CN102164282A - 一种用于图像编码的基于系数随机置换的压缩感知方法及系统 - Google Patents

一种用于图像编码的基于系数随机置换的压缩感知方法及系统 Download PDF

Info

Publication number
CN102164282A
CN102164282A CN 201110110601 CN201110110601A CN102164282A CN 102164282 A CN102164282 A CN 102164282A CN 201110110601 CN201110110601 CN 201110110601 CN 201110110601 A CN201110110601 A CN 201110110601A CN 102164282 A CN102164282 A CN 102164282A
Authority
CN
China
Prior art keywords
coefficient
image
random permutation
block
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110110601
Other languages
English (en)
Other versions
CN102164282B (zh
Inventor
熊承义
高志荣
周城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN2011101106014A priority Critical patent/CN102164282B/zh
Publication of CN102164282A publication Critical patent/CN102164282A/zh
Application granted granted Critical
Publication of CN102164282B publication Critical patent/CN102164282B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明涉及一种用于图像编码的基于系数随机置换的压缩感知方法,其包括以下步骤:步骤1)将原始图像进行分块并进行基于块的稀疏变换;步骤2)将步骤1变换得到的块稀疏变换系数按所处位置进行重组,得到对应不同位置的系数矢量;步骤3)对步骤2中产生的各系数矢量分别进行组内系数随机置换运算;步骤4)从每个经由步骤3置换运算后的系数矢量中依次取出一个系数构成与原图像块大小相同以及具有各对应位置的系数矢量;步骤5)对步骤4)中产生的各系数矢量进行压缩采样编码表示;步骤6)通过上述过程的逆过程可重建原始图像。本发明方法能显著降低图像压缩感知的测量比率和提高重建图像品质。

Description

一种用于图像编码的基于系数随机置换的压缩感知方法及系统
技术领域
本发明属于图像数据表示与压缩的技术领域,涉及一种用于图像编码的基于系数随机置换的压缩感知方法及系统。
背景技术
尽管传统的香农采样理论告诉我们:为了无失真地重构被采样信号,我们必须以不低于原信号最高频率两倍的采样率采样原信号。但是,近年来提出的压缩感知(Compressive Sensing,CS)或称压缩采样(Compressed Sampling,CS)理论认为:如果原信号为稀疏的或是具有可压缩的特性,则我们可以仅通过较少的测量数就能够准确地重构原信号,也因此能够在数据采样的同时实现压缩。【参见文献:[1]D.Donoho,“Compressed sensing,”IEEE Trans.Inform.Theory,vol.52,no.4,pp.1289-1306,Apr.2006.[2]E.Candes,J.Romberg,and T.Tao,“Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information,”IEEE Trans.On Information Theory,vol.52,pp.489-509,Feb.2006.[3]Y.Tsaig,and D.L.Donoho,“Extensions of compressed sensing,”Signal Processing,vol.86,no.5,pp.533-548,Jul.2006.】。
类似于传统的香农采样要求被采样信号为有限带宽信号,压缩采样则要求被采样的信号是稀疏的或是可压缩的,以及采用的测量矩阵具有限定等距特性(RIP)。根据压缩感知理论,给定一个N维信号f∈RN,如果它在Ψ域是k-稀疏的(即仅有较少的k个系数不为零),则可以通过M~O(klog(N/k))=N个测量值y=Фf∈RM准确重建原信号,其中的Ф被称为测量矩阵。由于该求逆过程为一个病态过程,因此转化为在信号为稀疏约束条件下的优化问题,该问题通常可以进一步转化为线性规划问题min||x||1,s.t.:y=ФΨx求解,其中x=Ψf为信号f在Ψ域的表示。
压缩感知框架包括对原始信号的压缩采样(获取或编码)和重构(解码)两个部分。为了更有效地实现对原信号的压缩感知和重构,近年来,国内外的许多研究人员在实现信号压缩感知包含的测量矩阵的构造、稀疏字典和重构算法的设计等方面展开了大量的研究工作。
实际上,压缩感知理论不仅为信号的降维获取奠定了重要的理论基础,同时也为设计更加高效的数据压缩编码技术指明了新的方向;基于压缩感知的低复杂度高效图像与视频压缩、加密图像压缩,以及传输鲁棒的图像编码等领域具有很好的应用前景【参见文献:[4]J.Prades-Nebot,Y.Ma,and T.Huang,Distributed Video Coding using Compressive Sampling,IEEEPCS’2009,pp.1-4.[5]T.Do,X.Lu and J.Sole,Compressive sensing with adaptive pixel domain reconstruction for block based video coding,IEEE ICIP’2010,pp.3377-3380.[6]A A.Kumar,and A.Makur,Lossy compression of encrypted image by compressive sensing technique,IEEE TENCON’2009,pp.1-5.[7]S.Sanei,A.H.Phan,et al.,A compressive sensing approach for progressive transmission of images,IEEE DSP’2009,pp.1-5.[8]C.Deng,W.Lin,et al.,Robust image compression based on compressive sensing,IEEE ICME’2010,pp.462-467.】。基于压缩感知的图像与视频编码已成为当前该领域的重要研究热点。
Y.Zhang等人提出了一种基于图像分块和离散余弦变换的压缩感知图像编码方法【参见文献:[9]Y.Zhang,et al,A novel image/video coding method based on compressed sensing theory,ICASSP2008,pp.1361-1364】。该方法将压缩感知编码模式嵌入到传统的图像编码标准中,取得了较好的性能增益,但是整个编码系统保持了较高的复杂度。Y.Yang等人提出了一种基于分块和二维离散余弦变换的图像压缩采样方法【参见文献:[10]Y.Yang,et al,Perceptual compressive sensing for image signals,ICME2009,pp.89-92】。该方法提出在采样编码阶段利用人眼的视觉感知特性对分块二维变换系数加权后进行压缩采样编码,从而实现减少采样比率和提高重构图像品质。然而,由于该采样方法无法自适应地对不同块进行测量维数的分配,而是对每个图像块分配相同的测量维数,因此必定会导致纹理和边缘信息比较丰富的分块的重构误差相对较大。Y.Yu等人提出了一种基于图像显著性的图像压缩采样方法【参见文献:[11]Y.Yu,et al,Saliency-Based Compressive Sampling for Image Signals,IEEE Signal Processing Letters,vol.17,no.11,pp.973-976,2010】,该方法提出通过预先识别各图像块的显著性来自适应地为不同块分配不同的测量比率,从而实现减少采样比率和提高重构图像品质。但是,这种方法需要存储一个额外分配测量比率的矩阵,并且也存在不能保证提取的图像显著性信息与图像的重要性信息具有完全一致等问题。
由于自然图像中的不同块具有的纹理和边缘信息的不一致性,使得不同图像块在稀疏域的重要系数的个数也会表现差异巨大,在基于图像分块的压缩采样中,如果对所有块都直接分配相等的测量维数一定是不合理的。因此探求如何有效地对各图像块在稀疏域进行压缩采样表示是十分必要的。
发明内容
根据上述背景技术中存在的缺陷和不足,本发明提供一种用于图像编码的基于系数随机置换的压缩感知方法及系统,目的在于降低图像压缩采样表示的测量比率,提高重构图像的视觉品质,适用于图像的压缩感知表示和编码。
为解决以上技术问题,本发明采用的技术方案为:一种用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:其包括以下步骤:
步骤1)、将原始图像进行分块并进行基于块的稀疏变换;
步骤2)、将步骤1变换得到的块稀疏变换系数按所处位置进行重组,得到对应不同位置的系数矢量;
步骤3)、对步骤2中产生的各系数矢量分别进行组内系数随机置换运算;
步骤4)、从每个经由步骤3置换运算后的系数矢量中依次取出一个系数构成与原图像块大小相同以及具有各对应位置的系数矢量;
步骤5)、对步骤4)中产生的各系数矢量进行压缩采样编码表示;
步骤6)、通过上述过程的逆过程可重建原始图像。
按以上方案,所述步骤6具体包括以下步骤:
步骤6a)、进行各系数块数据的压缩采样恢复;
步骤6b)、进行各变换块间相同位置处系数的逆随机置换;
步骤6c)、进行各图像块的稀疏逆变换与块图像融合。
按以上方案,所述步骤1)的分块大小为m行n列,m、n分别选取整数值,对一幅图像的每一分块大小相同。
按以上方案,m为8或16,n为8或16。
