CN102087380A - 弯曲损耗低且包层效应降低的多模光纤 - Google Patents
弯曲损耗低且包层效应降低的多模光纤 Download PDFInfo
- Publication number
- CN102087380A CN102087380A CN2010105794822A CN201010579482A CN102087380A CN 102087380 A CN102087380 A CN 102087380A CN 2010105794822 A CN2010105794822 A CN 2010105794822A CN 201010579482 A CN201010579482 A CN 201010579482A CN 102087380 A CN102087380 A CN 102087380A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- refractive index
- microns
- multimode
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005253 cladding Methods 0.000 title claims abstract description 181
- 239000013307 optical fiber Substances 0.000 title claims abstract description 130
- 238000005452 bending Methods 0.000 title claims abstract description 31
- 230000000694 effects Effects 0.000 title abstract description 17
- 239000000835 fiber Substances 0.000 claims description 70
- 230000000994 depressogenic effect Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 206010027146 Melanoderma Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0288—Multimode fibre, e.g. graded index core for compensating modal dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03622—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
- G02B6/03627—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/0365—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Communication System (AREA)
- Glass Compositions (AREA)
Abstract
本发明涉及一种弯曲损耗低且包层效应降低的多模光纤,其包括具有相对于外包层的α折射率分布的中央纤芯。该光纤还包括内包层、凹槽和外包层。通常,该中央纤芯的α折射率分布在相对于外包层的折射率差为正的点处中断。该光纤实现了弯曲损耗降低,并且实现了针对高数据速率应用的包层效应降低的高带宽。
Description
技术领域
本发明涉及光纤传输领域,尤其涉及一种弯曲损耗降低并且具有针对高数据速率应用的高带宽的多模光纤。
背景技术
传统上,光纤(即,通常由一个或多个包覆层围绕的玻璃纤维)包括传输和/或放大光信号的光纤芯和将光信号限制在纤芯内的光包层。因此,纤芯的折射率nc通常大于光包层的折射率ng(即,nc>ng)。
对于光纤,折射率分布通常根据将折射率和光纤半径相关联的函数的图形外观来分类。传统上,在x轴上示出相对于光纤中心的距离r,并且在y轴上示出(半径r处的)折射率和光纤的外包层(例如,外光包层)的折射率之间的差。对于具有阶梯、梯形、α(alpha)或三角形的各个形状的图形,折射率分布被称为“阶梯”分布、“梯形”分布、“α”分布或“三角形”分布。这些曲线通常代表光纤的理论分布或设定分布。然而,制造光纤时的限制可能导致略微不同的实际分布。
一般而言,主要存在多模光纤和单模光纤这两类光纤。在多模光纤中,对于给定波长,几种光模式沿着光纤同时传播,而在单模光纤中,高阶模式被大幅衰减。单模玻璃纤维或多模玻璃纤维的直径通常为125微米。多模光纤的纤芯的直径通常约为50微米~62.5微米,而单模光纤的纤芯的直径通常约为6微米~9微米。由于可以以较低的成本获得多模光源、连接器和维护,因此与单模系统相比,多模系统通常不太昂贵。
多模光纤通常用于诸如本地网络或LAN(局域网)等要求宽带宽的短距离应用。多模光纤已经成为ITU-T G.651.1推荐下的国际标准的主题,其中,ITU-T G.651.1推荐特别定义与光纤兼容性的要求有关的标准(例如,带宽、数值孔径和纤芯直径)。
另外,已经采用OM3标准以满足长距离(即,大于300米的距离)的高带宽应用(即,高于1GbE的数据速率)的要求。随着高带宽应用的发展,多模光纤的平均纤芯直径已从62.5微米缩减至50微米。
通常,光纤应当具有尽可能宽的带宽以在高带宽应用中有良好表现。对于给定波长,光纤的带宽的特征可以表现在几个不同的方面。通常,在所谓的“过满注入(overfilled launch)”条件(OFL)带宽和所谓的“有效模式带宽(effective modalbandwidth)”条件(EMB)之间进行区别。获取OFL带宽假定使用在光纤的整个径向面上展现均匀激发的光源(例如,使用激光二极管或发光二极管(LED))。
最近研发的诸如VC SEL(Vertical Cavity Surface EmittingLaser,垂直腔面发射激光器)等的高带宽应用中使用的光源在光纤的径向面上展现出不均匀激发。对于这类光源,OFL带宽是不太适当的测量值,因此优选使用有效模式带宽(EMB)。所计算出的有效带宽(EMBc)在不依赖于所使用的VCSEL的类型的情况下估计多模光纤的最小EMB。通过(例如,在FOTP-220标准中所述的)差分模式延迟(DMD,differential-mode-delay)测量来获得该EMBc。
可以在FOTP-220标准中找到测量DMD并计算有效模式带宽的示例性方法。在以下出版物中说明了更多与该技术有关的详细内容:P.F.Kolesar and D.J.Mazzarese,“UnderstandingMultimode Bandwidth and Differential Mode Delay Measurementsand Their Applications,”Proceedings of the 51st InternationalWire and Cable Symposium,pp.453-460;以及D.Coleman andPhilip Bell,“Calculated EMB Enhances 10GbE PerformanceReliability for Laser-Optimized 50/125μm Multimode Fiber,”Corning Cable Systems Whitepaper。
图1示出根据FOTP-220标准的如于2002年11月22日在TIASCFO-6.6版本中公开的标准的DMD测量的示意图。图1示意性表示光纤的一部分(即,由外包层围绕的光纤芯)。通过向多模光纤连续注入在各连续脉冲之间存在径向偏移的给定波长λ0的光脉冲,来获得DMD图。然后,在给定的纤维长度L之后测量各脉冲的延迟。注入相对于多模光纤的纤芯的中心具有不同径向偏移的多个相同的光脉冲(即,振幅、波长和频率相同的光脉冲)。在图1中,将所注入的光脉冲描绘为光纤的纤芯上的黑点。为了表现直径为50微米的光纤的特征,FOTP-220标准推荐执行至少24次单独测量(即,采用24个不同的径向偏移值)。通过这些测量,可以确定模式色散(modal dispersion)和计算出的有效模式带宽(EMBc)。
TIA-492AAAC-A标准规定了以太网(Ethernet)高带宽传输网络应用中长距离时使用的直径为50微米的多模光纤的性能要求。OM3标准在波长850纳米时要求至少2,000MHz·km的EMB。OM3标准确保距离长达300米、数据速率为10Gb/s(10GbE)的无差错传输。OM4标准在波长850纳米时要求至少4,700MHz·km的EMB,以获得距离长达550米、数据速率为10Gb/s(10GbE)的无差错传输。
在多模光纤中,几种模式沿着光纤的传播时间或组延迟时间之间的差决定了光纤的带宽。特别地,对于同一传播介质(即,在阶梯折射率多模光纤中),不同模式的组延迟时间不同。组延迟时间的该差导致在沿着光纤的不同径向偏移传播的脉冲之间产生时滞(time lag)。
例如,如图1右侧的图所示,在各个脉冲之间观察到时滞。该图1的图根据其以微米为单位的径向偏移(y轴)和脉冲通过光纤的给定长度所需的以纳秒为单位的时间(x轴)来描绘各个脉冲。
如图1所示,沿着x轴峰值的位置变化,这表示各个脉冲之间存在时滞(即,延迟)。该延迟导致由此产生的光脉冲变宽。光脉冲变宽使该脉冲叠加在尾随脉冲上的风险增大,并且使光纤所支持的带宽(即,数据速率)减小。因此,带宽与在光纤的多模纤芯中传播的光模式的组延迟时间直接相关联。因而,为了确保宽带宽,期望所有模式的组延迟时间均相同。换句话说,对于给定波长,模间色散(intermodal dispersion)应当为0,或者至少应当使模间色散最小。
为了减少模间色散,远程通信时使用的多模光纤通常具有折射率从光纤中心向着中心与包层的界面逐渐减小的纤芯(即,“α”纤芯分布)。这种光纤已经使用了很多年,并且在D.Gloge等人发表的“Multimode Theory of Graded-Core Fibers”,Bellsystem Technical Journal 1973,pp.1563-1578中描述了这种光纤的特性,并且在G.Yabre发表的“Comprehensive Theory ofDispersion in Graded-Index Optical Fibers”,Journal ofLightwave Technology,February 2000,Vol.18,No.2,pp·166-177中概括了这种光纤的特性。
可以根据以下等式,通过折射率值n和相对于光纤中心的距离r之间的关系来说明渐变折射率分布(即,α折射率分布)。
其中,
α≥1,并且α是表示折射率分布的形状的无因次参数;
n1是光纤纤芯的最大折射率;
a是光纤纤芯的半径;以及
其中,n0是多模纤芯的最小折射率,其可以与(最常见是由二氧化硅制成的)外包层的折射率相对应。
因此,具有渐变折射率(即,α分布)的多模光纤具有旋转对称的纤芯分布,以使得沿着该光纤的任何径向方向,折射率的值从该光纤纤芯的中心向着其外围连续减小。当多模光信号在这种渐变折射率的纤芯中传播时,不同的光模式经历不同的传播介质(这是由于折射率在变化)。而不同的传播介质对各光模式的传播速度产生不同的影响。因而,通过调整参数α的值,可以获得对于所有模式实际上均相等的组延迟时间。换句话说,可以修改折射率分布以减少或甚至消除模间色散。
然而,实际上,所制造的多模光纤具有由折射率恒定的外包层所围绕的渐变折射率的中央纤芯。纤芯-包层界面中断该纤芯的α折射率分布。结果,多模光纤的纤芯与在理论上完美的α分布(即。α设定分布)根本不对应。外包层使高阶模式相对于低阶模式加速。该现象被称为“包层效应(cladding effect)”。在DMD测量时,针对最高的径向位置(即,离外包层最近)所获取的响应展现多个脉冲,这导致响应信号的时间扩散。因此,带宽因该包层效应而变小。
多模光纤通常用于诸如局域网(LAN)等要求宽带宽的短距离应用。在这些应用中,可以对光纤进行偶然弯曲或无意弯曲,从而可以修改光纤的模式功率分布和带宽。
因此,期望实现不受曲率半径为10毫米以下的弯曲影响的多模光纤。所提出的一个解决方案涉及在纤芯和包层之间添加凹槽。然而,该沟道的位置和深度可能对光纤的带宽产生极大影响。
公开号为JP2006/47719A的日本专利公开了在其包层中具有凹槽的渐变折射率的光纤。然而,所公开的光纤展现比所期望的弯曲损耗高的弯曲损耗以及相对低的带宽。此外,没有提到所公开的光纤的包层效应。
国际公开WO-A-2008/085851公开了在其包层中具有凹槽的渐变折射率的光纤。然而,所公开的光纤展现相对低的带宽,并且没有提到其包层效应。
公开号为2009/0154888的美国专利公开了在其包层中具有凹槽的渐变折射率的光纤。然而,所公开的光纤展现相对地的带宽,并且没有提到其包层效应。
欧洲专利EP0131729公开了在其包层中具有凹槽的渐变折射率的光纤。根据该文献,为了实现高带宽,渐变折射率分布的纤芯的端部和凹槽的开头之间的距离应当为0.5微米~2微米。然而,所公开的光纤展现比所期望的弯曲损耗高的弯曲损耗。此外,没有提到所公开的光纤的包层效应。
因此,需要一种弯曲损耗降低并且具有针对高数据速率应用的包层效应降低的高带宽的渐变折射率的多模光纤。
发明内容
根据一个方面,本发明涉及一种包含由外包层所围绕的中央纤芯的多模光纤。该中央纤芯具有(i)外径r1、(ii)大于0的相对于外包层的最小折射率差Δnend、和(iii)相对于外包层的α折射率分布。该α折射率分布在中央纤芯的外径r1处和最小折射率差Δnend处中断。该α折射率分布定义理论半径r1zero,该理论半径r1zero是在α折射率分布在中央纤芯的外径r1处未中断(即,截平)的情况下、中央纤芯和外包层之间的折射率差将为0的径向距离。
内包层位于中央纤芯和外包层之间(例如,紧挨着围绕中央纤芯)。该内包层具有(i)外径r2、(ii)宽度w2和(iii)相对于外包层的折射率差Δn2。凹槽位于内包层和外包层之间(例如,紧挨着围绕内包层)。该凹槽具有(i)外径rout、(ii)宽度w3和(iii)相对于外包层的折射率差Δn3。
通常,内包层的外径r2和α折射率分布的理论半径r1zero之间的差约大于0.5微米且小于2微米(例如,约为0.5微米~1.5微米)。此外,内包层的折射率差Δn2和凹槽的折射率差Δn3通常满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
换言之,本发明涉及一种多模光纤,其从中心到外周包括:-中央纤芯,其具有外径r1、大于0的相对于外包层的最小折射率差Δnend和相对于所述外包层的α折射率分布,所述α折射率分布在所述中央纤芯的外径r1处中断,所述α折射率分布定义理论半径r1zero;-内包层,其具有外径r2、宽度w2和相对于所述外包层的折射率差Δn2;-凹槽,其具有外径rout、宽度w3和相对于所述外包层的折射率差Δn3;以及-所述外包层;其中,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约大于0.5微米且小于2微米;其中,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
换言之,本发明涉及一种多模光纤,包括:由外包层围绕的中央纤芯,所述中央纤芯具有(i)外径r1、(ii)大于0的相对于所述外包层的最小折射率差Δnend和(iii)相对于所述外包层的α折射率分布,其中,所述α折射率分布在所述中央纤芯的外径r1处中断,所述α折射率分布定义理论半径r1zero;位于所述中央纤芯和所述外包层之间的内包层,所述内包层具有(i)外径r2、(ii)宽度w2和(iii)相对于所述外包层的折射率差Δn2;位于所述内包层和所述外包层之间的凹槽,所述凹槽具有(i)外径rout、(ii)宽度w3和(iii)相对于所述外包层的折射率差Δn3;其中,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约大于0.5微米且小于2微米;其中,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
在实施例中,所述中央纤芯的α折射率分布的α参数α约为1.9~2.1(例如,约为2.0~2.1)。
在另一实施例中,所述中央纤芯相对于所述外包层的最大折射率差Δn1约为11×10-3~16×10-3。
在又一实施例中,所述α折射率分布的理论半径r1zero约为23微米~27微米。
在又一实施例中,所述内包层紧挨着围绕所述中央纤芯,并且所述凹槽紧挨着围绕所述内包层。
在又一实施例中,所述中央纤芯的最小折射率差Δnend等于所述内包层的折射率差Δn2。
在又一实施例中,所述内包层的折射率差Δn2约为0.2×10-3~2×10-3。
在又一实施例中,所述凹槽的外径rout约为32微米以下(例如,约为30微米以下)。
在又一实施例中,所述凹槽的折射率差Δn3约为-15×10-3~-3×10-3。
在又一实施例中,所述凹槽的宽度w3约为3微米~6微米,优选约为3微米~5微米。
在一个特定实施例中,所述凹槽的体积v3约为200%·μm2~1,200%·μm2(例如,约为250%·μm2~750%·μm2)。
在又一实施例中,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约小于1.5微米(例如,0.75~1.25微米)。
在又一实施例中,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3通常满足以下不等式:
-13.6×(1000Δn2)2-5.2<1000Δn3<-18.1×(1000Δn2)2+13.5×(1000Δn2)-7。
在又一实施例中,在波长850纳米处,对于弯曲半径为15毫米的两匝(turn around),所述多模光纤的弯曲损耗约小于0.1dB(例如,约小于0.05dB)。
在又一实施例中,在波长850纳米处,对于弯曲半径为10毫米的两匝,所述多模光纤的弯曲损耗约小于0.3dB(例如,约小于0.1dB)。
在又一实施例中,在波长850纳米处,对于弯曲半径为7.5毫米的两匝,所述多模光纤的弯曲损耗约小于0.4dB(例如,约小于0.2dB)。
在又一实施例中,在波长850纳米处,对于弯曲半径为7.5毫米的两匝,所述多模光纤的弯曲损耗约小于0.1dB(例如,约小于0.01dB)。
在又一实施例中,在波长850纳米,对于弯曲半径为5毫米的两匝,所述多模光纤的弯曲损耗约小于1dB(例如,约小于0.3dB)。
在又一实施例中,在波长850纳米处,对于弯曲半径为5.5毫米的半匝,所述多模光纤的弯曲损耗约小于0.1dB。
在又一实施例中,在波长850纳米处,所述多模光纤的OFL带宽通常至少约为1,500MHz·km(例如,至少约为3,500MHz·km),更常见是至少约为6,000MHz·km,再更常见是至少约为8,000MHz·km(例如,至少约为10,000MHz·km)。
在又一实施例中,所述多模光纤的数值孔径为0.2±0.015(即,0.185~0.215)。
在又一实施例中,在波长850纳米处,所述多模光纤的外部DMD值通常约小于0.33ps/m,更常见为约小于0.25ps/m(例如,约小于0.14ps/m,诸如0.1ps/m以下等)。
在又一实施例中,所述中央纤芯的半径r1为25±1.5微米;以及在波长850纳米处,所述多模光纤的外部DMD值(0~23微米)约小于0.25ps/m。
在又一实施例中,所述中央纤芯的半径r1为25±1.5微米;以及在波长850纳米处,所述多模光纤的外部DMD值(0~23微米)约小于0.14ps/m。
在又一实施例中,所述中央纤芯的半径r1约为23.5微米~26.5微米;以及在波长850纳米处,所述多模光纤的外部DMD值(0~23微米)约小于0.1ps/m。
在另一特定实施例中,本发明涉及一种多模光纤,包括:
-由外包层围绕的中央纤芯,所述中央纤芯具有(i)外径r1、(ii)约为11×10-3~16×10-3的最大折射率差Δn1、(iii)大于0的相对于所述外包层的最小折射率差Δnend和(iv)相对于所述外包层的α折射率分布,其中,所述α折射率分布在所述中央纤芯的外径r1处中断,所述α折射率分布定义理论半径r1zero;
-位于所述中央纤芯和所述外包层之间的内包层,所述内包层具有(i)外径r2、(ii)宽度w2和(iii)约为0.2×10-3~2×10-3的相对于所述外包层的折射率差Δn2;
-位于所述内包层和所述外包层之间的凹槽,所述凹槽具有(i)外径rout、(ii)宽度w3和(iii)约为-15×10-3~-3×10-3的相对于所述外包层的折射率差Δn3;
-其中,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约大于0.5微米且小于2微米;并且其中,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
在又一特定实施例中,本发明涉及一种多模光纤,包括:
-由外包层围绕的中央纤芯,所述中央纤芯具有(i)外径r1、(ii)大于0的相对于所述外包层的最小折射率差Δnend和(iii)相对于所述外包层的α折射率分布,其中,所述α折射率分布在所述中央纤芯的外径r1处中断,所述α折射率分布定义理论半径r1zero;
-位于所述中央纤芯和所述外包层之间的内包层,所述内包层具有(i)外径r2、(ii)宽度w2和(iii)相对于所述外包层的折射率差Δn2;
-位于所述内包层和所述外包层之间的凹槽,所述凹槽具有(i)约小于32微米的外径rout、(ii)宽度w3和(iii)相对于所述外包层的折射率差Δn3;
-其中,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约大于0.5微米且小于2微米;并且其中,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
根据另一方面,本发明涉及一种包含根据前述的光纤的一部分的光纤系统。通常,该光纤系统在约100米的距离内的数据速率至少约为10Gb/s。在一个实施例中,该光纤系统在约300米的距离内的数据速率至少约为10Gb/s。
在以下的详细说明及其附图内,进一步解释本发明的前述示例性发明内容以及其它的示例性目的和/或优点、以及实现这些的方式。
附图说明
图1示意性示出典型的DMD测量方法和图。
图2图示说明根据本发明的光纤的折射率分布。
图3图示说明作为中央纤芯的α折射率分布的α参数的函数的过满注入条件(OFL)带宽。
图4图示说明作为中央纤芯的α折射率分布的α参数的函数的、波长850纳米处与0~23微米的外部掩模有关的差分模式延迟值(外部DMD)。
图5图示说明作为有效折射率差(Δneff)的函数的弯曲损耗。
具体实施方式
本发明包括实现了弯曲损耗降低并且实现了针对高数据速率应用的包层效应降低的高带宽的多模光纤。
图2示出根据本发明的示例性光纤的折射率分布。该光纤包括中央纤芯,该中央纤芯具有外径r1和相对于围绕该中央纤芯的外包层(例如,外光包层)的α折射率分布(alpha-index profile)。通常,该纤芯的半径r1约为25微米。中央纤芯和外包层之间的折射率差的最大值Δn1通常约为11×10-3~16×10-3。
如图2所示,中央纤芯的α折射率分布在相对于外包层的正的折射率差Δnend处中断。换言之,中央纤芯和外包层之间的折射率差的最小值Δnend通常大于0。
此外,中央纤芯的α折射率分布定义理论半径r1zero,该理论半径r1zero是在α折射率分布在正的折射率差Δnend处未中断的情况下、中央纤芯和外包层之间的折射率差将为0的径向距离。因而,中央纤芯的理论半径r1zero通常大于中央纤芯的实际外径r1。这就是说,如果中央纤芯相对于外包层的最小折射率差Δnend为0,则中央纤芯的理论半径r1zero等于中央纤芯的外径r1。通常,中央纤芯的理论半径r1zero约为25微米~27微米。
中央纤芯通常具有α参数约为1.9~2.1的α分布。在特定实施例中,中央纤芯具有α参数约为2.0~2.1的α分布,例如中央纤芯具有α参数约为2.04~2.08(例如,2.06~2.08)的α分布。在另一特定实施例中,中央纤芯具有α参数约为2.05~2.08(例如,2.06~2.07)的α分布。
由于成本的原因,外包层通常由天然二氧化硅制成,但可选地,外包层可以由掺杂二氧化硅制成。
光纤包括位于中央纤芯和外包层之间的内包层。在一个实施例中,该内包层紧挨着围绕中央纤芯。内包层的外径为r2,宽度为w2,并且相对于外包层的折射率差为Δn2。通常,内包层的外径r2为0.5μm≤r2-r1zero<2μm。更常见地,内包层的外径r2为0.5μm≤r2-r1zero≤1.5μm。内包层和外包层之间的折射率差Δn2通常约为0.2×10-3~2×10-3。在实施例中,内包层和外包层之间的折射率差Δn2等于中央纤芯和外包层之间的最小折射率差Δnend。通常,内包层的折射率差Δn2是恒定的(即,内包层为矩形)。内包层的宽度w2通常约为0.5微米~4微米。
光纤通常包括位于内包层和外包层之间的凹槽。例如,该凹槽可以紧挨着围绕内包层。凹槽的外径为rout,宽度为w3,并且相对于外包层的折射率差为Δn3。凹槽的宽度w3通常约为3微米~6微米(μm)。
通常,使用术语“凹槽”来描述光纤的折射率大致小于外包层的折射率的径向部分。在这方面,凹槽的折射率差Δn3通常约为-15×10-3~-3×10-3,并且更常见是约为-10×10-3~-5×10-3。
内包层的折射率差Δn2和凹槽的折射率差Δn3便于实现低弯曲损耗。此外,内包层的折射率差Δn2和凹槽的折射率差Δn3便于实现包层效应降低的高带宽。
在这方面,内包层的折射率差Δn2和凹槽的折射率差Δn3通常满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
该关系(即,(i)内包层的折射率差Δn2和(ii)凹槽的折射率差Δn3之间的关系)使得可以实现低弯曲损耗和高带宽这两者。
在特定实施例中,内包层的折射率差Δn2和凹槽的折射率差Δn3还满足以下不等式:
-13.6×(1000Δn2)2-5.2<1000Δn3<-18.1×(1000Δn2)2+13.5×(1000Δn2)-7。
一般来说,还可以使用以下等式将相对于外包层的折射率差表示为百分比。
其中,n(r)是作为径向位置的函数的比较折射率值(例如,凹槽的折射率n3),并且ncladding是外包层的折射率值。本领域普通技术人员能理解,如果折射率在光纤的给定区段内变化(即,折射率值作为径向位置的函数而变化),或者如果折射率在给定区段内恒定,则可以使用该等式。
本领域普通技术人员能理解,外包层的折射率通常是恒定的。这就是说,如果外包层的折射率不是恒定的,则通常相对于外包层的最内部分(即,外包层的离中央纤芯最近并且可能影响光信号在光纤内的传播的部分)来测量光纤的区段和外包层之间的折射率差(例如,Δn1、Δn2、Δn3、Δ1%、Δ2%或Δ3%)。
还可以利用以下等式将相对于外包层的恒定的折射率差表示为百分比。
其中,n是比较折射率(例如,凹槽的折射率n3),并且ncladding是外包层的折射率。
如这里所使用的,利用以下等式来定义凹槽的体积v。
其中,rext和rint分别是凹槽的外径和内径(例如,内包层的外径r2),并且Δ%(r)是以百分比表示的、凹槽相对于外包层的折射率差。本领域普通技术人员能理解,可以在非矩形沟道和矩形沟道这两者的情况下使用该等式。
如果凹槽具有矩形形状(即,阶梯折射率分布),则可以将上面的等式简化成以下等式。
v=Δ%×π×(rext 2-rint 2)
其中,rext和rint分别是凹槽的外径和内径,并且Δ%是以百分比表示的、凹槽相对于外包层的折射率差。
因而,在包括紧挨着围绕内包层的凹槽的光纤的实施例中,凹槽具有通过以下等式定义的体积v3。
v3=Δ3%×π×(rout 2-r2 2)或
凹槽的体积vt通常约为200%·μm2~1200%·μm2。凹槽的体积vt更常见是约为250%·μm2~750%·μm2。凹槽的特性便于实现低弯曲损耗。
例如,在波长850纳米处,根据本发明的光纤通常具有以下特性:(i)对于弯曲半径(例如,曲率半径)为15毫米的两匝,弯曲损耗约小于0.1dB(例如,约小于0.05dB),(ii)对于弯曲半径为10毫米的两匝,弯曲损耗约小于0.3dB(例如,约小于0.1dB),(iii)对于弯曲半径为7.5毫米的两匝,弯曲损耗约小于0.4dB(例如,约小于0.2dB),以及(iv)对于弯曲半径为5毫米的两匝,弯曲损耗约小于1dB(例如,约小于0.3dB)。
与传统的光纤设计相比较,本发明的光纤已经提高了带宽。特别地,在波长850纳米处,本发明的光纤的OFL带宽通常约大于1,500MHz·km,更常见为约高于6,000MHz·km(例如,8,000MHz·km以上)。在实施例中,在波长850纳米处,本发明的光纤的OFL带宽至少约为10,000MHz·km(例如,约为12,000MHz·km以上)。
然而,前述OFL带宽不是评价针对高数据速率应用的光纤适用性可以使用的唯一参数。在这方面,限制光纤的包层效应便于提高高数据速率应用时的光纤性能。
还可以使用利用外部掩模所获取的差分模式延迟测量值来评价光纤的包层效应。例如,可以使用FOTP-220标准的方法来获得与外部掩模有关的差分模式延迟值(即,外部DMD)。对于纤芯直径为50±3微米(即,纤芯半径r1为23.5微米~26.5微米)的光纤,使用0~23微米的外部掩模来测量外部DMD。换言之,在从中央纤芯的中心(即,0微米)到23微米的径向偏移范围上,使用DMD方法来测量与0~23微米的外部掩模有关的差分模式延迟值。因而,来自大于23微米的径向偏移的信号被忽略(例如,对于半径为25微米的纤芯而言,来自23~25微米的径向偏移的信号被忽略)。本领域普通技术人员能理解,针对纤芯直径较大或较小的光纤,可以修改外部掩模的尺寸。例如,针对纤芯直径为62.5微米的多模光纤,可以使用尺寸较大(例如,内径和外径较大)的掩模。同样,对于纤芯小于50微米的多模光纤,可以使用尺寸较小(例如,内径和外径较小)的掩模。
从针对在750米的光纤上测量出的DMD的标绘得出该外部DMD。所使用的光源通常为按850纳米发射的脉冲式Ti:蓝宝石激光。该光源以四分之一高度发射小于40皮秒(picoseconde)的脉冲,并且RMS(Root Mean Square,均方根)光谱宽度小于0.1纳米。
根据本发明的光纤的实施例展现提高了的外部DMD延迟。特别地,在波长850纳米处,光纤的实施例通常展现约小于0.33ps/m(例如,小于0.25ps/m,诸如0.14ps/m以下等)的外部DMD延迟值。在典型实施例中,在波长850纳米处,根据本发明的光纤展现约小于0.1ps/m的外部DMD延迟值。
在一些实施例中,光纤采用外径rout小的凹槽,并且具有高带宽和改善了弯曲损耗。光纤的折射率分布使得可以在限制中央纤芯、内包层和凹槽的组合宽度的同时使用高的凹槽体积v3。换言之,由于凹槽的体积,光纤的折射率分布实现了高带宽和低弯曲损耗,然而通常维持了小的凹槽外径rout。
本领域普通技术人员能理解,当正根据光学预制件制造光纤时,外径rout越小,在拉丝之后可以获得的光纤的长度越大。换言之,凹槽的外径rout越小,根据单个光学预制件可以产生的光纤越多。此外,当外径rout小时,比较容易监视中央纤芯的α折射率分布的质量。因而,可以降低光纤的生产成本,并且可以提高光纤的生产速度。
在一些实施例中,凹槽的外径rout约为32微米以下(例如,30微米以下)。另外,在波长850纳米处,光纤的实施例针对弯曲半径为7.5毫米的两匝,弯曲损耗为0.1dB以下(例如,0.01dB以下);针对弯曲半径为5.5毫米的半匝,弯曲损耗为0.1dB以下;并且外部DMD延迟为0.1ps/nm以下(例如,0.06ps/nm以下)。结果,光纤的实施例使得可以在所限定的外径rout的情况下实现低弯曲损耗和高带宽。此外,光纤的实施例便于降低生产成本并提高生成速率。
在一个特定实施例中,本发明的光纤符合OM3标准(即,光纤具有以下特性:(i)在波长850纳米处,有效模式带宽EMB高于2,000MHz·km,(ii)在波长850纳米处,外部DMD低于0.3ps/m,(iii)在波长850纳米处,OFL带宽高于1,500MHz·km,以及(iv)数值孔径为0.185~0.215)。
在另一特定实施例中,本发明的光纤符合OM4标准(即,光纤具有以下特性:(i)在波长850纳米处,有效模式带宽EMB高于4700MHz·km,(ii)在波长850纳米处,外部DMD小于0.14ps/m,(iii)在波长850纳米处,OFL带宽高于3,500MHz·km,以及(iv)数值孔径为0.185~0.215)。
在一个实施例中,本发明的光纤符合ITU-T推荐G.651.1。这些实施例的光纤的纤芯直径为50微米,并且数值孔径为0.2±0.015。
通过将现有技术的光纤与根据本发明的实施例的光纤进行比较,本发明的优点将更加明显。(以下的)表1示出实施例的光纤和比较光纤的光纤分布参数。例1~5是根据本发明的实施例的光纤。例6~7、2b和2c是比较光纤。
表1
第1列提供中央纤芯和外包层之间的最大折射率差Δn1max。第2列给出内包层和外包层之间的折射率差Δn2。在这些典型光纤和比较光纤中,中央纤芯和外包层之间的最小折射率差Δnend等于内包层相对于外包层的折射率差Δn2。第3列提供凹槽和外包层之间的折射率差Δn3。第4列给出中央纤芯的理论半径r1zero。第5列提供中央纤芯的理论半径和内包层的半径之间的差r2-r1zero。第6列和第7列分别提供凹槽的宽度w3和凹槽的体积v3。
针对表1的典型光纤和比较光纤,表2提供了在波长850纳米处对于弯曲半径为7.5毫米的两匝的外部DMD值(0~23微米)、OFL带宽和弯曲损耗。
表2
通过将作为根据本发明的光纤的例2与例2b~2c所描述的比较光纤进行比较,将更好地理解本发明的优点。在这方面,例2、2b和2c所描述的各光纤的中央纤芯和凹槽相似。实际上,例2、2b和2c的凹槽体积v3相同。结果,例2、2b和2c的弯曲损耗相似。这就是说,例2、2b和2c所描述的光纤的内包层结构不同。根据本发明所述的例2的外部DMD值(0~23微米)低,从而便于实现高带宽。例2b的内包层折射率差Δn2和凹槽折射率差Δn3不便于实现低外部DMD值。例2c在其内包层的外径和其理论中央纤芯半径之间的距离r2-r1zero不小于2微米。
图3和4示出例2所描述的光纤与例2b~2c所描述的光纤相对比的优势。图3图示说明例2、2b和2c的、作为中央纤芯的α折射率分布的α参数的函数的OFL带宽。图4图示说明例2、2b和2c的、作为中央纤芯的α折射率分布的α参数的函数的外部DMD值(0~23微米)。使用850纳米的波长来测量OFL带宽和外部DMD值这两者。
对于例2,如图3~4所示,可以获得改善了的OFL带宽和外部DMD值。特别地,例2所描述的光纤的OFL带宽可以高于6,000MHz·km(例如,高于10,000MHz·km),并且其外部DMD值可以小于0.3ps/m(例如,小于0.1ps/m)。
通过将作为根据本发明的光纤的例5与例6~7所描述的比较光纤进行比较,还将更好地理解本发明的优点。与例5相对比,例6所描述的光纤在其内包层的外径和其理论中央纤芯半径之间的距离r2-r1zero大幅大于2微米。此外,例6的凹槽的外径rout大于32微米,特别是外径为35微米。尽管例6具有低弯曲损耗,但例6并不具有低外部DMD值。例7不具有凹槽,结果展现高弯曲损耗。
在这方面,图5图示说明例5~7的、作为有效折射率差Δneff的函数的弯曲损耗。能理解,根据以下等式来计算光纤的有效折射率。
其中,λ是波长并且β是模式传播常数。此外,有效折射率差Δneff为Δneff=neff-ncladding。例5的有效折射率差Δneff较低,这便于降低弯曲损耗。
因此,本发明的光纤通常展现降低了的包层效应和低弯曲损耗。
根据另一方面,本发明包括至少包含如这里根据本发明所公开的光纤的一部分的光纤系统(例如,多模光学系统)。特别地,该光学系统可以在至少100米(例如,300米)处展现至少10Gb/s的数据速率。
可以通过根据最终预制件拉丝来制造本发明的光纤。
可以通过为初级预制件提供外包层(即,外包层工艺)来制造最终预制件。该外包层通常包括掺杂或未掺杂的、天然或合成的二氧化硅玻璃。可以利用几种方法来提供外包层。
在第一方法中,可以通过在受热的影响下将天然二氧化硅颗粒或合成二氧化硅颗粒沉积并玻璃化在初级预制件的外周上,来提供外包层。例如,根据美国专利5,522,007、5,194,714、6,269,663和6,202,447,这种工艺是已知的。
在另一方法中,可以使用可能掺杂或可能未掺杂的二氧化硅套管来对初级预制件包外包层。然后,可以将该套管压制到初级预制件上。
在又一方法中,可以经由外部气相沉积(OVD,OutsideVapor Deposition)方法来施加外包层。这里,首先在初级预制件的外周上沉积烟灰层,然后使该烟灰层玻璃化以形成玻璃。
可以经由诸如外部气相沉积(OVD)和轴向气相沉积(VAD,Vapor Axial Deposition)等的外部气相沉积技术来制造初级预制件。可选地,可以经由诸如改进的化学气相沉积(MCVD,Modified Chemical Vapor Deposition)、熔炉化学气相沉积(FCVD,Furnace Chemical Vapor Deposition)和等离子化学气相沉积(PCVD,Plasma Chemical Vapor Deposition)等的、在掺杂二氧化硅玻璃或未掺杂二氧化硅玻璃的基管的内表面上沉积玻璃层的内部沉积技术来制造初级预制件。
例如,可以使用能够精确地控制中央纤芯的渐变折射率分布的PCVD工艺来制造初级预制件。
例如,作为化学气相沉积工艺的一部分,可以在基管的内表面上沉积凹槽。更常见地,可以通过以下来制造凹槽:(1)使用氟掺杂的基管作为用于沉积渐变折射率的中央纤芯的内部沉积工艺的起点,或者(ii)对渐变折射率的中央纤芯套氟掺杂的二氧化硅管,其中,可以使用外部沉积工艺(例如,OVD或VAD)来制造该中央纤芯本身。因此,根据由此产生的预制件制造出的组分玻璃纤维可以具有位于其中央纤芯的外周处的凹槽。
如上所述,可以使用氟掺杂的基管经由内部沉积工艺来制造初级预制件。可以对由此产生的包含沉积层的管套一个或多个另外的氟掺杂的二氧化硅管,从而增大凹槽的厚度或产生折射率在其宽度上变化的凹槽。尽管并没有要求,但可以在执行包外包层步骤之前,将一个或多个另外的套管(例如,氟掺杂的基管)压制到初级预制件上。套和压制的工艺有时被称为包壳(jacketing),并且可以重复套和压制的工艺,直到在初级预制件的外部构造了几层玻璃层为止。
在本说明书和/或附图中,已经公开了本发明的典型实施例。本发明不限于这些典型实施例。术语“和/或”的使用包括了所列出的一个或多个关联项的任何组合和所有组合。这些附图是示意呈现,因此无需按比例绘制这些附图。除非另外说明,否则在一般含义和描述的含义上使用这些具体术语,并且这些术语不是用来限制的。可以将根据本发明的光纤安装在与该系统的其它光纤具有良好兼容性的多个传输系统中。
Claims (19)
1.一种多模光纤,其从中心到外周包括:
中央纤芯,其具有外径r1、大于0的相对于外包层的最小折射率差Δnend和相对于所述外包层的α折射率分布,所述α折射率分布在所述中央纤芯的外径r1处中断,所述α折射率分布定义理论半径r1zero;
内包层,其具有外径r2、宽度w2和相对于所述外包层的折射率差Δn2;
凹槽,其具有外径rout、宽度w3和相对于所述外包层的折射率差Δn3;以及
所述外包层;
其中,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约大于0.5微米且小于2微米;
其中,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3满足以下不等式:
-11.9×(1000Δn2)2-3.4×(1000Δn2)-7.2<1000Δn3;以及
1000Δn3<-17.2×(1000Δn2)2+16.5×(1000Δn2)-8.0。
2.根据权利要求1所述的多模光纤,其特征在于,所述中央纤芯的α折射率分布的α参数α为1.9~2.1,优选为2.0~2.1。
3.根据权利要求1所述的多模光纤,其特征在于,所述中央纤芯相对于所述外包层的最大折射率差Δn1约为11×10-3~16×10-3,并且/或者所述α折射率分布的理论半径r1zero约为23微米~27微米。
4.根据权利要求1所述的多模光纤,其特征在于,所述中央纤芯的最小折射率差Δnend等于所述内包层的折射率差Δn2,并且/或者所述内包层的折射率差Δn2约为0.2×10-3~2×10-3。
5.根据权利要求1所述的多模光纤,其特征在于,所述凹槽的外径rout约小于32微米,优选约小于30微米,并且/或者所述凹槽的宽度w3约为3微米~6微米。
6.根据权利要求1所述的多模光纤,其特征在于,所述凹槽的折射率差Δn3约为-15×10-3~-3×10-3,并且/或者所述凹槽的体积v3约为200%·μm2~1,200%·μm2,优选约为250%·μm2~750%·μm2。
7.根据权利要求1所述的多模光纤,其特征在于,所述内包层的外径r2和所述α折射率分布的理论半径r1zero之间的差约小于1.5微米。
8.根据权利要求1所述的多模光纤,其特征在于,所述内包层的折射率差Δn2和所述凹槽的折射率差Δn3满足以下不等式:
-13.6×(1000Δn2)2-5.2<1000Δn3<-18.1×(1000Δn2)2+13.5×(1000Δn2)-7。
9.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,对于弯曲半径为15毫米的两匝,所述多模光纤的弯曲损耗约小于0.1dB,优选约小于0.05dB。
10.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,对于弯曲半径为10毫米的两匝,所述多模光纤的弯曲损耗约小于0.3dB,优选约小于0.1dB。
11.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,对于弯曲半径为7.5毫米的两匝,所述多模光纤的弯曲损耗约小于0.4dB,优选约小于0.2dB。
12.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,对于弯曲半径为7.5毫米的两匝,所述多模光纤的弯曲损耗约小于0.1dB,优选约小于0.01dB。
13.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,对于弯曲半径为5毫米的两匝,所述多模光纤的弯曲损耗约小于1dB,优选约小于0.3dB。
14.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,所述多模光纤的OFL带宽至少约为1,500MHz·km,优选至少约为3,500MHz·km。
15.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,所述多模光纤的OFL带宽至少约为6,000MHz·km,优选至少约为8,000MHz·km,更优选至少约为10,000MHz·km。
16.根据权利要求1所述的多模光纤,其特征在于,所述多模光纤的数值孔径为0.2±0.015。
17.根据权利要求1所述的多模光纤,其特征在于,在波长850纳米处,所述多模光纤的外部DMD值约小于0.33ps/m。
18.根据权利要求1所述的多模光纤,其特征在于:
所述中央纤芯的半径r1为25±1.5微米;以及
在波长850纳米处,所述多模光纤的外部DMD值(0~23微米)约小于0.25ps/m,优选约小于0.14ps/m。
19.一种光纤系统,至少包括根据权利要求1所述的多模光纤的一部分,其中,优选所述光纤系统在约100米的距离内的数据速率至少约为10Gb/s,更优选所述光纤系统在约300米的距离内的数据速率至少约为10Gb/s。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR09/58637 | 2009-12-03 | ||
FR0958637A FR2953605B1 (fr) | 2009-12-03 | 2009-12-03 | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
US26674609P | 2009-12-04 | 2009-12-04 | |
US61/266,746 | 2009-12-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102087380A true CN102087380A (zh) | 2011-06-08 |
CN102087380B CN102087380B (zh) | 2014-06-18 |
Family
ID=42237042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010579482.2A Active CN102087380B (zh) | 2009-12-03 | 2010-12-03 | 弯曲损耗低且包层效应降低的多模光纤 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8406593B2 (zh) |
EP (1) | EP2339383B1 (zh) |
JP (1) | JP5670164B2 (zh) |
CN (1) | CN102087380B (zh) |
DK (1) | DK2339383T3 (zh) |
FR (1) | FR2953605B1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104685394B (zh) * | 2012-05-31 | 2018-11-09 | 康宁股份有限公司 | 多模光纤和包含该光纤的系统 |
CN109416447A (zh) * | 2016-05-15 | 2019-03-01 | 恩耐公司 | 高数值孔径光剥离器 |
CN113711096A (zh) * | 2019-02-22 | 2021-11-26 | 康宁股份有限公司 | 包层厚度减小的多模光纤 |
CN113728259A (zh) * | 2019-02-22 | 2021-11-30 | 康宁股份有限公司 | 耐穿刺的直径减小的多模光纤 |
CN113885121A (zh) * | 2021-09-30 | 2022-01-04 | 中天科技光纤有限公司 | 多模光纤 |
Families Citing this family (213)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8970947B2 (en) * | 2007-09-26 | 2015-03-03 | Imra America, Inc. | Auto-cladded multi-core optical fibers |
FR2932932B1 (fr) | 2008-06-23 | 2010-08-13 | Draka Comteq France Sa | Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes |
FR2933779B1 (fr) | 2008-07-08 | 2010-08-27 | Draka Comteq France | Fibres optiques multimodes |
WO2010077132A1 (en) | 2008-12-31 | 2010-07-08 | Draka Comteq B.V. | Uvled apparatus for curing glass-fiber coatings |
FR2946436B1 (fr) | 2009-06-05 | 2011-12-09 | Draka Comteq France | Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee |
US9014525B2 (en) | 2009-09-09 | 2015-04-21 | Draka Comteq, B.V. | Trench-assisted multimode optical fiber |
FR2953029B1 (fr) | 2009-11-25 | 2011-11-18 | Draka Comteq France | Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee |
FR2953030B1 (fr) | 2009-11-25 | 2011-11-18 | Draka Comteq France | Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee |
FR2957153B1 (fr) | 2010-03-02 | 2012-08-10 | Draka Comteq France | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
FR2953606B1 (fr) | 2009-12-03 | 2012-04-27 | Draka Comteq France | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
FR2953605B1 (fr) | 2009-12-03 | 2011-12-16 | Draka Comteq France | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
FR2950156B1 (fr) | 2009-09-17 | 2011-11-18 | Draka Comteq France | Fibre optique multimode |
DK2352047T3 (da) | 2010-02-01 | 2019-11-11 | Draka Comteq Bv | Ikke-nul dispersionsskiftet optisk fiber med et stort effektivt areal |
EP2352046B1 (en) | 2010-02-01 | 2018-08-08 | Draka Comteq B.V. | Non-zero dispersion shifted optical fiber having a short cutoff wavelength |
JP5567694B2 (ja) * | 2010-02-09 | 2014-08-06 | オーエフエス ファイテル,エルエルシー | 曲げ最適化マルチモードファイバのdmd特性の改善 |
EP2369379B1 (en) | 2010-03-17 | 2015-05-06 | Draka Comteq B.V. | Fibre optique monomode ayant des pertes par courbures réduites |
US8693830B2 (en) | 2010-04-28 | 2014-04-08 | Draka Comteq, B.V. | Data-center cable |
PT2390700T (pt) | 2010-05-03 | 2016-10-19 | Draka Comteq Bv | Cabos de fibra ótica empacotados |
EP2388239B1 (en) | 2010-05-20 | 2017-02-15 | Draka Comteq B.V. | Curing apparatus employing angled UV-LEDs |
US8871311B2 (en) | 2010-06-03 | 2014-10-28 | Draka Comteq, B.V. | Curing method employing UV sources that emit differing ranges of UV radiation |
FR2962230B1 (fr) | 2010-07-02 | 2012-07-27 | Draka Comteq France | Fibre optique monomode |
US8682123B2 (en) | 2010-07-15 | 2014-03-25 | Draka Comteq, B.V. | Adhesively coupled optical fibers and enclosing tape |
DK2418183T3 (en) | 2010-08-10 | 2018-11-12 | Draka Comteq Bv | Method of curing coated glass fibers which provides increased UVLED intensity |
US8571369B2 (en) | 2010-09-03 | 2013-10-29 | Draka Comteq B.V. | Optical-fiber module having improved accessibility |
FR2966256B1 (fr) | 2010-10-18 | 2012-11-16 | Draka Comteq France | Fibre optique multimode insensible aux pertes par |
US8824845B1 (en) | 2010-12-03 | 2014-09-02 | Draka Comteq, B.V. | Buffer tubes having reduced stress whitening |
EP2482106B1 (en) | 2011-01-31 | 2014-06-04 | Draka Comteq B.V. | Multimode fiber |
FR2971061B1 (fr) | 2011-01-31 | 2013-02-08 | Draka Comteq France | Fibre optique a large bande passante et a faibles pertes par courbure |
PT2678728T (pt) | 2011-02-21 | 2018-07-05 | Draka Comteq Bv | Cabo de interligação de fibra ótica |
EP2495589A1 (en) | 2011-03-04 | 2012-09-05 | Draka Comteq B.V. | Rare earth doped amplifying optical fiber for compact devices and method of manufacturing thereof |
EP2503368A1 (en) | 2011-03-24 | 2012-09-26 | Draka Comteq B.V. | Multimode optical fiber with improved bend resistance |
EP2506044A1 (en) | 2011-03-29 | 2012-10-03 | Draka Comteq B.V. | Multimode optical fiber |
EP2518546B1 (en) | 2011-04-27 | 2018-06-20 | Draka Comteq B.V. | High-bandwidth, radiation-resistant multimode optical fiber |
DK2527893T3 (da) | 2011-05-27 | 2013-12-16 | Draka Comteq Bv | Optisk singlemode fiber |
ES2451369T3 (es) | 2011-06-09 | 2014-03-26 | Draka Comteq Bv | Fibra óptica de modo único |
DK2541292T3 (en) | 2011-07-01 | 2014-12-01 | Draka Comteq Bv | A multimode optical fiber |
BR112014003901A2 (pt) * | 2011-08-19 | 2017-03-14 | Corning Inc | fibra ótica de perda de curvatura baixa |
US8768129B2 (en) * | 2011-09-21 | 2014-07-01 | Ofs Fitel, Llc | Optimized ultra large area optical fibers |
EP2584340A1 (en) | 2011-10-20 | 2013-04-24 | Draka Comteq BV | Hydrogen sensing fiber and hydrogen sensor |
NL2007831C2 (en) | 2011-11-21 | 2013-05-23 | Draka Comteq Bv | Apparatus and method for carrying out a pcvd deposition process. |
US8929701B2 (en) | 2012-02-15 | 2015-01-06 | Draka Comteq, B.V. | Loose-tube optical-fiber cable |
WO2013160714A1 (en) | 2012-04-27 | 2013-10-31 | Draka Comteq Bv | Hybrid single and multimode optical fiber for a home network |
US9671552B2 (en) * | 2012-09-05 | 2017-06-06 | Ofs Fitel, Llc | 9 LP-mode fiber designs for mode-division multiplexing |
US9709731B2 (en) * | 2012-09-05 | 2017-07-18 | Ofs Fitel, Llc | Multiple LP-mode fiber designs for mode-division multiplexing |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9188754B1 (en) | 2013-03-15 | 2015-11-17 | Draka Comteq, B.V. | Method for manufacturing an optical-fiber buffer tube |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8824848B1 (en) * | 2013-06-10 | 2014-09-02 | Sumitomo Electric Industries, Ltd. | Multimode optical fiber including a core and a cladding |
NL2011075C2 (en) | 2013-07-01 | 2015-01-05 | Draka Comteq Bv | Pcvd process with removal of substrate tube. |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
EP3084490B1 (en) * | 2013-12-20 | 2020-12-02 | Draka Comteq BV | Single mode fibre with a trapezoid core, showing reduced losses |
ES2665784T3 (es) * | 2014-02-28 | 2018-04-27 | Draka Comteq Bv | Fibra óptica multimodo con alto ancho de banda en una gama de longitud de onda ampliada, y el sistema óptico multimodo correspondiente |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
CN111512200B (zh) | 2017-12-21 | 2022-11-18 | 德拉克通信法国集团公司 | 具有浅槽的弯曲损耗不敏感单模光纤和相应的光学系统 |
US10816727B1 (en) | 2019-06-14 | 2020-10-27 | Globalfoundries Inc. | Multimode waveguide bends with features to reduce bending loss |
WO2021231083A1 (en) | 2020-05-12 | 2021-11-18 | Corning Incorporated | Reduced diameter single mode optical fibers with high mechanical reliability |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006010798A1 (en) * | 2004-07-26 | 2006-02-02 | Photonium Oy | Multimode optical fiber with low differential mode delay |
CN1734300A (zh) * | 2004-08-11 | 2006-02-15 | 古河电气工业株式会社 | 光纤、光纤带以及光互连系统 |
JP2006047719A (ja) * | 2004-08-05 | 2006-02-16 | Fujikura Ltd | 低曲げ損失マルチモードファイバ |
WO2009078962A1 (en) * | 2007-12-13 | 2009-06-25 | Corning Incorporated | Bend resistant multimode optical fiber |
Family Cites Families (178)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9015A (en) * | 1852-06-15 | Manufacture of granular fuel from brush-wood and twigs | ||
JPS5258547A (en) * | 1975-11-10 | 1977-05-14 | Hitachi Ltd | Light transmission fiber |
US4111525A (en) * | 1976-10-12 | 1978-09-05 | Bell Telephone Laboratories, Incorporated | Silica based optical fiber waveguide using phosphorus pentoxide and germanium dioxide |
US4222631A (en) * | 1978-03-03 | 1980-09-16 | Corning Glass Works | Multicomponent optical waveguide having index gradient |
US4230396A (en) * | 1978-07-31 | 1980-10-28 | Corning Glass Works | High bandwidth optical waveguides and method of fabrication |
US4229070A (en) * | 1978-07-31 | 1980-10-21 | Corning Glass Works | High bandwidth optical waveguide having B2 O3 free core and method of fabrication |
US4406517A (en) * | 1979-01-02 | 1983-09-27 | Corning Glass Works | Optical waveguide having optimal index profile for multicomponent nonlinear glass |
US4339174A (en) * | 1980-02-01 | 1982-07-13 | Corning Glass Works | High bandwidth optical waveguide |
US4465335A (en) * | 1982-10-12 | 1984-08-14 | The United States Of America As Represented By The Secretary Of The Army | Concentric core optical fiber coupler |
JPS59232302A (ja) * | 1983-06-15 | 1984-12-27 | Sumitomo Electric Ind Ltd | 光伝送用フアイバ |
FR2553951B1 (fr) * | 1983-10-25 | 1985-12-27 | Thomson Csf | Dispositif de memorisation d'informations dans un systeme de transmission par fibre optique |
DE3447082A1 (de) * | 1984-05-26 | 1985-12-19 | AEG-Telefunken Kabelwerke AG, Rheydt, 4050 Mönchengladbach | Verfahren zum herstellen einer vorform zum ziehen von lichtleitfasern |
DE3447081A1 (de) * | 1984-05-26 | 1985-12-19 | AEG-Telefunken Kabelwerke AG, Rheydt, 4050 Mönchengladbach | Verfahren zum herstellen einer vorform zum ziehen von lichtleitfasern |
US4723828A (en) * | 1984-11-09 | 1988-02-09 | Northern Telecom Limited | Bandwidth enhancement of multimode optical transmisson lines |
US4838643A (en) * | 1988-03-23 | 1989-06-13 | Alcatel Na, Inc. | Single mode bend insensitive fiber for use in fiber optic guidance applications |
GB8810286D0 (en) * | 1988-04-29 | 1988-06-02 | British Telecomm | Connecting optical waveguides |
FR2647778B1 (fr) | 1989-06-05 | 1992-11-20 | Comp Generale Electricite | Procede et dispositif de depot externe par plasma de silice exempte d'ions hydroxyles |
US5245404A (en) * | 1990-10-18 | 1993-09-14 | Physical Optics Corportion | Raman sensor |
DE69320119T2 (de) * | 1992-08-19 | 1999-01-21 | Nippon Telegraph And Telephone Corp., Tokio/Tokyo | Faser mit veränderbarem Modenfelddurchmesser |
FR2713621B1 (fr) | 1993-12-14 | 1996-01-05 | Alcatel Fibres Optiques | Procédé de recharge par plasma d'une préforme pour fibre optique et fibre optique issue de la préforme rechargée selon ce procédé. |
KR0162604B1 (ko) * | 1994-10-07 | 1999-04-15 | 김광호 | 광 섬유 모재 제조 방법 |
US5574816A (en) * | 1995-01-24 | 1996-11-12 | Alcatel Na Cable Sytems, Inc. | Polypropylene-polyethylene copolymer buffer tubes for optical fiber cables and method for making the same |
US5717805A (en) * | 1996-06-12 | 1998-02-10 | Alcatel Na Cable Systems, Inc. | Stress concentrations in an optical fiber ribbon to facilitate separation of ribbon matrix material |
US5841933A (en) * | 1996-07-09 | 1998-11-24 | Hoaglin; Christine L. | Optical waveguide fiber containing titania and germania |
US7322122B2 (en) * | 1997-01-15 | 2008-01-29 | Draka Comteq B.V. | Method and apparatus for curing a fiber having at least two fiber coating curing stages |
FR2762836B1 (fr) | 1997-05-02 | 1999-07-23 | Alsthom Cge Alcatel | Procede et appareil de fabrication de preformes de fibre de verre |
FR2760540B1 (fr) * | 1997-03-10 | 1999-04-16 | Alsthom Cge Alcatel | Cable a fibres optiques serrees dans une gaine |
US5911023A (en) * | 1997-07-10 | 1999-06-08 | Alcatel Alsthom Compagnie Generale D'electricite | Polyolefin materials suitable for optical fiber cable components |
US6002818A (en) * | 1997-12-05 | 1999-12-14 | Lucent Technologies Inc | Free-space optical signal switch arrangement |
US6269663B1 (en) | 1998-03-05 | 2001-08-07 | Alcatel | Method of purifying silica and depositing on an optical fiber preform |
US6066397A (en) * | 1998-03-31 | 2000-05-23 | Alcatel | Polypropylene filler rods for optical fiber communications cables |
US6175677B1 (en) * | 1998-04-17 | 2001-01-16 | Alcatel | Optical fiber multi-ribbon and method for making the same |
US6085009A (en) * | 1998-05-12 | 2000-07-04 | Alcatel | Water blocking gels compatible with polyolefin optical fiber cable buffer tubes and cables made therewith |
JP3492524B2 (ja) * | 1998-05-29 | 2004-02-03 | 三菱電機株式会社 | 分散補償装置 |
JP4247950B2 (ja) * | 1998-10-23 | 2009-04-02 | 古河電気工業株式会社 | 分散補償光ファイバおよびその分散補償光ファイバを用いた波長多重光伝送路 |
DE19852704A1 (de) * | 1998-11-16 | 2000-05-18 | Heraeus Quarzglas | Verfahren zur Herstellung einer Vorform für eine optische Faser und für die Durchführung des Verfahrens geeignetes Substratrohr |
US6185346B1 (en) * | 1998-12-04 | 2001-02-06 | Charles K. Asawa | Propagation in lowest order modes of multimode graded index fiber, resulting in: very low transmission loss, low modal noise, high data security, and high data rate capabilities |
KR20010082360A (ko) * | 1998-12-18 | 2001-08-29 | 지아네시 피에르 지오반니 | 메트로폴리탄 및 액세스 네트워크 시스템을 위한 광 파이버 |
US6215931B1 (en) * | 1999-01-26 | 2001-04-10 | Alcatel | Flexible thermoplastic polyolefin elastomers for buffering transmission elements in a telecommunications cable |
US6134363A (en) * | 1999-02-18 | 2000-10-17 | Alcatel | Method for accessing optical fibers in the midspan region of an optical fiber cable |
US6434309B1 (en) * | 1999-02-22 | 2002-08-13 | Corning Incorporated | Laser optimized multimode fiber and method for use with laser and LED sources and system employing same |
JP4316146B2 (ja) * | 1999-02-22 | 2009-08-19 | 古河電気工業株式会社 | 光伝送路およびその光伝送路に用いられる負分散光ファイバおよび光伝送路を用いた光伝送システム |
JP4101429B2 (ja) | 1999-03-31 | 2008-06-18 | 株式会社フジクラ | 高次モード除去機能を有する多モード光ファイバ |
US6381390B1 (en) * | 1999-04-06 | 2002-04-30 | Alcatel | Color-coded optical fiber ribbon and die for making the same |
US6181857B1 (en) * | 1999-05-12 | 2001-01-30 | Alcatel | Method for accessing optical fibers contained in a sheath |
US6292612B1 (en) * | 1999-06-07 | 2001-09-18 | Lucent Technologies Inc. | Multi-mode optical fiber having improved refractive index profile and devices comprising same |
US6314224B1 (en) * | 1999-06-18 | 2001-11-06 | Alcatel | Thick-walled cable jacket with non-circular cavity cross section |
EP1116970A1 (en) * | 1999-06-28 | 2001-07-18 | The Furukawa Electric Co., Ltd. | Optical transmission line |
US6334016B1 (en) * | 1999-06-30 | 2001-12-25 | Alcatel | Optical fiber ribbon matrix material having optimal handling characteristics |
US6321012B1 (en) * | 1999-08-30 | 2001-11-20 | Alcatel | Optical fiber having water swellable material for identifying grouping of fiber groups |
US6493491B1 (en) * | 1999-09-28 | 2002-12-10 | Alcatel | Optical drop cable for aerial installation |
US6321014B1 (en) * | 1999-11-01 | 2001-11-20 | Alcatel | Method for manufacturing optical fiber ribbon |
JP2001235648A (ja) | 2000-02-23 | 2001-08-31 | Shin Etsu Chem Co Ltd | マルチモードファイバ用プリフォーム及びマルチモードファイバ |
FR2809499B1 (fr) * | 2000-05-29 | 2003-10-03 | Cit Alcatel | Peau de protection pour fibres optiques |
TW552435B (en) * | 2000-06-12 | 2003-09-11 | Asahi Glass Co Ltd | Plastic optical fiber |
US6603908B2 (en) * | 2000-08-04 | 2003-08-05 | Alcatel | Buffer tube that results in easy access to and low attenuation of fibers disposed within buffer tube |
US6618538B2 (en) * | 2000-12-20 | 2003-09-09 | Alcatel | Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables |
US6922515B2 (en) * | 2000-12-20 | 2005-07-26 | Alcatel | Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables |
US6490398B2 (en) * | 2001-02-21 | 2002-12-03 | Fitel Usa Corp. | Dispersion-compensating fiber having a high figure of merit |
CA2371285A1 (en) * | 2001-03-16 | 2002-09-16 | The Furukawa Electric Co., Ltd | Optical fiber and wavelength division multiplex transmission line |
US7346244B2 (en) * | 2001-03-23 | 2008-03-18 | Draka Comteq B.V. | Coated central strength member for fiber optic cables with reduced shrinkage |
JP3653724B2 (ja) | 2001-04-23 | 2005-06-02 | 住友電気工業株式会社 | 光ファイバ、及びその製造方法 |
US20030024276A1 (en) * | 2001-05-30 | 2003-02-06 | 3M Innovative Properties Company | Method of manufacture of an optical waveguide article including a fluorine-containing zone |
US7045010B2 (en) * | 2001-09-06 | 2006-05-16 | Alcatel | Applicator for high-speed gel buffering of flextube optical fiber bundles |
US6749446B2 (en) * | 2001-10-10 | 2004-06-15 | Alcatel | Optical fiber cable with cushion members protecting optical fiber ribbon stack |
US6580863B2 (en) * | 2001-10-31 | 2003-06-17 | Intel Corporation | System and method for providing integrated optical waveguide device |
US6735985B2 (en) * | 2001-12-20 | 2004-05-18 | Furukawa Electric North America Inc | Method of impressing a twist on a multimode fiber during drawing |
US6771865B2 (en) * | 2002-03-20 | 2004-08-03 | Corning Incorporated | Low bend loss optical fiber and components made therefrom |
CN101239778B (zh) * | 2002-04-16 | 2011-05-25 | 住友电气工业株式会社 | 光纤预制棒制造方法及光纤制造方法 |
US7400835B2 (en) * | 2002-08-30 | 2008-07-15 | Ciena Corporation | WDM system having chromatic dispersion precompensation |
US6912347B2 (en) * | 2002-11-15 | 2005-06-28 | Alcatel | Optimized fiber optic cable suitable for microduct blown installation |
US6904218B2 (en) * | 2003-05-12 | 2005-06-07 | Fitel U.S.A. Corporation | Super-large-effective-area (SLA) optical fiber and communication system incorporating the same |
FR2855619B1 (fr) * | 2003-05-27 | 2005-07-22 | Cit Alcatel | Fibre optique pour amplification ou pour emission laser |
US6941049B2 (en) * | 2003-06-18 | 2005-09-06 | Alcatel | Fiber optic cable having no rigid strength members and a reduced coefficient of thermal expansion |
KR100526516B1 (ko) * | 2003-07-11 | 2005-11-08 | 삼성전자주식회사 | 고속, 근거리 통신망을 위한 언덕형 광섬유 |
US7043126B2 (en) * | 2003-07-18 | 2006-05-09 | Fujikura Ltd. | Graded-index multimode fiber and manufacturing method therefor |
NL1024015C2 (nl) * | 2003-07-28 | 2005-02-01 | Draka Fibre Technology Bv | Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel. |
DE602004013238T2 (de) * | 2003-09-09 | 2009-07-23 | Fujikura Ltd. | Multimode-Gradientenfaser und Herstellungsverfahren dafür |
DE602005003596D1 (de) * | 2004-01-26 | 2008-01-17 | Draka Comteq Bv | Hüllrohrwindung zur Ankopplung eines faseroptischen Kabels und Methode zur Installation eines faseroptischen Kabels |
US7817257B2 (en) | 2004-01-27 | 2010-10-19 | Fujikura Ltd. | Method for measuring a differential mode delay of a multimode optical fiber |
CN100476469C (zh) | 2004-04-28 | 2009-04-08 | Ls电线有限公司 | 具有改进的弯曲性能的光纤 |
KR100624247B1 (ko) * | 2004-07-02 | 2006-09-19 | 엘에스전선 주식회사 | 고속 근거리 전송망을 위한 다중모드 광섬유 |
JP4358073B2 (ja) | 2004-09-07 | 2009-11-04 | 株式会社フジクラ | 低曲げ損失トレンチ型マルチモードファイバ |
JP2006227173A (ja) | 2005-02-16 | 2006-08-31 | Fujikura Ltd | マルチモード分散補償ファイバ、モード分散の補償方法、光導波路、光伝送路及び光通信システム |
NL1028978C2 (nl) * | 2005-05-04 | 2006-11-07 | Draka Comteq Bv | Optisch communicatiesysteem alsmede aansluitnetwerk voorzien daarvan. |
US7567739B2 (en) | 2007-01-31 | 2009-07-28 | Draka Comteq B.V. | Fiber optic cable having a water-swellable element |
US7599589B2 (en) | 2005-07-20 | 2009-10-06 | Draka Comteq B.V. | Gel-free buffer tube with adhesively coupled optical element |
US7515795B2 (en) * | 2005-07-20 | 2009-04-07 | Draka Comteq B.V. | Water-swellable tape, adhesive-backed for coupling when used inside a buffer tube |
CN101283304B (zh) * | 2005-07-20 | 2013-03-13 | 德雷卡通信技术公司 | 利用遇水膨胀的卷曲变形纱线的无润滑脂缓冲光纤管结构 |
FR2893149B1 (fr) | 2005-11-10 | 2008-01-11 | Draka Comteq France | Fibre optique monomode. |
US7783149B2 (en) * | 2005-12-27 | 2010-08-24 | Furukawa Electric North America, Inc. | Large-mode-area optical fibers with reduced bend distortion |
FR2896795B1 (fr) | 2006-01-27 | 2008-04-18 | Draka Compteq France | Procede de fabrication d'une preforme de fibre optique |
WO2007091879A1 (en) | 2006-02-08 | 2007-08-16 | Draka Comteq B.V. | Optical fiber cable suited for blown installation or pushing installation in microducts of small diameter |
FR2899693B1 (fr) | 2006-04-10 | 2008-08-22 | Draka Comteq France | Fibre optique monomode. |
FR2900739B1 (fr) * | 2006-05-03 | 2008-07-04 | Draka Comteq France | Fibre de compensation de la dispersion chromatique |
NL1031792C2 (nl) | 2006-05-11 | 2007-11-13 | Draka Comteq Bv | Kabelsamenstel alsmede werkwijze voor het installeren van een dergelijk kabelsamenstel. |
US7665902B2 (en) | 2006-05-11 | 2010-02-23 | Draka Comteq, B.V. | Modified pre-ferrulized communication cable assembly and installation method |
FR2903501B1 (fr) * | 2006-07-04 | 2008-08-22 | Draka Comteq France Sa | Fibre optique dopee au fluor |
FR2904876B1 (fr) | 2006-08-08 | 2008-11-21 | Draka Comteq France | Cable de telecommunication a fibres optiques |
US7421174B2 (en) * | 2006-08-28 | 2008-09-02 | Furakawa Electric North America; Inc. | Multi-wavelength, multimode optical fibers |
US7315677B1 (en) * | 2006-09-14 | 2008-01-01 | Corning Incorporated | Dual dopant dual alpha multimode optical fiber |
FR2908250B1 (fr) * | 2006-11-03 | 2009-01-09 | Draka Comteq France Sa Sa | Fibre de compensation de la dispersion chromatique |
FR2908525B1 (fr) | 2006-11-10 | 2009-06-26 | Draka Comteq France Sa Sa | Cable de telecommunication a fibres optiques |
EP1930753B1 (en) * | 2006-12-04 | 2015-02-18 | Draka Comteq B.V. | Optical fiber with high Brillouin threshold power and low bending losses |
US7787731B2 (en) | 2007-01-08 | 2010-08-31 | Corning Incorporated | Bend resistant multimode optical fiber |
FR2914751B1 (fr) | 2007-04-06 | 2009-07-03 | Draka Comteq France | Fibre optique monomode |
FR2915002B1 (fr) | 2007-04-11 | 2009-11-06 | Draka Comteq France | Procede d'acces a une ou plusieurs fibres optiques d'un cable de telecommunication |
JP4142723B2 (ja) | 2007-05-02 | 2008-09-03 | 古河電気工業株式会社 | マルチモード光ファイバの製造方法 |
US7539381B2 (en) * | 2007-05-11 | 2009-05-26 | Corning Incorporated | Low bend loss coated optical fiber |
US7646952B2 (en) | 2007-06-28 | 2010-01-12 | Draka Comteq B.V. | Optical fiber cable having raised coupling supports |
US7639915B2 (en) | 2007-06-28 | 2009-12-29 | Draka Comteq B.V. | Optical fiber cable having a deformable coupling element |
US7724998B2 (en) | 2007-06-28 | 2010-05-25 | Draka Comteq B.V. | Coupling composition for optical fiber cables |
EP2056138A4 (en) | 2007-08-13 | 2012-02-22 | Furukawa Electric Co Ltd | GLASS FIBER, GLASS FIBER BELT AND OPTICAL CONNECTION SYSTEM |
US9042695B2 (en) * | 2007-10-05 | 2015-05-26 | Optacore D.O.O. Optical Fibers | Low bending loss multimode fiber transmission system |
FR2922657B1 (fr) | 2007-10-23 | 2010-02-12 | Draka Comteq France | Fibre multimode. |
US8041167B2 (en) | 2007-11-09 | 2011-10-18 | Draka Comteq, B.V. | Optical-fiber loose tube cables |
US8081853B2 (en) | 2007-11-09 | 2011-12-20 | Draka Comteq, B.V. | Single-fiber drop cables for MDU deployments |
US8041168B2 (en) | 2007-11-09 | 2011-10-18 | Draka Comteq, B.V. | Reduced-diameter ribbon cables with high-performance optical fiber |
US8467650B2 (en) | 2007-11-09 | 2013-06-18 | Draka Comteq, B.V. | High-fiber-density optical-fiber cable |
US8031997B2 (en) | 2007-11-09 | 2011-10-04 | Draka Comteq, B.V. | Reduced-diameter, easy-access loose tube cable |
DK2206001T3 (da) * | 2007-11-09 | 2014-07-07 | Draka Comteq Bv | Optisk fiber, der er modstandsdygtig over for mikrobøjning |
US8165439B2 (en) | 2007-11-09 | 2012-04-24 | Draka Comteq, B.V. | ADSS cables with high-performance optical fiber |
US8145026B2 (en) | 2007-11-09 | 2012-03-27 | Draka Comteq, B.V. | Reduced-size flat drop cable |
US20090214167A1 (en) | 2008-02-25 | 2009-08-27 | Draka Comteq B.V. | Optical Cable Buffer Tube with Integrated Hollow Channels |
FR2929716B1 (fr) | 2008-04-04 | 2011-09-16 | Draka Comteq France Sa | Fibre optique a dispersion decalee. |
JP5330729B2 (ja) | 2008-04-16 | 2013-10-30 | 三菱電線工業株式会社 | グレーデッドインデックス形マルチモード光ファイバ |
FR2930997B1 (fr) | 2008-05-06 | 2010-08-13 | Draka Comteq France Sa | Fibre optique monomode |
FR2931253B1 (fr) | 2008-05-16 | 2010-08-20 | Draka Comteq France Sa | Cable de telecommunication a fibres optiques |
FR2932932B1 (fr) | 2008-06-23 | 2010-08-13 | Draka Comteq France Sa | Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes |
FR2933779B1 (fr) | 2008-07-08 | 2010-08-27 | Draka Comteq France | Fibres optiques multimodes |
US8768131B2 (en) | 2008-08-13 | 2014-07-01 | Corning Incorporated | Multimode fiber with at least dual cladding |
US7974507B2 (en) | 2008-09-12 | 2011-07-05 | Draka Comteq, B.V. | High-fiber-density optical fiber cable |
US7970247B2 (en) | 2008-09-12 | 2011-06-28 | Draka Comteq B.V. | Buffer tubes for mid-span storage |
US8401353B2 (en) | 2008-09-12 | 2013-03-19 | Draka Comteq B.V. | Optical fiber cable assembly |
US8520994B2 (en) | 2008-09-17 | 2013-08-27 | Ofs Fitel, Llc | Bandwidth-maintaining multimode optical fibers |
EP2340451A2 (en) | 2008-09-26 | 2011-07-06 | Corning Incorporated | High numerical aperture multimode optical fiber |
FR2938389B1 (fr) | 2008-11-07 | 2011-04-15 | Draka Comteq France | Systeme optique multimode |
ES2543879T3 (es) | 2008-11-07 | 2015-08-25 | Draka Comteq B.V. | Fibra óptica de diámetro reducido |
DK2187486T3 (da) | 2008-11-12 | 2014-07-07 | Draka Comteq Bv | Forstærkende optisk fiber og fremgangsmåde til fremstilling |
FR2939246B1 (fr) | 2008-12-02 | 2010-12-24 | Draka Comteq France | Fibre optique amplificatrice et procede de fabrication |
FR2939522B1 (fr) | 2008-12-08 | 2011-02-11 | Draka Comteq France | Fibre optique amplificatrice resistante aux radiations ionisantes |
FR2939911B1 (fr) | 2008-12-12 | 2011-04-08 | Draka Comteq France | Fibre optique gainee, cable de telecommunication comportant plusieurs fibres optiques et procede de fabrication d'une telle fibre |
NL1036343C2 (nl) | 2008-12-19 | 2010-06-22 | Draka Comteq Bv | Werkwijze en inrichting voor het vervaardigen van een optische voorvorm. |
DK2204681T3 (en) | 2008-12-30 | 2016-05-09 | Draka Comteq Bv | An optical fiber cable, comprising a perforated water-blocking element |
WO2010077132A1 (en) | 2008-12-31 | 2010-07-08 | Draka Comteq B.V. | Uvled apparatus for curing glass-fiber coatings |
FR2940839B1 (fr) | 2009-01-08 | 2012-09-14 | Draka Comteq France | Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre |
FR2941539B1 (fr) | 2009-01-23 | 2011-02-25 | Draka Comteq France | Fibre optique monomode |
FR2941541B1 (fr) | 2009-01-27 | 2011-02-25 | Draka Comteq France | Fibre optique monomode |
FR2941540B1 (fr) | 2009-01-27 | 2011-05-06 | Draka Comteq France | Fibre optique monomode presentant une surface effective elargie |
US9360647B2 (en) | 2009-02-06 | 2016-06-07 | Draka Comteq, B.V. | Central-tube cable with high-conductivity conductors encapsulated with high-dielectric-strength insulation |
FR2942571B1 (fr) | 2009-02-20 | 2011-02-25 | Draka Comteq France | Fibre optique amplificatrice comprenant des nanostructures |
FR2942551B1 (fr) | 2009-02-23 | 2011-07-15 | Draka Comteq France | Cable comportant des elements a extraire, procede d'extraction desdits elements et procede de fabrication associe |
US20100220966A1 (en) | 2009-02-27 | 2010-09-02 | Kevin Wallace Bennett | Reliability Multimode Optical Fiber |
FR2946436B1 (fr) | 2009-06-05 | 2011-12-09 | Draka Comteq France | Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee |
US20110026889A1 (en) | 2009-07-31 | 2011-02-03 | Draka Comteq B.V. | Tight-Buffered Optical Fiber Unit Having Improved Accessibility |
JP5551249B2 (ja) | 2009-08-17 | 2014-07-16 | パンドウィット・コーポレーション | 自己補正マルチモードファイバ |
US8184936B2 (en) | 2009-08-18 | 2012-05-22 | Yangtze Optical Fibre And Cable Company, Ltd. | Multi-mode bending-resistant fiber and production method thereof |
JP5921434B2 (ja) | 2009-08-19 | 2016-05-24 | パンドウィット・コーポレーション | 低分散マルチモードファイバーのための、変更された屈折率プロファイル |
US8489369B2 (en) | 2009-08-28 | 2013-07-16 | Panduit Corp. | Methods for calculating multimode fiber system bandwidth and manufacturing improved multimode fiber |
US8454956B2 (en) | 2009-08-31 | 2013-06-04 | National Cheng Kung University | Methods for treating rheumatoid arthritis and osteoporosis with anti-IL-20 antibodies |
US20110054862A1 (en) | 2009-09-02 | 2011-03-03 | Panduit Corp. | Multimode Fiber Having Improved Reach |
FR2957153B1 (fr) | 2010-03-02 | 2012-08-10 | Draka Comteq France | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
FR2953605B1 (fr) | 2009-12-03 | 2011-12-16 | Draka Comteq France | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
FR2953606B1 (fr) * | 2009-12-03 | 2012-04-27 | Draka Comteq France | Fibre optique multimode a large bande passante et a faibles pertes par courbure |
FR2949870B1 (fr) | 2009-09-09 | 2011-12-16 | Draka Compteq France | Fibre optique multimode presentant des pertes en courbure ameliorees |
FR2953030B1 (fr) | 2009-11-25 | 2011-11-18 | Draka Comteq France | Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee |
FR2953029B1 (fr) | 2009-11-25 | 2011-11-18 | Draka Comteq France | Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee |
US8306380B2 (en) | 2009-09-14 | 2012-11-06 | Draka Comteq, B.V. | Methods and devices for cable insertion into latched-duct conduit |
FR2950156B1 (fr) | 2009-09-17 | 2011-11-18 | Draka Comteq France | Fibre optique multimode |
FR2950443B1 (fr) | 2009-09-22 | 2011-11-18 | Draka Comteq France | Fibre optique pour la generation de frequence somme et son procede de fabrication |
WO2011040830A1 (en) | 2009-09-30 | 2011-04-07 | Corning Incorporated | Optical fiber end structures for improved multi-mode bandwidth, and related systems and methods |
FR2951282B1 (fr) | 2009-10-13 | 2012-06-15 | Draka Comteq France | Fibre optique monomode a tranchee enterree |
FR2952634B1 (fr) | 2009-11-13 | 2011-12-16 | Draka Comteq France | Fibre en silice dopee en terre rare a faible ouverture numerique |
US9042693B2 (en) | 2010-01-20 | 2015-05-26 | Draka Comteq, B.V. | Water-soluble water-blocking element |
DK2352047T3 (da) | 2010-02-01 | 2019-11-11 | Draka Comteq Bv | Ikke-nul dispersionsskiftet optisk fiber med et stort effektivt areal |
EP2352046B1 (en) | 2010-02-01 | 2018-08-08 | Draka Comteq B.V. | Non-zero dispersion shifted optical fiber having a short cutoff wavelength |
US7865050B1 (en) | 2010-02-16 | 2011-01-04 | Ofs Fitel, Llc | Equalizing modal delay of high order modes in bend insensitive multimode fiber |
US7903918B1 (en) | 2010-02-22 | 2011-03-08 | Corning Incorporated | Large numerical aperture bend resistant multimode optical fiber |
-
2009
- 2009-12-03 FR FR0958637A patent/FR2953605B1/fr not_active Expired - Fee Related
-
2010
- 2010-11-30 DK DK10193134.3T patent/DK2339383T3/da active
- 2010-11-30 EP EP10193134A patent/EP2339383B1/en active Active
- 2010-12-03 JP JP2010270006A patent/JP5670164B2/ja active Active
- 2010-12-03 US US12/959,688 patent/US8406593B2/en active Active
- 2010-12-03 CN CN201010579482.2A patent/CN102087380B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006010798A1 (en) * | 2004-07-26 | 2006-02-02 | Photonium Oy | Multimode optical fiber with low differential mode delay |
JP2006047719A (ja) * | 2004-08-05 | 2006-02-16 | Fujikura Ltd | 低曲げ損失マルチモードファイバ |
CN1734300A (zh) * | 2004-08-11 | 2006-02-15 | 古河电气工业株式会社 | 光纤、光纤带以及光互连系统 |
WO2009078962A1 (en) * | 2007-12-13 | 2009-06-25 | Corning Incorporated | Bend resistant multimode optical fiber |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104685394B (zh) * | 2012-05-31 | 2018-11-09 | 康宁股份有限公司 | 多模光纤和包含该光纤的系统 |
CN109416447A (zh) * | 2016-05-15 | 2019-03-01 | 恩耐公司 | 高数值孔径光剥离器 |
CN109416447B (zh) * | 2016-05-15 | 2021-11-26 | 恩耐公司 | 高数值孔径光剥离器 |
CN113711096A (zh) * | 2019-02-22 | 2021-11-26 | 康宁股份有限公司 | 包层厚度减小的多模光纤 |
CN113728259A (zh) * | 2019-02-22 | 2021-11-30 | 康宁股份有限公司 | 耐穿刺的直径减小的多模光纤 |
CN113728259B (zh) * | 2019-02-22 | 2023-06-27 | 康宁股份有限公司 | 耐穿刺的直径减小的多模光纤 |
CN113711096B (zh) * | 2019-02-22 | 2023-06-27 | 康宁股份有限公司 | 包层厚度减小的多模光纤 |
CN113885121A (zh) * | 2021-09-30 | 2022-01-04 | 中天科技光纤有限公司 | 多模光纤 |
Also Published As
Publication number | Publication date |
---|---|
US20110135262A1 (en) | 2011-06-09 |
FR2953605A1 (fr) | 2011-06-10 |
US8406593B2 (en) | 2013-03-26 |
DK2339383T3 (da) | 2013-04-02 |
JP5670164B2 (ja) | 2015-02-18 |
EP2339383B1 (en) | 2013-01-23 |
EP2339383A1 (en) | 2011-06-29 |
CN102087380B (zh) | 2014-06-18 |
FR2953605B1 (fr) | 2011-12-16 |
JP2011118396A (ja) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102087380B (zh) | 弯曲损耗低且包层效应降低的多模光纤 | |
JP5663281B2 (ja) | 曲げ損失が低減された高帯域幅マルチモード光ファイバ | |
CN102073099B (zh) | 高带宽多模光纤 | |
JP5802383B2 (ja) | 高帯域マルチモード光ファイバおよび光ファイバシステム | |
JP5830228B2 (ja) | マルチモード光ファイバおよびマルチモード光システム | |
EP2299303B1 (en) | Multimode optical fibre with reduced bending losses | |
KR101554373B1 (ko) | 다중모드 섬유 | |
JP5685028B2 (ja) | 改善した曲げ損失を有するマルチモード光ファイバ | |
CN102854563B (zh) | 多模光纤 | |
EP2482107B1 (en) | Broad bandwidth multimode optical fiber with low bending losses | |
WO2024044115A1 (en) | Uncoupled-core multicore optical fiber with reduced cross talk | |
US11156770B2 (en) | Coupled multicore optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |