CN102036724B - 物质相转变的方法 - Google Patents

物质相转变的方法 Download PDF

Info

Publication number
CN102036724B
CN102036724B CN2009801184033A CN200980118403A CN102036724B CN 102036724 B CN102036724 B CN 102036724B CN 2009801184033 A CN2009801184033 A CN 2009801184033A CN 200980118403 A CN200980118403 A CN 200980118403A CN 102036724 B CN102036724 B CN 102036724B
Authority
CN
China
Prior art keywords
alchlor
plasma
substances
plasma reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009801184033A
Other languages
English (en)
Other versions
CN102036724A (zh
Inventor
A·L·米歇尔德阿雷瓦洛
P·施滕纳
S·菲德勒
D·克纳
M·纳格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN102036724A publication Critical patent/CN102036724A/zh
Application granted granted Critical
Publication of CN102036724B publication Critical patent/CN102036724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

物质和物质混合物相转变的方法,其中将物质或物质混合物引入等离子体反应器中,将物质或物质混合物转化为较高能量相,且将产物以气体形式从等离子体反应器中移出。所述方法可以用于金属盐、金属硝酸盐和/或金属醇盐和其它可汽化的金属有机化合物的升华。

Description

物质相转变的方法
本发明涉及一种物质和物质混合物的相转变(phase transformation)方法。 
通过使用U型槽来汽化三氯化铝是已知的(DE2928805),所述U型槽有平的端面并且借助加热棒从外面加热。 
上述方法的一个缺点是,由于所述槽和转动件的的制备材料的磨损和腐蚀,三氯化铝的侵蚀性盐熔体导致想得到的气体三氯化铝的污染。 
该已知方法的另一缺点是必须提供非常大体积的装置,以达到合适的生产能力并为相转变提供足够大的热量和表面积。相应地,其用来开启和关闭装置的长反应时间对系统的反应动力学有不利的影响。 
而且,操作大体积装置需要复杂的安全观念,以避免例如过度压力,所述过度压力例如是在加热系统运行时阀门关闭或由凝华作用导致的可移动的、未充分加热的控制阀堵塞或结垢所引起的。 
另外,传动轴必须从外面以气密的方式密封,这只能借助昂贵的结构和采用复杂的操作来完成。 
还有的已知装置概念基于反应器内部的旋转部分(US5,711,089和DE196 13 125 C1),其同样有像磨损和腐蚀那样的缺点。还有已知的向外开放的系统(DE199 04 196 C1)同样不适用于侵蚀性和腐蚀性金属盐。 
DE10242797A1公开了一种辐射(radiation)引起相转变的装置,其包括具有容器或管状反应壁的反应器,方便向反应器中引入和从反应器中取出待转化的物质或物质混合物、以及在反应器外的电磁辐射源,其中辐射源是红外线(IR)\可见光(VIS)\紫外线(UV)或微波辐射器,反应器壁至少一个区域包括辐射透射材料,设置所述辐射器以保护其免受产品损害,辐射热无需接触直接传入产品中。 
这种装置的缺点是只能处理很少的量。 
WO96/22867描述了一种用于螺旋传送机中的含聚合物的大批货物(bulk goods)的热处理装置,其中来自热辐射源的热量直接输入螺旋传送 机的传送作用区中传送的材料上。 
WO95/13130描述了一种在倾斜的圆筒中生产粒状材料的方法,其中在圆筒的内部沿整个圆筒的长度设置红外辐射器。像从CH478591A1中得知的螺杆螺纹(screw flight)可以附在圆筒内部。 
这些文件均没有描述物质转化,例如三氯化铝升华以及气体产物的进一步处理。 
DE102005022707A1描述了一种辐射引起的物质和物质混合物的相转变方法,其中物质或物质混合物在螺旋管中移动,借助电磁辐射源辐射,产物从旋转螺旋管中移出。 
这种方法的缺点是存在未解决的在旋转螺旋管的密封问题。 
因此本发明的目的是开发一种没有这些缺点的方法和装置。 
本发明提供了一种用于物质和物质混合物相转变的方法,其特征在于将物质或物质混合物引入等离子体反应器中,将物质或物质混合物转化为较高能量相,且将产物以气体形式或作为合适形式的气溶胶从等离子体反应器中移出和/或传送到其使用处。 
本发明的方法和本发明的装置可以用于物理相转变,特别是金属盐、金属硝酸盐和/或金属醇盐和其它可汽化的金属有机化合物的汽化和升华。物质或物质混合物可以固相例如粒状形态、以液相或悬浮液形式,引入反应器。 
为了本发明的目的,相转变是当引入能量时物质或物质混合物经历的转变。 
因此相转变可以是,特别地,汽化,升华,熔化,干燥和/或形成气溶胶,即气相和液相或固相的混合物。 
本发明的方法可以用于,例如,用于汽化金属卤化物例如SiCl4、TiCl4、SnCl4、VdCl4;金属硝酸盐,金属醇盐;用于固体例如选自金属卤化物AlCl3、ZrCl4、NbCl4、InCl3、FeCl3的金属盐的升华;用于固体例如选自YCl3、SnCl2、NbCl5、FeCl2的金属盐的熔化和,如果需要,随后的汽化;用于启动化学反应。 
在本发明的一个优选实施方式中,本发明的方法可以用于三氯化铝的升华。 
在本发明的一个实施方式中,等离子体反应器可以在大气压下在20到400℃操作。 
在本发明的一个实施方式中,相转变可以发生在有特别气氛的反应器中。 
所述特别气氛可以是,例如:减压下、大气压下、高于大气压的压力下。气体气氛和气压可以自由选择。 
等离子体处理是文献中已知的方法。已知等离子体处理和本发明方法的区别在于,本发明的方法不是将电弧用作升华/汽化的热源,而是使用放电(discharge)产生的电离气体。产生等离子体的放电发生在等离子区域外。这使低温汽化/升华成为可能。高能等离子体区域导致升华发生。 
然而,在反应器内的高温以防止凝华是必要的。 
作为等离子体,可以用所有不与升华材料进行任何反应的气体,例如氩、氮、氦。 
等离子体中不存在氧。 
升华可以在0.0001到1bar的压力下进行。 
根据本发明,氮可以用作物质或物质混合物的等离子体气体和载气。 
反应器可以有任何设计。只需要保证反应器能够在高温和腐蚀性环境中使用。 
反应器的反应室可以具有物质或物质混合物的一个入口,和较高能量相的物质或物质混合物的一个出口。 
此外,反应器可以有插入等离子体喷嘴的一个或多个开口。 
本发明的方法以及可以根据本发明使用的一台反应器示意地显示在图1中。 
根据图1,在等离子体反应器达到升华温度后,固体三氯化铝借助进料螺杆1进入等离子体反应器4。 
等离子体反应器4借助等离子体发生器2和插入等离子体喷嘴开口7中的等离子体喷嘴3加热,温度通过温度传感器5测量。三氯化铝通过与电离气体接触而升华。 
升华的三氯化铝通过被加热到220℃的热气体出口6从等离子体反应器4中排出并传送到其使用处。 
等离子体发生器可以使用,例如,来自Plasmatreat的等离子体发生器FG 3001。 
等离子体喷嘴3,可以使用,例如,来自Plasmatreat的等离子体喷嘴PFW 10。 
本发明的方法可以汽化三氯化铝,即使是较大量的三氯化铝。 

Claims (2)

1.三氯化铝相转变的方法,其中将三氯化铝引入等离子体反应器中,通过升华将三氯化铝转化为较高能量相,且将产物以气体形式或作为合适形式的气溶胶从等离子体反应器中移出和/或传送到其使用处,其特征在于,在等离子体反应器达到升华温度后,固体三氯化铝借助进料螺杆(1)进入等离子体反应器(4),其中,等离子体反应器(4)借助等离子体发生器(2)和插入等离子体喷嘴开口(7)中的等离子体喷嘴(3)加热,温度通过温度传感器(5)测量,并且三氯化铝通过与电离气体接触而升华,然后,升华的三氯化铝通过被加热到220℃的热气体出口(6)从等离子体反应器(4)中排出并传送到其使用处。
2.权利要求1的方法,其特征在于相转变发生在由放电产生的电离气体中。
CN2009801184033A 2008-05-19 2009-05-07 物质相转变的方法 Active CN102036724B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008001851.1 2008-05-19
DE102008001851A DE102008001851A1 (de) 2008-05-19 2008-05-19 Verfahren zur Phasenumwandlung von Stoffen
PCT/EP2009/055548 WO2009141234A1 (en) 2008-05-19 2009-05-07 Process for the phase transformation of substances

Publications (2)

Publication Number Publication Date
CN102036724A CN102036724A (zh) 2011-04-27
CN102036724B true CN102036724B (zh) 2013-09-18

Family

ID=41078365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801184033A Active CN102036724B (zh) 2008-05-19 2009-05-07 物质相转变的方法

Country Status (7)

Country Link
US (1) US8486157B2 (zh)
EP (1) EP2276546B1 (zh)
JP (1) JP5523447B2 (zh)
CN (1) CN102036724B (zh)
DE (1) DE102008001851A1 (zh)
UA (1) UA107650C2 (zh)
WO (1) WO2009141234A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000502A (zh) * 2012-10-29 2013-03-27 江苏卡迪诺节能保温材料有限公司 一种在硅片上实施铝扩散的方法
CN103212349B (zh) * 2013-04-27 2015-02-18 清华大学 一种升华凝华法纳米气溶胶发生系统及其使用方法和应用
CN103386204A (zh) * 2013-08-13 2013-11-13 长沙自洁换热器科技有限公司 聚合铝生产的热泵蒸发热泵干燥节能技术
CN110777360B (zh) * 2019-11-01 2020-09-22 西北工业大学 一种化学气相沉积负压状态下粉末前驱体的进料装置
US20230040683A1 (en) * 2021-08-06 2023-02-09 PlasmaDent Inc. Plasma-generating nozzle and plasma device including same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213851A (en) * 1990-04-17 1993-05-25 Alfred University Process for preparing ferrite films by radio-frequency generated aerosol plasma deposition in atmosphere
US5935293A (en) * 1995-03-14 1999-08-10 Lockheed Martin Idaho Technologies Company Fast quench reactor method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928805C2 (de) 1979-07-17 1982-03-11 Degussa Ag, 6000 Frankfurt Vorrichtung zum Verdampfen von Aluminiumtrichlorid
JPS58161767A (ja) * 1982-03-17 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> バナジウムの真空蒸着法
JPS60248880A (ja) * 1984-05-25 1985-12-09 Hitachi Ltd グロ−放電による被覆方法及び装置
DE3440590A1 (de) * 1984-11-07 1986-05-07 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Verfahren zur herstellung von supraleitenden faserbuendeln
JPS6376802A (ja) * 1986-09-19 1988-04-07 Daido Gakuen 表面に異質の被膜を付着させた微粒子の製法
JP3008433B2 (ja) * 1990-03-15 2000-02-14 エヌオーケー株式会社 超微粒子の製造方法
JPH05269372A (ja) * 1992-03-27 1993-10-19 Toyo Ink Mfg Co Ltd セラミックス粉末の製造方法
JPH0710510A (ja) * 1993-06-17 1995-01-13 Nippon Steel Chem Co Ltd 酸窒化物薄膜の製造方法
US5831123A (en) 1993-11-12 1998-11-03 Gerhard Gergely Process for producing a granulated material
US5478608A (en) * 1994-11-14 1995-12-26 Gorokhovsky; Vladimir I. Arc assisted CVD coating method and apparatus
DE19502352C2 (de) 1995-01-26 1997-03-27 Urban Dipl Ing Stricker Vorrichtung zur Wärmebehandlung von kunststoffhaltigen Schüttgütern
US5711089A (en) 1995-03-03 1998-01-27 Hosokawa Bepex Corporation Radiant heater for processing of polymers
DE19904196C1 (de) 1998-12-24 2000-10-19 Gogas Goch Gmbh & Co Trockner für Schüttgut
JP2002253954A (ja) * 2001-02-28 2002-09-10 C I Kasei Co Ltd 超微粒子の製造装置および製造方法
GB0208263D0 (en) * 2002-04-10 2002-05-22 Dow Corning Protective coating composition
DE10242797A1 (de) 2002-09-14 2004-03-25 Degussa Ag Verfahren und Vorrichtung zur Phasenumwandlung von Stoffen
JP2004223431A (ja) * 2003-01-24 2004-08-12 Phoenix Techno:Kk ガス化装置、多段型ガス化装置及びガス化容器
DE102004037675A1 (de) * 2004-08-04 2006-03-16 Degussa Ag Verfahren und Vorrichtung zur Reinigung von Wasserstoffverbindungen enthaltendem Siliciumtetrachlorid oder Germaniumtetrachlorid
JP4988164B2 (ja) * 2005-03-08 2012-08-01 株式会社日清製粉グループ本社 微粒子の製造方法と装置
DE102005022707A1 (de) 2005-05-18 2006-11-23 Degussa Ag Verfahren und Vorrichtung zur Phasenumwandlung von Stoffen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213851A (en) * 1990-04-17 1993-05-25 Alfred University Process for preparing ferrite films by radio-frequency generated aerosol plasma deposition in atmosphere
US5935293A (en) * 1995-03-14 1999-08-10 Lockheed Martin Idaho Technologies Company Fast quench reactor method

Also Published As

Publication number Publication date
US20110123424A1 (en) 2011-05-26
JP2011524245A (ja) 2011-09-01
DE102008001851A1 (de) 2009-11-26
US8486157B2 (en) 2013-07-16
EP2276546A1 (en) 2011-01-26
EP2276546B1 (en) 2012-11-28
JP5523447B2 (ja) 2014-06-18
WO2009141234A1 (en) 2009-11-26
CN102036724A (zh) 2011-04-27
UA107650C2 (uk) 2015-02-10

Similar Documents

Publication Publication Date Title
CN102036724B (zh) 物质相转变的方法
Palumbo et al. The production of Zn from ZnO in a high-temperature solar decomposition quench process—I. The scientific framework for the process
Weidenkaff et al. Direct solar thermal dissociation of zinc oxide: condensation and crystallisation of zinc in the presence of oxygen
US4689129A (en) Process for the preparation of submicron-sized titanium diboride
Flamant et al. Purification of metallurgical grade silicon by a solar process
Ahn et al. Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP
Jang et al. The effects of temperature on particle size in the gas-phase production of TiO2
Casey et al. Laser-induced vapour-phase syntheses of boron and titanium diboride powders
Ernst et al. Co‐synthesis of H2 and ZnO by in‐situ Zn aerosol formation and hydrolysis
Kang et al. Production of titanium dioxide directly from titanium ore through selective chlorination using titanium tetrachloride
Sakano et al. Application of radio-frequency thermal plasmas to treatment of fly ash
Qi et al. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide
US3297414A (en) Method for making high purity fine particle oxides
CN114620728B (zh) 气相法制备二维材料的方法及系统
US20100284887A1 (en) Method and device for producing silicon
Kakati et al. Study of a supersonic thermal plasma expansion process for synthesis of nanostructured TiO2
Sun et al. High surface area anatase titania nanoparticles prepared by MOCVD
RU2424183C2 (ru) Способ получения сложного оксида металла на основе железа
DE102005022707A1 (de) Verfahren und Vorrichtung zur Phasenumwandlung von Stoffen
CN107416896A (zh) 一种可控制备钛的氧化物粉体的方法
Fedorov et al. Doping titanium dioxide by fluoride ion
Penyazkov et al. Low-temperature synthesis of nanoparticles in the process of evaporation of femtoliter droplets of a solution at a low pressure
RU2585479C1 (ru) ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Vilakazi et al. A thermogravimetric investigation into the synthesis of CoF3 from Co3O4
US9278391B1 (en) Disproportionation production of nano-metal powders and nano-metal oxide powders

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Essen, Germany

Patentee after: Evonik Operations Limited

Address before: Essen, Germany

Patentee before: EVONIK DEGUSSA GmbH