按以上方案,所述步骤2)的各变换块间系数随机置换方法为:首先对各分块稀疏变换产生的系数按块顺序选取,将位于不同块而处于每块中同一位置的系数进行组合,得到m×n组对应不同位置的一维系数矢量,然后对此各一维系数矢量进行组内系数随机置换运算,最后依次从各置换后的系数矢量中选取一个系数组成N=m×n维的总共B个待测量系数矢量ri,i=1,2,...,B,B为图像分块的总数。
按以上方案,所述步骤3)的数据压缩采样编码方法为:对每一个经由随机置换后的各待测量系数矢量与具有相同维数的同一测量矩阵进行矩阵-矢量乘运算得到对应的测量值矢量,即yi=Фri;测量值矢量数据连同采用的随机置换矩阵生成信息一同存储或传输到解码端。
按以上方案,所述步骤4)的压缩采样恢复方法为:对应所有的被压缩采样编码表示的系数矢量ri的重构通过解线性规划问题
Figure BDA0000058322580000031
实现。
按以上方案,所述步骤6b)的变换系数的逆随机置换方法为:将经由步骤6a)恢复的所有系数矢量按照步骤2的逆过程得到原分块图像的稀疏变换系数的重构系数矩阵。
按以上方案,所述步骤6c)的稀疏逆变换与图像合并方法为:对步骤6b)得到的各分块图像的重构系数矩阵分别进行稀疏逆变换,并将逆变换重建的各分块图像按原来次序合并产生原图像的重构图像。
基于系数随机置换的压缩感知系统,其不同之处在于:其包括压缩感知编码器、压缩感知解码器;压缩感知编码器依次对原始图像进行分块、基于块的稀疏变换、系数置换、压缩采样编码处理步骤;压缩感知解码器对压缩感知编码器处理得到的编码进行压缩采样恢复、系数逆置换、图像块稀疏逆变换、图像块融合处理步骤,从而重构原始图像。
对比现有技术,本发明的原理及有益效果如下:本发明基于块图像变换域进行数据的二次采样,通过随机置换技术调整重要性系数分布,使得每个被采样矢量具有近似相同的系数幅度特性分布特征或可压缩性,保证在每个系数矢量采用相同测量比率采样的条件下,可在解码端更加有效地恢复各图像块的相对重要的变换系数,实现减少测量比率和/或提升重建图像品质。
本发明方法涉及图像压缩感知编码器模块和图像压缩感知解码器模块两个部分。本发明的图像压缩感知编码器模块由依次执行的图像分块模块、图像块稀疏变换模块、变换域系数的随机置换模块和压缩采样模块组成。本发明的图像压缩感知解码器模块由依次执行的压缩采样恢复模块、变换域系数的逆置换模块、图像块稀疏逆变换模块和图像块融合模块组成。
涉及的图像分块模块将输入的原图像进行分块,分块的大小选取为整数m×n。涉及的图像块稀疏变换模块对每一个图像块进行块图像稀疏变换。涉及的变换域系数的随机置换模块首先根据所有图像块各变换域系数所处位置的不同分成对应位置的系数矢量,以及伪随机产生一个系数置换映射矩阵,然后根据该系数置换映射矩阵进行各系数矢量的组内位置置换,最后通过依次交替选取置换后各系数矢量的系数得到置乱后的待测量系数矢量ri。涉及的压缩采样模块首先生成一个用于压缩感知的测量矩阵Ф,然后将该测量矩阵与每一个待测量系数矢量进行相乘运算得到对应的测量值矢量,即yi=Фri,从而完成对每一系数矢量的压缩采样编码。
涉及的压缩采样恢复模块采用与编码过程中采用的相同测量矩阵,通过求解线性规划问题
Figure BDA0000058322580000041
得到重建的各测量值矢量
Figure BDA0000058322580000042
涉及的变换域系数的随机逆置换模块首先根据由编码器端传送来的伪随机置换矩阵生成因子生成原随机置换映射矩阵,然后根据该随机置换映射矩阵完成各重建系数矢量的系数逆向置换,最后从各逆置换后的系数矢量中选取对应系数还原得到原各分块图像的稀疏变换系数矩阵的重建表示。涉及的稀疏逆变换模块完成对各重建的稀疏变换系数矩阵的逆变换,得到原各分块图像的重建图像。涉及的图像块融合模块通过拼接各重建图像块,得到原图像的重建图像。
本发明是一种基于图像分块与稀疏变换域系数随机置换的图像压缩感知编码方法。本发明方法能显著降低图像压缩感知的测量比率和提高重建图像品质,在图像编码系统的设计领域具有良好的应用前景。
附图说明
图1是本发明方法的系统实现流程图;
图2是本发明采用二维余弦变换进行图像稀疏变换的实例图;其中,图2(a)为原始的256×256Lenna图像;图2(b)为基于8×8分块的二维离散变换的结果。
图3是本发明采用的变换域系数随机置换示例图;其中,图3(a)为原分块变换系数矢量阵列;图3(b)为经过随机置换后的系数矢量阵列。
图4是本发明采用随机置换前后变换块系数矢量的幅度特性分布特性比较。
图5是本发明方法的实验结果比较示意图。
具体实施方式
下面结合附图和实施实例对本发明进行详细说明。
如图1所示,一种用于图像编码的基于系数随机置换的压缩感知方法,其包括以下步骤:
步骤1)、将原始图像进行分块并进行基于块的稀疏变换;
步骤2)、将步骤1变换得到的块稀疏变换系数按所处位置进行重组,得到对应不同位置的系数矢量;
步骤3)、对步骤2中产生的各系数矢量分别进行组内系数随机置换运算;
步骤4)、从每个经由步骤3置换运算后的系数矢量中依次取出一个系数构成与原图像块大小相同以及具有各对应位置的系数矢量;
步骤5)、对步骤4)中产生的各系数矢量进行压缩采样编码表示;
步骤6)、通过上述过程的逆过程可重建原始图像。
按以上方案,所述步骤6具体包括以下步骤:
步骤6a)、进行各系数块数据的压缩采样恢复;
步骤6b)、进行各变换块间相同位置处系数的逆随机置换;
步骤6c)、进行各图像块的稀疏逆变换与块图像融合。
具体的,所述步骤1)的分块大小为m行n列,m、n分别选取整数值,对一幅图像的每一分块大小相同。优选的,m为8或16,n为8或16。
具体的,所述步骤2)的各变换块间系数随机置换方法为:首先对各分块稀疏变换产生的系数按块顺序选取,将位于不同块而处于每块中同一位置的系数进行组合,得到m×n组对应不同位置的一维系数矢量,然后对此各一维系数矢量进行组内系数随机置换运算,最后依次从各置换后的系数矢量中选取一个系数组成N=m×n维的总共B个待测量系数矢量ri,i=1,2,...,B,B为图像分块的总数。
具体的,所述步骤3)的数据压缩采样编码方法为:对每一个经由随机置换后的各待测量系数矢量与具有相同维数的同一测量矩阵进行矩阵-矢量乘运算得到对应的测量值矢量,即yi=Фri;测量值矢量数据连同采用的随机置换矩阵生成信息一同存储或传输到解码端。
具体的,所述步骤4)的压缩采样恢复方法为:对应所有的被压缩采样编码表示的系数矢量ri的重构通过解线性规划问题
Figure BDA0000058322580000051
实现。
具体的,所述步骤6b)的变换系数的逆随机置换方法为:将经由步骤6a)恢复的所有系数矢量
Figure BDA0000058322580000052
按照步骤2的逆过程得到原分块图像的稀疏变换系数的重构系数矩阵。
具体的,所述步骤6c)的稀疏逆变换与图像合并方法为:对步骤6b)得到的各分块图像的重构系数矩阵分别进行稀疏逆变换,并将逆变换重建的各分块图像按原来次序合并产生原图像的重构图像。
如图1所示,基于系数随机置换的压缩感知系统,其包括压缩感知编码器、压缩感知解码器;压缩感知编码器依次对原始图像进行分块、基于块的稀疏变换、系数置换、压缩采样编码处理步骤;压缩感知解码器对压缩感知编码器处理得到的编码进行压缩采样恢复、系数逆置换、图像块稀疏逆变换、图像块融合处理步骤,从而重构原始图像。
按照图1的技术方案,给出了基于稀疏变换域与系数随机置换的图像压缩感知表示方法的系统实现流程图。图1的系统包括:图像压缩感知编码器模块和图像压缩感知解码器模块。
在图像压缩感知编码器端,原始图像X首先输入到图1的图像分块模块,图像分块模块产生的输出为多个大小相同、互不重叠的图像块xi,i=1,2,...,B,其中的B表示总的图像分块数。图像分块操作选取分块大小为N=m×n,一般取为8×8或是16×16,也可以选取为其它合适的尺寸。图像分块模块的输出送入到二维离散余弦变换模块的输入端。
分块图像,也就是每一个图像块xi的数据输入到稀疏变换模块进行基于块的块图像稀疏变换,得到每一图像块在变换域的表示ci=T[xi]。图2(a)为原始的大小为256×256的某Lenna图像,图2(b)为该Lenna图像通过8×8分块以及选取稀疏字典为二维离散余弦变换进行块图像稀疏变换后的输出,可见图像在二维离散变换域的系数大部分都趋近为零,因此具有良好的可压缩性。本发明可选用的稀疏变换不限于离散余弦变换,也可为任意其它合适的稀疏变换。稀疏变换模块输出的所有图像块在变换域的系数数据输入到系数置换模块。
系数置换模块首先对输入的每一图像块的变换域系数按照一定的扫描格式,将输入的一个个二维数组变换为一维行矢量αi=2Dto1D[ci]={ai,1,ai,2,...,ai,N}。扫描格式可以是先按行从左到右、再按列从上往下的方式,或是先按列从上往下、再按行从左到右的方式,也可以是按Z字形扫描等其它方式。图3(a)的每一行数据代表了图2(b)中对应图像块变换域系数的矢量表示示例。
系数置换模块进一步将得到的所有图像块对应的稀疏变换域系数矢量进行系数重组,也就是将每一图像块系数矢量中处在同一位置的系数组合为一个新的系数矢量βj={a1,j,a2,j,...,aB,j},共得到m×n个对应不同位置的系数矢量。图3(a)的每一列数据代表了将块系数矢量进行系数重组后得到的对应于块中不同位置的系数矢量。
系数置换模块继续将各对应的重组系数矢量分别进行组内系数随机置换。随机置换过程首先产生一组m×n个伪随机序列,每个伪随机序列的长度与系数重组得到的各系数矢量的长度相等,然后按照该组伪随机序列进行各组内数据的位置随机置换,生成pj=Perm.[βj]={p1,j,p2,j,...,pB,j}。图3(b)为各组(列)数据矢量进行组内随机置换后的结果示例。
系数随机置换模块最后将通过上述组内随机置换后的各系数矢量进行第二次系数重组,产生待测量系数矢量ri={pi,1,pi,2,...,pi,N}。按照图3(b)所示,第二次重组过程就是依次提取图3(b)中的每一行数据组成一个待测量系数矢量。随机置换模块的输出送入到压缩采样模块的输入端。
压缩采样模块首先产生一个维数为M×N的测量矩阵Ф,N为待测量系数矢量的维数,M为测量维数且通常有M=N。生成的测量矩阵Ф可以是二元随机矩阵、高斯随机矩阵或其它形式的测量矩阵。压缩采样模块通过执行测量矩阵Ф与各待测量系数矢量ri的矩阵-矢量乘运算输出对应的测量值矢量
Figure BDA0000058322580000061
Figure BDA0000058322580000062
为列矢量,代表矢量ri的转置运算的结果。
在图像压缩感知解码器端,经由图像压缩感知编码器输出的测量值矢量yi,i=1,2,...,B首先输入到图1系统的压缩采样恢复模块。压缩采样恢复模块通过求解线性规划问题
Figure BDA0000058322580000063
得到重建的各测量值矢量重建的各测量值矢量
Figure BDA0000058322580000065
输出到系数逆置换模块的输入端。
系数逆置换模块与编码器端的系数置换模块一样,首先将重建的测量值矢量进行系数重组,得到对应于块中不同位置的系数矢量的重建表示
Figure BDA0000058322580000066
然后对所有
Figure BDA0000058322580000067
分别进行逆随机置换运算,得到系数矢量βj的重建表示
Figure BDA0000058322580000068
进一步通过第二次系数重组得到系数矢量αi的重建表示最后按照与编码端相同的扫描格式,将一维矢量表示转换为二维矩阵表示,得到各图像块的稀疏变换域系数矩阵的重建表示
Figure BDA00000583225800000610
系数逆置换模块产生的各图像块的稀疏变换域系数的重建表示
Figure BDA00000583225800000611
传送到图像块稀疏逆变换模块的输入端。图像块稀疏逆变换模块对输入的各图像块的变换域系数重建矩阵进行逆变换运算,得到编码器端原输入分块图像的重建表示
Figure BDA00000583225800000612
图像块融合模块接收各分块图像的重建表示
Figure BDA00000583225800000613
经过拼接还原得到原输入图像的重建表示
Figure BDA00000583225800000614
为了证明本发明方法的有效性,我们首先比较了采用系数随机置换技术前后的待测量系数矢量的幅度分布特性。输入图像选取256×256灰度Lenna图像,分块大小选取为8×8。图4(a)为未采用系数随机置换时得到的各分块图像在二维离散变换域对应的待测量系数矢量的幅度分布图,图4(b)为采用系数随机置换技术后重组的各待测量系数矢量的幅度分布图。这里的幅度分布图代表了各测量系数矢量的系数幅度衰减曲线图,为了显示的更清晰,这里显示的幅度值是各系数实际的幅度值以10为底取对数后乘以20后的结果。比较图4(a)和图4(b)可以看出,采用系数随机置换技术能够有效均衡各被测量系数矢量的分布,使得它们具有更趋一致的幅度分布特性,也表明具有更趋相同的可压缩性。图5进一步给出了在测量比率为0.3,选用OMP算法实现压缩采样恢复,采用和不采用随机置换技术时的图像重建结果比较。图5(a)为未采用随机置换技术条件的重建图像,图5(b)为采用随机置换技术条件的重建图像。比较结果显示,通过采用随机置换技术,能够明显地提升感兴趣区域的重建图像的视觉品质,比如,在图5(a)的眼睛四周具有明显的重建噪声,而在图5(b)的眼睛四周不具有明显的重建噪声。表1给出了选取其它类型图像,以及在不同测量比率的条件下,本发明方法与文献[10]方法的PSNR性能比较。根据表1结果可见,本发明方法能够有效地提升重建图像的峰值信噪比。
表1:PSNR性能比较(单位dB)
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:其包括以下步骤:
步骤1)、将原始图像进行分块并进行基于块的稀疏变换;
步骤2)、将步骤1变换得到的块稀疏变换系数按所处位置进行重组,得到对应不同位置的系数矢量;
步骤3)、对步骤2中产生的各系数矢量分别进行组内系数随机置换运算;
步骤4)、从每个经由步骤3置换运算后的系数矢量中依次取出一个系数构成与原图像块大小相同以及具有各对应位置的系数矢量;
步骤5)、对步骤4)中产生的各系数矢量进行压缩采样编码表示;
步骤6)、通过上述过程的逆过程可重建原始图像。
2.如权利要求1所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤6具体包括以下步骤:
步骤6a)、进行各系数块数据的压缩采样恢复;
步骤6b)、进行各变换块间相同位置处系数的逆随机置换;
步骤6c)、进行各图像块的稀疏逆变换与块图像融合。
3.如权利要求1所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤1)的分块大小为m行n列,m、n分别选取整数值,对一幅图像的每一分块大小相同。
4.如权利要求3所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:m为8或16,n为8或16。
5.如权利要求1所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤2)的各变换块间系数随机置换方法为:首先对各分块稀疏变换产生的系数按块顺序选取,将位于不同块而处于每块中同一位置的系数进行组合,得到m×n组对应不同位置的一维系数矢量,然后对此各一维系数矢量进行组内系数随机置换运算,最后依次从各置换后的系数矢量中选取一个系数组成N=m×n维的总共B个待测量系数矢量ri,i=1,2,...,B,B为图像分块的总数。
6.如权利要求1所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤3)的数据压缩采样编码方法为:对每一个经由随机置换后的各待测量系数矢量与具有相同维数的同一测量矩阵进行矩阵-矢量乘运算得到对应的测量值矢量,即yi=Фri;测量值矢量数据连同采用的随机置换矩阵生成信息一同存储或传输到解码端。
7.如权利要求1所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤4)的压缩采样恢复方法为:对应所有的被压缩采样编码表示的系数矢量ri的重构通过解线性规划问题实现。
8.如权利要求2所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤6b)的变换系数的逆随机置换方法为:将经由步骤6a)恢复的所有系数矢量
Figure FDA0000058322570000022
按照步骤2的逆过程得到原分块图像的稀疏变换系数的重构系数矩阵。
9.如权利要求2所述的用于图像编码的基于系数随机置换的压缩感知方法,其特征在于:所述步骤6c)的稀疏逆变换与图像合并方法为:对步骤6b)得到的各分块图像的重构系数矩阵分别进行稀疏逆变换,并将逆变换重建的各分块图像按原来次序合并产生原图像的重构图像。
10.基于系数随机置换的压缩感知系统,其特征在于:其包括压缩感知编码器、压缩感知解码器;压缩感知编码器依次对原始图像进行分块、基于块的稀疏变换、系数置换、压缩采样编码处理步骤;压缩感知解码器对压缩感知编码器处理得到的编码进行压缩采样恢复、系数逆置换、图像块稀疏逆变换、图像块融合处理步骤,从而重构原始图像。
CN2011101106014A 2011-04-29 2011-04-29 一种用于图像编码的基于系数随机置换的压缩感知方法及系统 Expired - Fee Related CN102164282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101106014A CN102164282B (zh) 2011-04-29 2011-04-29 一种用于图像编码的基于系数随机置换的压缩感知方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101106014A CN102164282B (zh) 2011-04-29 2011-04-29 一种用于图像编码的基于系数随机置换的压缩感知方法及系统

Publications (2)

Publication Number Publication Date
CN102164282A true CN102164282A (zh) 2011-08-24
CN102164282B CN102164282B (zh) 2013-12-11

Family

ID=44465209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101106014A Expired - Fee Related CN102164282B (zh) 2011-04-29 2011-04-29 一种用于图像编码的基于系数随机置换的压缩感知方法及系统

Country Status (1)

Country Link
CN (1) CN102164282B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891999A (zh) * 2012-09-26 2013-01-23 南昌大学 一种基于压缩感知的联合图像压缩/加密方法
CN103327530A (zh) * 2013-02-05 2013-09-25 浙江师范大学 一种无线传感器网络中的数据传输方法
CN104735721A (zh) * 2013-12-24 2015-06-24 上海交通大学 在多跳无线网络中基于压缩感知技术传输图像信号的方法
CN105678699A (zh) * 2015-05-06 2016-06-15 西安电子科技大学 基于测量域分块显著性检测的压缩感知图像重构方法
CN105915911A (zh) * 2016-04-13 2016-08-31 厦门理工学院 一种基于并行压缩感知和阿诺德置乱的图像压缩加密算法
CN106056526A (zh) * 2016-05-26 2016-10-26 南昌大学 一种基于解析稀疏表示与压缩感知的图像加密算法
CN106101725A (zh) * 2016-06-28 2016-11-09 电子科技大学 一种基于压缩感知理论和空域下采样技术的图像压缩方法
CN106534856A (zh) * 2016-10-09 2017-03-22 上海大学 基于感知及随机置换的图像压缩感知方法
CN106651974A (zh) * 2016-11-03 2017-05-10 中南民族大学 利用加权结构组稀疏规则的图像压缩感知重构系统及方法
CN107483963A (zh) * 2017-07-19 2017-12-15 天津大学 一种1比特图像压缩加密方法
WO2018039904A1 (zh) * 2016-08-30 2018-03-08 深圳大学 一种基于块稀疏压缩感知的红外图像重构方法及其系统
WO2019191891A1 (zh) * 2018-04-02 2019-10-10 北京大学 用于视频处理的方法和设备
CN110933250A (zh) * 2019-11-26 2020-03-27 河海大学 一种基于压缩感知和颜色变换的图像压缩及嵌入方法
CN111130553A (zh) * 2018-10-31 2020-05-08 罗伯特·博世有限公司 用于处理压缩数据的方法和设备
CN113252984A (zh) * 2021-07-06 2021-08-13 国网湖北省电力有限公司检修公司 基于蓝牙绝缘子测量仪的测量数据处理方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833667A (zh) * 2010-04-21 2010-09-15 中国科学院半导体研究所 一种基于分组稀疏表示的模式识别分类方法
CN101895297A (zh) * 2010-07-30 2010-11-24 哈尔滨工业大学 一种面向压缩感知的块稀疏信号重构方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833667A (zh) * 2010-04-21 2010-09-15 中国科学院半导体研究所 一种基于分组稀疏表示的模式识别分类方法
CN101895297A (zh) * 2010-07-30 2010-11-24 哈尔滨工业大学 一种面向压缩感知的块稀疏信号重构方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《2008 IEEE International Conference on Acoustics,Speech,and Signal Processing》 20080404 Thong T.Do et al FAST COMPRESSIVE SAMPLING WITH STRUCTURALLY RANDOM MATRICES 第1-3节 1-4,9-10 , *
《自动化学报》 20091130 李树涛等 压缩传感综述 第1页右栏最后一段,第1-4节 1-4,9-10 第35卷, 第11期 *
《计算机学报》 20110331 戴琼海等 压缩感知研究 全文 1-10 第34卷, 第3期 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891999B (zh) * 2012-09-26 2014-11-26 南昌大学 一种基于压缩感知的联合图像压缩/加密方法
CN102891999A (zh) * 2012-09-26 2013-01-23 南昌大学 一种基于压缩感知的联合图像压缩/加密方法
CN103327530A (zh) * 2013-02-05 2013-09-25 浙江师范大学 一种无线传感器网络中的数据传输方法
CN103327530B (zh) * 2013-02-05 2016-06-22 浙江师范大学 一种无线传感器网络中的数据传输方法
CN104735721A (zh) * 2013-12-24 2015-06-24 上海交通大学 在多跳无线网络中基于压缩感知技术传输图像信号的方法
CN104735721B (zh) * 2013-12-24 2018-07-03 上海交通大学 在多跳无线网络中基于压缩感知技术传输图像信号的方法
CN105678699B (zh) * 2015-05-06 2019-03-26 西安电子科技大学 基于测量域分块显著性检测的压缩感知图像重构方法
CN105678699A (zh) * 2015-05-06 2016-06-15 西安电子科技大学 基于测量域分块显著性检测的压缩感知图像重构方法
CN105915911A (zh) * 2016-04-13 2016-08-31 厦门理工学院 一种基于并行压缩感知和阿诺德置乱的图像压缩加密算法
CN105915911B (zh) * 2016-04-13 2019-03-15 厦门理工学院 一种基于并行压缩感知和阿诺德置乱的图像压缩加密算法
CN106056526B (zh) * 2016-05-26 2019-04-12 南昌大学 一种基于解析稀疏表示与压缩感知的图像加密算法
CN106056526A (zh) * 2016-05-26 2016-10-26 南昌大学 一种基于解析稀疏表示与压缩感知的图像加密算法
CN106101725A (zh) * 2016-06-28 2016-11-09 电子科技大学 一种基于压缩感知理论和空域下采样技术的图像压缩方法
CN106101725B (zh) * 2016-06-28 2018-11-13 电子科技大学 一种基于压缩感知理论和空域下采样技术的图像压缩方法
WO2018039904A1 (zh) * 2016-08-30 2018-03-08 深圳大学 一种基于块稀疏压缩感知的红外图像重构方法及其系统
CN106534856A (zh) * 2016-10-09 2017-03-22 上海大学 基于感知及随机置换的图像压缩感知方法
CN106651974A (zh) * 2016-11-03 2017-05-10 中南民族大学 利用加权结构组稀疏规则的图像压缩感知重构系统及方法
CN106651974B (zh) * 2016-11-03 2019-08-16 中南民族大学 利用加权结构组稀疏规则的图像压缩感知重构系统及方法
CN107483963A (zh) * 2017-07-19 2017-12-15 天津大学 一种1比特图像压缩加密方法
CN107483963B (zh) * 2017-07-19 2020-02-07 天津大学 一种1比特图像压缩加密方法
WO2019191891A1 (zh) * 2018-04-02 2019-10-10 北京大学 用于视频处理的方法和设备
CN110352599A (zh) * 2018-04-02 2019-10-18 北京大学 用于视频处理的方法和设备
CN111130553A (zh) * 2018-10-31 2020-05-08 罗伯特·博世有限公司 用于处理压缩数据的方法和设备
CN111130553B (zh) * 2018-10-31 2024-05-24 罗伯特·博世有限公司 用于处理压缩数据的方法和设备
CN110933250A (zh) * 2019-11-26 2020-03-27 河海大学 一种基于压缩感知和颜色变换的图像压缩及嵌入方法
CN113252984A (zh) * 2021-07-06 2021-08-13 国网湖北省电力有限公司检修公司 基于蓝牙绝缘子测量仪的测量数据处理方法及系统
CN113252984B (zh) * 2021-07-06 2021-11-09 国网湖北省电力有限公司检修公司 基于蓝牙绝缘子测量仪的测量数据处理方法及系统

Also Published As

Publication number Publication date
CN102164282B (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN102164282B (zh) 一种用于图像编码的基于系数随机置换的压缩感知方法及系统
CN107197260B (zh) 基于卷积神经网络的视频编码后置滤波方法
CN107018422B (zh) 基于深度卷积神经网络的静止图像压缩方法
CN104199627B (zh) 基于多尺度在线字典学习的可分级视频编码系统
CN103489203A (zh) 基于字典学习的图像编码方法及系统
Siddeq et al. A novel image compression algorithm for high resolution 3D reconstruction
CN114449276B (zh) 一种基于学习的超先验边信息补偿图像压缩方法
CN105163130B (zh) 一种基于离散Tchebichef正交多项式的图像无损压缩方法
Wang et al. A customized deep network based encryption-then-lossy-compression scheme of color images achieving arbitrary compression ratios
Padmavati et al. DCT combined with fractal quadtree decomposition and Huffman coding for image compression
CN1825894A (zh) 全相位余弦双正交变换及其对jpeg的改进方法
Zhu et al. An improved SPIHT algorithm based on wavelet coefficient blocks for image coding
CN109819258A (zh) 一种基于螺旋式扫描的分块压缩感知方向预测编码方法
CN109194968A (zh) 一种融合信源信道译码的图像压缩感知方法
Selim et al. A simplified fractal image compression algorithm
Kekre et al. Image compression based on hybrid wavelet transform generated using orthogonal component transforms of different sizes
CN107948644A (zh) 一种水下图像压缩方法及传输方法
Awad et al. Improving Reconstructed Image Quality via Hybrid Compression Techniques.
CN110148087B (zh) 基于稀疏表示的图像压缩及重建方法
CN107770537B (zh) 基于线性重建的光场图像压缩方法
CN100426866C (zh) 全相位沃尔什双正交变换及其对jpeg的改进方法
CN106131575A (zh) 基于小波变换与孙子定理相结合的图像压缩方法
Liu et al. Lossless compression of full-surface solar magnetic field image based on huffman coding
Vadivel et al. Progressive point cloud compression with the fusion of symmetry based convolutional neural pyramid and vector quantization
CN116916033B (zh) 一种基于随机自适应傅里叶分解的联合时空视频压缩方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131211

Termination date: 20160429