CN102123245B - 光学设备及其控制方法和摄像设备 - Google Patents

光学设备及其控制方法和摄像设备 Download PDF

Info

Publication number
CN102123245B
CN102123245B CN2010106229622A CN201010622962A CN102123245B CN 102123245 B CN102123245 B CN 102123245B CN 2010106229622 A CN2010106229622 A CN 2010106229622A CN 201010622962 A CN201010622962 A CN 201010622962A CN 102123245 B CN102123245 B CN 102123245B
Authority
CN
China
Prior art keywords
control unit
zoom
interference
unit
correction component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010106229622A
Other languages
English (en)
Other versions
CN102123245A (zh
Inventor
井比敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN102123245A publication Critical patent/CN102123245A/zh
Application granted granted Critical
Publication of CN102123245B publication Critical patent/CN102123245B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

本发明涉及一种光学设备及其控制方法和摄像设备。该光学设备能够在设备组件之间不发生干涉的状态下检测设备的姿态,从而防止姿态检测时的错误。光学设备的移位透镜驱动控制器检测施加至设备的抖动,基于检测结果来计算移位透镜的移动目标位置,检测移位透镜的实际位置,并进行反馈控制以使得移位透镜的实际位置收敛于移动目标位置。姿态检测器通过使用反馈控制信息来检测光学设备的姿态,以及干涉防止控制器防止移位透镜和其它构件之间的干涉。

Description

光学设备及其控制方法和摄像设备
技术领域
本发明涉及一种具有抖动校正功能的光学设备及其控制方法和摄像设备。
背景技术
光学手抖动校正用于校正施加至例如作为静态照相机和摄像机等的摄像设备的光学设备的抖动。在光学手抖动校正中,从形成在摄像装置上的图像检测抖动,基于所检测到的抖动量确定移位透镜的目标位置,并且在垂直于光轴的方向上将移位透镜移动至目标位置。此时,例如,进行反馈控制以将目标位置和实际位置之间的偏差减小到零。
进行这种抖动校正的机构应当优选具有以下特性:内部发生的摩擦小,其目标跟踪能力良好,并且能够容易地设计其谐振频率。已经提出了具有上述特性的如下抖动校正机构,其中,在该抖动校正机构中,在固定镜筒和保持移位透镜的可移动镜筒之间夹持多个球,并且可移动镜筒通过弹簧向着固定镜筒挤压(例如,参见日本特开2001-290184号公报)。
在日本特开2001-290184号公报所公开的抖动校正机构中,如果每个球位于固定镜筒的球容纳部的限制端之间,则可以实现球随着可移动镜筒的移动而转动的滚动摩擦状态。另一方面,如果一些球保持压靠在限制端,则滚动摩擦状态改变成目标跟踪能力降低的滑动摩擦状态。为了避免该情况,所提出的抖动校正机构进行复位操作,以将可移动镜筒驱动至可移动边界之后使可移动镜筒返回至可移动镜筒的中心位置,从而使每个球位于限制端之间的中心位置。
日本特开平7-270846号公报公开了如下照相机:该照相机具有被配置为在电池安装至照相机时通过将移位透镜放置在预定位置处而进行初始化的抖动校正机构。
近年来,例如摄像设备的光学设备被做得更加小型化和薄型化,因此当镜筒缩回时,设备的组件部分之间的距离变小。结果,移位透镜单元有时与对应组件相互干涉并且变得不能移动。如果移位透镜单元的驱动力由于摄像设备的组件部分之间的干涉而变化,则当基于表示移位透镜单元的驱动力的信号检测设备的姿态时会引起错误。
发明内容
本发明提供了如下的光学设备及其控制方法和摄像设备:能够以设备的组件部分之间不发生干涉这种方式进行镜筒缩回,从而防止错误的姿态检测。
根据本发明的第一方面,提供了一种光学设备,包括:镜筒,其能够在缩回状态和拍摄用的展开状态之间变化,其中所述镜筒包括:变焦单元,用于进行变焦操作;变焦驱动控制单元,用于进行所述变焦单元的驱动控制;校正构件,其能够在与光轴垂直的方向上移动;以及驱动单元,用于驱动所述校正构件;抖动检测单元,用于检测施加至所述光学设备的抖动;反馈控制单元,用于基于来自所述抖动检测单元的输出来计算抖动校正用的校正量,并基于所计算出的校正量来驱动所述驱动单元;以及干涉防止控制单元,用于基于所述反馈控制单元在计算所述校正量期间的输出和来自所述变焦驱动控制单元的位置信息,来计算所述校正构件和其它构件之间的干涉区域,其中,所述干涉防止控制单元指示所述驱动单元将所述校正构件移动至不发生与其它构件的干涉的位置。
根据本发明的第二方面,提供了一种摄像设备,包括:镜筒,其能够在缩回状态和拍摄用的展开状态之间变化,其中所述镜筒包括:变焦单元,用于进行变焦操作;变焦驱动控制单元,用于进行所述变焦单元的驱动控制;校正构件,其能够在与光轴垂直的方向上移动;以及驱动单元,用于驱动所述校正构件;抖动检测单元,用于检测施加至所述摄像设备的抖动;反馈控制单元,用于基于来自所述抖动检测单元的输出来计算抖动校正用的校正量,并基于所计算出的校正量来驱动所述驱动单元;以及干涉防止控制单元,用于基于所述反馈控制单元在计算所述校正量期间的输出和来自所述变焦驱动控制单元的位置信息,来计算所述校正构件和其它构件之间的干涉区域,其中,所述干涉防止控制单元指示所述驱动单元将所述校正构件移动至不发生与其它构件的干涉的位置。
根据本发明的第三方面,提供了一种在第一方面所述的光学设备的控制方法。
利用本发明,可以执行镜筒缩回和展开,以使得设备的组件部分之间不发生干涉,从而可以防止错误的姿态检测。
通过以下参考附图对典型实施例的说明,本发明的其它特征将变得明显。
附图说明
图1是示意性示出根据本发明的一个实施例的摄像设备的结构的图;
图2是示出图1所示的移位透镜驱动控制器的内部结构的框图;
图3是示出摄像设备的抖动校正单元的结构的分解透视图;
图4是从被摄体侧观看的抖动校正单元的正视图;
图5是详细示出图2所示的PID控制器的结构的框图;
图6是示出具有抖动校正功能的透镜组的结构的图;
图7(A)是示出移位透镜不与其它透镜和透镜保持器相互干涉的状态下的PID控制器的积分控制器的示例输出的图;
图7(B)是示出移位透镜与其它透镜或透镜保持器相互干涉的状态下的积分控制器的示例输出的图;
图8是示出干涉区域判断处理的流程图;
图9是示出用于测量图8的判断处理所使用的积分控制输出数据的处理的流程图;以及
图10是示出摄像设备的电源接通/关闭时的移位透镜缩回处理的流程图。
具体实施方式
以下将参考示出本发明优选实施例的附图详细说明本发明。
图1示意性示出作为根据本发明一个实施例的光学设备的摄像设备的结构。光学设备主要包括具有抖动校正功能的数字照相机的镜筒。
变焦单元401包括用于变焦操作的变焦透镜。变焦驱动控制器402进行变焦单元401的驱动控制。移位透镜403是可在垂直于光轴的方向上移动的校正构件。移位透镜驱动控制器404进行移位透镜403的驱动控制。例如,在省电时,变焦驱动控制器402停止对变焦单元401供电,并且移位透镜驱动控制器404停止对移位透镜403供电。
光圈快门单元405进行用于光学系统的光圈和快门操作。光圈快门驱动控制器406进行光圈快门单元405的驱动控制。调焦单元407包括调焦透镜,并进行焦点调整。调焦驱动控制器408进行调焦单元407的驱动控制。摄像单元409包括诸如CCD或CMOS等的摄像装置,并将已通过透镜组的光学图像转换成电信号。
摄像信号处理器410将从摄像单元409输出的电信号转换成视频信号。根据视频信号的用途,视频信号处理器411处理从摄像信号处理器410输出的视频信号。
基于从视频信号处理器411输出的信号,显示单元412根据需要将图像显示在显示单元412的显示装置上。姿态控制器414对视频信号处理器411和显示单元412设置摄像设备的姿态。由显示控制器413控制摄像单元409和显示单元412的操作。
电源单元415对摄像设备的各部分供电。外部输入/输出端子单元416从外部输入通信信号和视频信号,以及将通信信号和视频信号输出至外部。操作单元417包括用于操作摄像设备的按钮、拔盘、触摸面板等。例如,通过操作电源开关,接通和断开从电源单元415向摄像设备的供电。通过操作触摸面板,可以选择静止图像拍摄模式或运动图像拍摄模式,并且可以在每个拍摄模式设置摄像设备的致动器的操作条件。操作单元417具有用于被按下以顺次接通第一开关和第二开关的快门释放按钮(未示出)。当半按下快门释放按钮时接通第一开关,并且当全按下快门释放按钮时接通第二开关。存储单元418存储通过拍摄所获得的视频信息等的各种数据。控制单元419控制整个摄像设备。例如,控制单元419驱动用于驱动透镜组的控制器(诸如变焦驱动控制器402、移位透镜驱动控制器404、光圈快门驱动控制器406以及调焦驱动控制器408等),从而改变变焦位置。干涉防止控制器420进行控制,以使得移位透镜403不与其它构件相互干涉。
接着,将给出对具有上述结构的摄像设备的操作的说明。
当接通操作单元417的第一开关时,调焦驱动控制器408驱动调焦单元407进行焦点调整,并且光圈快门驱动控制器406驱动光圈快门单元405,以设置期望的曝光量。当接通操作单元417的第二开关时,光学图像被曝光至摄像单元409,并将基于通过摄像装置从光学图像转换得到的电信号所获得的图像数据存储至存储单元418中。
此时,如果从操作单元417给出抖动校正有效指示,则控制单元419指示移位透镜驱动控制器404进行抖动校正操作。响应于该指示,移位透镜驱动控制器404进行抖动校正操作,直到给出抖动校正无效指示为止。在参考来自变焦驱动控制器402的位置信息时,干涉防止控制器420指示移位透镜驱动控制器404进行操作以使得移位透镜403和其它构件之间不发生干涉。
如果经由操作单元417给出利用变焦透镜进行变焦操作的指示,则变焦驱动控制器402经由控制单元419接收指示,并驱动变焦单元401,以将变焦透镜移动至所指示的变焦位置。此外,基于由摄像信号处理器410和视频信号处理器411处理后的图像信息,调焦驱动控制器408驱动调焦单元407进行焦点调整。
图2示出移位透镜驱动控制器404的内部结构的框图。移位透镜驱动控制器404包括俯仰方向陀螺仪501和横摆方向陀螺仪502,作为用于检测施加至摄像设备的抖动的抖动检测单元。俯仰方向陀螺仪501检测摄像设备在设备的正常姿态(即,图像帧的长度方向几乎与水平方向一致的姿态)的垂直方向(俯仰方向)上的抖动。横摆方向陀螺仪502检测摄像设备在设备的正常姿态的水平方向(横摆方向)上的抖动。
抖动校正控制器503基于由俯仰方向陀螺仪501检测到的抖动来计算俯仰方向的移位透镜补偿位置控制信号。抖动校正控制器504基于由横摆方向陀螺仪502检测到的抖动来计算横摆方向的移位透镜补偿位置控制信号。
作为反馈控制单元的PID控制器505和506根据俯仰方向的移位透镜补偿位置控制信号和表示移位透镜403的位置的位置信号之间的偏差以及横摆方向的移位透镜补偿位置控制信号和位置信号之间的偏差来获得控制变量,并输出位置命令信号。驱动装置507和508是基于从PID控制器505和506传送来的位置命令信号对移位透镜403进行驱动的驱动单元。霍尔元件509和510是用于检测移位透镜403在俯仰方向和横摆方向上的位置的位置检测单元。姿态检测器511基于PID控制器505和506所使用的控制信号来检测摄像设备的姿态。
接着,将给出对由移位透镜驱动控制器404进行的移位透镜403的位置控制的说明。图3示出移位透镜403被保持为可在几乎与光轴垂直的方向上移动的抖动校正单元的结构的透视图。
在抖动校正单元中,通过向驱动线圈302和303供电来产生磁场,由此驱动与移位透镜403一体化的驱动磁体304和305。换句话说,抖动校正单元具有所谓的音圈马达结构。移位透镜403以及驱动磁体304和305由支撑体308保持,并且驱动线圈302和303由框体309保持。如稍后参考图4将要说明,支撑体308经由滚动构件(滚动球)向着框体309挤压,并且可在垂直于光轴的方向上移动。
霍尔元件509和510检测由驱动磁体304和305产生的磁场作为表示移位透镜403的实际位置的位置信号,并将检测到的位置信号分别传送至PID控制器505和506。PID控制器505和506进行反馈控制,以使得位置信号分别收敛于从抖动校正控制器503和504传送来的补偿位置控制信号。
图4示出从正面观看、即从被摄体侧观看的图3的抖动校正单元。凹部1101、1102和1103以位于三角形的各顶点的方式设置在移位透镜403周围,并且凹部1101~1103各自设置有一个滚动球(例如,陶瓷球)。未示出的一个或多个施力构件(例如,弹簧)设置在支撑体308和框体309之间,以使得滚动球保持在支撑体308和框体309之间。具体地,支撑体308经由滚动球向着框体309挤压,并且可在垂直于光轴的方向上移动。应当注意,凹部1101~1103可以或者形成在支撑体308中或者形成在框体309中,或者形成在支撑体308和框体309这两者中。
在图3和4所示的结构中,优选滚动球通常处于滚动状态。这是因为:如果滚动球与凹部1101~1103的端面接触,则滑动摩擦成为主导,并且跟踪能力降低。为了使滚动球处于滚动状态,如后面所述,由干涉防止控制器420进行初始化。应当注意,由于从霍尔元件509和510输出的位置信号具有个体差异(变化),因而需要针对补偿位置控制信号调整来自霍尔元件509和510的输出,以使得移位透镜403可以移动至预定位置。
以下是PID控制的说明。PID控制是一种反馈控制,并且PID控制根据三个要素(即,输出值与目标值之间的偏差、偏差的积分以及偏差的微分)来控制输入值。在PID控制中,与偏差成比例地改变输入值的动作被称为比例动作或P动作。
比例动作将输入值作为输出值和目标值之间的偏差的线性函数来进行控制。具体地,假定给定时刻t的输入值、输出值和目标值分别由x(t)、y(t)和y0来表示,满足以下公式(1)。
x(t)=Kp(y(t)-y0)+x0…(1)
符号x0表示y(t)等于y0时满足公式(1)所需的输入值,符号Kp表示被称为比例增益的常数。
当假定Δx(t)=x(t)-x0和Δy(t)=y(t)-y0时,满足以下公式(2)。与偏差Δy(t)成比例地改变输入值的动作被称为比例动作或P动作。
Δx(t)=KpΔy(t)…(2)
在实际控制中,即使针对相同输出值,输入值有时也必须根据周围环境等而变化。另一方面,在比例控制中,假如Kp不改变,则针对某一输出值,输入值通常是相同的,因此输出值不能达到目标值,从而导致残余偏差或偏移。为了消除残余偏差,增加了由以下公式(3)的第二项示出的项。
Δx ( t ) = K p Δy ( t ) + K i ∫ 0 t Δy ( τ ) dτ - - - ( 3 )
如果存在残余偏差,则公式(3)中的第二项用于与残余偏差的积分时间成比例地改变输入值。具体地,偏差持续的时间越长,则通过第二项将输入值改变得越大,由此使得输入值接近目标值。该动作被称为积分动作或I动作。
比例动作和积分动作的组合被称为PI控制,常数Ki被称为积分增益。在某些情况下,输出值由于周围环境的变化或由于施加至控制对象的干扰而急剧改变。在这种情况下,PI控制尝试使输出值接近目标值。然而,I动作具有相位延迟,并在特定时间段经过之前不能有效动作,因此,输出值达到目标值需要较长时间。因此,增加了由以下公式(4)的第三项示出的项。
Δx ( t ) = K p Δy ( t ) + K i ∫ 0 t Δy ( τ ) dτ + K d dΔy ( t ) dt - - - ( 4 )
如果输出值急剧改变,则公式(4)的第三项将输入值改变与输出值的变化大小成比例的量,以消除该变化。该动作被称为微分动作或D动作。比例动作、积分动作以及微分动作的组合被称为PID控制。
如之前参考图2所述,抖动校正控制器503基于来自俯仰方向陀螺仪501的抖动信号来计算俯仰方向的移位透镜补偿位置控制信号。该控制信号表示俯仰方向上的移动目标位置(抖动校正位置)。同样地,抖动校正控制器504基于来自横摆方向陀螺仪502的抖动信号而计算出的横摆方向的移位透镜补偿位置控制信号表示横摆方向上的移动目标位置(抖动校正位置)。
基于分别从抖动校正控制器503和504输出的移位透镜补偿位置控制信号,移位透镜403在用以校正由摄像设备的抖动引起的图像抖动的方向上移动。具体地,抖动校正所使用的移位透镜403在垂直于光轴的方向上移动,由此当摄像设备的抖动发生时能够防止图像抖动。
图5详细示出图2所示的PID控制器505的框图。PID控制器505和506在目标位置方向(俯仰方向或横摆方向)上彼此不同,但在构造上彼此相同。以下将以PID控制器505作为示例进行说明。
在PID控制器505中,偏差计算器602计算移位透镜403的抖动校正位置(作为来自抖动校正控制器503的输出值)和A/D转换器608通过对移位透镜403的位置信号(作为霍尔元件509的输出值)进行A/D转换所获得的实际位置(数字信号)之间的差(偏差)。基于所计算出的偏差,比例控制器603、微分控制器604和积分控制器605各自进行计算。
比例控制器603进行比例控制以使偏差接近0,即,使实际位置接近抖动校正位置(移动目标位置)。由于比例控制通常产生偏差的偏移成分,因此通过积分控制器605进行将偏移成分减少到0的积分控制。
当摄像设备的姿态改变时,即当施加至移位透镜403的重力方向改变时,偏移成分根据姿态改变而变化。将积分控制器605的输出传送至用于检测摄像设备的姿态(倾斜)的姿态检测器511。为了增强移位透镜403的应答性,微分控制器604进行对偏差的微分控制。
最后,通过加法器606将比例控制器603的输出、微分控制器604的输出以及积分控制器605的输出相加在一起。通过D/A转换器607将加法器606的输出转换成模拟信号,并将该模拟信号传送至驱动装置508以驱动移位透镜403。
图6示出镜筒201展开的状态下的具有抖动校正功能的透镜组的结构。
镜筒201可以在(能够进行拍摄的)展开状态和(收纳镜筒并且不进行拍摄的)缩回状态之间进行改变,以使得能够改变整个镜筒长度。第一透镜组202、第二透镜组203、光圈204、第三透镜组205以及第四透镜组206设置在镜筒201中。某些透镜组在光轴方向上的位置在展开状态和缩回状态之间改变。透镜组各自包括一个或多个透镜。
第一透镜组202固定至镜筒201。第二透镜组203是用于进行变焦操作的变焦透镜单元,并包括在图1所示的变焦透镜单元401中。如图1所示的光圈快门单元405一样,光圈204可以与快门单元一体化,并且可被设置成在从光轴方向观察时比第三透镜组205更接近摄像装置207,或者可被设置在第三透镜组205中。第三透镜组205具有在垂直于光轴的方向上移动以进行抖动校正的移位透镜403。第四透镜组206具有用于校正由第二透镜组203所生成的聚焦面的功能,并具有焦点调节功能。
已通过这些透镜组的光在图1所示的摄像单元409所包括的摄像装置207的表面上形成图像。
当镜筒201进入缩回状态(未示出)时,透镜组之间的距离变小。结果,有时在某些透镜组之间或在保持透镜组的某些透镜保持器之间会发生干涉(接触)。
图7(A)示出镜筒201处于展开状态并且移位透镜403不与其它透镜和透镜保持器相互干涉的状态下的积分控制器605的输出的示例。积分控制输出作为相对于光轴测量得到的移位透镜403在垂直于光轴的方向上的位置的线性函数而改变。
图7(B)示出镜筒201处于缩回状态并且移位透镜403与其它透镜和透镜保持器相互干涉的状态下的积分控制器605的输出的示例。在干涉区域中,移位透镜403的驱动力急剧改变,并且积分控制输出也急剧改变。因此,可以基于积分控制输出的变化在干涉区域和非干涉区域之间做出判断。
图8示出干涉区域判断处理的流程图。由于在广角位置(即,在镜筒201的展开状态下提供最低拍摄倍率的变焦位置)处,组件部分之间不发生干涉,因此可以通过将各变焦位置处的积分控制输出数据与作为基准的广角位置处的积分控制输出数据进行比较,在干涉区域和非干涉区域之间做出判断。
在步骤S901中,控制单元419将变焦位置移动至广角位置。在步骤S902中,干涉防止控制器420测量积分控制输出数据(干涉判断数据),从而测量在组件部分之间不发生干涉的广角位置处的积分控制输出数据。接着,在步骤S903中,控制单元419将变焦位置移动至镜筒201的收纳位置(槽位置(sink position))。在步骤S904中,干涉防止控制器420测量镜筒收纳位置处的积分控制输出数据(干涉判断数据)。在步骤S905中,干涉防止控制器420将在步骤S902中测量得到的积分控制输出数据与在步骤S904中测量得到的积分控制输出数据进行比较,从而计算干涉区域。
接着,干涉防止控制器420判断是否存在干涉区域(步骤S906)。如果不存在干涉区域(步骤S906中为“否”),则干涉防止控制器420存储槽位置处的变焦脉冲位置(步骤S914),由此完成本处理。另一方面,如果存在干涉区域(步骤S906中为“是”),则干涉防止控制器420计算移位透镜403的缩回位置(步骤S907)。在步骤S908中,控制器420计算初始化圆形驱动半径(在步骤S907中计算出的缩回位置处进行初始化驱动操作时的驱动半径)。
在步骤S909~S914中,检测不再发生干涉的变焦脉冲位置。
在步骤S909中,干涉防止控制器420使控制单元419将变焦位置移动至复位位置。在步骤S910中,控制器420测量积分控制输出数据(干涉判断数据)。在步骤S911中,控制器420将在步骤S902测量得到的积分控制输出数据与在步骤S910测量得到的积分控制输出数据进行比较,从而计算干涉区域。在步骤S912中,控制器420判断是否存在干涉区域。
如果不存在干涉区域(步骤S912中为“否”),则干涉防止控制器420存储当前的变焦脉冲位置(步骤S914),由此完成本处理。此时的脉冲位置表示不再发生干涉的变焦脉冲位置。另一方面,如果存在干涉区域(步骤S912中为“是”),则干涉防止控制器420经由控制单元419指示变焦驱动控制器402将变焦位置在镜筒展开的方向上驱动与预定脉冲数相对应的量(步骤S913),并且返回至步骤S910。
通过进行图8所示的处理,可以计算镜筒收纳状态下的移位透镜403的缩回位置、移位透镜403在缩回位置处的初始化圆形驱动半径、以及没有发生干涉的变焦脉冲位置。
接着,参考图9,将给出对用于测量图8的干涉区域判断处理所使用的积分控制输出数据(干涉判断数据)的处理的说明。下面,术语“左右方向”指与图3所示的驱动线圈303的长轴垂直的方向,并且术语“垂直方向”指与图3所示的驱动线圈302的长轴垂直的方向。
在步骤S1001中,移位透镜驱动控制器404将移位透镜403移动至移位透镜403的可移动范围的左端。在步骤S1002中,控制器404将移位透镜403从垂直可移动范围的一端移动至另一端,并且干涉防止控制器420获取各移位透镜位置处的积分控制输出。在步骤S1003中,移位透镜驱动控制器404判断是否已经测量了直到移位透镜403的可移动范围的右端的积分控制输出。
如果没有完成直到右端的测量(步骤S1003中为“否”),则移位透镜驱动控制器404将移位透镜403向右移动预定量(步骤S1004),并返回至步骤S1002。如果完成了直到右端的测量(步骤S1003中为“是”),则流程进入步骤S1005,在步骤S1005中,移位透镜驱动控制器404将移位透镜403移动至可移动范围的上端。在步骤S1006中,在移位透镜403已被移动至可移动范围的上端的状态下,移位透镜驱动控制器404将移位透镜403从左右方向上的可移动范围的一端移动至另一端,并且干涉防止控制器420获取各移位透镜位置处的积分控制输出。
在步骤S1007中,移位透镜驱动控制器404判断是否已经测量了直到移位透镜403的可移动范围的下端的积分控制输出。如果没有完成直到可移动范围的下端的测量,则移位透镜驱动控制器404将移位透镜403向下移动预定量(步骤S1008),并返回至步骤S1006。如果完成了直到下端的测量,则完成本处理。
通过进行图9所示的处理,可以测量垂直方向和左右方向上的整个区域的积分控制输出数据。在图9的处理中,尽管从可移动范围的左端处和上端处开始测量,然而测量开始位置不限于可移动范围的左端和上端,只要可以在整个区域上测量积分控制输出数据即可。
接着,将说明设备的电源接通/关闭时的摄像设备的操作。图10示出摄像设备的电源接通/关闭时的移位透镜缩回处理的流程图。
当接通摄像设备的电源时,移位透镜驱动控制器404将移位透镜403移动至缩回位置(步骤S101)。在步骤S102中,控制单元419判断是否应当展开镜筒201。例如,当在图像再现模式下接通电源时,不应当展开镜筒201。如果不应当展开镜筒201(步骤S102中为“否”),则移位透镜驱动控制器404在图8的步骤S908计算出的缩回位置处的初始化条件下进行移位透镜403的初始化圆形驱动(步骤S103)。在步骤S104中,移位透镜驱动控制器404的姿态检测器511通过使用积分控制输出来进行姿态检测(倾斜检测)。进行倾斜检测,直到电源关闭为止。当电源关闭时(步骤S105中为“是”),停止移位透镜控制(步骤S106),由此完成本处理。
例如,当在拍摄模式下接通电源时,展开镜筒201。如果镜筒201展开(步骤S102中为“是”),则移位透镜驱动控制器404等待将变焦单元驱动至图8的步骤S914所计算出的变焦脉冲位置(步骤S107)。在步骤S108中,移位透镜驱动控制器404将移位透镜403移动至抖动校正时的中心位置。
随后,在步骤S109中,移位透镜驱动控制器404进行移位透镜403的正常初始化圆形驱动。应当注意,必须在将形成在摄像装置上的图像显示在显示单元412之前完成初始化圆形驱动。接着,在步骤S110中,姿态检测器511通过使用积分控制输出来进行倾斜检测。
进行倾斜检测,直到摄像设备的电源关闭为止。如果电源关闭(步骤S111中为“是”),则移位透镜驱动控制器404等待由摄像装置获得的图像不再显示在显示单元412上(步骤S112)。如果不再显示图像(步骤S112中为“是”),则移位透镜驱动控制器404将移位透镜403移动至缩回位置(步骤S113)。当镜筒201进入缩回状态时(步骤S114),停止移位透镜控制(步骤S115),由此完成本处理。
如上所述,将移位透镜403缩回至移位透镜403不与其它组件相互干涉的位置,从而使得可以在基于移位透镜403的驱动力进行的摄像装置的姿态检测时防止错误。
虽然已经说明了将本发明应用到光学手抖动校正机构的情况,但本发明还可应用于摄像装置型手抖动校正机构。在上述实施例中,通过示例的方式说明了本发明主要应用于数字照相机的情况。然而,本发明还可用于作为摄像设备的摄像机、作为光学设备的(用于单镜头反光照相机的)可更换镜头、以及诸如安装有摄像设备的便携式电话等的电子设备。
尽管已经参考典型实施例说明了本发明,但是应该理解,本发明不限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释,以包含所有这类修改、等同结构和功能。
本申请要求于2009年12月28日提交的日本特开2009-297679号公报的优先权,其全部内容通过引用包含于此。

Claims (8)

1.一种光学设备,包括:
镜筒,其能够在缩回状态和拍摄用的展开状态之间变化,其中所述镜筒包括:变焦单元,用于进行变焦操作;变焦驱动控制单元,用于进行所述变焦单元的驱动控制;校正构件,其能够在与光轴垂直的方向上移动;以及驱动单元,用于驱动所述校正构件;
抖动检测单元,用于检测施加至所述光学设备的抖动;
反馈控制单元,用于基于来自所述抖动检测单元的输出来计算抖动校正用的校正量,并基于所计算出的校正量来驱动所述驱动单元,所述反馈控制单元包括用于进行积分控制的积分控制器;以及
干涉防止控制单元,用于基于所述反馈控制单元在计算所述校正量期间的输出和来自所述变焦驱动控制单元的位置信息,来计算所述校正构件和其它构件之间的干涉区域,
其中,所述干涉防止控制单元基于所述积分控制器的输出和来自所述变焦驱动控制单元的位置信息来计算所述干涉区域,并指示所述驱动单元将所述校正构件移动至不发生与其它构件的干涉的位置。
2.根据权利要求1所述的光学设备,其特征在于,所述反馈控制单元包括:比例控制器,用于进行比例控制;以及微分控制器,用于进行微分控制。
3.根据权利要求1所述的光学设备,其特征在于,还包括:
姿态检测单元,用于基于所述积分控制器的输出来检测所述光学设备的姿态,
其中,在根据所述干涉防止控制单元的指示将所述校正构件移动至不发生与其它构件的干涉的位置之后,所述姿态检测单元检测所述光学设备的姿态。
4.根据权利要求1所述的光学设备,其特征在于,所述校正构件包括:支撑体,其能够在与所述光轴基本垂直的平面内移动;框体,用于保持所述支撑体;球,其保持在所述支撑体和所述框体之间,并被配置为在形成在所述支撑体和所述框体至少之一内的凹部中滚动,从而使得所述支撑体能够相对于所述框体移动,以及
所述干涉防止控制单元控制所述变焦驱动控制单元进行初始化,以将所述球设置成不与所述凹部的端面接触。
5.根据权利要求1所述的光学设备,其特征在于,所述干涉防止控制单元在所述镜筒展开时,指示将所述校正构件移动至所述抖动校正时的中心位置。
6.根据权利要求1所述的光学设备,其特征在于,所述干涉防止控制单元在所述镜筒缩回时,指示将所述校正构件移动至所述校正构件不与其它构件干涉的位置,并在所述镜筒进入缩回状态之后停止所述校正构件的移动。
7.一种摄像设备,包括:
镜筒,其能够在缩回状态和拍摄用的展开状态之间变化,其中所述镜筒包括:变焦单元,用于进行变焦操作;变焦驱动控制单元,用于进行所述变焦单元的驱动控制;校正构件,其能够在与光轴垂直的方向上移动;以及驱动单元,用于驱动所述校正构件;
抖动检测单元,用于检测施加至所述摄像设备的抖动;
反馈控制单元,用于基于来自所述抖动检测单元的输出来计算抖动校正用的校正量,并基于所计算出的校正量来驱动所述驱动单元,所述反馈控制单元包括用于进行积分控制的积分控制器;以及
干涉防止控制单元,用于基于所述反馈控制单元在计算所述校正量期间的输出和来自所述变焦驱动控制单元的位置信息,来计算所述校正构件和其它构件之间的干涉区域,
其中,所述干涉防止控制单元基于所述积分控制器的输出和来自所述变焦驱动控制单元的位置信息来计算所述干涉区域,并指示所述驱动单元将所述校正构件移动至不发生与其它构件的干涉的位置。
8.一种光学设备的控制方法,所述光学设备具有能够在缩回状态和拍摄用的展开状态之间变化的镜筒,所述镜筒包括:变焦单元,用于进行变焦操作;校正构件,其能够在与光轴垂直的方向上移动;以及驱动单元,用于驱动所述校正构件,所述控制方法包括以下步骤:
变焦驱动控制步骤,用于进行所述变焦单元的驱动控制;
抖动检测步骤,用于检测施加至所述光学设备的抖动;
反馈控制步骤,用于基于所述抖动检测步骤中检测到的抖动来计算抖动校正用的校正量,并基于所计算出的校正量来驱动所述驱动单元,所述反馈控制步骤包括用于进行积分控制的积分控制步骤;以及
干涉防止控制步骤,用于基于所述反馈控制步骤在计算所述校正量期间的输出和所述变焦驱动控制步骤中获取的位置信息,来计算所述校正构件和其它构件之间的干涉区域,
其中,所述干涉防止控制步骤基于所述积分控制步骤的输出和来自所述变焦驱动控制步骤的位置信息来计算所述干涉区域,并指示所述驱动单元将所述校正构件移动至不发生与其它构件的干涉的位置。
CN2010106229622A 2009-12-28 2010-12-28 光学设备及其控制方法和摄像设备 Expired - Fee Related CN102123245B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009297679A JP5441679B2 (ja) 2009-12-28 2009-12-28 撮像装置
JP2009-297679 2009-12-28

Publications (2)

Publication Number Publication Date
CN102123245A CN102123245A (zh) 2011-07-13
CN102123245B true CN102123245B (zh) 2013-07-24

Family

ID=44187712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010106229622A Expired - Fee Related CN102123245B (zh) 2009-12-28 2010-12-28 光学设备及其控制方法和摄像设备

Country Status (3)

Country Link
US (1) US8190009B2 (zh)
JP (1) JP5441679B2 (zh)
CN (1) CN102123245B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855341B2 (ja) 2010-12-28 2016-02-09 ローム株式会社 レンズ制御装置及びこれを用いた撮像装置
EP2874003B1 (en) 2012-07-12 2017-12-20 Sony Corporation Image shake correction device and image shake correction method and image pickup device
JP6271974B2 (ja) 2013-12-02 2018-01-31 キヤノン株式会社 像振れ補正装置、レンズ鏡筒、および撮像装置
DE102013225287A1 (de) * 2013-12-09 2015-06-11 Carl Zeiss Microscopy Gmbh Bildaufnahmevorrichtung mit einer Verschiebeeinrichtung für ein Digitalmikroskop und Digitalmikroskop
JP6100152B2 (ja) * 2013-12-10 2017-03-22 キヤノン株式会社 撮像装置およびその制御方法
JP6351246B2 (ja) * 2013-12-12 2018-07-04 キヤノン株式会社 像振れ補正装置及びその制御方法、光学機器、撮像装置
KR102296305B1 (ko) * 2014-06-11 2021-09-01 엘지이노텍 주식회사 렌즈 구동장치 및 이를 구비한 카메라 모듈
US10133246B2 (en) * 2014-09-12 2018-11-20 Canon Kabushiki Kaisha Position control device and position control method, optical device, and image pickup apparatus
JP6448380B2 (ja) * 2015-01-19 2019-01-09 キヤノン株式会社 光学装置、制御方法、プログラム、記憶媒体
US20170195543A1 (en) * 2015-12-31 2017-07-06 Skytraq Technology, Inc. Remote control between mobile communication devices for capturing images
CN114270801B (zh) * 2019-09-29 2024-04-12 Oppo广东移动通信有限公司 防抖电路、方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463443A (en) * 1992-03-06 1995-10-31 Nikon Corporation Camera for preventing camera shake
US6631042B2 (en) * 2000-04-06 2003-10-07 Canon Kabushiki Kaisha Lens barrel having image shake correcting function and optical device having same
CN101034196A (zh) * 2006-03-10 2007-09-12 佳能株式会社 光学设备、摄像设备和镜头装置
CN101470247A (zh) * 2007-12-26 2009-07-01 佳能株式会社 透镜控制设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270846A (ja) 1994-04-01 1995-10-20 Nikon Corp 振れ補正カメラ
JP4072348B2 (ja) * 2002-01-25 2008-04-09 キヤノン株式会社 振れ補正装置、撮像装置、振れ補正方法、振れ補正装置の制御プログラム、及び記憶媒体
JP4747523B2 (ja) * 2004-07-02 2011-08-17 ソニー株式会社 撮像装置及び撮像装置のズームレンズ制御方法
JP4775010B2 (ja) * 2006-01-31 2011-09-21 株式会社ニコン レンズ鏡筒及びカメラ
TW200938944A (en) * 2008-03-13 2009-09-16 Hoya Corp Imaging device
JP5053920B2 (ja) * 2008-04-22 2012-10-24 キヤノン株式会社 像振れ補正装置およびそれを備える光学機器、撮像装置、像振れ補正装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463443A (en) * 1992-03-06 1995-10-31 Nikon Corporation Camera for preventing camera shake
US6631042B2 (en) * 2000-04-06 2003-10-07 Canon Kabushiki Kaisha Lens barrel having image shake correcting function and optical device having same
CN101034196A (zh) * 2006-03-10 2007-09-12 佳能株式会社 光学设备、摄像设备和镜头装置
CN101470247A (zh) * 2007-12-26 2009-07-01 佳能株式会社 透镜控制设备

Also Published As

Publication number Publication date
US20110158618A1 (en) 2011-06-30
US8190009B2 (en) 2012-05-29
JP2011137982A (ja) 2011-07-14
CN102123245A (zh) 2011-07-13
JP5441679B2 (ja) 2014-03-12

Similar Documents

Publication Publication Date Title
CN102123245B (zh) 光学设备及其控制方法和摄像设备
CN102065216B (zh) 摄像设备及其控制方法
US7460772B2 (en) Optical apparatus
US7925148B2 (en) Apparatus and method for compensating position of camera lens according to temperature variation
US8866955B2 (en) Focus detection apparatus, method for controlling the same, and image capturing apparatus having a focus detection apparatus
CN100414424C (zh) 成像设备
US7969499B2 (en) Lens barrel and image pickup apparatus
CN101034196B (zh) 光学设备
US20060133786A1 (en) Driving mechanism, driving system, anti-shake unit, and image sensing apparatus
CN101393377B (zh) 透镜设备和照相机
CN1914536B (zh) 透镜筒和配备透镜筒的成像装置以及透镜筒的装配方法
US20110032615A1 (en) Lens barrel, method of adjusting lens barrel, method of manufacturing lens barrel and imaging device
CN112740650A (zh) 摄像装置设备
US8755128B2 (en) Image pickup lens, image pickup apparatus, and lens controlling method
JP4857257B2 (ja) レンズ制御装置、レンズ鏡筒、撮像装置および光学機器
CN102761691A (zh) 摄像设备及其控制方法
JP2015036692A (ja) 自動焦点調節装置
US6754444B2 (en) Camera with vibration isolation function
US8180211B2 (en) Drop detection using lens position sensing of camera module
EP2039148B1 (en) Imaging apparatus and imaging method
JP2003279843A (ja) 自動合焦機能を有する画像入力装置
JP2019161545A (ja) 撮像装置およびその制御方法
JP5904714B2 (ja) 焦点検出装置及びその制御方法並びに焦点検出装置を有する撮像装置
CN102540396A (zh) 透镜驱动装置、控制方法以及透镜系统
CN116366969A (zh) 摄像设备、电力控制方法和存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130724

Termination date: 20191228

CF01 Termination of patent right due to non-payment of annual fee