另外,外装盒70的凸部210如图22所示具有近似平面状的压紧面210a。凸部210的压紧面210a形成为与图18所示的封口板80上形成的凸部85的压紧面85a大致相同的形状。即,上述凸部210的压紧面210a,如图22所示在平面上观察形成为近似矩形形状。另外,上述凸部210的压紧面210a,X方向的长度L21及Y方向的长度L22分别成为与凸部85的压紧面85a的长度L11及L12(参照图18)大致相同的长度。因此,凸部210的压紧面210a成为比正极活性物质层12(参照图7)的平面积小的平面积。
另外,第2实施方式中,如图20及图21所示,形成在外装盒70上的凸部210,在与形成在封口板80上的凸部85对应的位置上形成。即,上述凸部210在平面上观察时与封口板80的凸部85重叠地形成。
通过形成在封口板80上的凸部85(压紧面85a)和形成在外装盒70上的凸部210(压紧面210a),在层叠方向(Z方向)上压紧电极组50,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第2实施方式中,通过凸部85和凸部210被施加压紧力的区域P2,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
需要说明的是,在第2实施方式中,以对电极组50施加的压紧力达到规定的压紧力的方式调节凸部85及凸部210的突出量。因此,例如以对电极组50施加与上述第1实施方式相同的压紧力的方式构成时,凸部85的突出量缩小与凸部210的突出量相当的量。
第2实施方式的其他构成与上述第1实施方式同样。
第2实施方式中,如上所述,在封口板80的面板部81上形成凸部85的同时,在外装盒70的底面部71也形成凸部210,由此能够更容易地对除了正极10的边缘部(端部)14及负极20的边缘部(端部)24之外的、正极活性物质层12及负极活性物质层22的区域施加压紧力。
第2实施方式的其他效果与上述第1实施方式同样。
(第3实施方式)
图23是本发明的第3实施方式的锂离子二次电池的分解立体图。图24是本发明的第3实施方式的锂离子二次电池的整体立体图。图25~图28是用于说明本发明的第3实施方式的锂离子二次电池的图。下面,参照图7、图9及图23~图28,说明本发明的第3实施方式的锂离子二次电池300。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
第3实施方式的锂离子二次电池300如图23所示,与上述第1及第2实施方式不同,在封口板80的面板部81上形成多个(2个)凸部310。这些凸部310如图24及图27所示,以在X方向上相互平行地延伸的方式形成。需要说明的是,形成在封口板80上的上述凸部310是本发明的“第1凸部”的一个例子。
另外,凸部310与上述第1及第2实施方式同样,以向电极组50突出的方式与封口板80一体地形成。进而,该凸部310分别具有近似平面状的压紧面310a(参照图27),凸部310的压紧面310a在平面上观察形成为近似长方形形状。以2个压紧面310a的合计面积比正极活性物质层12(参照图7)的平面积小的方式构成。
需要说明的是,凸部310(压紧面310a)的X方向的长度L31构成为与上述第1实施方式的凸部85的长度L11(参照图13)大致相同的长度。另外,2个凸部310相互仅隔着规定的距离L33(例如约2mm~约80mm)配设。另外,凸部310(压紧面310a)的Y方向的长度L32,以2个压紧面310a的Y方向的长度L32和隔着2个压紧面310a的距离L33的合计距离L34与第1及第2实施方式的凸部85中的Y方向的长度L12(参照图13及18)相同的方式构成。需要说明的是,上述距离L34也可以以比凸部85中的Y方向的长度L12小的方式构成。
另外,第3实施方式中,2个凸部310隔着距离L33配设,因此如图25所示,在该隔着的部分(隔离凸部310的部分),形成从电池内部中的X方向的一侧连接到另一侧的空间部320。因此,封口后从注液孔84注入非水电解液时,如图28所示,通过倾斜锂离子二次电池300,从注液孔84注入的非水电解液通过上述空间部320流向X方向的另一侧(注液孔84的相反侧)。因此,能够使注入的非水电解液从形成注液孔84的一侧和其相反侧两方渗入电极组50中。由此,能够使非水电解液的渗入良好。结果,由于电池的生产速度提高,因此能够提高电池的生产效率。需要说明的是,图28中,用图中所示的箭头以图示表示非水电解液的流动。
进而,第3实施方式中,如图23所示在外装盒70的底面部71形成与上述第2实施方式同样的凸部210。如图25及图26所示,通过形成在封口板80上的凸部310(压紧面310a)和形成在外装盒70上的凸部210(压紧面210a),在层叠方向(Z方向)上压紧电极组50,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第3实施方式中,通过凸部310和凸部210被施加压紧力的区域P3,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。需要说明的是,在第3实施方式中,被施加压紧力的区域P3比上述第1及第2实施方式小。
第3实施方式的其他构成与上述第1及第2实施方式同样。
在第3实施方式中,如上所述,通过在封口板80上形成多个凸部310,能够提高封口板80对扭转等的强度。即,能够使封口板80的扭转刚性等提高。
第3实施方式的其他效果与上述第1及第2实施方式同样。
(第4实施方式)
图29是本发明的第4实施方式的锂离子二次电池的分解立体图。图30是本发明的第4实施方式的锂离子二次电池的平面图。图31及图32是本发明的第4实施方式的锂离子二次电池的截面图。图31表示沿图30的A4-A4线的截面,图32表示沿图30的B4-B4线的截面。下面,参照图7、图9、图23、图27及图29~图32,对本发明的第4实施方式的锂离子二次电池400进行说明。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第4实施方式的锂离子二次电池400中,如图29所示,在外装盒70的底面部71一体地形成多个(2个)凸部410。该凸部410与上述第2及第3实施方式同样地向电极组50突出地形成的同时,形成为与上述第3实施方式中所示的封口板80的凸部310(参照图23及图27)同样的形状。另外,第4实施方式中,如图29及图30所示在封口板80的面板部81与上述第1及第2实施方式同样地形成向电极组50突出的凸部85。即,在该第4实施方式中,用于压紧电极组50的凸部的配置成为与上述第3实施方式上下相反的构成。
另外,在第4实施方式中,如图29及图31所示,在外装盒70的底面部71隔着距离L4(例如约2mm~约80mm)(参照图31)配设2个凸部410,因此在该隔着的部分(隔离凸部410的部分),形成从电池内部中的X方向的一侧连接到另一侧的空间部420。因此,与上述第3实施方式同样,在封口后从注液孔84注入非水电解液时,能够使非水电解液的渗入良好。由此,能够提高电池的生产效率。
另外,在第4实施方式中,与上述第1~第3实施方式同样地通过形成在封口板80上的凸部85(压紧面85a)和形成在外装盒70上的凸部410(压紧面410a),在层叠方向(Z方向)上压紧电极组50。如图31及图32所示,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,第4实施方式中,通过凸部85和凸部410被施加压紧力的区域P4,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
第4实施方式的其他构成与上述第1~第3实施方式同样。
第4实施方式中,如上所述,通过在外装盒70的底面部71形成多个凸部410,能够提高外装盒70对扭转等的强度。即,能够提高外装盒70的扭转刚性等。
第4实施方式的其他效果与上述第1~第3实施方式同样。
(第5实施方式)
图33是本发明的第5实施方式的锂离子二次电池的分解立体图。图34是本发明的第5实施方式的锂离子二次电池的平面图。图35及图36是本发明的第5实施方式的锂离子二次电池的截面图。图35表示沿图34的A5-A5线的截面,图36表示沿图34的B5-B5线的截面。下面,参照图7、图9及图33~图36,说明本发明的第5实施方式的锂离子二次电池500。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第5实施方式的锂离子二次电池500中,如图33及图34所示,分别在封口板80的面板部81及外装盒70的底面部71形成多个(2个)凸部。具体而言,在第5实施方式中,在封口板80的面板部81上与上述第3实施方式同样一体地形成2个凸部310,在外装盒70的底面部71上与上述第4实施方式同样一体地形成2个凸部410。
另外,如图35及图36所示,形成在封口板80上的凸部310和形成在外装盒70上的凸部410,可以在相互对应(对向)的位置上形成。即,第5实施方式的锂离子二次电池500中,在平面上观察时,上述凸部310和凸部410重叠地(一致地)构成。
另外,第5实施方式中,如图33及图35所示,在封口板80上隔着距离L5(L4)(参照图35)配设2个凸部310的同时,在外装盒70的底面部71也隔着距离L5(L4)(参照图35)配设2个凸部410,因此在各自隔着的部分,形成从电池内部中的X方向的一侧连接到另一侧的空间部320及420。因此,与上述第3及第4实施方式同样,在封口后从注液孔84注入非水电解液时,从注液孔84注入的非水电解液通过2个空间部320及420高效地流向X方向的另一侧(注液孔84的相反侧)。由此,能够使电极组50中的非水电解液的渗入良好,因此能够提高电池的生产效率。
进而,在第5实施方式中,与上述第1~第4实施方式同样地通过形成在封口板80上的凸部310(压紧面310a)和形成在外装盒70上的凸部410(压紧面410a),在层叠方向(Z方向)上压紧电极组50。如图35及图36所示,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第5实施方式中,通过凸部310和凸部410被施加压紧力的区域P5,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
第5实施方式的其他构成与上述第1~第4实施方式同样。
另外,第5实施方式的效果与上述第1~第4实施方式同样。
(第6实施方式)
图37是本发明的第6实施方式的锂离子二次电池的分解立体图。图38是本发明的第6实施方式的锂离子二次电池的平面图。图39~图41是用于说明本发明的第6实施方式的锂离子二次电池的图。图39表示沿图38的A6-A6线的截面,图40表示沿图38的B6-B6线的截面。另外,图41表示第6实施方式的锂离子二次电池的外装盒70的平面图。下面,参照图7、图9及图37~图41,说明本发明的第6实施方式的锂离子二次电池600。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第6实施方式的锂离子二次电池600中,如图37所示,在上述第3实施方式的构成中,外装盒70的凸部中的Y方向的长度形成小。
具体而言,第6实施方式中,如图37及图38所示,在封口板80的面板部81与上述第3实施方式同样地形成2个凸部310。另一方面,在外装盒70的底面部71一体地形成向电极组50突出的1个凸部610。需要说明的是,形成在外装盒70上的凸部610是本发明的“第2凸部”的一个例子。
另外,外装盒70的凸部610具有近似平面状的压紧面610a。该压紧面610a如图41所示,在平面上观察形成为近似矩形形状,其Y方向的长度L62与上述第3实施方式相比形成得更小。需要说明的是,外装盒70的凸部610中的X方向的长度L61为与形成在封口板80上的凸部310大致相同的长度。
另外,第6实施方式中,如图39所示,上述凸部610的Y方向的长度L62以比隔离封口板80中的2个凸部310的距离L5还长的方式构成。因此,在外装盒70上安装有封口板80的状态下,封口板80的凸部310的一部分与外装盒70的凸部610的一部分对向地构成。即,第6实施方式的锂离子二次电池600中,在平面上观察时上述凸部310的至少一部分与凸部610的一部分重叠(对向)地构成。
进而,在第6实施方式中,与上述第1~第5实施方式同样,通过形成在封口板80上的凸部310(压紧面310a)和形成在外装盒70上的凸部610(压紧面610a),在层叠方向(Z方向)上压紧电极组50。如图39及图40所示,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第6实施方式中,通过凸部310和凸部610被施加压紧力的区域P6,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
第6实施方式的其他构成与上述第1~第5实施方式同样。
另外,第6实施方式的效果与上述第1~第5实施方式同样。
(第7实施方式)
图42是本发明的第7实施方式的锂离子二次电池的分解立体图。图43是本发明的第7实施方式的锂离子二次电池的整体立体图。图44及图45是本发明的第7实施方式的锂离子二次电池的截面图。图44表示沿图43的A7-A7线的截面,图45表示沿图43的B7-B7线的截面。下面,参照图7、图9、图13及图42~图45,说明本发明的第7实施方式的锂离子二次电池700。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第7实施方式的锂离子二次电池700中,如图42及图43所示与上述第1~第6实施方式不同,为在封口板80及外装盒70上没有形成凸部的构成。
另一方面,第7实施方式中,如图42、图44及图45所示,在电极组50与封口板80之间、以及电极组50与外装盒70的底面部71之间分别配置板状或片状的压紧构件710。该压紧构件710具有近似矩形形状,形成为比正极活性物质层12小的大小。即,第7实施方式的压紧构件710形成为在与图7所示的正极活性物质层12的外缘仅离开距离a的正极活性物质层12的内侧的区域15内、以及与图9所示的负极活性物质层22的外缘仅离开距离b的负极活性物质层22的内侧的区域25内容纳的大小。具体而言,上述压紧构件710例如形成为与上述第1实施方式中的凸部85的压紧面85a(参照图13)大致相同的形状。
这样构成的第7实施方式的锂离子二次电池700中,通过上述压紧构件710,在层叠方向(Z方向)上压紧电极组50,通过该压紧构件710,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第7实施方式中,经由上述压紧构件710被施加压紧力的区域P7,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
需要说明的是,在第7实施方式中,以对电极组50施加的压紧力成为规定的压紧力的方式调节上述压紧构件710的厚度。压紧构件710的具体厚度可以为例如约1mm。另外,上述压紧构件710例如可以由高分子材料等绝缘材料构成。作为上述绝缘材料,例如可以使用聚乙烯、聚丙烯、聚苯硫醚等对电解液具有耐性的树脂材料。
在第7实施方式中,如上所述,通过在电极组50(正极及负极)与封口板80之间、以及电极组50(正极及负极)与外装盒70的底面部71之间分别配置压紧构件710,可以经由该压紧构件710容易地对除了正极10的边缘部(端部)14及负极20的边缘部(端部)24之外的、正极活性物质层12的区域15(参照图7)及负极活性物质层22的区域25(参照图9)施加压紧力。
另外,在第7实施方式中,通过由绝缘材料构成压紧构件710,能够抑制外装容器60和电极组50的短路。
需要说明的是,上述压紧构件710可以预先固定在封口板80、外装盒70的底面部71上。如果如上所述地预先将压紧构件710固定在封口板80、外装盒70的底面部71上,则能够抑制压紧构件710的错位,因此能够更容易经由该压紧构件710对正极活性物质层12的区域15内(参照图7)及负极活性物质层22的区域25内(参照图9)施加压紧力。
