CN102004255A - 啁啾调幅激光雷达距离-多普勒零差探测系统 - Google Patents

啁啾调幅激光雷达距离-多普勒零差探测系统 Download PDF

Info

Publication number
CN102004255A
CN102004255A CN 201010284514 CN201010284514A CN102004255A CN 102004255 A CN102004255 A CN 102004255A CN 201010284514 CN201010284514 CN 201010284514 CN 201010284514 A CN201010284514 A CN 201010284514A CN 102004255 A CN102004255 A CN 102004255A
Authority
CN
China
Prior art keywords
laser
signal
chirp
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010284514
Other languages
English (en)
Other versions
CN102004255B (zh
Inventor
凌元
洪光烈
舒嵘
于啸
徐显文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN2010102845146A priority Critical patent/CN102004255B/zh
Publication of CN102004255A publication Critical patent/CN102004255A/zh
Application granted granted Critical
Publication of CN102004255B publication Critical patent/CN102004255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种啁啾调幅激光雷达距离-多普勒零差探测系统,它应用于激光雷达系统。本发明的零差探测系统由激光器(1)、电光调制器(2)、啁啾信号源(3)、光纤分束器(4)、发射准直镜(5)、偏振分束镜(6)、λ/4波片(7)、望远镜(8)、接收准直镜(9)、第一偏振分束器(10)、第二偏振分束器(11)、耦合器(12)、平衡探测器(13)、数据采集和处理单元(14)构成。本发明的啁啾调幅激光雷达距离-多普勒零差探测系统是基于啁啾调幅、采用零差相干探测和平衡探测技术,本系统能同时得到目标的距离和速度信息,优点是结构简单,探测灵敏度高,测距测速精度高。

Description

啁啾调幅激光雷达距离-多普勒零差探测系统
技术领域
本发明涉及激光雷达技术,具体指一种啁啾调幅激光雷达距离-多普勒零差探测系统。
背景技术
现行的激光雷达系统按回波的探测方式可分为直接探测激光雷达与相干探测激光雷达。直接探测结构简单,应用最为广泛,但只能得出激光能量的变化。相干探测利用连续的本振光信号与回波在探测器上混频,探测灵敏度高,且可得出回波频率与相位变化,在大型相干激光雷达以及激光多普勒雷达中得到应用。
由激光雷达的理论可知,在功率受限的情况下,要实现远的探测距离,则要求大的脉冲时宽,而要实现高的探测精度,则需要大的带宽,简单脉冲时宽带宽乘积接近于1,时宽与带宽相互关联,不能同时增大时宽与带宽。也就是说,对这种恒定波长的简单激光脉冲,最大作用距离以及测速分辨率与距离分辨率存在着不可调和的矛盾。为解决这一矛盾,发射信号必须采用具有大时宽与带宽的复杂信号形式。
要得到大时宽与带宽的发射信号,需使用复杂的调制波形。应用较多的有三种:线性调频、非线性调频和相位编码。由于线性调频信号(LFM信号,即啁啾信号)易于产生、便于处理、对多普勒频移不敏感,所以其应用最广。
将大时宽带宽微波雷达的思想引入激光雷达,于是出现了一些激光雷达的新体制,包括线性调频连续波(LFMCW)激光雷达、伪随机码调相激光雷达以及啁啾信号调幅激光雷达等。
对激光调频与调相的探测都需要使用激光的相干探测,需要连续的本振光信号,因此前两种体制的激光雷达一般使用连续波激光器,或者使用MOPA结构(Master Oscillator Power Amplifier),即小功率的连续波激光器作为本振,其余部分经调制与光放大器放大后发射,光放大器输出可为连续波或脉冲信号。啁啾调幅激光雷达则可使用直接探测或相干探测。
德国西门子公司与GhK-Kassel大学合作开展了基于分布反馈双波导型半导体激光器(DFB-TTG-Laser)的啁啾调频短距离测量系统。通过在激光器调频区注入电流进行激光器调频,使用Mach-Zehnder调制器进行调频非线性的补偿,达到了毫米级精度。
哈尔滨工业大学与电子科技大学从九十年代开始了基于二氧化碳激光器的啁啾调频脉冲压缩雷达的研究,使用声表面波(SAW)色散延时线产生啁啾信号用于调制声光移频器,并使用对应的SAW器件进行脉冲压缩。此外,还进行了利用数字信号处理完成脉冲压缩的探索。北京理工大学开展了基于1064nm的Nd:YAG环形激光器以及声光移频器的LFMCW激光雷达研究。使用两级声光移频器串联,每级移频带宽40MHz,合计80MHz。两级声光移频器串联补偿在不同移频频率时衍射光出射角度的变化。
美国陆军实验室(ARL)使用啁啾信号直接调制DFB半导体激光器输出强度,后使用光纤放大器放大输出功率到5.5W。使用电子轰击有源像素传感器(EBAPS)配合CMOS相机,实现三维成像,其中EBAPS的增益由原始啁啾信号控制,从而实现啁啾信号混频。此外,还对利用32*32元MSM(Metal-Semiconductor-Metal)面阵探测器进行了三维成像实验,MSM探测器的增益由原始啁啾信号控制。此外,ARL还利用这此系统进行了目标速度与振动的探测研究。
2005年,美国NASA Langley Research Center报道研制出了高精度的测距测速激光相干雷达,采用频率调制和全光纤结构,并利用该雷达系统在加利福利亚州进行了多次实验,经实验验证,该雷达系统可以精确测量到目标的距离,以及垂直方向的相对速度。
发明内容
本发明的目的是在现有相干探测激光雷达技术上,提出一种能同时测量目标距离和速度信息的零差探测激光雷达系统,采用数字频率合成(DDS)技术产生啁啾信号源,通过电光调制器对激光进行啁啾调幅,调制后的信号通过分束器分为两部分,一部分作为本振,一部分作为发射光,发射光通过望远镜发射到目标,本振和望远镜接收到的回波信号在平衡光电探测器中进行光相干和平衡探测,得出距离-多普勒信息。
啁啾调幅利用线性调频信号(啁啾信号)去调制激光雷达发射激光的幅度。对于调幅体制,载波的能量占很大部分,例如调制深度为100%时,已调信号的能量只占1/3,可以用来测距,未调制的载波信号却可用于多普勒测速。当接收到回波信号时,未调制的激光信号中引入了由目标运动所产生的多普勒频移fd,通过本振和回波在探测器上的相干,可以得到本振和回波的差频,也即多普勒频移fd,进而速度:
v = λ f d 2 - - - ( 1 )
λ为激光的波长,因此可以得到目标在激光视线方向的速度。
已调制的信号经发射后,回波啁啾信号与同原始无延迟啁啾信号之间存在一个固定延时,由于啁啾信号为线性调频信号,频率随时间线性变化,因此通过相干后,固定的延时转换为固定的频差,通过检测频差,就可以得到从而得到回波延时,进而得到目标距离。啁啾信号的频率表达式为(锯齿波,即在单周期内频率只随时间线性上升):
f ( t ) = f c + B T t ( - T 2 ≤ t ≤ T 2 ) - - - ( 2 )
fc为啁啾信号的中心频率,B为啁啾信号的带宽,T为啁啾信号频率变化的周期。则原始的啁啾信号为:
v ( t ) = cos { 2 π [ ∫ f ( t ) dt ] } = cos [ 2 π ( f c t + B t 2 2 T ) + φ ] - - - ( 3 )
经过一段距离,延时τ后的啁啾信号为:
v ( t - τ ) = cos { 2 π [ f c ( t - τ ) + B ( t - τ ) 2 2 T ] + φ } - - - ( 4 )
延时的啁啾信号与原始啁啾信号混频后通过低通滤波可得到两信号的差频:
v x ( t ) = 1 2 cos ( 2 πBτt T + 2 π f c τ - πB τ 2 T ) - - - ( 5 )
由上式可见,vx(t)是一个余弦函数,vx的频率即啁啾差频fx同延迟时间τ成正比。vx的频率为fx=τB/T,对于频率按三角波变化的啁啾信号(即在一个周期内,前半个周期频率随时间线性上升,后半个周期频率随时间线性下降),fx=2τB/T。如图1所示。
经过调制后的激光信号通过分束器分成本振信号和发射信号,本振信号表达式为:
e L ( t ) = A L { 1 + m cos [ 2 π ( f c t + Bt 2 2 T ) ] } cos ( 2 π f 0 t ) - - - ( 6 )
发射信号被运动目标反射后的回波信号表达式为:
e s ( t ) = A s { 1 + m cos { 2 π [ f c ( t - τ ) + B ( t - τ ) 2 2 T ] } } cos [ 2 π ( f 0 + f d ) ( t - τ ) ] - - - ( 7 )
其中AL为本振光的幅度,AS为回波的幅度,m为调制深度,fc为啁啾信号的中心频率,τ为激光传输的时间延迟,fd为目标运动引起的多普勒频移,f0为激光的频率,由于啁啾信号中心频率远低于光频,因此啁啾信号的多普勒频移可以忽略。两者在探测器上混频,滤除高频与直流分量可得:
Figure BSA00000273781300052
由n(t)的表达式可知,其频谱共有三个峰值,分别对应频率:fd
Figure BSA00000273781300053
Figure BSA00000273781300054
fd为多普勒频移,
Figure BSA00000273781300055
为距离引起的啁啾差频。
因此,本发明提出一种啁啾调幅激光雷达距离-多普勒零差探测系统,如图2,系统组成部分如下:
1.激光调制部分:包括激光器(1)、电光调制器(2)和啁啾信号源(3)组成,啁啾信号源生成啁啾信号驱动电光调制器对激光器输出激光进行啁啾调幅。
2.发射及接收光路:由发射准直镜(5)、偏振分束器(6)、λ/4波片(7)、望远镜(8)、接收准直镜(9)组成,发射准直镜用来对激光进行准直发射,通过偏振分束器,偏振方向相同的通过,经过λ/4波片时,线偏振转换为圆偏振光,通过望远镜发射到目标,望远镜接收到的回波在经过λ/4波片后,偏振方向与发射时偏振方向垂直,因此经过偏振分束器反射到接收准直器中。
3.相干探测和平衡探测光路:包含第一偏振分束器(10),第二偏振分束器(11),耦合器(12),平衡探测器(13),偏振分束器主要是用来将本振信号和回波信号分为两路偏振方向不同的光信号,主要原因在于相干探测要求两束光的偏振相同,这样才能有高的相干效率。相同偏振方向的本振和回波信号,通过耦合器后,耦合器输出两路信号,经过平衡探测器后,光信号转换为电信号。
4.数据采集和处理单元:采用USB数据采集卡,对平衡探测器输出信号进行采集,然后进行频谱分析,得出距离差频和多普勒频移。
啁啾调幅激光雷达距离-多普勒零差探测系统具体工作流程如下:
激光器(1)输出的激光束S0经啁啾信号源(3)驱动的电光调制器(2)进行啁啾调幅后被光纤分束器(4)分为两部分,一部分作为本振光记为S1,另一部分作为发射光记为S2,S2经发射准直镜(5)发射,经过偏振分束镜(6)时,一部分反射,另一部分透射,S2透射部分激光通过λ/4波片(7)后,激光光偏振方向由线偏振转换为圆偏振,经望远镜(8)扩束后发射到运动目标(15)上;
运动目标对S2透射部分激光信号反射,反射信号被同一望远镜(8)接收到,望远镜接收到的S2回波信号通过λ/4波片(7)后转变为线偏振光,偏振方向与发射时经过λ/4波片(7)前的偏振方向垂直,经过偏振分束镜时,S2大部分光被反射,反射部分经接收准直镜(9)耦合到光纤中;
本振光S1经第一偏振分束器(10)后分成两路不同偏振方向的偏振光,任取其中一路记为S1-1,耦合到光纤中的S2回波信号经第二偏振分束器(11)后也分成两路不同偏振方向的偏振光,取与S1-1偏振方向相同的一路记为S2-1,将S1-1和S2-1输入到耦合器(12)中,耦合器输出两路信号记为S3和S4,将S3和S4接入到平衡探测器(13)中,光信号转换为电信号,通过数据采集和处理单元(14)采集平衡探测器输出的电信号到计算机中;
对采集得到的数据进行快速傅立叶变换,绘出频谱图,频谱图上存在有三个明显的峰,其对应的频率从小到大分别记为f1、f2、f3,若2f1=f3-f2,则被测目标的速度值v=λf1/2,被测目标的距离值d=cT(f3-f1)/2B,否则被测目标的速度值v=λf2/2,被测目标的距离值d=cT(f3-f2)/2B,其中λ为激光波长,c为光速,T为啁啾信号时间宽度,B为啁啾信号带宽。
本系统的优点为:
1)结构简单,与外差探测相比,无中频,减少了发射移频结构和接收下变频结构,同时降低了信号处理难度。
2)探测灵敏度高,相对与直接探测,相干探测和平衡探测方式抑制了相对强度噪声,具有大的转换增益,提高了探测灵敏度,本实验中最低能探测10-10w的回波功率。
3)利用未调制的载波信号进行速度测量,能同时得到运动目标距离和速度信息。
4)采用相干探测和平衡探测方式,测速测距精度高。
附图说明
图1为啁啾测距原理图
B:啁啾带宽
T:啁啾时宽
τ:回波延时
fx:距离差频
图2为啁啾调幅激光雷达距离-多普勒零差探测技术原理框图,其中各部分分别为:
1.激光器
2.电光调制器
3.用于驱动电光调制器的啁啾信号源
4.光纤分束器
5.发射准直镜
6.偏振分束镜
7.λ/4波片
8.望远镜
9.接收准直镜
10.第一偏振分束器
11.第二偏振分束器
12.耦合器
13.平衡探测器
14.数据采集与处理单元
15.运动目标
图3为啁啾调幅激光雷达距离-多普勒零差探测系统测速测距实验结果图。
具体实施方法:
啁啾调幅距离-多普勒零差探测系统对运动目标的距离和速度测量过程分为以下几步:
1)开启激光器(1),激光器采用NKT Phononics公司光纤激光器,波长1572nm,最大输出功率200mW,线宽1kHz(120μs延迟时),激光器输出连接至电光调制器输入端,开启啁啾信号源(3),输出接入电光调制器射频驱动端,电光调制器采用JDSU APETM微波模拟幅度调制器,驱动啁啾源通过DDS芯片AD9910产生,带宽160MHz,从80MHz~240MHz,时宽400μs,前200μs为线性上升,后200μs为线性下降,电光调制器输出接90/10光纤分束器(4)输入端,将光纤分束器10%输出端接入发射准直镜(5),90%输出端接入第一偏振分束器(10),按图2相对位置摆放发射准直镜(5)、偏振分束器(6)、λ/4波片(7)、望远镜(8)、接收准直镜(9)并固定;
2)开启运动导轨(15),设定目标运动速度;
3)调节光路使运动导轨上的运动目标反射光进入接收准直器(9)中,可用功率计在准直器后测量光功率,光功率最大时,可认为光路达到最优;
4)在接收准直器(9)后,接入一段800m的光纤延迟线,用来模拟目标距离;
5)按图2连接第一偏振分束器(10)、第二偏振分束器(11)、耦合器(12)、平衡探测器(13),接通探测器电源,耦合器采用3-dB光纤耦合器;
6)开启计算机,将探测器输出接入计算机上的数据采集卡输入接口,进行数据采集;
7)对采集后的数据进行频谱分析,计算距离和速度。
在啁啾带宽为160MHz,啁啾时宽为400μs,啁啾信号前半周期频率随时间线性上升,后半周期频率随时间线性下降,运动目标速度v=0.05m/s,距离8m,回波后采用了一根800m光纤模拟延迟的情况下,本系统某次实验数据频谱图如图3所示。
图3中第一个频谱峰值为速度v=0.05m/s引起的多普勒频移fd,后两个峰值分别为,距离差频和多普勒差频的差和和fx-fd,fx+fd,与理论结果相同。

Claims (1)

1.一种啁啾调幅激光雷达距离-多普勒零差探测系统,它包括激光器(1)、电光调制器(2)、啁啾信号源(3)、光纤分束器(4)、发射准直镜(5)、偏振分束镜(6)、λ/4波片(7)、望远镜(8)、接收准直镜(9)、第一偏振分束器(10)、第二偏振分束器(11)、耦合器(12)、平衡探测器(13)、和数据采集和处理单元(14),其特征在于:
激光器(1)输出的激光束S0经啁啾信号源(3)驱动的电光调制器(2)进行啁啾调幅后被光纤分束器(4)分为两部分,一部分作为本振光记为S1,另一部分作为发射光记为S2,S2经准直镜(5)发射,经过偏振分束镜(6)时,一部分反射,另一部分透射,S2透射部分激光通过λ/4波片(7)后,激光光偏振方向由线偏振转换为圆偏振,经望远镜(8)扩束后发射到运动目标(15)上;
运动目标对S2透射部分激光信号反射,反射信号被同一望远镜(8)接收到,望远镜接收到的S2回波信号通过λ/4波片(7)后转变为线偏振光,偏振方向与发射时经过λ/4波片(7)前的偏振方向垂直,经过偏振分束镜时,S2大部分光被反射,反射部分经接收准直镜(9)耦合到光纤中;
本振光S1经第一偏振分束器(10)后分成两路不同偏振方向的偏振光,任取其中一路记为S1-1,耦合到光纤中的S2回波信号经第二偏振分束器(11)后也分成两路不同偏振方向的偏振光,取与S1-1偏振方向相同的一路记为S2-1,将S1-1和S2-1输入到耦合器(12)中,耦合器输出两路信号记为S3和S4,将S3和S4接入到平衡探测器(13)中,光信号转换为电信号,通过数据采集和处理单元(14)采集平衡探测器输出的电信号到计算机中;
对采集得到的数据进行快速傅立叶变换,绘出频谱图,频谱图上存在有三个明显的峰,其对应的频率从小到大分别记为f1、f2、f3,若2f1=f3-f2,则被测目标的速度值v=λf1/2,被测目标的距离值d=cT(f3-f1)/2B,否则被测目标的速度值v=λf2/2,被测目标的距离值d=cT(f3-f2)/2B,其中λ为激光波长,c为光速,T为啁啾信号时间宽度,B为啁啾信号带宽。
CN2010102845146A 2010-09-17 2010-09-17 啁啾调幅激光雷达距离-多普勒零差探测系统 Active CN102004255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102845146A CN102004255B (zh) 2010-09-17 2010-09-17 啁啾调幅激光雷达距离-多普勒零差探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102845146A CN102004255B (zh) 2010-09-17 2010-09-17 啁啾调幅激光雷达距离-多普勒零差探测系统

Publications (2)

Publication Number Publication Date
CN102004255A true CN102004255A (zh) 2011-04-06
CN102004255B CN102004255B (zh) 2012-07-04

Family

ID=43811774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102845146A Active CN102004255B (zh) 2010-09-17 2010-09-17 啁啾调幅激光雷达距离-多普勒零差探测系统

Country Status (1)

Country Link
CN (1) CN102004255B (zh)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455301A (zh) * 2011-04-08 2012-05-16 安徽农业大学 陶瓷产品表面缺陷激光相干检测装置
CN102636776A (zh) * 2012-03-31 2012-08-15 中国科学院上海技术物理研究所 THz级大带宽激光合成孔径雷达成像系统的数据处理方法
CN103163513A (zh) * 2013-03-13 2013-06-19 哈尔滨工业大学 基于相位解调方法的fmcw激光雷达高精度信号测量方法
CN103163514A (zh) * 2013-03-06 2013-06-19 北京航空航天大学 一种消除激光雷达测速零点的装置
CN103176173A (zh) * 2013-02-16 2013-06-26 哈尔滨工业大学 基于光纤采样技术的lfmcw激光雷达调频的非线性校正方法
CN103543446A (zh) * 2013-09-30 2014-01-29 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达多孔径光学发射天线系统
CN104035101A (zh) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 基于强度编码的合成孔径激光雷达系统
CN104597452A (zh) * 2013-11-01 2015-05-06 中国科学院上海技术物理研究所 对称三角线性调频连续波激光雷达探测目标的方法
CN105068087A (zh) * 2015-09-17 2015-11-18 中国科学技术大学 相干光路的分子散射多普勒激光雷达
CN105445753A (zh) * 2015-11-19 2016-03-30 北京理工大学珠海学院 一种全光纤相干测风激光雷达及其测风方法
CN105629258A (zh) * 2016-03-02 2016-06-01 东华大学 基于伪随机码相位调制和外差探测的测速测距系统及方法
CN106019311A (zh) * 2016-05-03 2016-10-12 中国科学院上海技术物理研究所 一种复合光束收发的差分吸收激光雷达系统
CN106226778A (zh) * 2016-08-23 2016-12-14 成都信息工程大学 一种高分辨率测量远程目标的相干激光雷达系统
CN106289049A (zh) * 2016-07-21 2017-01-04 哈尔滨工业大学 基于压缩真空态注入的量子干涉测量装置及方法
CN106707292A (zh) * 2017-01-03 2017-05-24 濮阳光电产业技术研究院 一种基于光电振荡的多普勒测速系统
CN106772415A (zh) * 2017-01-17 2017-05-31 中国科学院光电研究院 一种相位测距装置及其测距方法
CN107748367A (zh) * 2017-09-22 2018-03-02 北京航天计量测试技术研究所 基于互补双调制的激光测距大气扰动误差补偿方法
CN107894587A (zh) * 2017-12-04 2018-04-10 电子科技大学 一种基于光锁相的脉冲激光零差相干探测装置
CN108152809A (zh) * 2016-12-06 2018-06-12 通用汽车环球科技运作有限责任公司 线性调频雷达中的直接无多普勒速度测量
CN108444948A (zh) * 2018-04-10 2018-08-24 中国科学院上海技术物理研究所 测量大气二氧化碳浓度的差分吸收激光雷达系统及方法
CN108534686A (zh) * 2018-04-04 2018-09-14 西安工业大学 一种无零漂外差式激光多普勒测量光纤光路及测量方法
CN108802779A (zh) * 2018-04-17 2018-11-13 南京航空航天大学 光载多天线gnss测量方法及测量装置
CN108828617A (zh) * 2018-06-15 2018-11-16 吉林省瑞中科技有限公司 新型的应用激光测量距离器
CN109254305A (zh) * 2017-07-12 2019-01-22 通用汽车环球科技运作有限责任公司 用于同时距离-多普勒感测的双波长激光器芯片级激光雷达
CN109581411A (zh) * 2019-01-15 2019-04-05 中国科学院上海光学精密机械研究所 基于光束相干合成的合成孔径激光成像雷达收发系统
CN109613512A (zh) * 2018-12-06 2019-04-12 上海交通大学 基于诺伦矩阵的n×m集成多波束激光雷达发射系统
CN109752699A (zh) * 2017-11-03 2019-05-14 通用汽车环球科技运作有限责任公司 基于距离-啁啾图中曲线检测的目标检测
CN109782292A (zh) * 2019-02-25 2019-05-21 贵州航天电子科技有限公司 一种激光偏振探测装置
CN109946707A (zh) * 2019-03-15 2019-06-28 深圳市速腾聚创科技有限公司 激光雷达接收装置、发射装置、系统及距离的测量方法
CN109991623A (zh) * 2019-04-30 2019-07-09 深圳市镭神智能系统有限公司 一种分布式激光雷达
CN110086542A (zh) * 2019-04-19 2019-08-02 中国电子科技集团公司第三十八研究所 一种微波信号傅立叶变换器
CN110133617A (zh) * 2019-04-17 2019-08-16 深圳市速腾聚创科技有限公司 一种激光雷达系统
CN110726995A (zh) * 2019-11-19 2020-01-24 常州市新瑞得仪器有限公司 激光雷达高精度测距方法及系统
CN110857991A (zh) * 2018-08-22 2020-03-03 通用汽车环球科技运作有限责任公司 基于光学象限检测方案的深度成像方法
CN110907918A (zh) * 2018-09-14 2020-03-24 通用汽车环球科技运作有限责任公司 用于真实多普勒探测的具有集成移频器的激光雷达系统
CN111007526A (zh) * 2020-01-15 2020-04-14 安徽大学 连续波全光纤相干多普勒激光测速雷达光学噪声的抑制系统和方法
CN111175780A (zh) * 2020-01-19 2020-05-19 哈尔滨理工大学 一种注入锁定调频连续波激光雷达测速装置及方法
CN111273307A (zh) * 2020-01-17 2020-06-12 中国科学院上海技术物理研究所 基于卡尔曼滤波算法的高精度啁啾激光相干融合测距方法
CN111435967A (zh) * 2019-01-14 2020-07-21 北京小米移动软件有限公司 拍照方法及装置
CN111751572A (zh) * 2020-07-02 2020-10-09 安徽大学 强本振型双光束激光多普勒测速方法及系统
CN111880190A (zh) * 2020-08-24 2020-11-03 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN112034483A (zh) * 2020-08-28 2020-12-04 中国科学院上海光学精密机械研究所 基于相干探测关联成像技术的多目标距离--速度解耦方法
CN112099037A (zh) * 2020-09-17 2020-12-18 上海波汇科技有限公司 一种基于fmcw激光雷达高点云获取量的目标检测方法及装置
CN112557373A (zh) * 2019-09-26 2021-03-26 南京理工大学 零差式宽带微波光谱仪
CN112639529A (zh) * 2020-07-30 2021-04-09 华为技术有限公司 一种激光雷达和智能车辆
CN113126063A (zh) * 2021-04-21 2021-07-16 西安理工大学 一种实时检测激光雷达回波全stokes矢量装置
CN113391295A (zh) * 2021-06-29 2021-09-14 昂纳信息技术(深圳)有限公司 一种激光雷达扫描系统和装置
CN113671452A (zh) * 2021-08-09 2021-11-19 成都众享天地网络科技有限公司 一种距离和速度同步拖引的有源干扰仿真设计方法
CN113885042A (zh) * 2021-08-17 2022-01-04 哈尔滨工业大学 一种1.55μm单光子相干激光雷达探测方法及装置
RU208857U1 (ru) * 2021-06-30 2022-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Устройство определения доплеровского измерения частоты отраженного радиолокационного сигнала
RU2774410C1 (ru) * 2021-06-30 2022-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Устройство определения доплеровского измерения частоты отраженного радиолокационного сигнала

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236253A (zh) * 2008-03-07 2008-08-06 中国科学院上海光学精密机械研究所 高精度测速测距激光雷达系统及测速测距方法
JP2009526999A (ja) * 2006-02-14 2009-07-23 デジタル シグナル コーポレイション チャープされた電磁放射を提供するシステムおよび方法
CN101493521A (zh) * 2009-03-06 2009-07-29 中国科学院上海光学精密机械研究所 合成孔径激光雷达非线性啁啾的匹配滤波方法和装置
WO2010030884A2 (en) * 2008-09-11 2010-03-18 Metris Usa, Inc. Compact fiber optic geometry for a counter chirp fmcw coherent laser radar
CN101788671A (zh) * 2010-02-09 2010-07-28 中国科学院上海技术物理研究所 应用于外差探测啁啾调幅激光测距装置的多周期调制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526999A (ja) * 2006-02-14 2009-07-23 デジタル シグナル コーポレイション チャープされた電磁放射を提供するシステムおよび方法
CN101236253A (zh) * 2008-03-07 2008-08-06 中国科学院上海光学精密机械研究所 高精度测速测距激光雷达系统及测速测距方法
WO2010030884A2 (en) * 2008-09-11 2010-03-18 Metris Usa, Inc. Compact fiber optic geometry for a counter chirp fmcw coherent laser radar
CN101493521A (zh) * 2009-03-06 2009-07-29 中国科学院上海光学精密机械研究所 合成孔径激光雷达非线性啁啾的匹配滤波方法和装置
CN101788671A (zh) * 2010-02-09 2010-07-28 中国科学院上海技术物理研究所 应用于外差探测啁啾调幅激光测距装置的多周期调制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《光学学报》 20100831 孟昭华等 啁啾调幅相干探测激光雷达关键技术研究 2446-2450 1 第30卷, 第8期 2 *
《光学学报》 20110630 于啸等 啁啾调幅激光雷达对距离和速度的零差探测 1-6 1 第31卷, 第6期 2 *
《红外与毫米波学报》 20090630 洪光烈等 Chirip强度调制与近红外激光合成孔径雷达距离向处理 229-233 1 第28卷, 第3期 2 *

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455301A (zh) * 2011-04-08 2012-05-16 安徽农业大学 陶瓷产品表面缺陷激光相干检测装置
CN102636776B (zh) * 2012-03-31 2013-10-23 中国科学院上海技术物理研究所 THz级大带宽激光合成孔径雷达成像系统的数据处理方法
CN102636776A (zh) * 2012-03-31 2012-08-15 中国科学院上海技术物理研究所 THz级大带宽激光合成孔径雷达成像系统的数据处理方法
CN103176173B (zh) * 2013-02-16 2014-07-30 哈尔滨工业大学 基于光纤采样技术的lfmcw激光雷达调频的非线性校正方法
CN103176173A (zh) * 2013-02-16 2013-06-26 哈尔滨工业大学 基于光纤采样技术的lfmcw激光雷达调频的非线性校正方法
CN103163514B (zh) * 2013-03-06 2014-12-03 北京航空航天大学 一种消除激光雷达测速零点的装置
CN103163514A (zh) * 2013-03-06 2013-06-19 北京航空航天大学 一种消除激光雷达测速零点的装置
CN103163513A (zh) * 2013-03-13 2013-06-19 哈尔滨工业大学 基于相位解调方法的fmcw激光雷达高精度信号测量方法
CN103543446A (zh) * 2013-09-30 2014-01-29 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达多孔径光学发射天线系统
CN104597452A (zh) * 2013-11-01 2015-05-06 中国科学院上海技术物理研究所 对称三角线性调频连续波激光雷达探测目标的方法
CN104035101A (zh) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 基于强度编码的合成孔径激光雷达系统
CN105068087A (zh) * 2015-09-17 2015-11-18 中国科学技术大学 相干光路的分子散射多普勒激光雷达
CN105445753A (zh) * 2015-11-19 2016-03-30 北京理工大学珠海学院 一种全光纤相干测风激光雷达及其测风方法
CN105629258A (zh) * 2016-03-02 2016-06-01 东华大学 基于伪随机码相位调制和外差探测的测速测距系统及方法
CN106019311B (zh) * 2016-05-03 2018-06-26 中国科学院上海技术物理研究所 一种复合光束收发的差分吸收激光雷达系统
CN106019311A (zh) * 2016-05-03 2016-10-12 中国科学院上海技术物理研究所 一种复合光束收发的差分吸收激光雷达系统
CN106289049A (zh) * 2016-07-21 2017-01-04 哈尔滨工业大学 基于压缩真空态注入的量子干涉测量装置及方法
CN106289049B (zh) * 2016-07-21 2019-04-16 哈尔滨工业大学 基于压缩真空态注入的量子干涉测量装置及方法
CN106226778A (zh) * 2016-08-23 2016-12-14 成都信息工程大学 一种高分辨率测量远程目标的相干激光雷达系统
CN108152809B (zh) * 2016-12-06 2021-12-31 通用汽车环球科技运作有限责任公司 线性调频雷达中的直接无多普勒速度测量
CN108152809A (zh) * 2016-12-06 2018-06-12 通用汽车环球科技运作有限责任公司 线性调频雷达中的直接无多普勒速度测量
CN106707292A (zh) * 2017-01-03 2017-05-24 濮阳光电产业技术研究院 一种基于光电振荡的多普勒测速系统
CN106707292B (zh) * 2017-01-03 2019-04-26 濮阳光电产业技术研究院 一种基于光电振荡的多普勒测速系统
CN106772415A (zh) * 2017-01-17 2017-05-31 中国科学院光电研究院 一种相位测距装置及其测距方法
CN106772415B (zh) * 2017-01-17 2019-09-20 中国科学院光电研究院 一种相位测距装置及其测距方法
CN109254305A (zh) * 2017-07-12 2019-01-22 通用汽车环球科技运作有限责任公司 用于同时距离-多普勒感测的双波长激光器芯片级激光雷达
CN109254305B (zh) * 2017-07-12 2023-05-16 通用汽车环球科技运作有限责任公司 用于同时距离-多普勒感测的双波长激光器芯片级激光雷达
CN107748367A (zh) * 2017-09-22 2018-03-02 北京航天计量测试技术研究所 基于互补双调制的激光测距大气扰动误差补偿方法
CN107748367B (zh) * 2017-09-22 2021-07-20 北京航天计量测试技术研究所 基于互补双调制的激光测距大气扰动误差补偿方法
CN109752699A (zh) * 2017-11-03 2019-05-14 通用汽车环球科技运作有限责任公司 基于距离-啁啾图中曲线检测的目标检测
CN107894587A (zh) * 2017-12-04 2018-04-10 电子科技大学 一种基于光锁相的脉冲激光零差相干探测装置
CN108534686A (zh) * 2018-04-04 2018-09-14 西安工业大学 一种无零漂外差式激光多普勒测量光纤光路及测量方法
CN108534686B (zh) * 2018-04-04 2020-07-28 西安工业大学 一种无零漂外差式激光多普勒测量光纤光路及测量方法
CN108444948A (zh) * 2018-04-10 2018-08-24 中国科学院上海技术物理研究所 测量大气二氧化碳浓度的差分吸收激光雷达系统及方法
CN108802779A (zh) * 2018-04-17 2018-11-13 南京航空航天大学 光载多天线gnss测量方法及测量装置
CN108828617A (zh) * 2018-06-15 2018-11-16 吉林省瑞中科技有限公司 新型的应用激光测量距离器
CN110857991A (zh) * 2018-08-22 2020-03-03 通用汽车环球科技运作有限责任公司 基于光学象限检测方案的深度成像方法
CN110907918A (zh) * 2018-09-14 2020-03-24 通用汽车环球科技运作有限责任公司 用于真实多普勒探测的具有集成移频器的激光雷达系统
CN110907918B (zh) * 2018-09-14 2023-08-25 通用汽车环球科技运作有限责任公司 用于真实多普勒探测的具有集成移频器的激光雷达系统
CN109613512A (zh) * 2018-12-06 2019-04-12 上海交通大学 基于诺伦矩阵的n×m集成多波束激光雷达发射系统
CN111435967B (zh) * 2019-01-14 2021-08-06 北京小米移动软件有限公司 拍照方法及装置
CN111435967A (zh) * 2019-01-14 2020-07-21 北京小米移动软件有限公司 拍照方法及装置
CN109581411A (zh) * 2019-01-15 2019-04-05 中国科学院上海光学精密机械研究所 基于光束相干合成的合成孔径激光成像雷达收发系统
CN109782292B (zh) * 2019-02-25 2024-01-26 贵州航天电子科技有限公司 一种激光偏振探测装置
CN109782292A (zh) * 2019-02-25 2019-05-21 贵州航天电子科技有限公司 一种激光偏振探测装置
CN109946707A (zh) * 2019-03-15 2019-06-28 深圳市速腾聚创科技有限公司 激光雷达接收装置、发射装置、系统及距离的测量方法
CN110133617A (zh) * 2019-04-17 2019-08-16 深圳市速腾聚创科技有限公司 一种激光雷达系统
CN110086542A (zh) * 2019-04-19 2019-08-02 中国电子科技集团公司第三十八研究所 一种微波信号傅立叶变换器
CN109991623A (zh) * 2019-04-30 2019-07-09 深圳市镭神智能系统有限公司 一种分布式激光雷达
CN112557373A (zh) * 2019-09-26 2021-03-26 南京理工大学 零差式宽带微波光谱仪
CN110726995A (zh) * 2019-11-19 2020-01-24 常州市新瑞得仪器有限公司 激光雷达高精度测距方法及系统
CN111007526A (zh) * 2020-01-15 2020-04-14 安徽大学 连续波全光纤相干多普勒激光测速雷达光学噪声的抑制系统和方法
CN111273307A (zh) * 2020-01-17 2020-06-12 中国科学院上海技术物理研究所 基于卡尔曼滤波算法的高精度啁啾激光相干融合测距方法
CN111175780A (zh) * 2020-01-19 2020-05-19 哈尔滨理工大学 一种注入锁定调频连续波激光雷达测速装置及方法
CN111751572A (zh) * 2020-07-02 2020-10-09 安徽大学 强本振型双光束激光多普勒测速方法及系统
CN112639529A (zh) * 2020-07-30 2021-04-09 华为技术有限公司 一种激光雷达和智能车辆
CN111880190B (zh) * 2020-08-24 2023-12-08 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN111880190A (zh) * 2020-08-24 2020-11-03 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN112034483A (zh) * 2020-08-28 2020-12-04 中国科学院上海光学精密机械研究所 基于相干探测关联成像技术的多目标距离--速度解耦方法
CN112034483B (zh) * 2020-08-28 2022-07-08 中国科学院上海光学精密机械研究所 基于相干探测关联成像技术的多目标距离--速度解耦方法
CN112099037A (zh) * 2020-09-17 2020-12-18 上海波汇科技有限公司 一种基于fmcw激光雷达高点云获取量的目标检测方法及装置
CN112099037B (zh) * 2020-09-17 2023-11-10 上海波汇科技有限公司 一种基于fmcw激光雷达高点云获取量的目标检测方法及装置
CN113126063A (zh) * 2021-04-21 2021-07-16 西安理工大学 一种实时检测激光雷达回波全stokes矢量装置
CN113391295A (zh) * 2021-06-29 2021-09-14 昂纳信息技术(深圳)有限公司 一种激光雷达扫描系统和装置
CN113391295B (zh) * 2021-06-29 2024-02-27 昂纳科技(深圳)集团股份有限公司 一种激光雷达扫描系统和装置
RU208857U1 (ru) * 2021-06-30 2022-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Устройство определения доплеровского измерения частоты отраженного радиолокационного сигнала
RU2774410C1 (ru) * 2021-06-30 2022-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Устройство определения доплеровского измерения частоты отраженного радиолокационного сигнала
CN113671452A (zh) * 2021-08-09 2021-11-19 成都众享天地网络科技有限公司 一种距离和速度同步拖引的有源干扰仿真设计方法
CN113671452B (zh) * 2021-08-09 2023-08-29 成都众享天地网络科技有限公司 一种距离和速度同步拖引的有源干扰仿真设计方法
CN113885042A (zh) * 2021-08-17 2022-01-04 哈尔滨工业大学 一种1.55μm单光子相干激光雷达探测方法及装置

Also Published As

Publication number Publication date
CN102004255B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102004255B (zh) 啁啾调幅激光雷达距离-多普勒零差探测系统
CN100478703C (zh) 基于半导体激光器的混沌激光测距方法及装置
CN101236253B (zh) 高精度测速测距激光雷达系统及测速测距方法
US9689772B2 (en) Optical pulse compression reflectometer
CN111337902B (zh) 多通道高重频大动态范围测距测速激光雷达方法及装置
CN100578261C (zh) 连续波调频相干光纤激光雷达
CN204719233U (zh) 一种基于双频激光的目标探测装置
CN100478704C (zh) Ld抽运固体激光器混沌激光测距的装置及方法
US10931079B2 (en) Brillouin sensing system using optical microwave frequency discriminators and scrambler
CN111650601B (zh) 车载相干激光雷达高分辨3d成像方法及装置
CN106226778A (zh) 一种高分辨率测量远程目标的相干激光雷达系统
CN102278973B (zh) 一种超短脉冲激光测距系统
CN103528511A (zh) 正弦相位调制型激光自混合干涉仪及其测量方法
CN102495411A (zh) 亚毫米级线性调谐激光测距系统及信号处理方法
CN206114903U (zh) 一种高分辨率测量远程目标的相干激光雷达系统
CN201159766Y (zh) 高精度测速测距激光雷达系统
CN101799318A (zh) 一种激光零差测振光学系统及其信号处理方法
CN1844951A (zh) 光纤激光器混沌激光测距装置及方法
CN109541636B (zh) 一种无盲区高距离分辨率激光雷达测风系统及方法
CN101788671B (zh) 应用于外差探测啁啾调幅激光测距装置的多周期调制方法
CN202281835U (zh) 亚毫米级线性调谐激光测距系统
CN111175780A (zh) 一种注入锁定调频连续波激光雷达测速装置及方法
CN102854511A (zh) 全光纤光频率调制激光多普勒测速系统
CN104199044A (zh) 一种双模式、超高速运动物体运动速度测量装置及方法
CN111796297B (zh) 基于铒玻璃激光器的并行调频连续波激光测距装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant