CN102109488A - 一种片式氧传感器及其制备方法 - Google Patents

一种片式氧传感器及其制备方法 Download PDF

Info

Publication number
CN102109488A
CN102109488A CN2009101894405A CN200910189440A CN102109488A CN 102109488 A CN102109488 A CN 102109488A CN 2009101894405 A CN2009101894405 A CN 2009101894405A CN 200910189440 A CN200910189440 A CN 200910189440A CN 102109488 A CN102109488 A CN 102109488A
Authority
CN
China
Prior art keywords
porous layer
lamella
transition bed
slurry
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009101894405A
Other languages
English (en)
Other versions
CN102109488B (zh
Inventor
徐斌
王田军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN 200910189440 priority Critical patent/CN102109488B/zh
Publication of CN102109488A publication Critical patent/CN102109488A/zh
Application granted granted Critical
Publication of CN102109488B publication Critical patent/CN102109488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

本发明提供了一种片式氧传感器及其制备方法。本发明的片式氧传感器的多孔保护层,包括过渡层、多孔层和致密层,各层上均具有孔洞使多孔保护层从下至上连通;所述过渡层含有氧化锆和镁铝尖晶石,过渡层的平均孔径为0.1-2.5μm,孔隙率为20-40%;所述多孔层含有氧化锆、镁铝尖晶石和贵金属,多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%;所述致密层为氧化锆,致密层的平均孔径为2-3μm,孔隙率为20-40%。本发明的片式氧传感器,与现有技术相比,灵敏度高、抗热震性好且使用寿命长。

Description

一种片式氧传感器及其制备方法
技术领域
本发明涉及汽车氧传感器领域,具体涉及一种片式氧传感器及其制备方法。
背景技术
氧传感器用于检测发动机排除废气中氧的含量,平板式汽车二氧化锆氧传感器具有尺寸小、响应快、能耗低、易集成加热和工作稳定等优点。在使用过程中,汽油和机油中含有铅、硫、磷等杂志,使传感器性能大幅度下降,而灰尘、油、硅等成分则会堵塞传感器的保护层和电极,失去了电极反应的三相界面,使得氧传感器响应速度减慢,信号输出不灵敏,即电极中毒。为了防止电极失效,目前一般采用以下两方面的措施:一是对电极进行防护,二是采用抗中毒的电极材料。对电极进行防护的方法中,采用涂层保护是较为简便而实用的方法。电极保护层的应用可有效的提高电极在废气环境中的使用寿命。
目前片式氧传感器的电极保护层多为单层或双层结构。例如现有技术中公开了一种ZrO2氧传感器,该氧传感器的保护层与氧化锆固体电解质层之间还设有一层中间过渡层,该中间过渡层的主要组成为氧化锆和镁铝尖晶石,具有较好的连通气孔率和比保护层更细小的气孔。该过渡层,一方面用于匹配保护层与氧化锆固体电解质的膨胀系数,另一方面该过渡层可以对废气中的杂质起到“二次过滤”作用。采用该ZrO2氧传感器,能对电极起一定的保护作用,但由于氧传感器处于汽车尾气环境中,保护层的多孔结构容易被尾气中的颗粒灰尘等堵赛,降低灵敏程度;且该保护层与测氧电解质层的附着力较差,保护层容易开裂、脱落,降低氧传感器使用寿命。
发明内容
本发明解决了现有技术中存在的氧传感器灵敏度低、抗热震性差和使用寿命短的技术问题。
本发明提供了一种片式氧传感器,所述片式氧传感包括加热体和加热体上部的测氧体;所述加热体,包括加热器基片、加热器基片上方的两个绝缘层和夹持于两绝缘层间的加热电极;所述测氧体,从下至上依次包括参比气基片、测氧电解质层和多孔保护层;
