发明内容
本发明目的是针对传统的常数模盲均衡方法(CMA)收敛速度慢且存在局部收敛的问题,发明了一种快速收敛的免疫克隆正交小波盲均衡方法(CSA-WT-CMA)。
本发明为实现上述目的,采用如下技术方案:
本发明一种快速收敛的免疫克隆正交小波变换盲均衡方法,包括如下步骤:
第一步:种群初始化
随机产生一定数目的抗体种群,其中的每个抗体分别对应一个均衡器的权向量。
第二步:计算亲和度值
将第一步所述的随机产生的抗体种群,并结合均衡器的代价函数,定义亲和度的函数,即免疫算法寻优的目标函数:
式中,w表示均衡器权向量。J(w)的最大值对应JCMA(w)的最小值,即将盲均衡问题转化为求解最高的亲和度值对应的均衡器的系数。
第三步:克隆选择
克隆选择操作是克隆增值操作的逆操作。该操作是从抗体各自克隆增值后的子代中选择优秀的个体,从而形成新的抗体群,是一个无性选择过程。一个抗体经过克隆增值后形成一个亚抗体群,再经过亲和度成熟操作后通过克隆选择操作实现局部的亲和度升高。首先对第二步所述抗体群中的抗体按亲和度从小到大的顺序进行排列,根据亲和度的大小评价,选择最佳抗体进行克隆扩增操作,得到扩增后的抗体群C,克隆数与亲和度成正比。
第四步:精英交叉策略
精英交叉的原理如下:在免疫算法的实现中,首先给定一个精英交叉的概率Pkc(kc表示king-crossover,即精英交叉),对于第三步所述的克隆抗体群中第t代每个个体a(t)产生一个[0,1]之间的随机数R,如果R小于精英交叉概率Pkc,则a(t)被选中与保存的当前代精英个体b(t)进行交叉,其方法是:将a(t)和b(t)放入一个小的交配池中,根据选定的交叉策略(单点、两点、多点和一致交叉等),对a(t)和b(t)进行交叉操作,得到一对子代个体a′(t)和b′(t)。然后,用a′(t)替代种群中的a(t),b′(t)则丢失不用。
第五步:高频变异
将第四步所述的交叉后的抗体群C中每个克隆抗体按照下式进行高频变异,得到变异群C*。
X=x+a□ N(0,1)
a=(1/g)?exp(f)
式中,X是变异体,N(0,1)是均值为0、标准方差为1正态随机变量,a是变异概率系数,g是变异的控制系数,f是抗体与抗原的亲和度值。
第六步:计算亲和度值
将第五步所述的高频变异后的各抗体重新计算其对应的亲和度值。
第七步:选择
将第6步所述的变异群C*中选择n个亲和度高的抗体替换初始抗体群中n个亲和度低的抗体,n反比于抗体群的平均亲和度值。
第八步:判断终止与否
根据抗体的进化代数进行判断,当进化代数小于最大进化代数,则转至第二步,重复进行第二至第五步的操作步骤,直至进化代数大于最大进化代数,如达到终止条件,则程序结束,输出全局最优解。
第九步:选择最佳权向量个体
求取使目标函数最优时所对应的权向量值,并且将这个权向量作为所述一种快速收敛的免疫克隆正交小波变换盲均衡方法。
本发明利用免疫克隆选择方法的全局搜索能力和有助于防止搜索陷于局部极值的特性,发明了一种快速收敛的免疫克隆正交小波盲均衡方法(CSA-WT-CMA)。该方法通过免疫克隆选择算法寻找最优的权向量作为均衡器输入的初始权向量值,将其引入到正交小波盲均衡方法中,加快了收敛速度,同时减小了均方误差。实施实例结果表明,与正交小波变换盲均衡方法(WT-CMA)相比,本发明方法收敛速度更快、稳态误差更小,且星座图更为紧凑、清晰。因此,本发明具有一定的实用价值。
具体实施方式
正交小波变换盲均衡方法(WT-CMA)的原理图如图1所示。图1中,n为时间序列,a(n)为发射信号,c(n)为信道脉冲响应向量,v(n)为加性高斯白噪声,y(n)为均衡器输入信号,R(k)为y(k)经过正交小波变换后的信号。W(n)为均衡器权向量且长度为L,即([×]T表示转置运算),y(×)为无记忆非线性函数,表示无记忆非线性估计器,用于产生误差信号,z(n)为均衡器的输出序列。
令
a(n)=[a(n),L,a(n-NC+1)]T,
y(n)=[y(n+L),L,y(n),L,y(n-L)]T
则由图1可知
均衡器的输出为
z(n)=WT(n)R(n) (2)
根据小波变换理论,均衡器W(n)为有限冲击响应时,W(n)可用一组正交小波基函数来表示,可表示为:
式中,
j
j,k(n)表示尺度参数为j、平移参数为k的小波基函数;y
J,k(n)表示尺度参数为J、平移参数为k的尺度函数,
J为小波分解最大尺度,k
j为尺度j下的最大平移,由于W(n)的特性由E
j,k=<W(n),j
j,k(n)>和F
J,k=<W(n),y
J,k(n)>反应出来(其中,
表示内积),故称其为均衡器权系数,则均衡器的输出为
其中
而式(4)表明均衡器k时刻输出z(n)等于y(n)经小波变换后相应的尺度参数为j、平移参数为k的小波变换系数rj,k(n)和尺度变换系数sJ,k(n)与均衡器系数Ej,k和FJ,k的加权和。
设V 为正交小波变换矩阵,V=[P0;P1H1;P2H1H0;L;PJ-1 HJ-2 L H1H0;HJ-1 HJ-2 LH1H0],式中,j为小波分解层数,Hj和Pj分别为由小波滤波器系数h(n)和尺度滤波器系数p(n)所构成的矩阵。Hj和Pj表示的是j层小波分解中由小波滤波器系数h(n)和尺度滤波器系数p(n)所构成的分解矩阵,且Hj和Pj中的每个元素二抽取后分别为无穷矩阵Hj(l,n)=h(n-2l),Pj(l,n)=p(n-2l),l,n∈Z;h(n-2l),p(n-2l)分别表示对小波滤波器系数h(n)和尺度滤波器系数p(n)进行二抽取后的序列(下同)。L表示均衡器的权向量的长度。j?[0,J 1]表示小波分解层数,J表示小波分解的最大分解层数。
R(n)=y(n)V (7)
Z(n)=WH(n)R(n) (8)
式中,[×]H表示共轭转置。则WT-CMA的迭代公式为
式中,R*(n)为R(n)的共轭;
式中,
分别表示对r
j,k(n),s
J,k(n)平均功率估计,
为对
估计值,由下式推导得到:
其中,diag[ ]表示对角矩阵,b为平滑因子,且0<β<1。rj,k(n)和sJ,k(n)分别表示尺度参数为j、平移参数为k的小波变换系数和尺度变换系数,式(3)至(12)构成基于正交小波变换的盲均衡方法(WT-CMA)。
传统的CMA和WT-CMA都是先构造一个代价函数,并利用这个代价函数对均衡器权向量求梯度,从而确定均衡器权值的迭代方程,但这种方法本质上是一种只考虑局部区域的梯度下降搜索法,缺乏全局搜索能力,同时构造的代价函数还需满足可导,且易陷于局部极小值。而免疫克隆选择方法是模拟生物免疫系统对病菌的多样性识别能力而设计出来的一种启发式多峰值搜索方法。它采用群体搜索技术,用抗体群代表一组问题解,通过对当前种群进行克隆、高频变异和选择等操作,而产生新一代抗体群,并逐步使抗体群进化到包含有近似最优解的状态,它不依赖于梯度信息,也不需要求解函数可微,是一种全局随机搜索的方法。于是,将免疫克隆选择方法引入到正交小波变换的盲均衡方法中,用来弥补WT-CMA的缺陷,更好的解决搜索过程中陷于局部收敛的问题。该方法的基本思路是:将抗原作为目标函数,通过模拟生物免疫系统对抗体克隆选择、变异的原理,利用抗体克隆扩大搜索范围、变异保持多样性的特点,把每个子信道均衡器的权向量作为免疫克隆选择方法的决策变量,将每个子信道均衡器的输入信号经过正交小波变换后依次作为免疫克隆选择算法的输入,并结合CMA算法的代价函数,确定免疫克隆选择算法进化的目标函数即亲和度函数,利用免疫克隆选择算法来求解均衡器代价函数,搜索均衡器最佳的权值。
引入免疫克隆选择算法的正交小波盲均衡算法,实现步骤如下:
第一步:种群初始化
随机产生一定数目的抗体种群,其中的每个抗体分别对应一个均衡器的权向量。
第二步:计算亲和度值
结合均衡器的代价函数,定义亲和度的函数,即免疫算法寻优的目标函数:
式中,w表示均衡器权向量。J(w)的最大值对应JCMA(w)的最小值,即将盲均衡问题转化为求解最高的亲和度值对应的均衡器的系数。
第三步:克隆选择
克隆选择操作是克隆增值操作的逆操作。该操作是从抗体各自克隆增值后的子代中选择优秀的个体,从而形成新的抗体群,是一个无性选择过程。一个抗体经过克隆增值后形成一个亚抗体群,再经过亲和度成熟操作后通过克隆选择操作实现局部的亲和度升高。首先对第二步所述抗体群中的抗体按亲和度从小到大的顺序进行排列,根据亲和度(一个抗体对一个相同链长的抗原产生识别的程度称为亲和度)的大小评价,选择最佳抗体进行克隆扩增操作,得到扩增后的抗体群C,克隆数与亲和度成正比。
