CN102185808A - 一种快速收敛的免疫克隆正交小波变换盲均衡方法 - Google Patents

一种快速收敛的免疫克隆正交小波变换盲均衡方法 Download PDF

Info

Publication number
CN102185808A
CN102185808A CN2011100942837A CN201110094283A CN102185808A CN 102185808 A CN102185808 A CN 102185808A CN 2011100942837 A CN2011100942837 A CN 2011100942837A CN 201110094283 A CN201110094283 A CN 201110094283A CN 102185808 A CN102185808 A CN 102185808A
Authority
CN
China
Prior art keywords
antibody
affinity
immune
clone
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100942837A
Other languages
English (en)
Other versions
CN102185808B (zh
Inventor
郭业才
丁锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN2011100942837A priority Critical patent/CN102185808B/zh
Publication of CN102185808A publication Critical patent/CN102185808A/zh
Application granted granted Critical
Publication of CN102185808B publication Critical patent/CN102185808B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

本发明公布了一种快速收敛的免疫克隆正交小波变换盲均衡方法,其特征在于包括如下步骤:种群初始化;计算亲和度值;克隆选择;精英交叉方法;高频变异;计算亲和度值;选择;判断终止与否;选择最佳权向量个体。本发明将免疫克隆选择算法引入至正交小波盲均衡方法(WT-CMA)中,利用克隆选择方法多峰值函数寻优的特点,将均衡器的权向量作为抗体,并采用正交小波变换降低信号的自相关性。与正交小波变换盲均衡方法(WT-CMA)相比,本发明方法具有更快的收敛速度和较小的稳态误差。

Description

一种快速收敛的免疫克隆正交小波变换盲均衡方法
技术领域
本发明涉及水声通信系统中的一种快速收敛的免疫克隆正交小波变换盲均衡方法。
背景技术
在水声通信系统中,信道的多径效应和有限带宽的失真所引起的码间干扰(Inter-symbol Interference,ISI)严重影响通信质量,需要采用有效的信道均衡技术来消除(见文献[1]韩迎鸽,郭业才等.引入动量项的正交小波变换盲均衡算法[J].系统仿真学报.2008,20(6):pp.1559-1562)。盲均衡方法由于不需要发送训练序列,极大地提高了带宽的利用率,但其收敛速度较慢、稳态误差也较大(见文献[2]郭业才,赵俊渭.水声信道混合型常数模盲均衡新算法[J].系统工程与电子技术,2005,27(2):pp.215-217;文献[3]郭业才,著.自适应盲均衡技术[M].合肥工业大学出版社,2007,P.1-153)。文献[4][5][6](见:[4]Cooklev.T.An Efficient Architecture for Orthogonal Wavelet Transforms[J].IEEE Signal Processing Letters,2006,13(2):77-79;文献[5]韩迎鸽,郭业才,吴造林,周巧喜.基于正交小波变换的多模盲均衡器设计与算法仿真研究[J].仪器仪表学报,2008,29(7):1441-1445;文献[6]王军峰,宋国乡.小波变换的自适应均衡算法[J].西安电子科技大学学报(自然科学版),2000,27(1),21-24)表明,对均衡器的输入信号进行小波变换,可以使各分量之间的自相关性得到有效降低,加快了方法的收敛速度,但小波盲均衡是采用随机梯度下降法来搜索最优权向量,易陷于局部极小值。而免疫算法是模拟生物免疫系统对病菌的多样性识别能力而设计出来的多峰值搜索方法。从计算角度来看,生物免疫系统是一个高度进化、分布、自适应和自组织的系统,并且具有很强的学习、识别、记忆和特征提取能力。其作为全局搜索方法中的一种,具有更大的搜索范围(即增加了抗体的多样性),有效防止进化早熟和搜索陷入极值的问题(见:文献[7]黄友锐,著.智能优化算法及其应用[M].北京:国防工业出版社,2008;文献[8]Attux R R F,Loiola M B,Suyama R,et al.Blind Search for Optimal Wiener Solutions Using an Artificial Immume Network Model[C]//Proc.of the IEEE Int’l Conf.on Genetic and Evolutionary Computation for Signal Processing and Image Analysis.[S.l.]:IEEE Press,2003;文献[9]Ayara,Timmis,de Lemos,de Castro,Duncan.Negative Selection:How to Generate Detectors.Proceedings of 1stInternational Conference of Artificial Immune Systems(ICARLS),University of Kent at Canterbury,UK,2002,9;文献[10]Kim,Bentley.Immune Memory in the Dynamic Clonal Selection Algorithm.International Conference on Artificial Immune System(ICARLS),University of Kent at Canterbury,UK,2002.9.University of Kent at Canterbury,UK,2002.9)。
发明内容
本发明目的是针对传统的常数模盲均衡方法(CMA)收敛速度慢且存在局部收敛的问题,发明了一种快速收敛的免疫克隆正交小波盲均衡方法(CSA-WT-CMA)。
本发明为实现上述目的,采用如下技术方案:
本发明一种快速收敛的免疫克隆正交小波变换盲均衡方法,包括如下步骤:
第一步:种群初始化
随机产生一定数目的抗体种群,其中的每个抗体分别对应一个均衡器的权向量。
第二步:计算亲和度值
将第一步所述的随机产生的抗体种群,并结合均衡器的代价函数,定义亲和度的函数,即免疫算法寻优的目标函数:
J ( w ) = 1 1 + J CMA ( w )
式中,w表示均衡器权向量。J(w)的最大值对应JCMA(w)的最小值,即将盲均衡问题转化为求解最高的亲和度值对应的均衡器的系数。
第三步:克隆选择
克隆选择操作是克隆增值操作的逆操作。该操作是从抗体各自克隆增值后的子代中选择优秀的个体,从而形成新的抗体群,是一个无性选择过程。一个抗体经过克隆增值后形成一个亚抗体群,再经过亲和度成熟操作后通过克隆选择操作实现局部的亲和度升高。首先对第二步所述抗体群中的抗体按亲和度从小到大的顺序进行排列,根据亲和度的大小评价,选择最佳抗体进行克隆扩增操作,得到扩增后的抗体群C,克隆数与亲和度成正比。
第四步:精英交叉策略
精英交叉的原理如下:在免疫算法的实现中,首先给定一个精英交叉的概率Pkc(kc表示king-crossover,即精英交叉),对于第三步所述的克隆抗体群中第t代每个个体a(t)产生一个[0,1]之间的随机数R,如果R小于精英交叉概率Pkc,则a(t)被选中与保存的当前代精英个体b(t)进行交叉,其方法是:将a(t)和b(t)放入一个小的交配池中,根据选定的交叉策略(单点、两点、多点和一致交叉等),对a(t)和b(t)进行交叉操作,得到一对子代个体a′(t)和b′(t)。然后,用a′(t)替代种群中的a(t),b′(t)则丢失不用。
第五步:高频变异
将第四步所述的交叉后的抗体群C中每个克隆抗体按照下式进行高频变异,得到变异群C*
X=x+a□ N(0,1)
Figure BDA0000055447430000031
a=(1/g)?exp(f)
式中,X是变异体,N(0,1)是均值为0、标准方差为1正态随机变量,a是变异概率系数,g是变异的控制系数,f是抗体与抗原的亲和度值。
第六步:计算亲和度值
将第五步所述的高频变异后的各抗体重新计算其对应的亲和度值。
第七步:选择
将第6步所述的变异群C*中选择n个亲和度高的抗体替换初始抗体群中n个亲和度低的抗体,n反比于抗体群的平均亲和度值。
第八步:判断终止与否
根据抗体的进化代数进行判断,当进化代数小于最大进化代数,则转至第二步,重复进行第二至第五步的操作步骤,直至进化代数大于最大进化代数,如达到终止条件,则程序结束,输出全局最优解。
第九步:选择最佳权向量个体
求取使目标函数最优时所对应的权向量值,并且将这个权向量作为所述一种快速收敛的免疫克隆正交小波变换盲均衡方法。
本发明利用免疫克隆选择方法的全局搜索能力和有助于防止搜索陷于局部极值的特性,发明了一种快速收敛的免疫克隆正交小波盲均衡方法(CSA-WT-CMA)。该方法通过免疫克隆选择算法寻找最优的权向量作为均衡器输入的初始权向量值,将其引入到正交小波盲均衡方法中,加快了收敛速度,同时减小了均方误差。实施实例结果表明,与正交小波变换盲均衡方法(WT-CMA)相比,本发明方法收敛速度更快、稳态误差更小,且星座图更为紧凑、清晰。因此,本发明具有一定的实用价值。
附图说明
图1:基于正交小波变换的盲均衡方法原理图;
图2:本发明:一种快速收敛的免疫克隆正交小波盲均衡方法原理图;
图3:实施例1仿真结果图,(a)两种方法的均方误差曲线,(b)均衡器输入星座图,(c)WT-CMA输出星座图,(d)本发明CSA-WT-CMA输出星座图;
图4:实施例2仿真结果图,(a)两种方法的均方误差曲线,(b)均衡器输入星座图,(c)WT-CMA输出星座图,(d)本发明CSA-WT-CMA输出星座图。
具体实施方式
正交小波变换盲均衡方法(WT-CMA)的原理图如图1所示。图1中,n为时间序列,a(n)为发射信号,c(n)为信道脉冲响应向量,v(n)为加性高斯白噪声,y(n)为均衡器输入信号,R(k)为y(k)经过正交小波变换后的信号。W(n)为均衡器权向量且长度为L,即([×]T表示转置运算),y(×)为无记忆非线性函数,表示无记忆非线性估计器,用于产生误差信号,z(n)为均衡器的输出序列。
a(n)=[a(n),L,a(n-NC+1)]T
y(n)=[y(n+L),L,y(n),L,y(n-L)]T
则由图1可知
Figure BDA0000055447430000042
均衡器的输出为
z(n)=WT(n)R(n)                        (2)
根据小波变换理论,均衡器W(n)为有限冲击响应时,W(n)可用一组正交小波基函数来表示,可表示为:
式中,jj,k(n)表示尺度参数为j、平移参数为k的小波基函数;yJ,k(n)表示尺度参数为J、平移参数为k的尺度函数,
Figure BDA0000055447430000045
J为小波分解最大尺度,kj为尺度j下的最大平移,由于W(n)的特性由Ej,k=<W(n),jj,k(n)>和FJ,k=<W(n),yJ,k(n)>反应出来(其中,
Figure BDA0000055447430000046
表示内积),故称其为均衡器权系数,则均衡器的输出为
Figure BDA0000055447430000047
其中
Figure BDA0000055447430000048
Figure BDA0000055447430000049
而式(4)表明均衡器k时刻输出z(n)等于y(n)经小波变换后相应的尺度参数为j、平移参数为k的小波变换系数rj,k(n)和尺度变换系数sJ,k(n)与均衡器系数Ej,k和FJ,k的加权和。
设V  为正交小波变换矩阵,V=[P0;P1H1;P2H1H0;L;PJ-1 HJ-2 L H1H0;HJ-1 HJ-2 LH1H0],式中,j为小波分解层数,Hj和Pj分别为由小波滤波器系数h(n)和尺度滤波器系数p(n)所构成的矩阵。Hj和Pj表示的是j层小波分解中由小波滤波器系数h(n)和尺度滤波器系数p(n)所构成的分解矩阵,且Hj和Pj中的每个元素二抽取后分别为无穷矩阵Hj(l,n)=h(n-2l),Pj(l,n)=p(n-2l),l,n∈Z;h(n-2l),p(n-2l)分别表示对小波滤波器系数h(n)和尺度滤波器系数p(n)进行二抽取后的序列(下同)。L表示均衡器的权向量的长度。j?[0,J 1]表示小波分解层数,J表示小波分解的最大分解层数。
R(n)=y(n)V           (7)
Z(n)=WH(n)R(n)       (8)
式中,[×]H表示共轭转置。则WT-CMA的迭代公式为
W ( n + 1 ) = W ( n ) + m R ^ - 1 ( n ) z ( n ) g [ | z ( n ) | 2 - R 2 ] R * ( n ) - - - ( 9 )
式中,R*(n)为R(n)的共轭;
R ^ - 1 ( n ) = diag [ s j , 0 2 ( n ) , s j , 1 2 ( n ) , L , s J , k J - 1 2 ( n ) , s J + 1,0 2 ( n ) , L , s J + 1 , k J - 1 2 ( n ) ] - - - ( 10 )
式中,
Figure BDA0000055447430000053
分别表示对rj,k(n),sJ,k(n)平均功率估计,
Figure BDA0000055447430000054
为对
Figure BDA0000055447430000055
估计值,由下式推导得到:
s ^ j , k 2 ( n + 1 ) = b s ^ j , k 2 ( n ) + ( 1 - b ) | r j , k ( n ) | 2 - - - ( 11 )
s ^ j + 1 , k 2 ( n + 1 ) = b s ^ j + 1 , k 2 ( n ) + ( 1 - b ) | s j , k ( n ) | 2 - - - ( 12 )
其中,diag[   ]表示对角矩阵,b为平滑因子,且0<β<1。rj,k(n)和sJ,k(n)分别表示尺度参数为j、平移参数为k的小波变换系数和尺度变换系数,式(3)至(12)构成基于正交小波变换的盲均衡方法(WT-CMA)。
传统的CMA和WT-CMA都是先构造一个代价函数,并利用这个代价函数对均衡器权向量求梯度,从而确定均衡器权值的迭代方程,但这种方法本质上是一种只考虑局部区域的梯度下降搜索法,缺乏全局搜索能力,同时构造的代价函数还需满足可导,且易陷于局部极小值。而免疫克隆选择方法是模拟生物免疫系统对病菌的多样性识别能力而设计出来的一种启发式多峰值搜索方法。它采用群体搜索技术,用抗体群代表一组问题解,通过对当前种群进行克隆、高频变异和选择等操作,而产生新一代抗体群,并逐步使抗体群进化到包含有近似最优解的状态,它不依赖于梯度信息,也不需要求解函数可微,是一种全局随机搜索的方法。于是,将免疫克隆选择方法引入到正交小波变换的盲均衡方法中,用来弥补WT-CMA的缺陷,更好的解决搜索过程中陷于局部收敛的问题。该方法的基本思路是:将抗原作为目标函数,通过模拟生物免疫系统对抗体克隆选择、变异的原理,利用抗体克隆扩大搜索范围、变异保持多样性的特点,把每个子信道均衡器的权向量作为免疫克隆选择方法的决策变量,将每个子信道均衡器的输入信号经过正交小波变换后依次作为免疫克隆选择算法的输入,并结合CMA算法的代价函数,确定免疫克隆选择算法进化的目标函数即亲和度函数,利用免疫克隆选择算法来求解均衡器代价函数,搜索均衡器最佳的权值。
引入免疫克隆选择算法的正交小波盲均衡算法,实现步骤如下:
第一步:种群初始化
随机产生一定数目的抗体种群,其中的每个抗体分别对应一个均衡器的权向量。
第二步:计算亲和度值
结合均衡器的代价函数,定义亲和度的函数,即免疫算法寻优的目标函数:
J ( w ) = 1 1 + J CMA ( w ) - - - ( 13 )
式中,w表示均衡器权向量。J(w)的最大值对应JCMA(w)的最小值,即将盲均衡问题转化为求解最高的亲和度值对应的均衡器的系数。
第三步:克隆选择
克隆选择操作是克隆增值操作的逆操作。该操作是从抗体各自克隆增值后的子代中选择优秀的个体,从而形成新的抗体群,是一个无性选择过程。一个抗体经过克隆增值后形成一个亚抗体群,再经过亲和度成熟操作后通过克隆选择操作实现局部的亲和度升高。首先对第二步所述抗体群中的抗体按亲和度从小到大的顺序进行排列,根据亲和度(一个抗体对一个相同链长的抗原产生识别的程度称为亲和度)的大小评价,选择最佳抗体进行克隆扩增操作,得到扩增后的抗体群C,克隆数与亲和度成正比。
第四步:精英交叉策略
精英交叉的原理如下:在免疫算法的实现中,首先给定一个精英交叉的概率Pkc(kc表示king-crossover,即精英交叉),对于第三步所述的克隆抗体群中第t代每个个体a(t)产生一个[0,1]之间的随机数R,如果R小于精英交叉概率Pkc,则a(t)被选中与保存的当前代精英个体b(t)进行交叉,其方法是:将a(t)和b(t)放入一个小的交配池中,根据选定的交叉策略(单点、两点、多点和一致交叉等),对a(t)和b(t)进行交叉操作,得到一对子代个体a′(t)和b′(t)。然后,用a′(t)替代种群中的a(t),b′(t)则丢失不用。
通过精英交叉,抗体群继承了精英个体的优良模式,并且不会破坏其优良模式,比传统的交叉操作具有更大优越性,因为精英交叉总是能增加群体中的优良模式,而且精英交叉策略对免疫算法的运行时间、平均收敛代数、标准方差等性能有着极大的改善。
第五步:高频变异
对抗体群C中每个克隆抗体按照下式进行高频变异,得到变异群C*
Figure BDA0000055447430000071
X=x+a□N(0,1)
(14)
a=(1/g)?exp(f)            (15)
式中,X是变异体,N(0,1)是均值为0、标准方差为1正态随机变量,a是变异概率系数,g是变异的控制系数,f是抗体与抗原的亲和度值。高频变异作为克隆选择的主要操作算子,可以防止进化早熟并增加抗体的多样性。
第六步:计算亲和度值
重新计算高频变异后的各抗体所对应的亲和度值。
第七步:选择
从变异群C*中选择n个亲和度高的抗体替换初始抗体群中n个亲和度低的抗体,n反比于抗体群的平均亲和度值。
第八步:判断终止与否
根据抗体的进化代数进行判断,当进化代数小于最大进化代数,则转至第二步,重复进行第二至第五步的操作步骤,直至进化代数大于最大进化代数,如达到终止条件,则程序结束,输出全局最优解。
第九步:选择最佳权向量个体
考虑到免疫克隆选择算法在抽取最优抗体的实时性和盲均衡方法需要满足迫零条件,求取使目标函数最优时所对应的权向量值,并且将这个权向量作为本发明CSA-WT-CMA的初始化权向量。
实施实例
为了验证本发明CSA-WT-CMA方法的有效性,以WT-CMA方法作为比较对象,进行仿真实验。仿真试验中,抗体规模为100,克隆控制因子为0.6,精英交叉概率为0.2,变异概率为0.1,最大迭代次数为500。
【实施例1】发射信号为8PSK,采用混合相位水声信道c=[0.3132 -0.1040 0.8908 0.3134]进行仿真实验。均衡器权长均为16,信噪比20dB。WT-CMA算法中,第10个抽头初始化设置为1,其余为0,步长mWTCMA=0.001;本发明CSA-WT-CMA中,其步长为mCSAWTCMA=0.005。对每个信道的输入信号采用DB4正交小波进行分解,分解层次是2层,功率初始值设置为4,遗忘因子b=0.999;500次蒙特卡诺仿真结果,如图3所示。
图3(a)表明,在收敛速度上,本发明CSA-WT-CMA比WT-CMA大约快了6000步。在稳态误差上,与WT-CMA相比,减小了近4dB。图3(c、d)表明:本发明CSA-WT-CMA的输出星座图比WT-CMA更加清晰、紧凑。
【实施例2】发射信号为16QAM,采用最小相位水声信道c=[0.9656 -0.0906 0.05780.2368]进行仿真实验。均衡器权长均为16,信噪比为20dB。WT-CMA算法中,第10个抽头初始化设置为1,其余为0,步长mWTCMA=0.0006;本发明CSA-WT-CMA中,其步长为mCSAWTCMA=0.00018。对每个信道的输入信号采用DB4正交小波进行分解,分解层次是2层,功率初始值设置为4,遗忘因子b=0.99;500次蒙特卡诺仿真结果,如图4所示。
图4(a)表明,在收敛速度上,本发明CSA-WT-CMA比WT-CMA大约快了6500步。在稳态误差上,与WT-CMA相比,减小了近1.5dB。图3(c、d)表明:本发明CSA-WT-CMA的输出星座图比WT-CMA更加清晰、紧凑。

Claims (1)

1.一种快速收敛的免疫克隆正交小波变换盲均衡方法,其特征在于包括如下步骤:
第一步:种群初始化
随机产生一定数目的抗体种群,其中的每个抗体分别对应一个均衡器的权向量。
第二步:计算亲和度值
将第一步所述的随机产生的抗体种群,结合常模均衡器(CMA)的代价函数JCMA(w),定义亲和度的函数,即免疫算法寻优的目标函数:
J ( w ) = 1 1 + J CMA ( w )
式中,w表示均衡器权向量。
第三步:克隆选择
克隆选择操作是克隆增值操作的逆操作。该操作是从抗体各自克隆增值后的子代中选择优秀的个体,从而形成新的抗体群,是一个无性选择过程。一个抗体经过克隆增值后形成一个亚抗体群,再经过亲和度成熟操作后通过克隆选择操作实现局部的亲和度升高。首先对第二步所述抗体群中的抗体按亲和度从小到大的顺序进行排列,根据亲和度(一个抗体对一个相同链长的抗原产生识别的程度称为亲和度)的大小评价,选择最佳抗体进行克隆扩增操作,得到扩增后的抗体群C,克隆数与亲和度成正比。
第四步:精英交叉策略
精英交叉的原理如下:在免疫算法的实现中,首先给定一个精英交叉的概率Pkc(kc表示king-crossover,即精英交叉),对于第三步所述的克隆抗体群中第t代每个个体a(t)产生一个[0,1]之间的随机数R,如果R小于精英交叉概率Pkc,则a(t)被选中与保存的当前代精英个体b(t)进行交叉,其方法是:将a(t)和b(t)放入一个小的交配池中,根据选定的交叉策略(单点、两点、多点和一致交叉等),对a(t)和b(t)进行交叉操作,得到一对子代个体a′(t)和b′(t)。然后,用a′(t)替代种群中的a(t),b′(t)则丢失不用。
第五步:高频变异
将第四步所述的交叉后的抗体群C中每个克隆抗体按照下式进行高频变异,得到变异群C*
X=x+a□N(0,1)
a=(1/g)?exp(f)
式中,X是变异体,N(0,1)是均值为0、标准方差为1正态随机变量,a是变异概率系数,g是变异的控制系数,f是抗体与抗原的亲和度值。
第六步:计算亲和度值
将第五步所述的高频变异后的各抗体重新计算其对应的亲和度值。
第七步:选择
将第6步所述的变异群C*中选择n个亲和度高的抗体替换初始抗体群中n个亲和度低的抗体,n反比于抗体群的平均亲和度值。
第八步:判断终止与否
根据抗体的进化代数进行判断,当进化代数小于最大进化代数,则转至第二步,重复进行第二至第五步的操作步骤,直至进化代数大于最大进化代数,如达到终止条件,则程序结束,输出全局最优解。
第九步:选择最佳权向量个体
求取使目标函数最优时所对应的权向量值,并且将这个权向量作为所述一种快速收敛的免疫克隆正交小波变换盲均衡方法的初始化权向量。
CN2011100942837A 2011-04-15 2011-04-15 一种快速收敛的免疫克隆正交小波变换盲均衡方法 Expired - Fee Related CN102185808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100942837A CN102185808B (zh) 2011-04-15 2011-04-15 一种快速收敛的免疫克隆正交小波变换盲均衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100942837A CN102185808B (zh) 2011-04-15 2011-04-15 一种快速收敛的免疫克隆正交小波变换盲均衡方法

Publications (2)

Publication Number Publication Date
CN102185808A true CN102185808A (zh) 2011-09-14
CN102185808B CN102185808B (zh) 2013-11-27

Family

ID=44571879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100942837A Expired - Fee Related CN102185808B (zh) 2011-04-15 2011-04-15 一种快速收敛的免疫克隆正交小波变换盲均衡方法

Country Status (1)

Country Link
CN (1) CN102185808B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007246A (zh) * 2015-07-29 2015-10-28 南京信息工程大学 一种模因方法优化的多模盲均衡方法
CN108616892A (zh) * 2018-03-16 2018-10-02 重庆邮电大学 一种基于混合免疫算法的4g基站选址方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902417A (zh) * 2010-06-30 2010-12-01 南京信息工程大学 基于蚁群优化的正交小波变换超指数迭代盲均衡方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902417A (zh) * 2010-06-30 2010-12-01 南京信息工程大学 基于蚁群优化的正交小波变换超指数迭代盲均衡方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
肖瑛等: "遗传优化神经网络的水声信道盲均衡", 《应用声学》 *
郑日荣等: "基于欧式距离和精英交叉的免疫算法研究", 《控制与决策》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007246A (zh) * 2015-07-29 2015-10-28 南京信息工程大学 一种模因方法优化的多模盲均衡方法
CN105007246B (zh) * 2015-07-29 2018-03-06 南京信息工程大学 一种模因方法优化的多模盲均衡方法
CN108616892A (zh) * 2018-03-16 2018-10-02 重庆邮电大学 一种基于混合免疫算法的4g基站选址方法
CN108616892B (zh) * 2018-03-16 2021-09-10 重庆邮电大学 一种基于混合免疫算法的4g基站选址方法

Also Published As

Publication number Publication date
CN102185808B (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
CN105142177B (zh) 复数神经网络信道预测方法
CN102123115B (zh) 基于粒子群优化的正交小波盲均衡方法
CN112910812B (zh) 一种基于时空特征提取深度学习的调制模式识别方法
CN109474388A (zh) 基于改进梯度投影法的低复杂度mimo-noma系统信号检测方法
CN111478749A (zh) 基于优化初值快收敛mimo迭代检测方法、系统及应用
CN103888391A (zh) 基于双Sigmoid混沌神经网络的信号盲检测方法
Smith et al. A communication channel density estimating generative adversarial network
CN101902417B (zh) 基于蚁群优化的正交小波变换超指数迭代盲均衡方法
CN116192307A (zh) 非高斯噪声下分布式协同的多天线协作频谱智能感知方法、系统、设备及介质
CN101834827B (zh) 一种多输入多输出系统中的信号检测方法和装置
CN105978835A (zh) 一种低复杂度的分布式干扰对齐方法
CN101651643B (zh) 基于空间分集的小波神经网络盲均衡方法
CN102185808B (zh) 一种快速收敛的免疫克隆正交小波变换盲均衡方法
CN107018103B (zh) 一种基于自适应步长猴群优化的小波常模盲均衡方法
CN101494625A (zh) 一种线性均衡方法及线性均衡器
CN102118332A (zh) 基于免疫克隆粒子群优化的正交小波盲均衡方法
CN102299875B (zh) 引入免疫优化支持向量机的小波多模盲均衡方法
Cavers et al. Switching rate and dwell time in M-of-N selection diversity
CN102035610A (zh) 基于初始状态向量控制的全反馈神经网络盲检测方法
CN111541472B (zh) 低复杂度机器学习辅助鲁棒预编码方法及装置
Kumar Sarma et al. A class of recurrent neural network (RNN) architectures with SOM for estimating MIMO channels
CN103117969A (zh) 一种分数低阶统计量模值变换小波频域多模盲均衡方法
CN102184455B (zh) 基于自适应免疫克隆的正交小波超指数迭代盲均衡方法
Mathew et al. Semi blind neural network based channel estimation technique for OFDM receivers
CN107248876B (zh) 基于稀疏贝叶斯学习的广义空间调制符号检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20161222

Address after: 225400 Jiangsu Province, Taixing City Industrial Park Xiangrong Road No. 18

Patentee after: JIANGSU QIANJING INFORMATION TECHNOLOGY CO., LTD.

Address before: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219

Patentee before: Nanjing IT Engineering Univ.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180110

Address after: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219

Patentee after: Nanjing University of Information Science and Technology

Address before: 225400 Jiangsu Province, Taixing City Industrial Park Xiangrong Road No. 18

Patentee before: JIANGSU QIANJING INFORMATION TECHNOLOGY CO., LTD.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131127

Termination date: 20180415