所述多孔保护层,从下至上依次包括过渡层、多孔层和致密层,各层上均具有孔洞使多孔保护层从下至上连通;所述过渡层含有氧化锆和镁铝尖晶石,过渡层的平均孔径为0.1-2.5μm,孔隙率为20-40%;所述多孔层含有氧化锆、镁铝尖晶石和贵金属,多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%;所述致密层为氧化锆,致密层的平均孔径为2-3μm,孔隙率为20-40%。
本发明还提供了一种片式氧传感器的制备方法,包括以下步骤:
1)在加热器基片上涂覆绝缘层浆料、电极浆料、绝缘层浆料,烘干,在加热器基片上形成绝缘层,得到第一片层;取一参比气基片,作为第二片层;
2)在测氧电解质层上丝网印刷过渡层浆料,形成过渡层;过渡层浆料中含有氧化锆、镁铝尖晶石和第一成孔剂;丝网印刷多孔层浆料,在过渡层上形成多孔层;多孔层浆料中含有氧化锆、镁铝尖晶石、贵金属和第二成孔剂;得到第三片层;取一氧化锆流延片,激光打孔,即得到致密层,作为第四片层;
3)第一片层的绝缘层的一面朝上,第三片层的多孔层的一面朝上,将第一片层、第二片层、第三片层、第四片层从下到上依次叠加,将叠层热压、共烧得到片式氧传感器,其中过渡层的平均粒径为0.1-2.5μm,孔隙率为20-40%;多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%;致密层的平均孔径为2-3μm,孔隙率为20-40%。
本发明的片式氧传感器与现有技术相比,具有以下优点:(1)多孔保护层包括过渡层、多孔层和致密层,各层均具有孔洞使多孔保护层从下至上连通,可以保证汽车排气顺利到达外电极表面,缩短排气传输时间,使得测量数值真实准确,提高氧传感器的灵敏度;(2)致密层用于降低固体颗粒对保护层多孔结构的堵赛,提高使用寿命;多孔层用于阻止汽油中的Pb、Si、S、P化合物堵塞电极;过渡层与氧化锆敏感基体的热膨胀系数接近,增强多孔保护层与测氧电解质层的附着力,从而增强氧传感器的抗热震性,片式氧传感器的使用寿命较长。
附图说明
图1是本发明片式氧传感器的结构示意图。
图2是本发明片式氧传感器的多孔保护层的结构示意图。
图3是图2中致密层13的A-A剖面示意图。
图4是本发明片式氧传感器的多孔保护层的结构示意图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
如图1所示,本发明提供了一种片式氧传感器,所述片式氧传感包括加热体和加热体上部的测氧体;
所述加热体,从下至上依次包括加热器基片8、绝缘层61、加热电极7、绝缘层62;所述测氧体从下至上依次包括参比气基片5、内电极4、氧化锆敏感基体3、外电极2和多孔保护层1,其中,内电极4、氧化锆敏感基体3和外电极2构成测氧电解质层。
所述绝缘层61、加热电极7和绝缘层62通过厚膜丝网印刷工艺形成于加热器基片8上。参比气基片5上设有参比气通道51。内电极4和外电极2通过厚膜丝网印刷工艺分别形成于氧化锆敏感基体3的两面,其中内电极4位于参比气通道51中,且与参比气通道51中的大气连通。外电极2和内电极4测量氧化锆敏感基体3两侧的氧的含量/浓度差,并根据测量数据输出电压信号,从而控制喷油量的大小。
如图2所示,多孔保护层1,从下至上依次包括过渡层11、多孔层12和致密层13。过渡层11、多孔层12和致密层13上均具有孔洞,使多孔保护层1从下至上连通,汽车排气可穿过多孔保护层1与外电解2、氧化锆敏感基体3接触。过渡层11覆盖于外电极2表面。
本发明中,过渡层11的平均粒径为0.1-2.5μm,孔隙率为20-40%;多孔层12的平均孔径为0.1-3.5μm,孔隙率为30-50%;致密层13的平均孔径为2-3μm,孔隙率为20-40%。本发明的发明人通过大量实验发现,通过改善多孔保护层的结构可有效提高片式氧传感器的灵敏度、抗热震性和使用寿命,具体包括:多孔保护层为三层结构,各层不同组分的匹配可提高抗热震性;各层的平均孔径和孔隙率在本发明的范围内时,片式氧传感器的灵敏度高;另多孔保护层的三层结构,可阻止汽车排气中的颗粒堵塞保护层,从而防止电极中毒,另通过对各层组分、孔径和孔隙率的选择,保证多孔保护层与测氧电解质层的附着力,因此能有效提高氧传感器使用寿命。
本发明中,片式氧传感器的多孔保护层1的厚度不宜过大,一般为70-90μm,否则会增大汽车排气的传输路径,降低片式氧传感器的灵敏度。优选情况下,过渡层11的厚度为10-60μm,多孔层12的厚度为10-60μm,致密层13的厚度为10-50μm。
如图3所示,致密层13上具有孔洞131,孔洞131的A-A剖面呈锥形结构,与多孔层接触的一面的孔洞的平均孔径大于远离多孔层一面的孔洞的平均孔径。
如图4所示,作为本发明的一种优选实施方式,为提高多孔保护层1与测氧电解质层之间的附着力,致密层13的面积大于多孔层12的面积,致密层13的面积大于过渡层11的面积。
本发明还提供了一种片式氧传感器的制备方法,包括以下步骤:
1)在加热器基片上涂覆绝缘层浆料、电极浆料、绝缘层浆料,烘干,在加热器基片上形成绝缘层,得到第一片层;取一参比气基片,作为第二片层;
2)在测氧电解质层上丝网印刷过渡层浆料,形成过渡层;过渡层浆料中含有氧化锆、镁铝尖晶石和第一成孔剂;丝网印刷多孔层浆料,在过渡层上形成多孔层;多孔层浆料中含有氧化锆、镁铝尖晶石、贵金属和第二成孔剂;得到第三片层;取一氧化锆流延片,激光打孔,即得到致密层,作为第四片层;
3)第一片层的绝缘层的一面朝上,第三片层的多孔层的一面朝上,将第一片层、第二片层、第三片层、第四片层从下到上依次叠加,将叠层热压、共烧得到片式氧传感器,其中过渡层的平均孔径为0.1-2.5μm,孔隙率为20-40%;多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%;致密层的平均孔径为2-3μm,孔隙率为20-40%。
本发明中,所述第一片层、第二片层均可采用现有技术中公开的方法制备而成。例如在加热器基片上通过丝网印刷依次涂覆绝缘层浆料、电极浆料、绝缘层浆料,干燥即可得到第一片层,在参比基片毛坯上切割出空气槽即可得到第二片层。
所述测氧电解质层可采用商购产品,也可采用现有技术中公开的方法制备而成,例如可以在氧化锆敏感基体的两侧分别通过丝网印刷电极浆料,烘干,在氧化锆敏感基体两侧形成电极,即得到所述测氧电解质层。所述绝缘层浆料、电极浆料为本领域技术人员常用的各种浆料,本发明中不赘述。
在测氧电解质层上丝网印刷过渡层浆料,在测氧电解质层上形成过渡层。所述过渡层浆料为含有氧化锆、镁铝尖晶石和第一成孔剂的混合物。以过渡层浆料的重量为基准,氧化锆的含量30-65%、镁铝尖晶石的含量为20-55%、第一成孔剂的含量为2-10%。
在过渡层上通过丝网印刷多孔层浆料,在过渡层上形成多孔层,即得到第三片层。多孔层浆料为含有氧化锆、镁铝尖晶石、贵金属、第二成孔剂的混合物。以多孔层浆料的重量为基准,氧化锆的含量30-65%、镁铝尖晶石的含量为20-55%、贵金属的含量为0.1-2%,第二成孔剂的含量为2-10%。
所述第一成孔剂、第二成孔剂均采用本领域技术人员常用的各种成孔剂。在共烧过程中,第一成孔剂/第二成孔剂会产生气体,从过渡层/多孔层中溢出,从而在过渡层/多孔层上形成孔洞结构,孔洞还会发生收缩。本发明的发明人通过大量实验发现,本发明的过渡层浆料和多孔层浆料烧结后,由成孔剂所产生的孔洞的孔径收缩率均为20-35%。因此,本发明中,本发明中第一成孔剂的平均粒径为1.8-4μm,第二成孔剂的平均粒径为1.8-5μm,烧结完成后使得过渡层的平均孔径为0.1-2.5μm,孔隙率为20-40%;多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%。例如,所述第一成孔剂、第二成孔剂各自独立地选自碳酸钙、活性炭或聚甲基丙烯酸甲酯(PMMA)中的至少一种。第一成孔剂或第二成孔剂中含有碳酸钙时,在共烧完成后碳酸钙转化为氧化钙和气体,气体溢出形成孔洞,而氧化钙会残留过渡层/多孔层中。氧化钙的含量占过渡层/多孔层总重量的0.4-5%,对过渡层/多孔层没有影响。
所述氧化锆流延片,可直接采用商购产品;然后对该氧化锆流延片表面进行激光打孔,得到致密层,作为第四片层。所采用的激光设备为本领域技术人员常用的各种激光设备,例如可以采用YAG激光器,光斑大小为0.2-0.5mm,激光脉宽为0.4-1.2ms。激光打孔的条件包括:激光功率为5-25w,频率为25-50hz,打孔时间为4-20s。采用激光打孔后,在氧化锆流延片上形成的孔洞呈锥形,孔洞从上之下尺寸逐渐增大;即激光入口处孔径大,平均孔径为5-8μm;激光出口处孔径小,平均孔径为2-3μm,即得到的致密层的孔洞的尺寸上下不同,其中与多孔层接触的一面的尺寸大于远离多孔层一面的尺寸。本发明中,将第四片层与其他片层叠压时,保持致密层孔洞尺寸小的一面朝上,即具有倒锥形孔洞,使得片式氧传感器在使用时,汽车排气经过致密层时,排气入口为小孔径,出口为大孔径。
作为本领域人员的公知常识,所述过渡层浆料、多孔层浆料中还含有烧结助剂和有机体系;其中有机体系包括溶剂、有机粘结剂和添加剂,添加剂可以包括增稠剂、活化剂、触变剂、分散剂、流平剂、消泡剂。所述烧结助剂和有机体系的种类和含量均为本领域技术人员所公知,例如烧结助剂选自CaO、MgO、Al2O3、SiO2中的至少一种;有机粘结剂选自聚乙烯醇缩丁醛(PVB)、聚乙二醇(PEG)中的至少一种。有机体系中,溶剂可以选自松油醇、聚酯丙烯酸酯齐聚体中的至少一种。