第四步:精英交叉策略
精英交叉的原理如下:在免疫算法的实现中,首先给定一个精英交叉的概率Pkc(kc表示king-crossover,即精英交叉),对于第三步所述的克隆抗体群中第t代每个个体a(t)产生一个[0,1]之间的随机数R,如果R小于精英交叉概率Pkc,则a(t)被选中与保存的当前代精英个体b(t)进行交叉,其方法是:将a(t)和b(t)放入一个小的交配池中,根据选定的交叉策略(单点、两点、多点和一致交叉等),对a(t)和b(t)进行交叉操作,得到一对子代个体a′(t)和b′(t)。然后,用a′(t)替代种群中的a(t),b′(t)则丢失不用。
通过精英交叉,抗体群继承了精英个体的优良模式,并且不会破坏其优良模式,比传统的交叉操作具有更大优越性,因为精英交叉总是能增加群体中的优良模式,而且精英交叉策略对免疫算法的运行时间、平均收敛代数、标准方差等性能有着极大的改善。
第五步:高频变异
对抗体群C中每个克隆抗体按照下式进行高频变异,得到变异群C*。
X=x+a□N(0,1)
(14)
a=(1/g)?exp(f) (15)
式中,X是变异体,N(0,1)是均值为0、标准方差为1正态随机变量,a是变异概率系数,g是变异的控制系数,f是抗体与抗原的亲和度值。高频变异作为克隆选择的主要操作算子,可以防止进化早熟并增加抗体的多样性。
第六步:计算亲和度值
重新计算高频变异后的各抗体所对应的亲和度值。
第七步:选择
从变异群C*中选择n个亲和度高的抗体替换初始抗体群中n个亲和度低的抗体,n反比于抗体群的平均亲和度值。
第八步:判断终止与否
根据抗体的进化代数进行判断,当进化代数小于最大进化代数,则转至第二步,重复进行第二至第五步的操作步骤,直至进化代数大于最大进化代数,如达到终止条件,则程序结束,输出全局最优解。
第九步:选择最佳权向量个体
考虑到免疫克隆选择算法在抽取最优抗体的实时性和盲均衡方法需要满足迫零条件,求取使目标函数最优时所对应的权向量值,并且将这个权向量作为本发明CSA-WT-CMA的初始化权向量。
实施实例
为了验证本发明CSA-WT-CMA方法的有效性,以WT-CMA方法作为比较对象,进行仿真实验。仿真试验中,抗体规模为100,克隆控制因子为0.6,精英交叉概率为0.2,变异概率为0.1,最大迭代次数为500。
【实施例1】发射信号为8PSK,采用混合相位水声信道c=[0.3132 -0.1040 0.8908 0.3134]进行仿真实验。均衡器权长均为16,信噪比20dB。WT-CMA算法中,第10个抽头初始化设置为1,其余为0,步长mWTCMA=0.001;本发明CSA-WT-CMA中,其步长为mCSAWTCMA=0.005。对每个信道的输入信号采用DB4正交小波进行分解,分解层次是2层,功率初始值设置为4,遗忘因子b=0.999;500次蒙特卡诺仿真结果,如图3所示。
图3(a)表明,在收敛速度上,本发明CSA-WT-CMA比WT-CMA大约快了6000步。在稳态误差上,与WT-CMA相比,减小了近4dB。图3(c、d)表明:本发明CSA-WT-CMA的输出星座图比WT-CMA更加清晰、紧凑。
【实施例2】发射信号为16QAM,采用最小相位水声信道c=[0.9656 -0.0906 0.05780.2368]进行仿真实验。均衡器权长均为16,信噪比为20dB。WT-CMA算法中,第10个抽头初始化设置为1,其余为0,步长mWTCMA=0.0006;本发明CSA-WT-CMA中,其步长为mCSAWTCMA=0.00018。对每个信道的输入信号采用DB4正交小波进行分解,分解层次是2层,功率初始值设置为4,遗忘因子b=0.99;500次蒙特卡诺仿真结果,如图4所示。
图4(a)表明,在收敛速度上,本发明CSA-WT-CMA比WT-CMA大约快了6500步。在稳态误差上,与WT-CMA相比,减小了近1.5dB。图3(c、d)表明:本发明CSA-WT-CMA的输出星座图比WT-CMA更加清晰、紧凑。