另外,上述压紧构件710也可以由对非水电解液具有膨润性的树脂材料构成。此时,由于通过注入非水电解液使得压紧构件710膨润,因此,也考虑到由膨润引起的厚度增加,以对电极组50施加规定的压紧力的方式确定压紧构件710的厚度即可。另外,作为对非水电解液具有膨润性的树脂材料,例如可以使用丁腈橡胶(NBR)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)、聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)、聚环氧乙烷(PEO)、环氧丙烷等。另外,也可以使用包含1种以上这些材料的树脂材料。
第7实施方式的其他效果与上述第1及第2实施方式同样。
(第8实施方式)
图46是本发明的第8实施方式的锂离子二次电池的分解立体图。图47及图48是本发明的第8实施方式的锂离子二次电池的截面图。图47表示与上述第7实施方式的图44对应的截面,图48表示与上述第7实施方式的图45对应的截面。下面,参照图7、图9及图46~图48,说明本发明的第8实施方式的锂离子二次电池800。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第8实施方式的锂离子二次电池800中,如图46~图48所示,在电极组50与封口板80之间配置具有近似长方形形状的多个(3个)压紧构件810。即,该第8实施方式中,在上述第7实施方式的构成中在电极组50与封口板80之间配置的压紧构件被分割成多个。
另外,配置在电极组50与封口板80之间的压紧构件810,其X方向的长度形成为与配置在电极组50和外装盒70的底面部71之间的压紧构件710大致相同的长度。另外,配置在电极组50和封口板80之间的3个压紧构件810,在Y方向隔着规定的间隔排列。如图47所示,隔着规定的间隔排列的3个压紧构件810的Y方向的长度L8构成为与压紧构件710的Y方向的长度大致相同的长度。
这样构成的第8实施方式的锂离子二次电池800中,与上述第7实施方式同样经由压紧构件810及710,在层叠方向(Z方向)上压紧电极组50,通过该压紧构件810及710,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第8实施方式中,与上述第7实施方式同样,经由上述压紧构件810被施加压紧力的区域P8,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
第8实施方式的其他构成与上述第7实施方式同样。
第8实施方式的效果与上述第7实施方式同样。
需要说明的是,第8实施方式中也与上述第7实施方式同样,可以由对非水电解液具有膨润性的树脂材料构成压紧构件710及810。
(第9实施方式)
图49是本发明的第9实施方式的锂离子二次电池的分解立体图。图50是本发明的第9实施方式的锂离子二次电池的整体立体图。图51及图52是本发明的第9实施方式的锂离子二次电池的截面图。图51表示沿图50的A9-A9线的截面,图52表示沿图50的B9-B9线的截面。下面,参照图7、图9及图49~图52说明本发明的第9实施方式的锂离子二次电池900。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第9实施方式的锂离子二次电池900中,如图49及图50所示,在上述第7实施方式的构成中,在封口板80的面板部81及外装盒70的底面部71形成用于提高扭转刚性等的沟部910。
形成在封口板80及外装盒70上的沟部910分别使电池内部侧成凹状地形成。因此,封口板80及外装盒70的外侧(外部侧)分别通过形成沟部910而成为面板部81的一部分及外装盒70的底面部71的一部分分别向外侧突出的状态。
另外,在第9实施方式中如图51及图52所示,与上述第7实施方式同样,经由上述压紧构件710,在层叠方向(Z方向)上压紧电极组50。通过该压紧构件710,对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力。因此,在第7实施方式中,经由上述压紧构件710被施加压紧力的区域P9,也位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
需要说明的是,在第9实施方式中,沟部910的X方向的长度L91以比压紧构件710小的方式形成的同时,沟部910的Y方向的长度L92也以比压紧构件710小的方式形成。
第9实施方式的其他构成与上述第7实施方式同样。
另外,第9实施方式的效果与上述第7实施方式同样。
(第10实施方式)
图53是本发明的第10实施方式的锂离子二次电池的分解立体图。图54是本发明的第10实施方式的锂离子二次电池的立体图。图56~图57是用于说明本发明的第10实施方式的锂离子二次电池的图。下面,参照图7、图9及图53~图57,说明本发明的第10实施方式的锂离子二次电池1000。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第10实施方式的锂离子二次电池1000中,如图53及图54所示,在封口板80及外装盒70上分别形成用于抑制(避免)对正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)施加压紧力的凹部1010及1020。需要说明的是,封口板80的凹部1010是本发明的“第1凹部”的一个例子,外装盒70的凹部1020是本发明的“第2凹部”的一个例子。
形成在封口板80上的凹部1010以使封口板80的电池内部侧成为凹状的方式形成,形成在外装盒70上的凹部1020以使外装盒70的底面部71的电池内部侧成为凹状的方式形成。因此,封口板80的外侧(外部侧)通过凹部1010的形成而成为面板部81的一部分突出的状态。另外,外装盒70的底面部71的外侧(外部侧)通过凹部1020的形成而成为底面部71的一部分突出的状态。
另外,上述凹部1010及1020如图53及图57所示,在平面上观察时,以覆盖正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)的方式形成为框架状。
进而,第10实施方式的锂离子二次电池1000中,如图55及图56所示,通过封口板80的面板部81和外装盒70的底面部71,在层叠方向(Z方向)上压紧电极组50。此时,避免通过上述凹部1010及1020对正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)施加压紧力。由此,成为对除了正极活性物质层12(参照图7)的4个边缘部13(参照图7)及负极活性物质层22(参照图9)的4个边缘部23(参照图9)之外的、正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内施加压紧力的状态。因此,在该第10实施方式中,通过封口板80及外装盒70被施加压紧力的区域P10,也位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
第10实施方式的其他构成与上述第1及第2实施方式同样。
第10实施方式的效果与上述第1及第2实施方式同样。
(第11实施方式)
图58是本发明的第11实施方式的锂离子二次电池的截面图。图58表示与上述第5实施方式的图55对应的截面。下面,参照图42及图55,说明本发明的第11实施方式的锂离子二次电池1100。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第11实施方式的锂离子二次电池1100中,如图58所示,在上述第5实施方式的构成中,在封口板80与电极组50之间存在与上述第7实施方式的压紧构件710(参照图42)同样的树脂构件1110。第11实施方式的其他构成与上述第5实施方式同样。
第11实施方式中,如上所述,通过在封口板80与电极组50之间存在树脂构件1110,能够有效地抑制封口板80与电极组50的电短路。
需要说明的是,第11实施方式的其他效果与上述第5实施方式同样。另外,在第11实施方式中,也与上述第7及第8实施方式同样,可以由对非水电解液具有膨润性的树脂材料构成树脂构件1110。
(第12实施方式)
图59是本发明的第12实施方式的锂离子二次电池的截面图。图59表示与上述第5实施方式的图55对应的截面。下面,参照图7、图9及图59,说明本发明的第12实施方式的锂离子二次电池1200。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第12实施方式的锂离子二次电池1200中,如图59所示,在上述第5实施方式的构成中,在封口板80(凸部310)与电极组50之间、以及外装盒70的底面部71(凸部410)与电极组50之间分别存在长条状的树脂构件1210。该树脂构件1210由与上述第11实施方式同样的绝缘树脂材料构成。经由该树脂构件1210对电极组50施加压紧力。
需要说明的是,上述树脂构件1210以位于正极活性物质层12的区域15(参照图7)内及负极活性物质层22的区域25(参照图9)内的方式进行配置。因此,经由上述树脂构件1210被施加压紧力的区域P12,位于负极活性物质层22的形成区域M及正极活性物质层12的形成区域N的内侧。
第12实施方式的其他构成与上述第5实施方式同样。
另外,第12实施方式的效果与上述第5及第11实施方式同样。需要说明的是,在第12实施方式中,也与上述第7及第8实施方式同样,可以由对非水电解液具有膨润性的树脂材料构成树脂构件1210。
(第13实施方式)
图60是本发明的第13实施方式的锂离子二次电池的截面图。下面,参照图60说明本发明的第13实施方式的锂离子二次电池1300。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第13实施方式的锂离子二次电池1300中,如图60所示,在封口板80的面板部81上形成与上述第3实施方式同样的凸部1310。但是,在该第13实施方式中,凸部1310的压紧面1310a成为曲面。即,在该第13实施方式中,用曲面压紧电极组50。
需要说明的是,如果上述凸部1310的压紧面1310a的曲率半径R变得过小,则可能导致内部短路的发生或寿命特性的降低。因此,上述凸部1310的曲率半径R优选为约100~约500。
这样,即使在用曲面构成的压紧面1310a对电极组50施加压紧力的情况下,也能够与上述第1~第12实施方式同样得到寿命特性的提高效果或内部短路的抑制效果。需要说明的是,凸部1310是本发明的“第1凸部”的一个例子。
以下,对本发明的实施例进行说明。需要说明的是,本发明不限定于以下所示的实施例。
制作分别与上述第1~第13实施方式对应的实施例1~13的锂离子二次电池、和比较例1~3的锂离子二次电池。图61~图73分别是简略地表示实施例1~13的锂离子二次电池的部分截面图。图74~图76是分别简略地表示比较例1~3的锂离子二次电池的部分截面图。
<实施例1>
实施例1中,如图61所示,在封口板80上形成用于压紧电极组50的凸部85,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为99%地构成。
<实施例2>
实施例2中,如图62所示,在封口板80及外装盒70上形成用于压紧电极组50的凸部85及210,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为98%地构成。
<实施例3>
实施例3中,如图63所示,在封口板80上形成2个凸部310,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为66%地构成。
<实施例4>
实施例4中,如图64所示,在外装盒70的底面部形成2个凸部410,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为66%地构成。
<实施例5>
实施例5中,如图65所示,在封口板80上形成2个凸部310的同时在外装盒70的底面部也形成2个凸部410,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为66%地构成。
<实施例6>
实施例6中,如图66所示,以封口板80的凸部310的一部分和外装盒70的凸部610的一部分对向的方式形成各凸部,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为20%地构成。
<实施例7>
实施例7中,如图67所示,在封口板80及外装盒70上不形成凸部,在电极组50与封口板80之间、以及电极组50与外装盒70之间配置压紧构件710,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为98%地构成。
<实施例8>
实施例8中,如图68所示,在电极组50与封口板80之间配置分离的3个压紧构件810,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为75%地构成。
<实施例9>
实施例9中,如图69所示,在电极组50与封口板80之间、以及电极组50与外装盒70之间配置压紧构件710,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为90%地构成。需要说明的是,实施例9中,在封口板80及外装盒70上分别形成沟部910。
<实施例10>
实施例10中,如图70所示,在封口板80及外装盒70上形成凹部1010及1020,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为80%地构成。
<实施例11>
实施例11中,如图71所示,在上述实施例5的构成中在电极组50与封口板80之间配置树脂构件1110。需要说明的是,实施例11中与上述实施例5不同,使被施加压紧力的面积相对于正极活性物质层的涂布面积为40%地构成。
<实施例12>
实施例12中,如图72所示,在上述实施例5的构成中,电极组50与封口板80的凸部310之间、以及电极组50与外装盒70的凸部410之间分别配置树脂构件1210。需要说明的是,实施例12中,与上述实施例5及11不同使被施加压紧力的面积相对于正极活性物质层的涂布面积为20%地构成。
<实施例13>
实施例13中,如图73所示,在封口板80上形成具有曲面状的压紧面的凸部1310,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为10%地构成。需要说明的是,凸部1310的曲率半径约为200。
<比较例1>
比较例1中,以对正极活性物质层的边缘部及负极活性物质层的边缘部也施加压紧力的方式压紧正极及负极的整个面。即,比较例1中,如图74所示,在封口板80上形成具有能够压紧正极及负极的整个面的宽大压紧面的凸部2100,由此使被施加压紧力的面积相对于正极活性物质层的涂布面积为100%地构成。
<比较例2>
比较例2中,如图75所示,除了封口板80的凸部2100之外,在外装盒70上也形成具有能够压紧正极及负极的整个面的宽大压紧面的凸部2200。因此,比较例2中,也使被施加压紧力的面积相对于正极活性物质层的涂布面积为100%。
<比较例3>
比较例3中,如图76所示,以封口板80的凸部2300和外装盒70的凸部2400不对应(对向)的方式形成各凸部。需要说明的是,比较例3中,通过封口板80的凸部2300,在层叠方向上压紧正极活性物质层及负极活性物质层的边缘部(端部)。
<实施例1~13及比较例1~3的共通部分>
[正极的制作]
首先,将90重量份活性物质LiFePO4、50重量份导电材料的乙炔黑、和5重量份粘合材料的聚偏氟乙烯混合后,适当加入N-甲基-2-吡咯烷酮,使其分散,由此制备正极合剂浆料。接着,将该正极合剂浆料均匀地涂布在具有20μm的厚度的铝集电体(正极集电体)的两面上,使其干燥后,通过辊压压缩至200μm的厚度。最后,切割成所希望的大小,由此制作实施例1~13及比较例1~3的正极(正极板)。正极的涂布活性物质层的区域的大小为纵向146mm、横向196mm,正极(正极集电体)的大小为纵向146mm、横向208mm。
[负极的制作]
将90重量份天然石墨(中国产天然石墨)和10重量份聚偏氟乙烯混合后,适当加入N-甲基-2-吡咯烷酮,使其分散,由此制备负极合剂浆料。接着,将该负极合剂浆料均匀地涂布在具有16μm的厚度的铜集电体(负极集电体)的两面上,使其干燥后,通过辊压压缩至200μm的厚度。最后,切割成所希望的大小,由此制作实施例1~13及比较例1~3的负极(负极板)。负极的涂布有活性物质层的区域的大小为纵向150mm、横向200mm,负极(负极集电体)的大小为纵向150mm、横向210mm。
[非水电解液的制作]
在将碳酸亚乙酯(EC)和碳酸二乙酯(DEC)按30∶70的容积比混合的混合液(溶剂)中溶解LiPF6为1mol/L,由此制作非水电解液。
[二次电池的组装]
将正极板及负极板按正极板、隔膜、负极板、隔膜、…的顺序,以在正极板与负极板之间夹入隔膜的方式层叠,由此形成电极组(层叠体)。此时,使负极板相对于正极板位于外侧地使用24片正极板、25片负极板。另外,通过使用50片隔膜,使隔膜位于电极组(层叠体)的最外侧地构成。
隔膜使用具有20μm的厚度的微多孔性聚乙烯膜。使隔膜的大小比正极板及负极板的涂布有活性物质层的尺寸大,设为纵向154mm、横向206mm。
外装容器通过对实施了镀镍的具有约1.0mm的厚度的钢板进行加工,形成外装盒和封口板。需要说明的是,外装盒的内径尺寸为纵向164mm、横向228mm、深度20mm。
然后,在该外装盒内收纳电极组(层叠体)后,载置封口板,通过双重折边将电池封口。另外,通过安装封口板,以对电极组在该层叠方向上施加压紧力的方式构成。此时,以压入量相对于电极组的层叠方向的厚度(合计厚度(约10.8mm))的比例为10%的方式由封口板对电极组施加压迫力。具体而言,由电极组和封口板直接或间接连接的状态,在压入了约1mm的位置固定封口板。
然后,从预先设置在封口板上的φ2mm的注液孔减压注入规定量的非水电解液。注液后,将与注液孔大致相同直径的金属球设置在注液孔上,通过电阻焊接将注液孔封口。这样,制作实施例1~13及比较例1~3的电池各30个。
需要说明的是,实施例1~13及比较例1~3中,对电极组(正极及负极)施加压紧力的区域不同。另外,实施例1~13中,均对除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的、正极活性物质层的区域内及负极活性物质层的区域内施加压紧力。
对如上所述地制作的实施例1~13及比较例1~3的锂二次电池电池进行检查,分选出不良电池和合格电池。认为在电池制造时(电池组装时)的时间点、即电压为0V的情况下发生内部短路,因此将这样的电池作为不良电池排除。对判定为合格的电池进行特性评价。
具体而言,对排除了不良电池的剩余的电池进行直至3.5V的5小时恒流恒压充电,然后,进行直至2V的恒流放电,由此测定电池容量(初次电池容量)。接着,使用该电池在45℃的温度环境下于上述充放电条件下进行循环试验。然后,测定200次循环后的放电容量,评价此时的电池容量除以初次的放电容量(初次电池容量)的比例(容量保持率)。将其结果示于下表1。需要说明的是,表1中的200次循环后的容量保持率表示进行了循环试验的电池的平均值。
表1
Figure BSA00000475832600551
如上述表1所示,对除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的区域施加压紧力的实施例1~13,与比较例1~3相比,确认不良电池的产生个数减少。具体而言,实施例1~13中,不良电池个数为0个或1个,不良电池个数最多的实施例8中,该数值也仅仅为2个。相对于此,对正极活性物质层的边缘部及负极活性物质层的边缘部也施加了压紧力的比较例1~3中,不良电池个数为4个或5个,得到与实施例相比产生非常多的结果。认为这是因为:通过对正极活性物质层的边缘部及负极活性物质层的边缘部施加压紧力,容易发生由毛刺突起等引起的内部短路。需要说明的是,比较例3中,电极组(层叠体)的压紧时电极组(层叠体)起伏,导致短路增多,由此不良电池个数为5个,比实施例1~13、比较例1及2多。
另外,实施例1~13中,确认了与比较例1~3相比,200次循环后的容量保持率也提高。具体而言,实施例1~12中,200次循环后的容量保持率在90%以上,均得到高容量保持率。另外,实施例13中,与实施例1~12相比,虽然容量保持率略低,但即使如此也能够得到88%的高容量保持率。这样,作为实施例1~13得到高容量保持率的理由,认为是因为:通过对正极活性物质层及负极活性物质层施加压紧力,正极活性物质层及负极活性物质层密合的同时,防止错位。相对于此,在比较例1及2中,容量保持率分别为80%及78%,即使与实施例13相比,也是低约8%~约10%的结果。认为这可能是因为:比较例1及2与实施例1~13不同,对正极活性物质层的边缘部及负极活性物质层的边缘部也施加压紧力,因此在伴随电池的充放电的活性物质层的膨胀收缩时,在电极的边缘部(端部)发生内部短路(微小短路)。另外,比较例3中,容量保持率为73%,是非常低的结果。认为这是因为:比较例3中没有对电极组(层叠体)施加充分的压紧力,因此,没有充分得到正极活性物质层及负极活性物质层的密合性提高效果或错位防止效果等。另外,也考虑在电极的边缘部(端部)的内部短路(微小短路)的发生,认为该内部短路(微小短路)也可能对容量保持率的降低有影响。
如上所述,对正极及负极施加压紧力的同时,在施加该压紧力时不对正极及负极的边缘部(端部)施加压紧力,由此能够提高成品率、以及寿命特性。此时,确认了被施加压紧力的面积相对于正极活性物质层的涂布面积的比例优选为10%以上且99%以下,更优选为20%以上且98%以下。
(第14实施方式)
图77及图78是本发明的第14实施方式的锂离子二次电池的分解立体图。图79是本发明的第14实施方式的锂离子二次电池的整体立体图。图80是本发明的第14实施方式的锂离子二次电池的平面图。图81~图91是用于说明本发明的第14实施方式的锂离子二次的图。需要说明的是,图80中,表示为了了解锂离子二次电池的内部而去掉本来设置的封口板3080后的状态。首先,参照图77~图91说明本发明的第14实施方式的锂离子二次电池3100。
第14实施方式的锂离子二次电池3100中,如图77~图80所示,具有方形扁平形状(参照图79),具备:包含正极3010(参照图77)及负极3020(参照图77)的电极组3050(参照图77及图78)、和将该电极组3050与非水电解液一同封入的金属制外装容器3060。
电极组3050如图77及图81所示,还具备用于抑制正极3010和负极3020的短路的隔膜3030。正极3010及负极3020以夹持隔膜3030相互对向的方式配置。另外,电极组3050分别具备多个正极3010、负极3020及隔膜3030,通过依次层叠正极3010、隔膜3030及负极3020,构成层叠结构(层叠体3050a)。需要说明的是,正极3010及负极3020一个一个地交替层叠。另外,上述电极组3050以1个正极3010位于相邻的2个负极3020之间的方式构成。进而,在上述电极组3050中的最外侧配置隔膜3030。
具体而言,上述电极组3050例如包含24片正极3010、25片负极3020、50片隔膜3030而构成,正极3010及负极3020夹持隔膜3030交替层叠。
构成电极组3050的正极3010,如图82及图83所示,具有在正极集电体3011的两面负载正极活性物质层3012的构成。
正极集电体3011具有进行正极活性物质层3012的集电的功能。该正极集电体3011例如由铝、钛、不锈钢、镍、铁等金属箔、或包含它们的合金的合金箔构成,具有约1μm~约500μm(例如约20μm)的厚度。需要说明的是,正极集电体3011优选为铝箔或铝合金箔,其厚度优选为20μm以下。
另外,正极集电体3011除了上述材料以外,例如为了提高导电性及耐氧化性,可以使用将铝或铜等的表面用碳、镍、钛或银等进行处理后的材料。对于上述材料也可以将表面进行氧化处理。另外,也可以使用铜和铝的覆层材料、不锈钢和铝的覆层材料、或者组合有上述金属的镀层材料等。还可以使用贴合了2个以上金属箔的集电体。另外,上述正极集电体3011,除了箔状以外,可以为膜状、片状、网状、实施了冲孔或扩展的形状、板条体、多孔体、发泡体、纤维组的形成体等形状。
正极活性物质层3012包含能够吸附、释放锂离子的正极活性物质而构成。作为正极活性物质,例如可以举出含有锂的氧化物。具体而言,可以举出LiCoO2、LiFeO2、LiMnO2、LiMn2O4、以及将上述氧化物中的过渡金属的一部分用其他金属元素置换后的化合物等。其中,在通常的使用中,优选将在电池反应中能够利用正极保有的锂量的80%以上的物质用作正极活性物质。由此能够提高二次电池对过充电等事故的安全性。作为上述正极活性物质,例如可以举出LiMn2O4这样的具有尖晶石结构的化合物、或由LiMPO4(M是选自Co、Ni、Mn、Fe中的至少1种以上的元素)表示的具有橄榄石结构的化合物等。其中,从成本的观点考虑,优选包含Mn及Fe中的至少一种的正极活性物质。进而,从安全性及充电电压的观点考虑,优选使用LiFePO4。由于LiFePO4的全部氧(O)通过强固的共价键与磷(P)键合,因此难以引起由温度上升导致的氧释放。因此,安全性优良。
需要说明的是,上述正极活性物质层3012的厚度优选为约20μm~约2mm,更优选为约50μm~约1mm。
另外,只要上述正极活性物质层3012至少包含正极活性物质即可,对其构成没有特别限定。例如正极活性物质层3012除了正极活性物质以外,可以包含导电材料、增稠材料、粘合材料等其他材料。
导电材料只要是对正极3010的电池性能没有不良影响的电子传导性材料即可,就没有特别限定,例如可以使用碳黑、乙炔黑、科琴黑、石墨(天然石墨、人造石墨)、碳纤维等碳质材料或导电性金属氧化物等。其中,作为导电材料,从电子传导性及涂布性的观点考虑,优选为碳黑及乙炔黑。
作为增稠材料,例如可以使用聚乙二醇类、纤维素类、聚丙烯酰胺类、聚N-乙烯基酰胺类、聚N-乙烯基吡咯烷酮类等。其中,作为增稠材料,优选为聚乙二醇类、羧甲基纤维素(CMC)等纤维素类等,特别优选为CMC。
粘合材料发挥维系活性物质粒子及导电材料粒子的作用,例如可以使用聚偏氟乙烯(PVdF)、聚乙烯基吡啶、聚四氟乙烯等氟类聚合物、聚乙烯、聚丙烯等聚烯烃类聚合物、苯乙烯丁二烯橡胶等。
作为使正极活性物质、导电材料、粘合材料等分散的溶剂,例如可以使用N-甲基-2-吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、甲基乙基酮、环己酮、乙酸甲酯、丙烯酸甲酯、二乙三胺、N,N-二甲基氨基丙胺、环氧乙烷、四氢呋喃等有机溶剂。
对于上述正极3010,例如将正极活性物质、导电材料、增稠材料及粘合材料混合,加入适当的溶剂,制成糊状的正极合剂,将其在正极集电体3011的表面上涂布干燥,根据需要为了提高电极密度进行压缩而形成。
另外,上述正极3010如图83所示,在平面上观察具有矩形形状,具有4个边缘部3014(X方向的2个边缘部3014a、Y方向的2个边缘部3014b)。需要说明的是,在第14实施方式中,上述正极3010的Y方向的宽度w1例如位约146mm,X方向的长度g1例如为约208mm。另外,正极活性物质层3012的涂布区域(形成区域)的Y方向的宽度w11与正极3010的宽度w1相同,例如为约146mm,X方向的长度g11例如为约196mm。因此,形成在涂布区域的正极活性物质层3012,在平面上观察形成为矩形形状,具有4个边缘部3013(沿X方向的2个边缘部3013a、沿Y方向的2个边缘部3013b)。
另外,上述正极3010在X方向的一端具有没有形成正极活性物质层3012而使正极集电体3011的表面露出的集电体露出部3011a。在该集电体露出部3011a上电连接用于将电流引出到外部的、后述的集电引线3005(参照图80及图89)。需要说明的是,正极活性物质层3012中的4个边缘部3013,除了沿Y方向的2个边缘部3013b中的一侧(集电体露出部3011a侧的边缘部3013b),与上述正极3010中的边缘部3014大体一致。
构成电极组3050的负极3020,如图84及图85所示,具有在负极集电体3021的两面上负载有负极活性物质层3022的构成。
负极集电体3021具有进行负极活性物质层3022的集电的功能。该负极集电体3021例如由铜、镍、不锈钢、铁、镀镍层等的金属箔、或者包含它们的合金的合金箔构成,具有约1μm~约100μm(例如约16μm)的厚度。需要说明的是,负极集电体3021优选为由铜或不锈钢构成的金属箔,其厚度优选为4μm以上且20μm以下。
另外,上述负极集电体3021除了箔状以外,可以为膜状、片状、网状、实施了冲孔或扩展的形状、板条体、多孔体、发泡体、纤维组的形成体等形状。
负极活性物质层3022包含能够吸附、释放锂离子的负极活性物质而构成。作为负极活性物质,例如由含锂的物质、或能够吸附、释放锂的物质构成。另外,为了构成高能量密度电池,优选吸附、释放锂的电位接近金属锂的析出、溶解电位。作为其典型例,可以举出:粒子状(鳞片状、块状、纤维状、晶须状、球状、粉碎粒子状等)的天然石墨或人造石墨。需要说明的是,作为负极活性物质,可以使用将中间相碳微球、中间相沥青粉末、各向同性沥青粉末等石墨化而得到的人造石墨。另外,也可以使用表面附着有非晶碳的石墨粒子。进而,也可以使用锂过渡金属氧化物、锂过渡金属氮化物、过渡金属氧化物及氧化硅等。作为锂过渡金属氧化物,例如使用以Li4Ti5O12为代表的钛酸锂时,由于负极3020的劣化变少,因此能够实现电池的长寿命化。
需要说明的是,上述负极活性物质层3022的厚度优选为约20μm~约2mm,更优选为约50μm~约1mm。
另外,上述负极活性物质层3022只要至少包含负极活性物质即可,对其构成没有特别限定。例如,负极活性物质层3022除了负极活性物质以外,也可以包含导电材料、增稠材料、粘合材料等其他材料。需要说明的是,导电材料、增稠材料、粘合材料等其他材料可以使用能够用于正极活性物质层3012的材料。
对于上述负极3020,例如将负极活性物质、导电材料、增稠材料及粘合材料混合,加入适当的溶剂,制成糊状的负极合剂,将其在负极集电体3021的表面上涂布干燥,根据需要为了提高电极密度进行压缩而形成。
另外,上述负极3020如图85所示,在平面上观察具有矩形形状,具有4个边缘部3024(X方向的2个边缘部3024a、Y方向的2个边缘部3024b)。另外,上述负极3020形成比正极3010(参照图83及图84)大的平面积。需要说明的是,在第14实施方式中,上述负极3020的Y方向的宽度w2比正极3010的宽度w1(参照图83)大,例如为约150mm,X方向的长度g2比正极3010的长度g1(参照图83)长,例如为约210mm。另外,负极活性物质层3022的涂布区域(形成区域)的Y方向的宽度w21与负极3020的宽度w2相同,例如为约150mm,X方向的长度g21例如为约200mm。因此,形成在涂布区域的负极活性物质层3022在平面上观察形成为矩形形状,具有4个边缘部3023(沿X方向的2个边缘部3023a、沿Y方向的2个边缘部3023b)。
另外,上述负极3020与正极3010同样地在X方向的一端具有没有形成负极活性物质层3022而使负极集电体3021的表面露出的集电体露出部3021a。在该集电体露出部3021a上电连接用于将电流引出到外部的、后述的集电引线3005(参照图80及图89)。需要说明的是,负极活性物质层3022中的4个边缘部3023,除了沿Y方向的2个边缘部3023b中的一侧(集电体露出部3021a侧的边缘部3023b)之外,与上述负极3020中的边缘部3024基本一致。
此处,在第14实施方式中,电极的活性物质层中分散有对非水电解液具有膨润性的膨润性树脂。因此,第14实施方式的锂离子二次电池3100,以在注入非水电解液后使分散了膨润性树脂的活性物质层膨润的方式构成。
需要说明的是,上述膨润性树脂可以分散在正极活性物质层3012及负极活性物质层3022两者中,也可以分散在正极活性物质层3012及负极活性物质层3022中的任一者中。另外,上述膨润性树脂可以分散在多个活性物质层中的一部分活性物质层中。
分散在活性物质层中的膨润性树脂,优选包含选自丁腈橡胶(NBR)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)、聚偏氟乙烯(PVdF)、聚乙烯醇(PVA)、聚环氧乙烷(PEO)、环氧丙烷、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种而构成。
构成电极组3050的隔膜3030可以是强度充分并且能够保持大量电解液的隔膜,从这一观点考虑,优选厚度为10μm~50μm、空隙率为30%~70%的包含聚乙烯、聚丙烯或乙烯-丙烯共聚物的微多孔膜或无纺布等。
另外,隔膜3030除了上述材料以外,例如可以使用由聚偏氟乙烯、聚偏氯乙烯、聚丙烯腈、聚丙烯酰胺、聚四氟乙烯、聚砜、聚醚砜、聚碳酸酯、聚酰胺、聚酰亚胺、聚醚(聚环氧乙烷、聚环氧丙烷)、纤维素(羧甲基纤维素、羟丙基纤维素)、聚(甲基)丙烯酸、聚(甲基)丙烯酸酯等高分子构成的微多孔膜等。进而,也可以使用重合了上述微多孔膜的多层膜。
作为隔膜3030的厚度,优选为5μm~100μm,更优选为10μm~30μm。另外,作为隔膜3030的空隙率,优选为30%~90%,更优选为40%~80%。如果隔膜3030的厚度小于5μm,则隔膜3030的机械强度不足,成为电池的内部短路的原因。另一方面,如果隔膜3030的厚度大于100μm,则正极负极间的距离增加,电池的内部电阻提高。另外,如果空隙率低于30%,则非水电解液的含量减少,电池的内部电阻提高。另一方面,如果空隙率高于90%,则导致正极3010和负极3020发生物理性接触,成为电池内部短路的原因。另外,隔膜3030根据厚度和空隙率,考虑机械强度、非水电解液的含量、电池的内部电阻或电池的内部短路的容易性等,也可以重叠多片进行使用。
另外,上述隔膜3030具有比正极活性物质层3012的涂布区域(形成区域)及负极活性物质层3022的涂布区域(形成区域)大的形状。具体而言,上述隔膜3030例如形成为纵向的长度(与X方向对应的方向的长度)为约154mm、横向的长度(与Y方向对应的方向的长度)为约206mm的矩形形状。
上述正极3010及负极3020,如图77及图81所示,以正极3010的集电体露出部3011a和负极3020的集电体露出部3021a彼此位于相反侧的方式进行配置,在正极负极间隔着隔膜3030进行层叠。
与电极组3050一同封入外装容器3060内的非水电解液没有特别限定,作为溶剂,例如可以使用:碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸二乙酯(DEC)、碳酸二甲酯、碳酸甲基乙酯、γ-丁内酯等酯类;四氢呋喃、2-甲基四氢呋喃、二氧杂环己烷、二氧戊环、乙醚、二甲氧基乙烷、二乙氧基乙烷、甲氧基乙氧基乙烷等醚类;二甲基亚砜、环丁砜、甲基环丁砜、乙腈、甲酸甲酯、乙酸甲酯等极性溶剂。上述溶剂可以单独使用,也可以将2种以上混合作为混合溶剂进行使用。
另外,非水电解液中可以含有电解质支持盐。作为电解质支持盐,例如可以举出LiClO4、LiBF4(氟硼化锂)、LiPF6(六氟化磷酸锂)、LiCF3SO3(三氟甲磺酸锂)、LiF(氟化锂)、LiCl(氯化锂)、LiBr(溴化锂)、LiI(碘化锂)、LiAlCl4(四氯化铝酸锂)等锂盐。上述电解质支持盐可以单独使用,也可以将2种以上混合进行使用。
需要说明的是,电解质支持盐的浓度没有特别限定,优选为0.5mol/L~2.5mol/L,更优选为1.0mol/L~2.2mol/L。电解质支持盐的浓度不足0.5mol/L时,有可能非水电解液中搬运电荷的载体浓度降低,非水电解液的电阻提高。另外,电解质支持盐的浓度高于2.5mol/L时,有可能盐本身的解离度降低,非水电解液中的载体浓度并不升高。
封入电极组3050的外装容器3060是大型的扁平方形容器,如图77~图79所示,包含收纳电极组3050等的外装盒3070和将该外装盒3070封口的封口板3080而构成。另外,收纳了电极组3050的外装盒3070用封口板3080双重折边封口。需要说明的是,外装盒3070是本发明的“收纳容器”的一个例子,封口板3080是本发明的“封口体”的一个例子。
外装盒3070例如通过对金属板实施深拉深加工等而形成,具有底面部3071和侧壁部3072。另外,如图86及图87所示,在外装盒3070的一端(底面部3071的相反侧)设置用于插入电极组3050(参照图89)的开口部3073。另外,上述外装盒3070形成为方形盒,面积最大的面成为底面部3071。
外装盒3070的内径尺寸成为能够收纳电极组3050使其电极面与底面部3071对向的大小。具体而言,上述外装盒3070例如使纵向的长度(图87的Y方向的长度L)形成为约164mm,横向的长度(图87的X方向的长度W)形成为约228mm。另外,如图89所示,外装盒3070的深度D例如形成为约20mm。
另外,如图86及图87所示,上述外装盒3070在Y方向的一侧的侧壁部3072上形成电极端子3074。进而,在外装盒3070的开口部3073中的周围边缘设置用于进行双重折边封口的容器折边部3075。
封口板3080例如通过将金属板进行加压加工而形成。该封口板3080如图88所示,具有:堵塞外装盒3070的开口部3073的近似平板状的面板部3081、连接在面板部3081的外周端且向上方延伸的卡盘壁部3082、和连接在卡盘壁部3082的外周端的折边部3083。进而,如图77及图88所示,在X方向的一侧形成用于注入非水电解液的注液孔3084。该注液孔3084形成为例如2mm的大小。
需要说明的是,外装盒3070及封口板3080例如可以使用铁、不锈钢、铝等金属板、对铁实施了镀镍后的钢板或实施了镀铝后的钢板等形成。由于铁是廉价的材料,因此从价格的观点考虑是优选的,为了确保长期可靠性,更优选使用由不锈钢或铝等构成的金属板、或对铁实施了镀镍后的钢板或实施了镀铝后的钢板等。另外,除了上述以外,也可以使用将金属板的表面用高分子材料层压后的高分子层压材料(层压板)。此时,优选至少对成为电池内部侧的面实施包覆处理。需要说明的是,金属板的厚度例如可以为约0.4mm~约1.2mm(例如约1.0mm)。
另外,如图80、图90及图91所示,上述电极组3050以正极3010(参照图77)及负极3020(参照图77)与外装盒3070的底面部3071对向的方式收纳在外装盒3070内。收纳的电极组3050中,正极3010的集电体露出部3011a(参照图83)及负极3020的集电体露出部3021a(参照图85)分别经由集电引线3005与外装盒3070的电极端子3074电连接。需要说明的是,集电引线3005可以使用与集电体相同材质的材料,也可以为不同材质。另外,可以在正极3010及负极3020上分别连接集电极(集电构件),经由该集电极电极组3050和电极端子3074电连接而构成。
如图90及图91所示,外装盒3070的开口部3073通过上述封口板3080双重折边封口。具体而言,封口板3080的折边部3083的顶端部分以卷入外装盒3070的容器折边部3075中的方式进行压接,由此将封口板3080安装在外装盒3070上。
另外,封口板3080的面板部3081通过卡盘壁部3082与外装盒3070的开口部3073中的周围边缘仅相距规定距离而位于下侧(底面部3071侧)。
另外,在第14实施方式中,如图89所示,在非水电解液的注液前的状态下封口板3080和电极组3050不接触而成为在封口板3080与电极组3050之间形成间隙部3095的状态。该间隙部3095的间隔C优选小于5mm而构成。即,第14实施方式的锂离子二次电池3100中,优选以上述间隔C满足0mm<C<5mm的方式进行设定。另外,在注入非水电解液前,为了抑制收纳在外装容器3060内的电极组3050发生错位,优选将电极组3050固定在外装容器3060内。此时,可以使用与电极连接的集电极(集电构件)等固定电极组3050。
非水电解液在用封口板3080对外装盒3070的开口部3073封口后,从注液孔3084进行例如减压注液。下面,例如将与注液孔3084大致相同直径的金属球3090(参照图79)设置在注液孔3084上后,通过电阻焊接或激光焊接等将注液孔3084封口。
需要说明的是,在第14实施方式的锂离子二次电池3100中,过充电时或高温状态下,电池内压上升的情况下,为了避免电池爆炸(起火)等危险,设置用于释放电池内压的安全阀(未图示)。以该安全阀工作前不打开外装容器3060的方式,在封口部分的耐压达到安全阀的工作压以上的封口强度下安装封口板3080。
此处,在第14实施方式中,外装盒3070的开口部3073用封口板3080封口后,通过注入非水电解液,分散有膨润性树脂的活性物质层膨润,通过该活性物质层的膨润,如图90及图91所示,对电极组3050(正极3010、负极3020)施加压紧力。即,在第14实施方式中,注入非水电解液后,通过外装盒3070和封口板3080对电极组3050施加层叠方向(外装盒3070的深度方向;Z方向)的压紧力而构成。
正极3010及负极3020中的被施加压紧力的区域,如图83及图85所示,为距正极活性物质层3012的外缘仅为距离a(a1~a4)的正极活性物质层3012的内侧的区域3015内、或者距负极活性物质层3022的外缘仅为距离b(b1~b4)的负极活性物质层3022的内侧的区域3025内。距正极3010中的正极活性物质层3012的外缘的距离a及距负极3020中的负极活性物质层3022的外缘的距离b,分别优选在1mm以上,更优选为5mm以上。需要说明的是,在第14实施方式中,与负极3020相比,正极3010的平面积更小,因此正极3010及负极3020中的被施加压紧力的区域,优选为距正极活性物质层3012的外缘仅为5mm以上的距离a的正极活性物质层3012的内侧的区域3015内。如果这样地构成,则在负极3020中也对距负极活性物质层3022的外缘仅为5mm以上的距离b的负极活性物质层3022的内侧的区域3025内施加压紧力。
另外,在第14实施方式中,如图90及图91所示,为了对除了正极3010的边缘部(端部)3014及负极3020的边缘部(端部)3024之外的、正极活性物质层3012及负极活性物质层3022的区域施加压紧力,在封口板3080上形成凸部3085。
具体而言,第14实施方式的锂离子二次电池3100中,以上述封口板3080与电极(正极3010及负极3020)对向的方式构成,在封口板3080的面板部3081上形成向电极组3050(正极3010及负极3020)(Z方向)突出的上述凸部3085。该凸部3085通过加压加工等与封口板3080一体地形成,具有近似平面状的压紧面3085a。用凸部3085的压紧面3085a,在层叠方向(Z方向)上压紧电极组3050,对除了正极活性物质层3012的4个边缘部3013及负极活性物质层3022的4个边缘部3023之外的、正极活性物质层3012的区域3015内及负极活性物质层3022的区域3025内施加压紧力。因此,第14实施方式中,如图90及图91所示,通过凸部3085被施加压紧力的区域P,位于负极活性物质层3022的形成区域M及正极活性物质层3012的形成区域N的内侧。
上述凸部3085的压紧面3085a如图89所示,在平面上观察具有近似矩形形状,形成为比正极活性物质层3012(参照图83)的平面积小的平面积。需要说明的是,上述压紧面3085a的X方向的长度L11比正极活性物质层3012的X方向的长度g1(参照图83)小,例如形成为约194mm。另外,上述压紧面3085a的Y方向的长度L12比正极活性物质层3012的Y方向的宽度w1(参照图83)小,例如形成为约144mm。
另外,在第14实施方式中,通过上述凸部3085对距正极活性物质层3012的外缘仅为距离a的正极活性物质层3012的内侧的区域3015或距负极活性物质层3022的外缘仅为距离b的负极活性物质层3022的内侧的区域3025的几乎整个面施加压紧力。需要说明的是,正极3010及负极3020中的被施加压紧力的区域的面积优选为正极活性物质层3012的平面积的10%以上且99%以下,更优选为20%以上且98%以下。
另外,分散在活性物质层中的膨润性树脂的分散量(含量)设定为如下量:在注入非水电解液使活性物质层膨润时,填埋封口板3080与电极组3050之间的间隙部3095使电极组3050与封口板3080接触的同时,进而,通过封口板3080和外装盒3070抑制活性物质层的膨润,对电极组3050(正极3010、负极3020)施加层叠方向的压紧力。另外,对电极组3050施加的压紧力通过封口板3080及外装盒3070产生的拘束率(通过封口板3080及外装盒3070抑制活性物质层膨润的量相对于活性物质层自由膨润时的电极组3050的厚度(正极3010、负极3020、隔膜3030的总厚度)的比例)进行控制,调节活性物质层的膨润率(膨润性树脂的含量(分散量))及间隙部3095的间隔C以得到所希望的压紧力。需要说明的是,优选调节活性物质层的膨润率(分散量)及间隙部3095的间隔C以使电极组3050的拘束率为约3%~约30%(例如约10%左右)。
第14实施方式的锂离子二次电池3100中,如上所述在正极活性物质层3012及负极活性物质层3022的至少一个中分散膨润性树脂,由此在外装容器3060内注入非水电解液时,可以使分散了膨润性树脂的活性物质层膨润。然后,通过注入非水电解液而膨润的活性物质层对收纳在外装容器3060内的电极组3050(正极3010、负极3020)施加层叠方向的压紧力。由此,能够在外装容器3060内固定电极组3050(正极3010、负极3020),因此可以抑制电极组3050(正极3010、负极3020)的错位。结果,在伴随电池的充放电的活性物质层的膨胀收缩等时,能够抑制由在电极组3050(正极3010、负极3020)上发生错位导致的内部短路的发生。
另外,在第14实施方式中,对正极3010及负极3020施加压紧力时,通过以对除了正极3010的边缘部(端部)3014及负极3020的边缘部3024之外的、正极活性物质层3012及负极活性物质层3022的区域进行压紧的方式构成,能够抑制对正极3010的边缘部3014及负极3020的边缘部3024施加压紧力。
此处,上述正极3010及负极3020均使用长条状的带状集电体片,通过规定的方法将正极活性物质层3012或负极活性物质层3022涂布在这些集电体片上,然后,切断成对应各电极的长度,由此进行制作。在该集电体片上活性物质层的涂布,例如使用所谓间歇式涂布的方法(以下称为“间歇涂布法”),其中,只涂布形成1个电极所需的相应长度后,设置没有涂布活性物质层的集电体露出部3011a及3021a,再涂布下一个电极对应的活性物质层,重复该操作进行涂布。另外,作为其他涂布方法,例如也有时使用使集电体露出部3011a及3021a位于与长度方向垂直侧的一端连续地进行涂布的涂布法(以下称为“连续涂布法”)。
采用上述连续涂布法时,将长条的集电体片切断时,将活性物质层及支撑活性物质层的集电体同时切断。因此,在集电体的切断面产生毛刺突起的同时,由于切断时的冲击使得活性物质层的切断面及切断面附近成为不稳定的状态,因此在活性物质层的端部,活性物质层的一部分容易滑落。
另一方面,采用间歇涂布法时,由于在集电体露出部3011a及3021a处进行切断,因此难以发生活性物质层滑落的问题。但是,间歇涂布法的情况下,虽然也取决于合剂糊的粘度等,但有时在活性物质层的涂布始端及涂布终端形成隆起部分。即,有时在活性物质层的端部(边缘部)形成突出部。另外,在集电体的无涂布部(集电体露出部)与活性物质层的边界部分有时产生阶差。
因此,在第14实施方式中,如上所述,以对正极3010的边缘部(端部)3014及负极3020的边缘部(端部)3024不施加压紧力的方式构成,由此在正极3010及负极3020的形成工序(切断工序)中,即使在正极3010及负极3020的切断面上出现毛刺突起的情况下,也可以抑制由该毛刺突起导致正极3010和负极3020短路。另外,由于切断时的冲击使得活性物质层的切断面及切断面附近成为不稳定的状态,即使在活性物质层的端部上活性物质层的一部分容易滑落,也能够抑制对该部分施加压紧力,因此能够抑制活性物质的滑落等。由此,能够抑制由滑落的活性物质贯通隔膜3030而导致的内部短路的发生。结果,在电池组装等时能够抑制内部短路的发生,因此能够以高成品率得到大容量的锂离子二次电池3100。
另外,在第14实施方式中,通过外装容器3060内注入非水电解液而膨润的膨润性树脂,能够对上述电极组3050施加压紧力,因此能够成为通过该压紧力使正极3010和负极3020隔着隔膜3030而密合的状态。由此,可以提高循环特性等寿命特性。另外,由于可以通过对正极3010及负极3020施加压紧力而抑制电极的错位,因此也可以由此提高循环特性。因此,通过如上所述地构成能够提高寿命特性及可靠性。
另外,在第14实施方式中,通过外装盒3070及封口板3080,分别对除了正极活性物质层3012的4个边缘部3013及负极活性物质层3022的4个边缘部3023之外的、正极活性物质层3012的区域3015内及负极活性物质层3022的区域3025内施加压紧力,由此,即使在活性物质层的涂布始端及涂布终端形成突出部的情况下,也能够抑制对这样的突出部施加压紧力。而且,即使在集电体露出部与活性物质层的边界部分产生阶差的情况下,也能够抑制对该阶差部分施加压紧力。因此,能够抑制由于对突出部或形成阶差等的区域施加压紧力而发生隔膜3030损伤的不良情况。由此能够抑制由隔膜3030的损伤引起的正极活性物质层3012和负极活性物质层3022的接触,因此也能够由此抑制内部短路的发生。
进而,在第14实施方式中,通过如上所述地构成,能够以对正极3010的边缘部3014及负极3020的边缘部3024不施加压紧力的方式进行构成,因此能够抑制在伴随电池的充放电的活性物质层的膨胀收缩时在电极的边缘部(端部)发生内部短路。因此,也可以由此使循环特性提高。而且,也可以提高可靠性。
这样,在第14实施方式的锂离子二次电池3100中,能够提高寿命特性及可靠性,而且能够提高成品率,因此能够以低价格提供大容量且电池寿命长的锂离子二次电池3100。
另外,在第14实施方式中,通过在将外装盒3070的开口部3073封口的封口板3080上形成向正极3010及负极3020突出的凸部3085,可以通过该凸部3085容易地对除了正极3010的边缘部(端部)3014及负极3020的边缘部(端部)3024之外的、正极活性物质层3012及负极活性物质层3022的区域施加压紧力。
另外,在第14实施方式中,通过将上述凸部3085与封口板3080一体地形成,能够容易地在封口板3080上形成上述凸部3085。而且,在封口板3080上形成凸部3085的情况下,也能够抑制部件个数增加。
另外,在第14实施方式中,通过以具有近似平面状的压紧面3085a的方式形成上述凸部3085,用封口板3080的凸部3085(压紧面3085a)施加压紧力时,能够抑制压紧力集中在活性物质层的一点进行施加。因此,能够抑制由压紧力集中在一点施加而引起的活性物质层出现裂纹的不良情况。由此,能够抑制由于在活性物质层出现裂纹引起的循环特性的降低。需要说明的是,凸部的顶端尖锐时(例如凸部的顶端尖的情况等),容易发生内部短路,另一方面,如上所述,通过使凸部3085的压紧面3085a为近似平面状,能够抑制内部短路的发生。
如上所述构成的第14实施方式的锂离子二次电池3100可以优选用作要求长寿命的固定用的蓄电用蓄电池。另外,也可以优选用作混合动力汽车(HEV)或电动汽车(EV)等车载用的蓄电池。另外,第14实施方式的锂离子二次电池3100适合于单电池容量在10Ah以上的蓄电池,特别是更适合于单电池容量在50Ah以上的大容量蓄电池。
(第15实施方式)
图92是本发明的第15实施方式的锂离子二次电池的分解立体图。图93及图94是示意地表示本发明的第15实施方式的锂离子二次电池的截面图。下面,参照图82~图85、图89及图92~图94,说明本发明的第15实施方式的锂离子二次电池3200。需要说明的是,各图中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第15实施方式的锂离子二次电池3200中,如图92所示,在电极组3050与外装盒3070的底面部3071之间配置板状或片状的树脂构件3210。该树脂构件3210由对非水电解液具有膨润性的树脂材料构成。需要说明的是,树脂构件3210是本发明的“板状构件”的一个例子。另外,构成树脂构件3210的膨润性树脂与上述第14实施方式中所示的膨润性树脂同样,优选包含选自丁腈橡胶(NBR)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)、聚偏氟乙烯(PVdF)、聚乙烯醇(PVA)、聚环氧乙烷(PEO)、环氧丙烷、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种而构成。
另外,在第15实施方式中,与上述第14实施方式不同,成为在电极的活性物质层中没有分散膨润性树脂的构成。即,在第15实施方式中,并没有通过活性物质层的膨润对电极组3050施加压紧力,而是如图93及图94所示,以通过在电极组3050与外装盒3070的底面部3071之间配置的树脂构件3210的膨润对电极组3050施加层叠方向(外装盒3070的深度方向;Z方向)的压紧力的方式构成。
另外,在第15实施方式中,如图89所示,在注入非水电解液前的状态下封口板3080和电极组3050不接触,而是成为在封口板3080与电极组3050之间形成了间隙部3095的状态。需要说明的是,优选间隙部3095的间隔C与上述第14实施方式同样,以满足0mm<C<5mm的方式设定。
另外,如图92~图94所示,在封口板3080的面板部3081上形成与上述第14实施方式同样的凸部3085。
另外,配置在电极组3050与外装盒3070之间的树脂构件3210,在平面上观察具有近似矩形形状,形成为比正极活性物质层3012小的大小。即,第15实施方式的树脂构件3210形成为收纳在如图83所示的距正极活性物质层3012的外缘仅为距离a的正极活性物质层3012的内侧的区域3015内、以及图85所示的距负极活性物质层3022的外缘仅为距离b的负极活性物质层3022的内侧的区域3025内的大小。具体而言,上述树脂构件3210例如形成为与在封口板3080上形成的凸部3085的压紧面3085a(参照图89)大致相同的形状。
这样地构成的第15实施方式的锂离子二次电池3200中,经由上述树脂构件3210在层叠方向(Z方向)上压紧电极组3050,通过该树脂构件3210及封口板3080的凸部3085,对除了正极活性物质层3012(参照图82及图83)的4个边缘部3013(参照图82及图83)及负极活性物质层3022(参照图84及图85)的4个边缘部3023(参照图84及图85)之外的、正极活性物质层3012的区域3015(参照图82及图83)内及负极活性物质层3022的区域3025(参照图84及图85)内施加压紧力。因此,在第15实施方式中,通过上述树脂构件3210的膨润施加压紧力的区域P,位于负极活性物质层3022的形成区域M及正极活性物质层3012的形成区域N的内侧。
需要说明的是,在第15实施方式中,以对电极组3050(正极3010、负极3020)施加的压紧力为所希望的压紧力的方式调节上述树脂构件3210的厚度及间隙部3095的间隔C(参照图89)。树脂构件3210的厚度,考虑膨润导致的厚度增加等、对电极组3050(正极3010、负极3020)施加所希望的压紧力来决定即可。
第15实施方式的其他构成与上述第14实施方式同样。
第15实施方式中,如上所述,通过在封口板3080与电极组3050之间配置由膨润性树脂构成的树脂构件3210,在外装容器3060内注入非水电解液,由此使由膨润性树脂构成的树脂构件3210膨润,能够容易地对收纳在外装容器3060内的电极组3050(正极3010、负极3020)施加压紧力。
另外,在第15实施方式中,通过将树脂构件3210形成为容纳在除了正极活性物质层3012的边缘部3013之外的正极活性物质层3012的区域3015内及除了负极活性物质层3022的边缘部3023之外的负极活性物质层3022的区域3025内的大小,能够容易地对除了正极活性物质层3012的边缘部3013及负极活性物质层3022的边缘部3023之外的区域施加压紧力,因此能够有效地抑制内部短路的发生。由此,能够提高循环特性的同时,使可靠性及成品率提高。
另外,在第15实施方式中,通过将由树脂材料构成的树脂构件3210配置在外装盒3070与电极组3050之间,能够抑制外装盒3070和电极组3050的短路。
需要说明的是,上述树脂构件3210可以预先固定在外装盒3070的底面部3071。如果这样将树脂构件3210预先固定在外装盒3070的底面部3071,则可以抑制树脂构件3210的错位,因此能够更容易地经由该树脂构件3210对正极活性物质层3012的区域3015内(参照图83)及负极活性物质层3022的区域3025内(参照图85)施加压紧力。
第15实施方式的其他效果与上述第14实施方式同样。
(第16实施方式)
图95是本发明的第16实施方式的锂离子二次电池的分解立体图。下面,参照图89及图95,说明本发明的第16实施方式的锂离子二次电池3300。需要说明的是,图95中,对应的构成要素带有相同的符号,由此适当省略重复的说明。
该第16实施方式的锂离子二次电池3300成为组合了上述第14实施方式及上述第15实施方式的构成。具体而言,如图95所示,在电极组3050(层叠体3050a)与外装盒3070的底面部3071之间配置板状或片状的树脂构件3210。另外,在电极的活性物质层中分散对非水电解液具有膨润性的膨润性树脂。因此,在第16实施方式中,以通过活性物质层的膨润和树脂构件3210的膨润对电极组3050施加层叠方向(外装盒3070的深度方向;Z方向)的压紧力的方式而构成。
需要说明的是,在第16实施方式中,以对电极组3050(正极3010、负极3020)施加的压紧力为所希望的压紧力的方式调节分散在活性物质层中的膨润性树脂的分散量、树脂构件3210的厚度及间隙部3095的间隔C(参照图89)。
第16实施方式的其他构成与上述第14及第15实施方式同样。另外,在第16实施方式的效果与上述第14及第15实施方式同样。
(第17实施方式)
该第17实施方式的锂离子二次电池中,与上述第14~第16实施方式不同,以通过隔膜的膨润对电极组施加层叠方向的压紧力的方式构成。即,在该第17实施方式中,隔膜由对非水电解液具有膨润性的膨润性树脂构成。需要说明的是,作为膨润性树脂,可以使用与第14~第16实施方式同样的膨润性树脂。
另外,上述隔膜可以以通过改变膨润性树脂的构成使多个隔膜的一部分隔膜具有与其他隔膜不同的膨润率的方式构成。另外,也可以通过由膨润性树脂构成多个隔膜的一部分隔膜,使该隔膜具有对电极组施加压紧力的功能。进而,可以通过使多个隔膜的一部分隔膜具有与其他隔膜不同的厚度而使膨润导致的厚度的增加量不同来构成。
具体而言,例如可以以在电极组的最外侧配置的隔膜的膨润率比其他隔膜大的方式构成,也可以以在电极组的最外侧配置的隔膜的厚度比其他隔膜大的方式构成。进而,例如也可以以在电极组的最外侧重叠配置多片隔膜的方式构成。
第17实施方式的其他构成与上述第14~第16实施方式同样。需要说明的是,上述第14~第16实施方式的构成中可以组合第17实施方式的构成。
在第17实施方式中,如上所述,通过将隔膜由膨润性树脂构成,可以使由膨润性树脂构成的隔膜膨润,容易地对收纳在外装容器内的电极组(正极、负极)施加压紧力。
需要说明的是,如上所述,通过对一部分隔膜改变厚度或膨润率等,能够容易地调节对电极组施加的压紧力。
第17实施方式的其他效果与上述第14~第16实施方式同样。
以下说明本发明的实施例。需要说明的是,本发明并不限定于以下所示的实施例。
制作分别与上述第14~第16实施方式对应的实施例14~16的锂离子二次电池和比较例4的锂离子二次电池。图96及图97是简略地表示实施例14的锂离子二次电池的部分截面图,图98及图99是简略地表示实施例15的锂离子二次电池的部分截面图。另外,图100及图101是简略地表示实施例16的锂离子二次电池的部分截面图。需要说明的是,图96、图98及图100表示注入非水电解液前的状态,图97、图99及图101表示注入非水电解液后的状态。
<实施例14>
实施例14中,如图96及图97所示,以如下方式构成,通过在电极的活性物质层中分散膨润性树脂,在注入非水电解液后使电极的活性物质层膨润,用封口板3080和外装盒3070抑制该活性物质层的膨润,由此对电极组3050施加压紧力。即,在实施例14中,在以下所示的电极的活性物质层中进一步追加分散膨润性树脂。另外,实施例14中以如下方式构成,通过在封口板3080上形成凸部3085,对除了正极活性物质层的4个边缘部及负极活性物质层的4个边缘部之外的、正极活性物质层的区域及负极活性物质层的区域施加压紧力。具体而言,以对距正极活性物质层的外缘仅为2mm的距离的正极活性物质层的内侧的区域施加压紧力的方式构成。需要说明的是,分散在活性物质层中的膨润性树脂使用聚环氧乙烷。另外,使其自由膨润的情况下,使上述膨润性树脂分散在负极活性物质层中以便使膨润导致的电极组3050的厚度增加为约3mm。另外,电极组3050与封口板3080之间的间隙部3095的间隔C设定为约2mm。
<实施例15>
实施例15中,如图98及图99所示,以如下方式构成,将由膨润性树脂构成的树脂构件3210配置在电极组3050与外装盒3070之间,通过树脂构件3210的膨润对电极组3050施加压紧力。另外,树脂构件3210使用丁腈橡胶形成。进而,树脂构件3210形成为与距正极活性物质层的外缘仅为3mm的距离的正极活性物质层的内侧的区域对应的大小。需要说明的是,在封口板3080上形成与实施例14同样的凸部3085。使树脂构件3210的厚度约1mm,电极组3050与封口板3080之间的间隙部3095的间隔C设定为约1.5mm。
<实施例16>
实施例16中,如图100及图101所示,在电极的活性物质层中分散膨润性树脂的同时,将由膨润性树脂构成的树脂构件3210配置在电极组3050与外装盒3070之间。接着,以通过活性物质层及树脂构件3210的膨润对电极组3050施加压紧力的方式构成。需要说明的是,活性物质层中分散的膨润性树脂与实施例14同样使用聚环氧乙烷。该膨润性树脂即在实施例16中在以下所示的电极的活性物质层中进一步追加分散膨润性树脂。另外,树脂构件3210与实施例15同样,使用丁腈橡胶形成。另外,在封口板3080上形成与实施例14同样的凸部3085。以膨润导致的电极组3050的厚度的增加为约2mm的方式使上述膨润性树脂分散在负极活性物质层中。另外,树脂构件3210的厚度约0.5mm,电极组3050与封口板3080之间的间隙部3095的间隔C设定为约1.5mm。
<比较例4>
比较例4中,没有通过封口板及外装盒对电极组施加压紧力,除此之外,全部以同样的方法制作锂离子二次电池。
<实施例14~16及比较例4的共通部分>
[正极的制作]
首先,将90重量份活性物质LiFePO4、50重量份导电材料的乙炔黑、和5重量份粘合材料的聚偏氟乙烯混合后,适当加入N-甲基-2-吡咯烷酮使其分散,由此制备正极合剂浆料。接着,将该正极合剂浆料均匀地涂布在具有1mm的厚度的发泡铝集电体(正极集电体)上,使其干燥后,通过辊压压缩至500μm的厚度。最后,切断成所希望的大小,由此制作实施例14~16及比较例4的正极(正极板)。涂布正极的活性物质层的区域的大小为纵向146mm、横向196mm,正极(正极集电体)的大小为纵向146mm、横向208mm。
[负极的制作]