本发明中,过渡层浆料或多孔层浆料中,除有机体系以外的各种组分总称为粉末料,例如过渡层粉末料包括氧化锆、镁铝尖晶石、第一成孔剂和烧结助剂,多孔层粉末料包括氧化锆、镁铝尖晶石、贵金属、第二成孔剂和烧结助剂。所述粉末料中,烧结助剂的含量为0.5-5%。以100重量份的粉末料为基准,有机体系的含量为60-90重量份;有机体系中溶剂的含量为50-70重量份,有机粘结剂的含量为5-10重量份,添加剂的含量为1-10重量份。
本发明中,所述片式氧传感器的多孔保护层的厚度不宜过大,优选情况下,过渡层浆料的用量为2.0-4.0mg/cm2,多孔层浆料的用量为1.6-3.8mg/cm2,用作致密层的氧化锆流延片的厚度为10-50μm。
作为本发明的一种优选实施方式,致密层的流延面积大于多孔层的印刷面积,也大于过渡层的印刷面积。共烧后,致密层的面积大于多孔层的面积,致密层的面积大于过渡层的面积。
第一片层的绝缘层的一面朝上,第三片层的多孔层的一面朝上,将第一片层、第二片层、第三片层、第四片层从下到上依次叠加,将叠层热压、共烧得到本发明的片式氧传感器。热压的条件包括:热压温度为40-80℃,热压时间为2-8s;共烧的条件包括:共烧温度为1400-1650℃,共烧时间为0.5-4h。
以下结合实施例对本发明的片式氧传感器及其制备方法作进一步说明。实施例和对比例中所采用的原料均由商购得到。
实施例1
(1)采用流延工艺制得加热器基片、参比气基片毛坯、氧化锆电解质基体;在加热器基片上方采用丝网印刷工艺先后涂覆绝缘层、加热电极、绝缘层制得加热器基体,作为第一片层;参比气基片毛坯采用激光切割出空气通道制得参比气基片,作为第二片层;在氧化锆电解质基体两面印刷上电极制得测氧电解质层。
(2)原料配制:
过渡层浆料:(a)粉末料:氧化锆65重量份;镁铝尖晶石27重量份;成孔剂活性碳(粒径为1.8-4μm)5重量份;烧结助剂3重量份(其中氧化铝1重量份、氧化镁1重量份、氧化钙1重量份)。(b)有机体系:溶剂松油醇50重量份;有机粘结剂PVB 5重量份;添加剂5重量份(其中增稠剂10%,活化剂20%,触变剂10%,流平剂20%,分散剂20%和消泡剂20%)。(c)将粉末料球磨12h,加入有机体系搅拌均匀,得到过渡层浆料。
多孔层浆料:(a)粉末料:氧化锆32重量份;镁铝尖晶石55重量份;贵金属钯2重量份;成孔剂活性炭(粒径为1.8-5μm)8重量份;烧结助剂3重量份(其中氧化铝1重量份、氧化镁1重量份、氧化钙1重量份)。(b)有机体系:溶剂松油醇50重量份;有机粘结剂PVB 5重量份;添加剂5重量份(其中增稠剂10%,活化剂20%,触变剂10%,流平剂20%,分散剂20%和消泡剂20%)。(c)将粉末料球磨12h,加入有机体系搅拌均匀,得到多孔层浆料。
(3)在氧化锆敏感基体的一面的电极表面通过丝网印刷,依次涂覆过渡层浆料和多孔层浆料,其中过渡层浆料用量为2.0mg/cm2,多孔层浆料用量为1.6mg/cm2;在测氧电解质层上形成过渡层和多孔层;作为第三片层。
(4)取一厚度为15μm的氧化锆流延片,该氧化锆流延片的面积与过渡层、多孔层的面积相同;激光打孔,激光条件为:激光功率为15W,频率为35Hz,打孔时间为12s,在多孔层上形成致密层;得到第四片层;
(5)第一片层的绝缘层的一面朝上,第三片层的多孔层的一面朝上,将第一片层、第二片层、第三片层、第四片层从下到上依次叠加,将叠层40℃下热压7s,然后1550℃下共烧3h,得到本实施例的片式氧传感器,具有图1所示结构,其中多孔保护层具有图2所示结构,记为A1。
实施例2
采用与实施例1相同的方法制备本实施例的片式氧传感器,不同之处在于:步骤(4)中,氧化锆流延片的面积大于过渡层、多孔层的面积,并完全遮盖住多孔层。    
通过上述步骤,得到本实施例的片式氧传感器,具有图1所示结构,其中多孔保护层具有图4所示结构,记为A2。    
实施例3-4
采用与实施例2相同的方法制备本实施例的片式氧传感器,不同之处在于:步骤(2)中,保护层浆料、多孔层浆料中各组分含量不同,具体参见表1。
通过上述步骤,得到的片式氧传感器,依次记为A3-A4。
表1
Figure G2009101894405D00091
实施例5
采用与实施例2相同的方法制备本实施例的片式氧传感器,不同之处在于:步骤(3)中,过渡层浆料用量为3mg/cm2,多孔层浆料用量为2.8mg/cm2;步骤(4)中,氧化锆流延片的厚度为25μm。    
通过上述步骤,得到的片式氧传感器,记为A5。