将90重量份天然石墨(中国产天然石墨)、10重量份聚偏氟乙烯混合后,适当加入N-甲基-2-吡咯烷酮,使其分散,由此制备负极合剂浆料。接着,将该负极合剂浆料均匀地涂布在具有1mm的厚度的发泡镍集电体(负极集电体)上,使其干燥后,通过辊压压缩至500μm的厚度。最后,切断成所希望的大小,由此制作实施例14~16及比较例4的负极(负极板)。涂布有负极的活性物质层的区域的大小为纵向150mm、横向200mm,负极(负极集电体)的大小为纵向150mm、横向210mm。
[非水电解液的制作]
在将碳酸亚乙酯(EC)和碳酸二乙酯(DEC)按30∶70的容积比混合的混合液(溶剂)中溶解LiPF6为1mol/L,由此制作非水电解液。
[二次电池的组装]
将正极板及负极板按正极板、隔膜、负极板、隔膜、…的顺序,以在正极板和负极板之间夹入隔膜的方式层叠,由此形成电极组(层叠体)。此时,以负极板相对于正极板位于外侧的方式使用24片正极板、25片负极板。另外,通过使用50片隔膜,以隔膜位于电极组(层叠体)的最外侧的方式构成。
隔膜使用具有20μm的厚度的微多孔性聚乙烯膜。隔膜的大小以比正极板及负极板的涂布了活性物质层的尺寸大的方式设定为纵向154mm、横向206mm。
外装容器通过对实施镀镍后的具有约1.0mm的厚度的钢板进行加工,形成外装盒和封口板。需要说明的是,外装盒的内径尺寸为纵向164mm、横向228mm、深度20mm。接着,在该外装盒内收纳电极组(层叠体)后,载置封口板,通过双重折边将电池封口。
然后,从预先设置在封口板上的φ2mm的注液孔减压注入规定量的非水电解液。注液后,将与注液孔大致相同直径的金属球设置在注液孔上,通过电阻焊接将注液孔封口。这样,制作实施例14~16及比较例4的电池各30个。需要说明的是,实施例14~16中,通过注入非水电解液使得膨润性树脂膨润,对电极组施加压紧力,而相对于此,比较例4中没有对电极组施加压紧力。
对如上所述制作的实施例14~16及比较例4的锂二次电池电池进行检查,分选出不良电池和合格电池。由于认为在电池制造时(电池组装时)的时间点、即电压为0V的情况下,发生内部短路,因此将这样的电池作为不良电池排除。下面,对判断为合格的电池进行特性评价。
具体而言,对排除了不良电池的剩余电池进行5小时的恒流恒压充电直至3.5V,然后,进行直至2V的恒流放电,由此测定电池容量(初次电池容量)。下面,使用该电池在45℃的温度环境下以上述充放电条件进行循环试验。然后,测定200次循环后的放电容量,评价此时的电池容量除以初次的放电容量(初次电池容量)的比例(容量保持率)。
进而,使用进行了循环试验的电池,进行振动试验,算出振动试验后的容量保持率。具体而言,对测定了200次循环后的放电容量的电池进行再次充电,由此使其为满充电状态。接着,将满充电状态的电池安装在加振装置上,在频率10Hz~55Hz的条件下单向(长度方向;X方向)施加8小时振动。然后,测定电池的放电容量,将其除以充电容量得到的比例作为容量保持率(%)算出。
将上述结果示于下表2。需要说明的是,表2中的200次循环后的容量保持率表示进行循环试验后的电池的平均值。另外,振动试验后的容量保持率表示进行振动试验后的电池的平均值。
表2
Figure BSA00000475832600821
如上述表2所示,通过膨润性树脂的膨润对正极(正极活性物质层)及负极(负极活性物质层)施加压紧力的实施例14~16,与没有施加压紧力的比较例4相比,确认了不良电池的发生个数减少。具体而言,在实施例14中,不良电池个数为1个,实施例15及16中,不良电池个数为0个,相对于此,比较例4中,不良电池个数为5个,与实施例相比产生非常多的结果。
认为这是因为在实施例14~16中对电极组(正极、负极)施加压紧力时,对除了正极活性物质层的边缘部及负极活性物质层的边缘部之外的区域施加压紧力,由此抑制由毛刺突起等引起的内部短路的发生。需要说明的是,比较例4中,由于没有对电极组施加压紧力,因此对正极活性物质层的边缘部及负极活性物质层的边缘部也没有施加压紧力,另一方面,通过没有对电极组施加压紧力,容易发生电极组(正极、负极)的错位。另外,在电池组装时发生电极错位,由此使由电极错位引起的内部短路的发生变得容易。结果,认为不良电池个数比实施例14~16多。
另外,实施例14~16与比较例4相比,确认了200次循环后的容量保持率也提高。具体而言,实施例14中,200次循环后的容量保持率为93%,实施例15中,200次循环后的容量保持率为92%,实施例16中,200次循环后的容量保持率为91%,均得到90%以上的高容量保持率。这样,作为实施例14~16中得到高容量保持率的理由,认为是因为:通过对正极活性物质层及负极活性物质层施加压紧力,正极(正极活性物质层)及负极(负极活性物质层)相互密合的同时,防止了电极错位。相对于此,比较例4中,容量保持率为84%,是非常低的结果。认为这可能是因为:在伴随电池的充放电的活性物质层的膨胀收缩时,正极及负极发生错位,在电极的边缘部(端部)等发生内部短路(微小短路)。即,比较例4与实施例不同,认为由于没有对电极组(正极、负极)施加压紧力,正极及负极的错位容易发生,因此200次循环后的容量保持率变低。
进而,实施例14~16与比较例4相比,确认了振动试验后的容量保持率也提高。具体而言,在实施例14中,振动试验后的容量保持率为98%,实施例15中,振动试验后的容量保持率为96%,实施例16中,振动试验后的容量保持率为95%,均得到95%以上的高容量保持率,基本未见容量降低。相对于此,在比较例4中,振动试验后的容量保持率为86%,确认了振动导致容量保持率显著降低。认为这是因为:实施例14~16中通过对电极组施加压紧力,将正极及负极固定在外装容器内,因此相对振动难以发生电极错位。另一方面,认为在比较例4中,由于没有对电极组施加压紧力,因此相对振动发生电极错位,由此导致容量保持率降低。
如上所述,确认了通过注入非水电解液使膨润性树脂膨润,对电极组(正极、负极)施加压紧力,由此能够提高寿命特性及可靠性。另外,确认了在施加压紧力时,通过对除了正极活性物质层(正极)的边缘部及负极活性物质层(负极)的边缘部之外的区域施加压紧力,能够抑制电池组装时的内部短路,从而使成品率提高。
需要说明的是,本次公开的实施方式全部都是举例,并不限定于此。本发明的范围不限定于上述实施方式的说明,而是根据权利要求书所示,进而包括与权利要求书相同的含义及范围内的全部变更。
例如,在上述第1~第17实施方式中,示出了将本发明用于作为二次电池的一个例子的锂离子二次电池(非水电解质二次电池)的例子,但本发明并不限定于此,本发明也可以适用于锂离子二次电池以外的非水电解质二次电池。另外,本发明也可以适用于非水电解质二次电池以外的二次电池。进而,即使在今后开发的二次电池中,也可以适用本发明。
另外,在上述第1~第17实施方式中,示出了以对除了正极活性物质层的4个边缘部及负极活性物质层的4个边缘部之外的、正极活性物质层的内侧的区域及负极活性物质层的内侧的区域施加压紧力的方式构成的例子,但本发明并不限定于此,对电极组施加压紧力的区域只要是正极的除了边缘部的至少一部分之外的活性物质层的区域或负极的除了边缘部的至少一部分之外的活性物质层的区域即可。例如,可以以对除了正极活性物质层的3个边缘部及负极活性物质层的3个边缘部之外的、正极活性物质层的内侧的区域及负极活性物质层的内侧的区域施加压紧力的方式构成。此时,例如可以对正极活性物质层中的沿Y方向的2个边缘部中的一侧(集电体露出部侧的边缘部)施加压紧力。同样地,例如可以对负极活性物质层中的沿Y方向的2个边缘部中的一侧(集电体露出部侧的边缘部)施加压紧力。进而,例如在正极及负极中,可以对边缘部的一部分施加压紧力,也可以对4个边缘部中的至少1个边缘部施加压紧力。需要说明的是,可以以施加的压紧力成为所希望的压紧力的方式适当调整。
另外,在上述第1~17实施方式中,示出在集电体的两面形成了活性物质层的例子,但本发明并不限定于此,也可以仅在集电体的单面形成活性物质层。另外,也可以以在电极组的一部分中包含仅在集电体的单面形成了活性物质层的电极(正极、负极)的方式构成。另外,在上述第1~第13实施方式中,可以在电极的活性物质层中分散对非水电解液具有膨润性的膨润性树脂。作为膨润性树脂,例如可以使用包含选自丁腈橡胶(NBR)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)、聚偏氟乙烯(PVdF)、聚乙烯醇(PVA)、聚环氧乙烷(PEO)、环氧丙烷、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种而构成的树脂。
另外,在上述第1~第17实施方式中,示出了作为二次电池的电解质使用非水电解液的例子,但本发明并不限定于此,也可以将非水电解液以外的例如凝胶状电解质、高分子固体电解质、无机固体电解质、熔融盐等用作电解质。
另外,在上述第1~第17实施方式中,示出了将外装盒的开口部由封口板双重折边封口的例子,但本发明并不限定于此,外装盒的封口方法可以为双重折边封口以外的方法。例如可以通过将封口板焊接在外装盒上而进行外装盒的封口。
另外,在上述第1~第17实施方式中,示出了以负极(负极活性物质层)比正极(正极活性物质层)大的方式构成的例子,但本发明并不限定于此,可以以正极(正极活性物质层)和负极(负极活性物质层)为相同大小的方式构成,也可以以正极(正极活性物质层)比负极(负极活性物质层)大的方式构成。此时,相对于电极(电极组)被施加压紧力的区域优选为距正极及负极中小的一个电极的外缘为1mm以上的区域。另外,负极比正极小的情况下,被施加压紧力的面积相对于负极活性物质层的涂布面积可以为10%以上且99%以下。
另外,在上述第1~第17实施方式中,示出了以正极的集电体露出部和负极的集电体露出部相互位于相反侧的方式配置正极及负极的例子,但本发明并不限定于此,也可以以正极的集电体露出部和负极的集电体露出部位于相同侧的方式配置正极及负极。
另外,在上述第1~第17实施方式中,示出了在集电体的一端形成集电体露出部的例子,但本发明并不限定于此,上述集电体露出部也可以形成在例如集电体的两端。
另外,上述第1~第13实施方式中,示出了将本发明适用于层叠型的锂离子二次电池的例子,但本发明并不限定于此,例如本发明也可以适用于卷绕型的锂离子二次电池。
另外,上述第1~第13实施方式中,示出了以通过外装盒和封口板对电极组(正极及负极)施加压紧力的方式构成的例子,但本发明并不限定于此,也可以以通过外装盒及封口板以外的构件对电极组施加压紧力的方式构成。例如可以通过用板状构件夹持电极组而施加压紧力,将被施加压紧力的状态的电极组收纳在外装容器内。此时,电极组中的被施加压紧力的区域当然可以是除了电极的边缘部(端部)之外的活性物质层的区域。
需要说明的是,在上述第1~第13实施方式中,凸部或压紧构件等的形状或大小等,可以在能够压紧正极及负极的除了边缘部的至少一部分之外的活性物质层的区域的范围内进行各种变更(设定)。另外,对于凸部的突出量或压紧构件等的厚度,可以以对电极(正极及负极)施加所希望的压紧力的方式适当调整。进而,对于外装容器的大小、形状等也可以进行各种变更(设定)。
另外,也可以适当组合上述第1~第13实施方式的构成。
另外,上述第1~第6及第11~第13实施方式中,示出了在封口板及外装盒上一体地形成凸部的例子,但本发明并不限定于此,可以以另外的个体形成上述凸部。
另外,上述第3、第5、第6及第11~第13实施方式中,示出了在封口板上形成2个凸部的例子,但本发明并不限定于此,可以在封口板上形成3个以上凸部。
另外,上述第4、第5、第11及第12实施方式中,示出了在外装盒的底面部形成2个凸部的例子,但本发明并不限定于此,也可以在外装盒上形成3个以上凸部。
另外,上述第7~第9、第11及第12实施方式中,压紧构件及绝缘构件可以预先胶粘(固定)在封口板或外装盒上。另外,可以在封口板或外装盒上使用例如印刷法等直接形成压紧构件、绝缘构件。
另外,上述第7~第9实施方式中,示出了在封口板与电极组之间及外装盒与电极组之间分别配置压紧构件的例子,但本发明并不限定于此,也可以在封口板与电极组之间或外装盒与电极组之间均配置压紧构件。
另外,上述第7~第9实施方式中,压紧构件可以由金属等导电性材料构成。此时,优选对压紧构件表面实施绝缘包覆等。
另外,上述第8实施方式中,示出了在封口板与电极组之间配置3个压紧构件的例子,但本发明并不限定于此,压紧构件数可以为2个,也可以为4个以上。另外,可以在外装盒与电极组之间配置多个压紧构件。需要说明的是,也可以在封口板与电极组之间以及外装盒与电极组之间的任一方配置多个压紧构件地构成,还可以在封口板与电极组之间及外装盒与电极组之间分别配置多个压紧构件。
另外,上述第9实施方式中,示出了将封口板及外装盒的沟部以其X方向的长度及Y方向的长度分别短于压紧构件的方式构成的例子,但本发明并不限定于此,也可以使X方向的长度及Y方向的长度中的一个长度比压紧构件长地构成。
另外,上述第10实施方式中,示出了在封口板及外装盒二者上形成凹部的例子,但本发明并不限定于此,可以仅在封口板及外装盒中的任一者上形成凹部。
另外,上述第11实施方式中,示出了以仅在封口板与电极组之间配置绝缘构件的方式构成的例子,但本发明并不限定于此,可以以在封口板与电极组之间及外装盒与电极组之间分别配置绝缘构件的方式构成,还可以以仅在外装盒与电极组之间配置绝缘构件的方式构成。
另外,上述第12实施方式中,示出了以在封口板的凸部与电极组之间及外装盒的凸部与电极组之间分别配置绝缘构件的方式构成的例子,但本发明并不限定于此,可以以在封口板的凸部与电极组之间及外装盒的凸部与电极组之间中的任一者配置绝缘构件的方式构成。
另外,上述第13实施方式中,示出了仅在封口板上形成具有曲面状的压紧面的凸部的例子,但本发明并不限定于此,可以在封口板及外装盒上分别形成上述凸部。另外,也可以仅在外装盒上形成上述凸部。进而,还可以以在封口板及外装盒中的一个上形成具有曲面状的压紧面的凸部的同时、在封口板及外装盒的另一个上形成具有近似平面状的压紧面的凸部的方式构成。
另外,上述第14~第17实施方式中,示出了在封口板上形成凸部的例子,但本发明并不限定于此,可以在封口板上不形成凸部而在外装盒的底面部形成凸部。另外,还可以在封口板及外装盒的底面部二者上形成凸部。
需要说明的是,上述第14~第17实施方式中,凸部的形状、大小、突出量等可以适当变更(设定)。另外,也可以对外装容器的大小或形状等进行各种变更(设定)。
另外,也可以适当组合上述第14~第17实施方式的构成。
另外,上述第14~第17实施方式中,示出了以通过注入电解液使膨润性树脂膨润而对电极组(层叠体)施加压紧力的方式构成的例子,但本发明并不限定于此,例如可以以通过预先设置包含电解液(电解质)的膨润性树脂对电极组(层叠体)施加压紧力的方式构成。
另外,上述第14~第17实施方式中,示出了与封口板一体地形成凸部的例子,但本发明并不限定于此,也可以以另外的形式形成上述凸部。即使在外装盒的底面部形成凸部的情况下,也可以与上述同样地以另外的个体形成凸部。另外,也可以与外装盒的底面部一体地形成凸部。
另外,上述第14~第17实施方式中,示出了在封口板上形成1个凸部的例子,但本发明并不限定于此,可以在封口板上形成2个以上凸部。对于在外装盒的底面部形成凸部的情况下,也可以与上述同样地形成2个以上凸部。
另外,上述第15及第16实施方式中,示出了在电极组与外装盒的底面部之间配置由膨润性树脂构成的树脂构件的例子,但本发明并不限定于此,上述树脂构件可以配置在电极组与封口板之间,也可以配置在电极组与外装盒的底面部之间及电极组与封口板之间两方。
需要说明的是,上述第15及第16实施方式中,也可以为在封口板上没有形成凸部的构成。
另外,上述第15及第16实施方式中,可以在电极组与外装盒的底面部之间重叠多片由膨润性树脂构成的树脂构件的状态下进行配置。进而,也可以将多个树脂构件并列配置在电极组与外装盒的底面部之间。在电极组与封口板之间配置树脂构件的情况下,也可以同样地构成。
需要说明的是,适当组合上述公开的技术而得到的实施方式也包括在本发明的技术范围内。

Claims (51)

1.一种二次电池,其特征在于,具备:
包含正极活性物质层的正极、
包含负极活性物质层且与所述正极对向地配置的负极、
收纳所述正极及所述负极的收纳容器、和
将所述收纳容器封口的封口体,
所述正极及所述负极,分别具有边缘部,并且在对除了所述边缘部的至少一部分之外的、所述正极活性物质层及所述负极活性物质层的区域施加压紧力的状态下,收纳在所述收纳容器内。
2.如权利要求1所述的二次电池,其特征在于,还具备对电解液具有膨润性的膨润性树脂。
3.如权利要求1所述的二次电池,其特征在于,分散对电解液具有膨润性的膨润性树脂。
4.如权利要求1所述的二次电池,其特征在于,还具备对电解液具有膨润性的膨润性树脂,所述膨润性树脂形成为板状。
5.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极,分别在除了所述正极活性物质层的边缘部及所述负极活性物质层的边缘部之外的区域被施加压紧力。
6.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极,通过所述收纳容器及所述封口体对所述正极活性物质层及所述负极活性物质层的区域施加压紧力。
7.如权利要求1~4中任一项所述的二次电池,其特征在于,还具备配置在所述正极与所述负极之间的隔膜,
通过依次层叠所述正极、所述隔膜及所述负极,构成层叠体,
通过所述收纳容器及所述封口体在层叠方向对所述层叠体施加压紧力。
8.如权利要求7所述的二次电池,其特征在于,所述层叠体具有各自多个的所述正极及所述负极,所述正极及所述负极交替层叠。
9.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极中的被施加压紧力的区域是距所述正极活性物质层的外缘为1mm以上的内侧的区域、或者距所述负极活性物质层的外缘为1mm以上的内侧的区域。
10.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极活性物质层具有比所述负极活性物质层小的平面积,
所述正极及所述负极中的被施加压紧力的区域是距所述正极活性物质层的外缘为1mm以上的内侧的区域。
11.如权利要求1~4中任一项所述的二次电池,其特征在于,对距所述正极活性物质层或所述负极活性物质层的外缘为5mm以上的内侧的区域施加压紧力。
12.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极中的被施加压紧力的区域的面积是所述正极活性物质层的平面积的10%以上且99%以下。
13.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极中的被施加压紧力的区域的面积是所述正极活性物质层的平面积的20%以上且98%以下。
14.如权利要求1~4中任一项所述的二次电池,其特征在于,所述收纳容器及所述封口体分别由金属材料构成。
15.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极与所述封口体对向地配置,
所述封口体具有向所述正极及所述负极突出的第1凸部,
通过所述第1凸部对所述正极及所述负极施加压紧力。
16.如权利要求15所述的二次电池,其特征在于,在所述封口体上形成多个所述第1凸部。
17.如权利要求15所述的二次电池,其特征在于,所述第1凸部与所述封口体一体地形成。
18.如权利要求15所述的二次电池,其特征在于,所述第1凸部具有对所述正极及所述负极施加压紧力的近似平面状的压紧面。
19.如权利要求1~4中任一项所述的二次电池,其特征在于,所述收纳容器包含与所述正极及所述负极对向的底面部,
所述收纳容器的底面部具有向所述正极及所述负极突出的第2凸部,
通过所述第2凸部对所述正极及所述负极施加压紧力。
20.如权利要求19所述的二次电池,其特征在于,在所述收纳容器的底面部形成多个所述第2凸部。
21.如权利要求19所述的二次电池,其特征在于,所述第2凸部与所述收纳容器的底面部一体地形成。
22.如权利要求19所述的二次电池,其特征在于,所述第2凸部具有对所述正极及所述负极施加压紧力的近似平面状的压紧面。
23.如权利要求19所述的二次电池,其特征在于,所述正极及所述负极与所述封口体对向地配置,并且所述封口体具有向所述正极及所述负极突出的第1凸部,
所述第2凸部形成在与所述第1凸部对应的位置上。
24.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极与所述封口体对向地配置,并且所述收纳容器包含与所述正极及所述负极对向的底面部,
在所述正极及所述负极与所述封口体之间、以及所述正极及所述负极与所述收纳容器的底面部之间的至少一处,配置用于对所述正极及所述负极施加压紧力的压紧构件。
25.如权利要求24所述的二次电池,其特征在于,所述压紧构件由绝缘材料构成。
26.如权利要求24所述的二次电池,其特征在于,所述压紧构件由高分子材料构成。
27.如权利要求24所述的二次电池,其特征在于,所述压紧构件分别配置在所述正极及所述负极与所述封口体之间、以及所述正极及所述负极与所述收纳容器的底面部之间。
28.如权利要求1~4中任一项所述的二次电池,其特征在于,所述正极及所述负极与所述封口体对向地配置,
在所述封口体的电池内部侧,以在平面上观察覆盖所述正极活性物质层的边缘部及所述负极活性物质层的边缘部的方式形成第1凹部。
29.如权利要求1~4中任一项所述的二次电池,其特征在于,所述收纳容器包含与所述正极及所述负极对向的底面部,
在所述收纳容器的底面部的电池内部侧,以在平面上观察覆盖所述正极活性物质层的边缘部及所述负极活性物质层的边缘部的方式形成第2凹部。
30.如权利要求1~4中任一项所述的二次电池,其特征在于,所述收纳容器及所述封口体中的至少一个的电池内部侧的表面用高分子层压材料包覆。
31.如权利要求1~4中任一项所述的二次电池,其特征在于,所述收纳容器形成为方形,并且面积最大的面成为底面部,
所述正极及所述负极以与所述底面部对向的方式收纳在所述收纳容器内。
32.一种二次电池,其特征在于,具备:
包含正极活性物质层的正极、
包含负极活性物质层且与所述正极对向地配置的负极、
所述正极及所述负极交替层叠的层叠体、
包含收纳所述层叠体的收纳容器和将所述收纳容器封口的封口体的外装容器、和
配置在所述外装容器内且对电解液具有膨润性的膨润性树脂,
利用通过在所述外装容器内注入电解液而膨润的所述膨润性树脂,在层叠方向上对所述层叠体施加压紧力。
33.如权利要求32所述的二次电池,其特征在于,所述正极及所述负极,分别具有边缘部,并且在除了所述边缘部的至少一部分之外的、所述正极活性物质层及所述负极活性物质层的区域被施加压紧力。
34.如权利要求32所述的二次电池,其特征在于,所述正极及所述负极,分别在除了所述正极活性物质层的边缘部及所述负极活性物质层的边缘部之外的区域被施加压紧力。
35.如权利要求32~34中任一项所述的二次电池,其特征在于,在所述正极活性物质层及所述负极活性物质层的至少一个中分散所述膨润性树脂。
36.如权利要求32~34中任一项所述的二次电池,其特征在于,在所述封口体与所述层叠体之间以及所述收纳容器与所述层叠体之间的至少一处,配置由所述膨润性树脂构成的板状构件。
37.如权利要求36所述的二次电池,其特征在于,所述板状构件形成为与除了所述正极活性物质层的边缘部及所述负极活性物质层的边缘部之外的活性物质层的区域对应的大小。
38.如权利要求32~34中任一项所述的二次电池,其特征在于,还具备配置在所述正极与所述负极之间的隔膜,所述隔膜由所述膨润性树脂构成。
39.如权利要求38所述的二次电池,其特征在于,所述层叠体具有各自多个的所述正极、所述隔膜及所述负极,
通过依次层叠所述正极、所述隔膜及所述负极,构成所述层叠体,
所述多个隔膜中的至少一部分具有与其他隔膜不同的厚度。
40.如权利要求32~34中任一项所述的二次电池,其特征在于,通过所述封口体及所述收纳容器在层叠方向上对所述层叠体中的所述正极及所述负极施加压紧力。
41.如权利要求32~34中任一项所述的二次电池,其特征在于,所述膨润性树脂包含选自丁腈橡胶、苯乙烯丁二烯橡胶、羧甲基纤维素、聚偏氟乙烯、聚乙烯醇、聚环氧乙烷、环氧丙烷、聚苯乙烯、聚甲基丙烯酸甲酯中的至少一种。
42.如权利要求32~34中任一项所述的二次电池,其特征在于,在注入电解液前,成为在所述封口体与所述层叠体之间或所述收纳容器与所述层叠体之间形成有间隙的状态,
所述间隙的间隔C为0mm<C<5mm。
43.如权利要求32~34中任一项所述的二次电池,其特征在于,所述正极及所述负极中的被施加压紧力的区域是距所述正极活性物质层的外缘为1mm以上的内侧的区域、或者距所述负极活性物质层的外缘为1mm以上的内侧的区域。
44.如权利要求32~34中任一项所述的二次电池,其特征在于,所述正极活性物质层具有比所述负极活性物质层小的平面积,
所述正极及所述负极中的被施加压紧力的区域是距所述正极活性物质层的外缘为1mm以上的内侧的区域。
45.如权利要求32~34中任一项所述的二次电池,其特征在于,对距所述正极活性物质层及所述负极活性物质层的外缘为5mm以上的内侧的区域施加压紧力。
46.如权利要求32~34中任一项所述的二次电池,其特征在于,所述收纳容器及所述封口体分别由金属材料构成。
47.如权利要求32~34中任一项所述的二次电池,其特征在于,所述正极及所述负极与所述封口体对向地配置,并且所述收纳容器包含与所述正极及所述负极对向的底面部,
在所述封口体及所述收纳容器的底面部的至少一个上形成向所述正极及所述负极突出的凸部。
48.如权利要求47所述的二次电池,其特征在于,所述凸部具有与除了所述正极活性物质层的边缘部及所述负极活性物质层的边缘部之外的活性物质层的区域对应的、近似平面状的压紧面。
49.如权利要求47所述的二次电池,其特征在于,所述凸部与所述封口体及所述收纳容器的底面部中的至少一个一体地形成。
50.如权利要求32~34中任一项所述的二次电池,其特征在于,所述封口体及所述收纳容器中的至少一个的电池内部侧的表面用高分子层压材料包覆。
51.如权利要求32~34中任一项所述的二次电池,其特征在于,所述收纳容器在形成为方形,并且面积最大的面成为底面部,
所述正极及所述负极以与所述底面部对向的方式收纳在所述外装容器内。
CN201110096657.9A 2010-04-13 2011-04-13 二次电池 Expired - Fee Related CN102222801B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010092083A JP5541957B2 (ja) 2010-04-13 2010-04-13 積層型二次電池
JP2010-092083 2010-04-13
JP2010109853A JP5543269B2 (ja) 2010-05-12 2010-05-12 二次電池
JP2010-109853 2010-05-12

Publications (2)

Publication Number Publication Date
CN102222801A true CN102222801A (zh) 2011-10-19
CN102222801B CN102222801B (zh) 2014-04-09

Family

ID=44761152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110096657.9A Expired - Fee Related CN102222801B (zh) 2010-04-13 2011-04-13 二次电池

Country Status (2)

Country Link
US (1) US20110250485A1 (zh)
CN (1) CN102222801B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694179A (zh) * 2012-06-12 2012-09-26 深圳市量能科技有限公司 一种锂离子电池及其制作方法
CN103531727A (zh) * 2012-07-05 2014-01-22 株式会社电装 具有用于电池元的膨胀限制器的电池单元
CN103996806A (zh) * 2013-02-20 2014-08-20 株式会社杰士汤浅国际 蓄电元件及蓄电装置
CN104412409A (zh) * 2012-06-27 2015-03-11 夏普株式会社 二次电池
CN107078230A (zh) * 2014-08-25 2017-08-18 日新制钢株式会社 锂离子二次电池用外壳及其制造方法
CN107710489A (zh) * 2015-12-16 2018-02-16 株式会社Lg化学 电池壳体、二次电池和用于制造二次电池的方法
CN111052431A (zh) * 2017-12-27 2020-04-21 株式会社东芝 二次电池及二次电池的再生方法
CN111801829A (zh) * 2018-03-28 2020-10-20 株式会社东芝 二次电池、电池模块、车辆及飞翔体
CN112805863A (zh) * 2018-10-02 2021-05-14 株式会社村田制作所 固体电池
WO2023070677A1 (zh) * 2021-11-01 2023-05-04 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备、制造电池单体的方法和设备

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
KR102170047B1 (ko) 2008-08-05 2020-10-27 시온 파워 코퍼레이션 전기화학 셀에서 힘의 적용
EP2721665B1 (en) 2011-06-17 2021-10-27 Sion Power Corporation Plating technique for electrode
US10298043B2 (en) 2011-12-23 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Method for charging lithium ion secondary battery and battery charger
KR101985837B1 (ko) * 2012-02-03 2019-09-03 삼성에스디아이 주식회사 이차 전지
KR102091431B1 (ko) * 2012-03-30 2020-03-20 에리 파워 가부시키가이샤 시험용 배터리 케이스 및 시험용 배터리
EP2706592B1 (de) * 2012-09-11 2016-05-04 swissbatt AG Batterie mit präzis positioniertem Aufbau
JP6226413B2 (ja) 2013-02-20 2017-11-08 株式会社Gsユアサ 蓄電素子及び蓋板の製造方法
KR101810185B1 (ko) 2015-04-29 2017-12-19 주식회사 엘지화학 전기화학소자용 전극 및 상기 전극을 제조하는 방법
KR101826142B1 (ko) 2015-08-27 2018-02-07 삼성에스디아이 주식회사 전극 조립체 및 그 제조 방법과 이차 전지
KR101976174B1 (ko) 2016-02-24 2019-05-09 주식회사 엘지화학 리튬 이차전지용 전극 조립체, 이를 포함하는 리튬 이차전지 및 전지모듈
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
KR102161028B1 (ko) * 2017-07-11 2020-10-05 주식회사 엘지화학 이차전지의 불량 검사 장치 및 불량 검사 방법
JP6923401B2 (ja) * 2017-09-14 2021-08-18 株式会社エンビジョンAescジャパン 積層型電池および電池モジュール
EP3460866B1 (en) * 2017-09-25 2023-01-18 H&T Rechargeable LLC Flat cells
CN111919307A (zh) 2018-03-28 2020-11-10 本田技研工业株式会社 固体电池和固体电池模块
WO2019187939A1 (ja) * 2018-03-28 2019-10-03 本田技研工業株式会社 固体電池モジュール
WO2019198518A1 (ja) * 2018-04-10 2019-10-17 カルソニックカンセイ株式会社 組電池及び電池モジュール
JP7360820B2 (ja) * 2019-05-30 2023-10-13 日立造船株式会社 二次電池およびその製造方法
US11978917B2 (en) * 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
EP4062484A1 (en) 2019-11-19 2022-09-28 Sion Power Corporation Batteries, and associated systems and methods
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods
JP7178339B2 (ja) * 2019-12-17 2022-11-25 本田技研工業株式会社 固体電池および固体電池の製造方法
EP4118701A1 (en) 2020-03-13 2023-01-18 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
US11848454B2 (en) * 2020-04-09 2023-12-19 Apple Inc. Battery enclosures with structural enhancements
WO2022080042A1 (ja) * 2020-10-16 2022-04-21 日本製鉄株式会社 二次電池のセルケースおよびモジュール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2502410Y (zh) * 2001-08-22 2002-07-24 武汉力兴电源股份有限公司 扣式锂离子电池
US20050100783A1 (en) * 2003-10-14 2005-05-12 Ro Jong Y. Cartridge-type lithium ion polymer battery pack
EP1772923A2 (en) * 2005-10-07 2007-04-11 Samsung SDI Co., Ltd. Fuel cell stack having cell voltage measuring terminals
CN101546821A (zh) * 2009-05-04 2009-09-30 杨长明 蓄电池及其正极极板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877754B1 (ko) * 2005-06-14 2009-01-08 파나소닉 주식회사 비수 전해질 이차전지
JP4599314B2 (ja) * 2006-02-22 2010-12-15 株式会社東芝 非水電解質電池、電池パック及び自動車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2502410Y (zh) * 2001-08-22 2002-07-24 武汉力兴电源股份有限公司 扣式锂离子电池
US20050100783A1 (en) * 2003-10-14 2005-05-12 Ro Jong Y. Cartridge-type lithium ion polymer battery pack
EP1772923A2 (en) * 2005-10-07 2007-04-11 Samsung SDI Co., Ltd. Fuel cell stack having cell voltage measuring terminals
CN101546821A (zh) * 2009-05-04 2009-09-30 杨长明 蓄电池及其正极极板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694179A (zh) * 2012-06-12 2012-09-26 深圳市量能科技有限公司 一种锂离子电池及其制作方法
CN104412409A (zh) * 2012-06-27 2015-03-11 夏普株式会社 二次电池
CN103531727A (zh) * 2012-07-05 2014-01-22 株式会社电装 具有用于电池元的膨胀限制器的电池单元
CN103531727B (zh) * 2012-07-05 2017-04-26 株式会社电装 具有用于电池元的膨胀限制器的电池单元
CN103996806A (zh) * 2013-02-20 2014-08-20 株式会社杰士汤浅国际 蓄电元件及蓄电装置
CN107078230B (zh) * 2014-08-25 2020-01-21 日铁日新制钢株式会社 锂离子二次电池用外壳的制造方法
CN107078230A (zh) * 2014-08-25 2017-08-18 日新制钢株式会社 锂离子二次电池用外壳及其制造方法
CN107710489A (zh) * 2015-12-16 2018-02-16 株式会社Lg化学 电池壳体、二次电池和用于制造二次电池的方法
CN111052431A (zh) * 2017-12-27 2020-04-21 株式会社东芝 二次电池及二次电池的再生方法
CN111052431B (zh) * 2017-12-27 2022-09-16 株式会社东芝 二次电池及二次电池的再生方法
CN111801829A (zh) * 2018-03-28 2020-10-20 株式会社东芝 二次电池、电池模块、车辆及飞翔体
CN112805863A (zh) * 2018-10-02 2021-05-14 株式会社村田制作所 固体电池
WO2023070677A1 (zh) * 2021-11-01 2023-05-04 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备、制造电池单体的方法和设备

Also Published As

Publication number Publication date
CN102222801B (zh) 2014-04-09
US20110250485A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
CN102222801B (zh) 二次电池
KR101776885B1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
JP5543269B2 (ja) 二次電池
CN102456856B (zh) 二次电池以及组合电池
CN102646844B (zh) 二次电池
CN100524937C (zh) 非水电解质电池、电池组和汽车
US20060240290A1 (en) High rate pulsed battery
JP5541957B2 (ja) 積層型二次電池
CN101286572A (zh) 硬币形非水电解液二次电池
KR101707335B1 (ko) 비수 전해액 2차 전지
US8367243B2 (en) Lithium secondary battery
CN102856577A (zh) 非水电解质二次电池
KR101933655B1 (ko) 전극 탭 부위에 형성된 만입부를 포함하는 전지셀
JP5433164B2 (ja) リチウムイオン二次電池
US20130034773A1 (en) Secondary cell
US20120164523A1 (en) Lithium ion secondary battery
JP2003007346A (ja) リチウム二次電池及びその製造方法
JP2011222128A (ja) 二次電池
KR20160074209A (ko) 각형 만곡 이차전지 및 이의 제조방법
JP2001357874A (ja) 非水電解液二次電池
KR20160048324A (ko) 이차전지 및 이의 제조방법
JP2002270241A (ja) 非水系二次電池
JP3709965B2 (ja) 円筒形リチウムイオン電池
JP3196223B2 (ja) 組電池
KR101717154B1 (ko) 경화성 물질이 부가된 전지셀 제조 방법 및 제조 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Sakai City, Osaka of Japan

Patentee after: Sharp Corp.

Address before: Osaka City, Osaka Prefecture, Japan

Patentee before: Sharp Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200401

Address after: Osaka City, Osaka Prefecture, Japan

Patentee after: SEKISUI CHEMICAL Co.,Ltd.

Address before: Sakai City, Osaka of Japan

Patentee before: Sharp Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20200413