对比例1
(1)采用流延工艺制得加热器基片、参比气基片毛坯、氧化锆电解质基体;在加热器基片上方采用丝网印刷工艺先后涂覆绝缘层、加热电极、绝缘层制得加热器基体,作为第一片层;参比气基片毛坯采用激光切割出空气通道制得参比气基片,作为第二片层;在氧化锆电解质基体两面印刷上电极制得测氧电解质层,作为第三片层。
(2)第一片层的绝缘层的一面朝上,将第一片层、第二片层、第三片层从下到上依次叠加,叠层在50℃下热压6s,1200℃下高温烧结4小时,得到片式氧传感器前躯体。
(3)浆料配制:将20重量份尖晶石、66重量份氧化铝、8重量份粘结剂和6重量份造孔剂混合,搅拌均匀,得到多孔保护层浆料。
(4)采用浸涂法将步骤(3)的多孔保护层浆料涂覆在片式氧传感器前躯体的电极表面,干燥,烧结得到本对比例的片式氧传感器,记为D1。
对比例2
(1)采用与实施例1步骤(1)相同的方法制备第一片层,第二片层。
(2)浆料配制:
过渡层浆料:过渡层粉末料:Y-ZrO2 60重量份,MgAl2O4 40重量份;成孔剂(粒径<2μm,中位径为0.6μm):淀粉0.4重量份,高聚物超细聚氯乙烯0.8重量份,活性炭0.3重量份。
多孔层浆料:多孔层粉末料:MgAl2O4 80重量份,  ZrO2 20重量份;成孔剂(粒径<3μm,中位径为0.8μm):淀粉0.8重量份,高聚物超细聚氯乙烯2.5重量份,活性炭0.7重量份。
(3)采用与实施例1步骤(3)相同的方法制备第三片层。
(4)第一片层的绝缘层的一面朝上,第三片层的多孔层的一面朝上,将第一片层、第二片层、第三片层从下到上依次叠加,将叠层40℃下热压7s,然后1550℃下共烧3h,得到本对比例的片式氧传感器,记为D2。
性能测试:
1、多孔保护层测试:采用电子扫描电镜检测片式氧传感器样品A1-A5多孔保护层各层的平均孔径和厚度。测试结果如表2所示。
表2
Figure G2009101894405D00111
2、孔隙率测试:采用排水法测量片式氧传感器样品A1-A5多孔保护层各层的孔隙率。测试结果如表3所示。
表3
孔隙率(%) A1 A2 A3 A4 A5
过渡层 28 28 18 34 20
多孔层 37 37 25 45 25
致密层 22 22 20 28 22
3、灵敏度测试:采用汽车行业标准QC/T803.1-2008公开的方法测试A1-A5和D1-D2的响应时间。测试结果如表4所示。
4、抗热震性测试:将片式氧传感器样品A1-A5和D1-D2升温至600℃,保温30min,然后放入水中急剧冷却,检测多孔保护层是否出现裂纹或者脱落;若未脱落,记为1次。重复实验,记录实验次数。测试结果如表4所示。
5、使用寿命测试:采用样品A1-A5和D1-D2在试车道上进行路试,测试行驶路程,即为片式氧传感器的使用寿命。测试结果如表4所示。
表4
  样品   响应时间   抗热震性   使用寿命(km)
  A1   76ms   >30次   14万
  A2   76ms   >30次   16万
  A3   77ms   >30次   10万
  A4   79ms   >30次   12万
  A5   80ms   >30次   15万
  D1   78ms   7次   8.5万
  D2   110ms   25次   10.5万
通过表2和3的测试结果,可以看出本发明的片式氧传感器的多孔保护层为三层结构,其中过渡层的平均孔径为0.1-2.5μm,厚度为35-43μm,孔隙率为20-40%;多孔层的平均孔径为0.1-3.5μm,厚度为37-45μm,孔隙率为30-50%;致密层的平均孔径为2-3μm,厚度为15-18μm,孔隙率为20-40%。
通过表4的测试结果,可以看出,本发明的片式氧传感器与现有技术相比,响应时间为76-80ms,抗热震实验达到30次以上,使用寿命为10万km里以上。

Claims (15)

1.一种片式氧传感器,所述片式氧传感包括加热体和加热体上部的测氧体;
所述加热体,包括加热器基片、加热器基片上方的两个绝缘层和夹持于两绝缘层间的加热电极;所述测氧体,从下至上依次包括参比气基片、测氧电解质层和多孔保护层;
其特征在于,所述多孔保护层,从下至上依次包括过渡层、多孔层和致密层,各层上均具有孔洞使多孔保护层从下至上连通;所述过渡层含有氧化锆和镁铝尖晶石,过渡层的平均孔径为0.1-2.5μm,孔隙率为20-40%;所述多孔层含有氧化锆、镁铝尖晶石和贵金属,多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%;所述致密层为氧化锆,致密层的平均孔径为2-3μm,孔隙率为20-40%。
2.根据权利要求1所述的片式氧传感器,其特征在于:参比气基片上设有参比气通道;所述测氧电解质层包括氧化锆敏感基体和氧化锆敏感基体上下表面的外电极和内电极;内电极位于参比气通道中,且与大气连通;过渡层覆盖外电极表面。
3.根据权利要求1所述的片式氧传感器,其特征在于:过渡层的厚度为10-60μm,多孔层的厚度为10-60μm,致密层的厚度为10-50μm。
4.根据权利要求1或3所述的片式氧传感器,其特征在于:以过渡层的质量为基准,氧化锆的含量为30-65%,镁铝尖晶石的含量为20-55%。
5.根据权利要求1或3所述的片式氧传感器,其特征在于:以多孔层的质量为基准,氧化锆的含量为10-40%,镁铝尖晶石的含量为50-85%,贵金属的质量为0.1-2%。
6.根据权利要求1所述的片式氧传感器,其特征在于:致密层的孔洞呈锥形,孔洞从上至下尺寸增大。
7.根据权利要求1所述的片式氧传感器,其特征在于:致密层的面积大于多孔层的面积,致密层的面积大于过渡层的面积。
8.权利要求1所述的片式氧传感器的制备方法,其特征在于,包括以下步骤:1)在加热器基片上涂覆绝缘层浆料、电极浆料、绝缘层浆料,烘干,在加热器基片上形成绝缘层,得到第一片层;取一参比气基片,作为第二片层;
2)在测氧电解质层上丝网印刷过渡层浆料,形成过渡层;过渡层浆料中含有氧化锆、镁铝尖晶石和第一成孔剂;丝网印刷多孔层浆料,在过渡层上形成多孔层;多孔层浆料中含有氧化锆、镁铝尖晶石、贵金属和第二成孔剂;得到第三片层;取一氧化锆流延片,激光打孔,即得到致密层,作为第四片层;
3)第一片层的绝缘层的一面朝上,第三片层的多孔层的一面朝上,将第一片层、第二片层、第三片层、第四片层从下到上依次叠加,将叠层热压、共烧得到片式氧传感器,其中过渡层的平均孔径为0.1-2.5μm,孔隙率为20-40%;多孔层的平均孔径为0.1-3.5μm,孔隙率为30-50%;致密层的平均孔径为2-3μm,孔隙率为20-40%。
9.根据权利要求8所述的制备方法,其特征在于:第一成孔剂的平均粒径为1.8-4μm,第二成孔剂的平均粒径为1.8-5μm。
10.根据权利要求8所述的制备方法,其特征在于:过渡层浆料的用量为2.0-4.0mg/cm2,多孔层浆料的用量为1.6-3.8mg/cm2,氧化锆流延片的厚度为10-50μm。
11.根据权利要求8或9所述的制备方法,其特征在于:以过渡层浆料的重量为基准,氧化锆的含量30-65%、镁铝尖晶石的含量为20-55%、第一成孔剂的含量为2-10%。
12.根据权利要求8或9所述的制备方法,其特征在于:以多孔层浆料的重量为基准,氧化锆的含量30-65%、镁铝尖晶石的含量为20-55%、贵金属的含量为0.1-2%,第二成孔剂的含量为2-10%。
13.根据权利要求9所述的制备方法,其特征在于:所述第一成孔剂、第二成孔剂各自独立为碳酸钙、活性炭或聚甲基丙烯酸甲酯中的至少一种。
14.根据权利要求8所述的制备方法,其特征在于:致密层的面积大于多孔层的面积,致密层的面积大于过渡层的面积。
15.根据权利要求8所述的制备方法,其特征在于:所述激光打孔的条件包括:激光功率为5-25w,频率为25-50Hz,打孔时间为4-20s;热压的条件包括:热压温度为40-80℃,热压时间为2-8s;共烧的条件包括:共烧温度为1400-1650℃,共烧时间为0.5-4h。
CN 200910189440 2009-12-25 2009-12-25 一种片式氧传感器及其制备方法 Active CN102109488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910189440 CN102109488B (zh) 2009-12-25 2009-12-25 一种片式氧传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910189440 CN102109488B (zh) 2009-12-25 2009-12-25 一种片式氧传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN102109488A true CN102109488A (zh) 2011-06-29
CN102109488B CN102109488B (zh) 2013-07-03

Family

ID=44173705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910189440 Active CN102109488B (zh) 2009-12-25 2009-12-25 一种片式氧传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN102109488B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426182A (zh) * 2011-09-26 2012-04-25 中国兵器工业集团第二一四研究所苏州研发中心 一种摩托车片式氧传感器的制作方法
CN102608182A (zh) * 2012-02-20 2012-07-25 曾咏平 一种氧传感器片芯及其制造方法
CN102616036A (zh) * 2012-04-10 2012-08-01 无锡隆盛科技有限公司 能降低片式氧传感器起燃时间的加热器的制造方法
CN102788829A (zh) * 2012-07-16 2012-11-21 中国科学院宁波材料技术与工程研究所 一种片式氧传感器电极表面的多孔保护层及其制备方法
DE102012104688A1 (de) 2012-05-30 2013-12-05 Hamilton Bonaduz Ag Optisches Sensorelement
CN103776872A (zh) * 2014-01-15 2014-05-07 深圳市普利斯通传感科技有限公司 一种基于氧化物保护浆料的车用氧传感器及其制造方法
CN104297319A (zh) * 2013-07-17 2015-01-21 苏州衡业新材料科技有限公司 新型片式氧传感器
CN106198680A (zh) * 2016-10-09 2016-12-07 苏州攀特电陶科技股份有限公司 片式氧传感器芯片
CN106823844A (zh) * 2017-01-23 2017-06-13 广东风华高新科技股份有限公司 多孔薄膜及其制备方法
CN108693234A (zh) * 2017-03-31 2018-10-23 日本碍子株式会社 传感器元件
CN113121266A (zh) * 2019-12-30 2021-07-16 比亚迪股份有限公司 陶瓷塑料复合体及制备方法和陶瓷塑料复合体及其壳体
CN114761792A (zh) * 2019-12-17 2022-07-15 日本碍子株式会社 气体传感器的传感器元件及朝向传感器元件的保护层形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2456166Y (zh) * 2000-12-28 2001-10-24 康达(成都)电子有限公司 氧传感器
JP2005351737A (ja) * 2004-06-10 2005-12-22 Hitachi Ltd 酸素濃度検出素子
CN101542276A (zh) * 2006-02-23 2009-09-23 Sng国际公司 具有保护层的氧气传感器
CN101000320A (zh) * 2006-12-25 2007-07-18 杨世养 一种片式氧传感器及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426182A (zh) * 2011-09-26 2012-04-25 中国兵器工业集团第二一四研究所苏州研发中心 一种摩托车片式氧传感器的制作方法
CN102608182A (zh) * 2012-02-20 2012-07-25 曾咏平 一种氧传感器片芯及其制造方法
CN102616036A (zh) * 2012-04-10 2012-08-01 无锡隆盛科技有限公司 能降低片式氧传感器起燃时间的加热器的制造方法
CN102616036B (zh) * 2012-04-10 2013-12-25 无锡隆盛科技股份有限公司 能降低片式氧传感器起燃时间的加热器的制造方法
DE102012104688A1 (de) 2012-05-30 2013-12-05 Hamilton Bonaduz Ag Optisches Sensorelement
WO2013178723A1 (de) 2012-05-30 2013-12-05 Hamilton Bonaduz Ag Optisches sensorelement
CN102788829A (zh) * 2012-07-16 2012-11-21 中国科学院宁波材料技术与工程研究所 一种片式氧传感器电极表面的多孔保护层及其制备方法
CN102788829B (zh) * 2012-07-16 2014-10-08 中国科学院宁波材料技术与工程研究所 一种片式氧传感器电极表面的多孔保护层及其制备方法
CN104297319A (zh) * 2013-07-17 2015-01-21 苏州衡业新材料科技有限公司 新型片式氧传感器
CN103776872B (zh) * 2014-01-15 2016-04-06 深圳市普利斯通传感科技有限公司 一种基于氧化物保护浆料的车用氧传感器及其制造方法
CN103776872A (zh) * 2014-01-15 2014-05-07 深圳市普利斯通传感科技有限公司 一种基于氧化物保护浆料的车用氧传感器及其制造方法
CN106198680A (zh) * 2016-10-09 2016-12-07 苏州攀特电陶科技股份有限公司 片式氧传感器芯片
WO2018064888A1 (zh) * 2016-10-09 2018-04-12 苏州攀特电陶科技股份有限公司 片式氧传感器芯片
CN106823844A (zh) * 2017-01-23 2017-06-13 广东风华高新科技股份有限公司 多孔薄膜及其制备方法
CN106823844B (zh) * 2017-01-23 2019-09-27 广东风华高新科技股份有限公司 多孔薄膜及其制备方法
CN108693234A (zh) * 2017-03-31 2018-10-23 日本碍子株式会社 传感器元件
CN108693234B (zh) * 2017-03-31 2022-06-03 日本碍子株式会社 传感器元件
CN114761792A (zh) * 2019-12-17 2022-07-15 日本碍子株式会社 气体传感器的传感器元件及朝向传感器元件的保护层形成方法
CN113121266A (zh) * 2019-12-30 2021-07-16 比亚迪股份有限公司 陶瓷塑料复合体及制备方法和陶瓷塑料复合体及其壳体
CN113121266B (zh) * 2019-12-30 2022-10-18 比亚迪股份有限公司 陶瓷塑料复合体及制备方法和陶瓷塑料复合体及其壳体

Also Published As

Publication number Publication date
CN102109488B (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
CN102109488B (zh) 一种片式氧传感器及其制备方法
CN102109486B (zh) 一种片式氧传感器及其制备方法
CN102235994B (zh) 一种片式氧传感器及其制备方法
EP1739416B1 (en) Plural-cell gas sensor with heater
CN100387979C (zh) 具有包括固体电解质层和氧化铝基片的叠层的气体传感器
US8372256B2 (en) Gas sensor element and gas sensor equipped with the same
CN101042366A (zh) 平板式氧传感器芯片的制造方法
CN102954993A (zh) 一种氧传感器及其制备方法
CN102053112A (zh) 一种片式氧传感器及其制备方法
CN102288664B (zh) 一种片式氧传感器的制造方法及片式氧传感器
CN101943675B (zh) 片式宽域标准信号输出车用氧传感器
CN102798653A (zh) 一种车用片式结构氧传感器及其制备方法
CN102411018B (zh) 一种片式氧传感器
CN102478538A (zh) 一种片式氧传感器及其制备方法
US7169724B2 (en) Alumina sintered body and method for producing the same
CN201757743U (zh) 片式宽域标准信号输出车用氧传感器
CN102376378B (zh) 一种加热电极浆料和加热电极、以及含有该加热电极的片式氧传感器
US20180284089A1 (en) Sensor element
CN108760864B (zh) 无需额外绝缘和弯曲补偿的片式氧传感器及其制备方法
CN108760822B (zh) 一种含有两部分氧化锆结构的片式氧传感器及其制备方法
CN108693233B (zh) 传感器元件
JP6877219B2 (ja) センサ素子
WO2001073418A2 (en) High temperature poison resistant sensor
CN219065356U (zh) 一种带过渡层的氮氧传感器芯片
JP4579636B2 (ja) ガスセンサの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant