CN101984749B - Low-energy 4-cell electrochemical system with carbon dioxide gas - Google Patents

Low-energy 4-cell electrochemical system with carbon dioxide gas Download PDF

Info

Publication number
CN101984749B
CN101984749B CN200980101611.2A CN200980101611A CN101984749B CN 101984749 B CN101984749 B CN 101984749B CN 200980101611 A CN200980101611 A CN 200980101611A CN 101984749 B CN101984749 B CN 101984749B
Authority
CN
China
Prior art keywords
electrolyte
cathode
system
anode
exchange membrane
Prior art date
Application number
CN200980101611.2A
Other languages
Chinese (zh)
Other versions
CN101984749A (en
Inventor
R·J·吉利亚姆
T·A·阿尔布雷希特
N·贾拉尼
N·A·克诺特
V·德克
M·科斯托斯基
B·博格斯
K·法萨
A·高若尔
Original Assignee
卡勒拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US8129908P priority Critical
Priority to US61/081299 priority
Priority to US9172908P priority
Priority to US61/091729 priority
Priority to USPCT/US2008/088242 priority
Priority to PCT/US2008/088242 priority patent/WO2010074686A1/en
Priority to USPCT/US2009/032301 priority
Priority to PCT/US2009/032301 priority patent/WO2010087823A1/en
Application filed by 卡勒拉公司 filed Critical 卡勒拉公司
Priority to PCT/US2009/048511 priority patent/WO2010008896A1/en
Publication of CN101984749A publication Critical patent/CN101984749A/en
Application granted granted Critical
Publication of CN101984749B publication Critical patent/CN101984749B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis, ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis Electro-ultrafiltration
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis, ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis Electro-ultrafiltration
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/40Purification; Separation by electrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/07Preparation from the hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/02Electrolytic production of inorganic compounds or non-metals of hydrogen or oxygen
    • C25B1/04Electrolytic production of inorganic compounds or non-metals of hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/18Electrolytic production of inorganic compounds or non-metals of alkaline earth metal compounds or magnesium compounds
    • C25B1/20Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/16Specific vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources
    • Y02E60/366Hydrogen production from non-carbon containing sources by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10General improvement of production processes causing greenhouse gases [GHG] emissions
    • Y02P20/14Reagents; Educts; Products
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions
    • Y02P20/152CO2

Abstract

利用明显低于在传统阳极和阴极之间用于生产离子的一般3V的电压生产氢氧离子和/或碳酸氢根离子和/或碳酸根离子的低电压、低能量电化学系统和方法;因此,本系统和方法造成的二氧化碳排放明显降低。 Using hydroxide ions produced significantly lower than the voltage of 3V is generally produced ions and / or bicarbonate ions / or a low voltage, low-energy electrochemical system and method and carbonate ions between the anode and the cathode for the conventional; therefore carbon dioxide emissions resulting from the present system and method significantly reduced.

Description

使用二氧化碳气体的低能量4-电池电化学系统 Using low-energy carbon dioxide gas cell electrochemical system 4-

[0001] 对相关申请的夺叉引用 [0001] reference to wins fork RELATED APPLICATIONS

[0002] 依据35U. S. α § 119 (e),本申请要求2008年7月16日提交的名称为:"Low Energy pH Modulation for Carbon Sequestration UsingHydrogen Absorptive Metal Catalysts (使用氢吸收性金属催化剂的碳封存的低能量pH调节)"的共同转让的美国临时专利申请no. 61/081,299 ;和2008年8月25日提交的名称为:"Low Energy Absorption ofHydrogenlon from an Electrolyte Solution into a Solid Material (氢离子从电角军质溶液低能量吸收到固体材料中)"的共同转让的美国临时专利申请no. 61/091,729的优先权,两者均全文经此引用并入本文。 . [0002] According 35U S. α § 119 (e), this application claims the July 16, 2008 entitled: "Low Energy pH Modulation for Carbon Sequestration UsingHydrogen Absorptive Metal Catalysts (carbon hydrogen-absorbing metal catalyst low energy storage pH adjustment), "commonly assigned US provisional patent application no 61 / 081,299; and the name of August 25, 2008 entitled:." low energy Absorption ofHydrogenlon from an Electrolyte Solution into a Solid Material ( U.S. provisional Patent hydrogen ions from the absorbed electric angle military substance solution in low energy to the solid material) "in co-assigned application no. No. 61 / 091,729, and both incorporated herein by reference.

[0003] 依据35U.SC § 119(a)和依据35U.SC § 365,本申请要求2008年12月23日提交的名称为"Low Energy Electrochemical HydroxideSystem and Method(低能量电化学氢氧化物系统和方法)"的共同转让的PCT专利申请no. PCT/US08/88242 ;和2009年1月28 日提交的名称为"Low Energy Electrochemical Bicarbonate Ion Solution(低能量电化学碳酸氢根离子溶液)"的共同转让的PCT专利申请no. PCT/US09/32301的优先权,两者均全文经此引用并入本文。 [0003] based on 35U.SC § 119 (a) and in accordance with 35U.SC § 365, this application claims December 23, 2008 entitled "Low Energy Electrochemical HydroxideSystem and Method (low-energy electrochemical system and hydroxides method) "commonly assigned PCT patent application no PCT / US08 / 88242;. name and January 28, 2009 entitled" low energy electrochemical bicarbonate ion solution (low energy ion electrochemical bicarbonate solution) "co assigned PCT Patent application no. PCT / US09 / 32301, filed, both incorporated herein by reference.

[0004] 背景 [0004] BACKGROUND

[0005] 通常需要氢氧离子、碳酸根离子和/或碳酸氢根离子的溶液以从溶液中除去质子,或缓冲溶液的pH值,或从溶液中沉淀不可溶的氢氧化物和/或碳酸盐和/或碳酸氢盐。 [0005] Generally hydroxide ions, carbonate ions and / or bicarbonate ion solution required to remove protons from the solution, or pH buffer solution, or precipitated insoluble hydroxide and / or carbon from solution salt and / or bicarbonate. 传统上,可以通过水解碱例如熟化的生石灰;或通过电解盐溶液例如电解氯化钠水溶液(如氯碱工艺中那样)来生产氢氧离子。 Conventionally, hydrolysis by a base such as lime aging; electrolysis of aqueous sodium chloride solution or, for example (as in the chlor-alkali process) hydroxide ions produced by electrolysis of a salt solution. 传统上,可以通过将二氧化碳气体溶解在水中或通过将可溶碳酸盐或碳酸氢盐例如碳酸氢钠溶解在水中来生产碳酸根离子或碳酸氢根离子。 Conventionally, the carbon dioxide gas can be dissolved in water or by adding a soluble carbonate or bicarbonate such as sodium bicarbonate dissolved in water to produce carbonate ions or bicarbonate ions.

[0006] 尽管水解碱或电解盐溶液可产生氢氧离子,但氢氧离子的传统生产消耗大量能量;该传统方法也将大量二氧化碳释放到环境中。 [0006] Although the hydrolysis may be an alkali solution or an electrolytic salt hydroxide ions, the hydroxide ions of the traditional production lot of energy; the traditional method large amounts of carbon dioxide is also released into the environment. 因此,例如,在生石灰的生产中,燃烧大量化石燃料以煅烧石灰石和将石灰石转化成氧化钙,结果大量二氧化碳释放到环境中。 Thus, for example, in the production of lime, the combustion of fossil fuels in a large amount of limestone and calcined limestone is converted into calcium oxide, results in a large amount of carbon dioxide released into the environment. 类似地,在通过氯碱工艺生产氢氧离子时,由于在阳极和阴极之间需要通常至少3V以驱动该反应,使用了大量能量。 Similarly, in the production of hydroxide ions through the chlor-alkali process, since the anode and cathode generally requires at least 3V to drive the reaction, a large amount of energy. 由于该能量通常来自化石供以燃料的发电厂,这种工艺也造成大量二氧化碳释放到环境中。 Since this energy is typically from fossil fueled power plants, this process can cause a lot of carbon dioxide released into the environment. 类似地,在通过将二氧化碳溶解在水性溶液中来生产碳酸根离子和碳酸氢根离子时,需要相当大量的能量将该气体加压以改进溶解度,结果由于所用能量,大量二氧化碳释放到环境中。 Similarly, when passing through the carbon dioxide dissolved in an aqueous solution to produce carbonate ions and bicarbonate ions, it requires a considerable amount of energy of the gas is pressurized to improve the solubility, since the result of energy used, a large amount of carbon dioxide released into the environment. 因此,非常需要氢氧离子、碳酸根离子和碳酸氢根离子的高效能量生产。 Thus, a great need hydroxide ions, carbonate ions and bicarbonate ions efficient energy production.

[0007] 概述 [0007] Overview

[0008] 在各种实施方案中,本系统和方法涉及生产氢氧离子和/或碳酸氢根离子和/或碳酸根离子的低电压、低能量电化学系统和方法。 [0008] In various embodiments, the present system and method relates to the production of hydroxide ions and / or bicarbonate ions and low voltage / or carbonate ions, low-energy electrochemical system and method. 在各种实施方案中,该系统和方法利用明显低于在传统阳极和阴极之间使用的一般3V的电压生产离子;因此,本系统和方法造成的二氧化碳排放明显降低。 In various embodiments, the system and method using a voltage significantly lower than the general 3V ions produced using the conventional anode and a cathode between; Thus, carbon dioxide emissions resulting from the present system and method significantly reduced.

[0009] 在一个实施方案中,该系统包含:与阴极接触的第一电解质;与阳极接触的第二电解质;被第一离子交换膜与第一电解质隔开的第三电解质;被第二离子交换膜与第二电解质隔开的第四电解质;和隔开第三和第四电解质的第三离子交换膜。 [0009] In one embodiment, the system comprises: a first electrolyte in contact with the cathode; a second electrolyte in contact with the anode; a first ion exchange membrane electrolyte and spaced apart from the first third electrolyte; a second ion the fourth exchange membrane and the second electrolyte separated from the electrolyte; and third and fourth spaced apart from the third ion exchange membrane electrolyte.

[0010] 在一个实施方案中,该方法包括:与阴极接触地安置第一电解质;与阳极接触地安置第二电解质;安置第三电解质以使其通过第一离子交换膜与第一电解质隔开;安置第四电解质以使其通过第三离子交换膜与第三电解质隔开和通过第二离子交换膜与第二电解质隔开;和通过在阳极和阴极之间施加电压来在第一电解质中形成氢氧离子。 [0010] In one embodiment, the method comprising: a first electrolyte disposed in contact with a cathode; an anode disposed in contact with the second electrolyte; a third electrolyte such that it is disposed through a first ion exchange membrane electrolyte and spaced apart from the first ; fourth electrolyte disposed and spaced apart by a second electrolyte membrane and the second ion exchange membrane so as to exchange ions through the third and the third electrolyte; a first electrolyte and a voltage is applied between the anode and the cathode by formation of hydroxide ions.

[0011] 在另一实施方案中,该方法包括:与阴极接触地安置第一电解质;与阳极接触地安置第二电解质;安置第三电解质以使其通过第一离子交换膜与第一电解质隔开;安置第四电解质以使其通过第三离子交换膜与第三电解质隔开和通过第二离子交换膜与第二电解质隔开;和向第一电解质供应二氧化碳气体。 [0011] In another embodiment, the method comprising: a first electrolyte disposed in contact with a cathode; an anode disposed in contact with the second electrolyte; a third electrolyte such that it is disposed through a first ion exchange membrane electrolyte and the first compartment open; a fourth electrolyte such that it is disposed with the third electrolyte membrane and spaced apart by a second electrolyte membrane and a second ion exchange by the third ion exchange; a first electrolyte and supplying carbon dioxide gas.

[0012] 在各种实施方案中,第一离子交换膜包含阳离子交换膜;第二离子交换膜包含阳离子交换膜;和第三离子交换膜包含阴离子交换膜。 [0012] In various embodiments, the first ion exchange membrane comprises a cation exchange membrane; second ion exchange membrane comprises a cation exchange membrane; and a third ion-exchange membrane comprises an anion exchange membrane. 在各种实施方案中,第一电解质是与阴极接触的阴极电解质,且第二电解质是与阳极接触的阳极电解质。 In various embodiments, the first electrolyte is a cathode electrolyte in contact with the cathode, anode electrolyte and the second electrolyte is in contact with the anode.

[0013] 在各种实施方案中,该系统和方法适用于经由流出流提取部分或所有阴极电解质和/或经由该阴极电解质隔室的流入流补充该电解质。 [0013] In various embodiments, the system and method is applicable to some or all of extract stream effluent catholyte and / or supplement the inflow of the electrolyte through the cathode compartment through the electrolyte. 在各种实施方案中,该系统和方法适用于从流出流提取部分或所有第四电解质和经由第四电解质隔室的流入流补充该电解质。 In various embodiments, the system and method suitable for inflow from the effluent stream of the electrolyte added to extract some or all of the fourth through the fourth electrolyte and electrolyte compartment. 在各种实施方案中,该系统和方法适用于分批、半分批或连续流作业,伴随或不伴随提取和补充该系统中的电解质。 In various embodiments, the system and method is applicable to batch, semi-batch or continuous flow operation, with or without the extraction and supplement of the electrolyte system.

[0014] 在各种实施方案中,该系统包括适用于将阴极处生成的氢气导向阳极的氢气转移系统。 [0014] In various embodiments, the system includes adapted to generate hydrogen gas at the cathode to the anode of the hydrogen gas transfer system. 在另一实施方案中,该系统包括二氧化碳输送系统,其适用于将二氧化碳气体输送到阴极电解质中,在此其溶解并可能根据该电解质的PH值形成碳酸氢根和/或碳酸根离子。 In another embodiment, the system includes a carbon dioxide delivery system adapted to transport the carbon dioxide gas into the cathode electrolyte where it is dissolved and may be in form bicarbonate and / or carbonate ions according to the PH value of the electrolyte. 在通过将该气体溶解在阴极电解质中来向阴极电解质供应二氧化碳的实施方案中,该溶解在一些实施方案中可以在位于流出流中或位于流入流中或位于它们之间的一个或多个隔室中发生。 By dissolving the gas in the cathode electrolyte to the cathode electrolyte supply to the embodiment of the carbon dioxide, which is dissolved in some embodiments, the effluent stream may be located or positioned into the flow in or positioned therebetween a plurality of compartments or the chamber occurs. 在各种实施方案中,该系统有效地连接到包含燃烧气体的工业废气流以向该阴极电解质供应气体例如二氧化碳。 In various embodiments, the system is operatively connected to an industrial waste gas stream comprising combustion gases to the electrolyte to the cathode supply gas such as carbon dioxide. 在各种实施方案中,该废气流包括来自化石供以燃料的发电厂、水泥制造厂和/或其它工厂的燃烧气体。 In various embodiments, the waste gas stream comprises from fossil fueled power plants, the cement manufacturing and / or combustion gases other plants. 在各种实施方案中,该废气包括酸性气体,例如氮氧化物(一氧化二氮、氧化一氮)和硫气体(二氧化硫、硫化氢),其在该阴极电解质中溶解形成阴离子。 In various embodiments, the waste gas includes acidic gases, such as nitrogen oxides (nitrous oxide, nitric oxide) and sulfur gases (sulfur dioxide, hydrogen sulfide), which was dissolved form anions in the cathode electrolyte. 在一些实施方案中,在与阴极电解质接触之前处理该废气以除去其非二氧化碳组分的部分或全部。 In some embodiments, treating the exhaust gas prior to contact with the cathode electrolyte to remove some or all of its non-carbon dioxide component.

[0015] 在各种实施方案中,该系统和方法的产物,包括氢氧离子、碳酸氢根离子、碳酸根离子、盐酸和已从中除去了某些阳离子和阴离子的部分脱盐水,如全文经此引用并入本文的2008年12月24日提交的共同转让的美国专利申请no. 12/344, 019中所述,用于通过使废气与包含二价阳离子和氢氧根、碳酸氢根和/或碳酸根离子的溶液接触以沉淀碳酸盐和碳酸氢盐来封存二氧化碳和工业废气的其它成分,例如硫气体、氮氧化物气体和其它燃烧气体。 [0015] In various embodiments, the system and method of the product, comprising hydroxide ions, bicarbonate ions, carbonate ions, hydrochloric acid has been removed therefrom and some of the cation and anion portion of desalinated water, such as by full text this cited commonly assigned, filed December 24, 2008 is incorporated herein U.S. Patent application no. 12/344, 019 described for the exhaust gas by comprising a divalent cation and hydroxide, bicarbonate and and / or other components in contact with a solution of carbonate ions to precipitate the carbonate and bicarbonate to sequester carbon dioxide and industrial waste gas, such as sulfur gases, nitrogen oxide gases and other combustion gases. 包含例如钙和镁的碳酸盐和碳酸氢盐的沉淀物在各种实施方案中用作建筑材料,例如用作水泥和集料,如全文经此引用并入本文的2008年5月23日提交的共同转让的美国专利申请no. 12/126, 776中所述。 It includes, for example calcium and magnesium carbonates and bicarbonates are used as construction materials in various embodiments, for example, as cements and aggregates, as entirety is incorporated herein by reference May 23, 2008 commonly assigned U.S. Patent filed no. 12/126, 776 said.

[0016] 在另一用途中,已从中除去了阳离子和阴离子的部分脱盐水,例如通过从第三电解质中除去钠离子和氯离子而形成的部分脱盐水用作脱盐系统中的进料水,在此如全文经此引用并入本文的2008年6月27日提交的共同转让的美国专利申请no. 12/163,205中所述进一步加工该水。 [0016] In another application, a portion has been removed therefrom desalinated water cations and anions, such as partially desalinated water formed by the removal of sodium ions and chloride ions from the third electrolyte for Demineralized water feed system, in this as in commonly assigned entirety by reference June 27, 2008, incorporated herein filed US patent application no. 12 / 163,205 in the further processing of the water.

[0017] 在另一实施方案中,在第四电解质中制成的酸和/或在阴极电解质中制成的碱溶液用于溶解包含二价阳离子例如Ca++和Mg++的矿物和废料,以产生在使用本阴极电解质制造二价金属离子碳酸盐沉淀物时使用的二价阳离子溶液。 [0017] In another embodiment, the acid produced in the fourth electrolyte and / or the alkaline solution produced in the cathode electrolyte comprises a dissolved divalent cations such as Ca ++ and Mg ++ and mineral waste, to produce manufactured using the cathode electrolyte divalent metal ion carbonate precipitate solution of divalent cations when used. 在各种实施方案中,该沉淀物用作建筑材料,例如水泥和集料,如全文经此引用并入本文的共同转让的美国专利申请no. 12/126, 776 中所述。 In various embodiments, the precipitate was used as building materials such as cement and aggregate, such as entirety is incorporated by reference herein in commonly assigned U.S. patent application no. 12/126, 776 said.

[0018] 附图简述 [0018] BRIEF DESCRIPTION

[0019] 下列附图举例而非限制性阐述本系统和方法的实施方案。 [0019] The following drawings illustrate embodiments and not limiting illustrated embodiment of the present system and method.

[0020] 图1是本系统的一个实施方案的图示。 [0020] FIG. 1 is an illustration of an embodiment of the present system.

[0021] 图2是本方法的一个实施方案的流程图。 [0021] FIG 2 is a flowchart of a method embodiment of the present embodiment.

[0022] 图3是本方法的一个实施方案的流程图。 [0022] FIG. 3 is a flowchart of a method embodiment of the present embodiment.

[0023] 详述 [0023] detail

[0024] 在详细描述本方法和系统之前,应该理解的是,本系统和方法不限于本文描述和例举的具体实施方案,因此可变。 [0024] Before the present methods and systems described in detail, it should be understood that the present systems and methods are not limited to the particular embodiments described and exemplified herein, and therefore variable. 还要理解的是,本文所用的术语仅用于描述具体实施方案并且不是限制性的,因为其范围仅受所附权利要求书的限制。 It is also understood that the terminology used herein is for describing particular embodiments only and not limiting, since it is only limited by the scope of the appended claims subject.

[0025] 在本文中,在提供数值范围时,应该理解的是,在该范围的上限和下限之间的各居间值(除非文中明确地另行指明,以下限的单位的1/10为间隔)以及在该指定范围内的任何其它指定值或居间值包含在本系统和方法内。 [0025] Herein, the range of values ​​is provided, it is understood that each intervening value between the upper and lower limits of the range (unless expressly stated otherwise, the following limit interval units of 1/10) and any other specified value or intervening value in that stated range is encompassed within the present system and method. 除在该指定范围内明确排除的任何界限值夕卜,这些较小范围的上限和下限可独立地包括在这些较小范围内并且也包含在本发明内。 In addition to any specified limit within the range of values ​​of Xi Bu specifically excluded, these upper and lower limits smaller ranges may independently be included in the smaller ranges and are also encompassed within the present invention. 如果该指定范围包括界限值之一或两者,排除这些包括的界限值的任一或两者的范围也包括在本系统和方法中。 If the stated range includes one or both of the limit values, or a range excluding either both of those included limits values ​​are also included in the present system and method.

[0026] 在本文中,在描述范围时,数值前用术语"大约"修饰。 [0026] Herein, in the description of the scope, the former value by the term "about". 术语"大约"在本文中用于为其后的确切数值以及与该术语后的数值接近或近似的数值提供字面支持。 The term "about" the exact numerical values ​​used herein as well as its proximity to the value of the approximate value for the term or provide literal support. 在确定一数值是否接近或近似明确列举的数值时,接近或近似的未列举的数值可以是在其陈述背景中与明确列举的数值基本等效的数值。 In determining whether a near to or approximately a specifically recited number value, the near or approximating unrecited number may be a statement of the background and its numerical values ​​explicitly recited values ​​substantially equivalent.

[0027] 除非另行指明,本文所用的所有技术和科技术语具有与本发明所属领域的普通技术人员的通常理解相同的含义。 [0027] Unless otherwise indicated, all technical and scientific terms used herein have the same meaning as commonly understood in the art to which this invention belongs to one of ordinary skill in the art. 尽管也可以使用与本文描述的那些类似或等效的任何方法、系统和材料实施本系统和方法,在本文中仅描述代表性的方法、系统和材料。 Although any method may be similar or equivalent to those described herein, embodiments of the present systems and materials systems and methods, a representative method described herein only, systems and materials.

[0028] 本说明书中引用的所有公开文献和专利都经此引用并入本文,就像各个公开文献或专利明确并逐一被指明经此引用并入本文,和为了公开和描述与引用的公开文献相关的方法和/或材料而经此引用并入本文。 [0028] All publications and patents cited in this specification are hereby incorporated by reference as if each individual publication or patent specifically and individually indicated to be incorporated herein by reference, and to disclose and describe the cited publication the methods and / or materials are incorporated herein by reference. 任何公开文献的引用是针对其在提交日前的公开内容,并且不应该被视为承认本发明无权利用优先发明先于该公开文献。 Any public citation is for its disclosure prior to submission, and should not be taken as an admission that the present invention is not entitled to priority use of the invention prior to this publication. 此外,所提供的公开日可能不同于实际公开日,这可能需要逐一确认。 Further, the dates of publication provided may be different from the actual publication dates which may need to confirm each.

[0029] 除非文中明确地另行指明,本文和所附权利要求中所用的单数形式"a"、"an"和"the"包括复数对象。 [0029] Unless the context clearly indicates otherwise, the singular forms herein and in the appended claims, as used "a", "an" and "the" include plural referents. 权利要求书也可能起草成排除任何任选要素。 Claims may be drafted to exclude also any optional element. 因此,这种声明旨在充当与权利要求要素的列举联用的如"只"、"仅"之类的排他性术语的使用或"否定性"限制的使用的先行基础。 Accordingly, such "only" first base "only" the use of such exclusive terminology or "negative" limitation of the use of this statement is intended to serve as elements of the claims recited combinations.

[0030] 本领域技术人员会看出,本文描述和例举的各实施方案具有分立的组分和特征, 它们可以在不背离本发明范围的情况下容易地与任何其它几个实施方案的特征分开或组合。 [0030] Those skilled in the art will be seen that each of the embodiments described and illustrated herein has discrete components and features which may be readily characterized without departing from the scope of the present invention with any of the other several embodiments separately or in combination. 任何列举的方法可以以所列举的事件次序进行或以任何逻辑上可行的次序进行。 Any recited method can be carried out or performed in any feasible order logic recited order of events.

[0031] 在各种实施方案中,本系统和方法涉及通过低电压、低能量电化学方法在水溶液中制造氢氧离子和/或碳酸氢根和/或碳酸根离子。 [0031] In various embodiments, the present system and method relates to a low-voltage, low-energy electrochemical process for producing hydroxide ions and / or bicarbonate and / or carbonate ions in an aqueous solution. 在一个实施方案中和参照图1,通过在阴极104和阳极108之间施加低于3V的电压,在阴极电解质102中产生氢氧离子,同时: i)在阳极108处将氢气氧化产生质子;ii)使质子从阳极108经由阳极电解质106和穿过第二阳离子交换膜118迁移到第四电解质116中;iii)使阳极108和阴极104之间的电压保持为在阳极108处不形成气体的水平;iv)在阴极104处还原水以形成氢氧离子和氢气; V)通过在阴极电解质102和第三电解质110之间安置第一阳离子交换膜112,阻止阴极电解质102中的氢氧离子从阴极电解质102迁移到相邻的第三电解质110中;vi)使钠离子从第三电解质110迁移到阴极电解质102中,在此它们与氢氧离子结合以在阴极电解质102 中形成氢氧化钠;vii)使氯离子从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中,在此它们与从阳极108迁移而来的质子合并形成盐酸;和vii)用 Referring to FIG. 1 and by a voltage less than 3V was applied between the cathode 104 and the anode 108, hydroxide ions in the cathode electrolyte 102. In one embodiment, while: i) hydrogen gas at the anode 108 to produce protons oxide; ii) proton exchange membrane 118 migrate to the fourth electrolyte 116 via the anode 106 and the electrolyte from the anode 108 through the second cation; III) the voltage between the anode 108 and the cathode 104 is maintained without forming a gas at the anode 108 level; IV) reduced at the cathode 104 and water to form hydroxide ions hydrogen; V) disposed through the first cation in the electrolyte between the cathode 102 and the third electrolyte 110 exchange membrane 112, to prevent the hydroxide ions in the cathode electrolyte 102 from migrate to the cathode electrolyte 102 adjacent third electrolyte 1 10; VI) migration of sodium ions from the third electrolyte 1 10 to the cathode electrolyte 102 where they combine with hydroxide ions to form sodium hydroxide in the cathode electrolyte 102; vii) chloride ions across the anion exchange membrane 120 to the fourth electrolyte migrate from the third electrolyte 116 110, where they migrate to the anode 108 combine to form a proton from hydrochloric acid; and vii) a 二阳离子交换膜118将阳极电解质106与第四电解质116隔开。 Two cation exchange membrane 118 and the anode electrolyte 106 spaced from the fourth electrolyte 116.

[0032] 在各种实施方案中,将在阴极处获得的氢气导向阳极,在此将该气体氧化。 [0032] In various embodiments, the hydrogen will be obtained at the cathode directed to the anode where the oxidation gas. 在各种实施方案中,从该系统中不时地(continually)取出在阴极电解质中制成的氢氧化钠和在第四电解质中制成的盐酸,同时不时地用水补充该阴极电解质和第三电解质中的氯化钠以维持该系统的连续生产运行。 In various embodiments, from time to time (continually) taken hydroxide and hydrochloric acid produced in the fourth electrolyte produced in the cathode electrolyte from the system while filling up with water from time to time the third electrolyte and the cathode electrolyte sodium chloride in order to maintain continuous production operation of the system. 在另一些实施方案中,该系统和方法适用于其它运行模式,例如分批或半分批流程(flow)。 In other embodiments, the system and method is applicable to other modes of operation, such as batch or semi-batch process (flow).

[0033] 在另一实施方案中,通过将二氧化碳气体溶解在阴极电解质中和在阳极与阴极之间施加低于3V的电压,在该阴极电解质中制造碳酸氢根离子和/或碳酸根离子。 [0033] In another embodiment, the carbon dioxide gas is dissolved in the cathode electrolyte and applying a voltage of less than 3V across the anode and the cathode, producing bicarbonate ions and / or carbonate ions in the cathode electrolyte. 二氧化碳气体可以溶解在阴极电解质中或可以溶解在单独的二氧化碳隔室152中,该二氧化碳隔室连接到阴极电解质隔室122以向该阴极电解质隔室提供溶解在溶液中的二氧化碳。 Carbon dioxide gas may be dissolved in the cathode electrolyte or may be dissolved in a separate compartment 152 in the carbon dioxide, the carbon dioxide is connected to the cathode compartment electrolyte compartment 122 dissolved in the solution to provide carbon dioxide to the cathode electrolyte compartment. 在此实施方案中,由于将二氧化碳溶解在阴极电解质中,如下发生三种反应: In this embodiment, since the carbon dioxide dissolved in the cathode electrolyte, the following three reactions occur:

[0034] 2H20+2e = H2+20H [0034] 2H20 + 2e = H2 + 20H

[0035] (水在阴极处还原) [0035] (reduction of water at the cathode)

[0036] H2CHCO2 = H2CO3 = H++HCCV = H++C〇32- [0036] H2CHCO2 = H2CO3 = H ++ HCCV = H ++ C〇32-

[0037] (根据该电解质的pH值,在阴极电解质中形成碳酸根和/或碳酸氢根离子),和 [0037] (depending on the pH of the electrolyte to form carbonate and / or bicarbonate ions in the cathode electrolyte), and

[0038] H++〇r- > H2O [0038] H ++ 〇r-> H2O

[0039] 由于这些反应依赖于pH,总体阴极反应为: [0039] Because these reactions depend to, pH, the overall cathode reaction is:

[0040] 2H20+2C02+2 丨=H2+2HC(V, [0040] 2H20 + 2C02 + 2 Shu = H2 + 2HC (V,

[0041] 或H20+C02+2e- = H2+C032- [0041] or H20 + C02 + 2e- = H2 + C032-

[0042] 或这两种反应的组合,这取决于该阴极电解质的pH。 Or a combination of these two reactions [0042], depending on the pH of the cathode electrolyte.

[0043] 在此实施方案中和参照图1,通过在阴极104和阳极108之间施加低于3V的电压来在阴极电解质102中制造碳酸氢根离子和/或碳酸根离子,同时:i)在阳极108处将氢气氧化以在阳极108处产生质子;ii)使阳极处形成的质子108从阳极108经由阳极电解质106和穿过第二阳离子交换膜118迁移到第四电解质116中;iii)在阳极108和阴极104 之间施加电压以便在阳极108处不形成气体;iv)在阴极104处制造氢气和任选使该气体循环至阳极108 ;v)通过在阴极电解质102和第三电解质110之间安置第一阳离子交换膜112,阻止在阴极电解质102中制成的碳酸根离子和/或碳酸氢根阴离子迁移到相邻的第三电解质110中,其中选择该阳离子交换膜以阻止阴离子从阴极电解质102中迁移;Vi)使钠离子从第三电解质110穿过第一阳离子交换膜112迁移到阴极电解质102中;vii)在阴极电解质102中,使钠离子与碳酸 [0043] In this embodiment and referring to FIG. 1, is applied between the cathode 104 and the anode 108 voltage is lower than the 3V manufactured bicarbonate ions and / or carbonate ions in the cathode electrolyte 102, while: i) oxidized to produce hydrogen gas at the anode 108 protons at the anode 108; ii) protons formed at the anode 108 to migrate from the anode 108 via the anode exchange membrane 106 and the electrolyte 118 through the second cation to the fourth electrolyte 116; iii) voltage is applied between the anode 108 and the cathode 104 so as not to form a gas at the anode 108; IV) producing hydrogen gas at the cathode 104 and optionally circulating the gas to make the anode 108; V) through the third electrolyte and the cathode electrolyte 102 110 disposed between the first cation exchange membrane 112, preventing carbonate ions produced in the cathode electrolyte 102 and / or bicarbonate anions migrating to the adjacent third electrolyte 1 10, wherein selecting the cation exchange membrane to prevent anions from migration of the cathode electrolyte 102; Vi) sodium ion exchange membrane 112 migrate to the cathode electrolyte 102 through the first cation from the third electrolyte 110; vii) in the cathode electrolyte 102, sodium ions and carbonate 根离子和/或碳酸氢根离子结合以在该阴极电解质102中形成碳酸钠和/或碳酸氢钠;viii)使氯离子从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中;ix)在第四电解质116中,使氯离子与从阳极电解质106迁移而来的质子结合形成盐酸;和X)通过在第四电解质116和阳极电解质106之间安置第二阳离子交换膜,阻止氯离子从第四电解质116迁移到阳极电解质106中,其中选择第二阳离子交换膜118以阻止阴离子从第四电解质116迁移到阳极电解质106中。 Ions and / or bicarbonate ions combine to form sodium carbonate and / or bicarbonate in the cathode electrolyte 102; VIII) chloride ions through the anion exchange membrane from the third electrolyte to migrate to the fourth electrolyte 110 120 116 ; IX) in the fourth electrolyte 116, the chloride ions with protons migrated from the anode electrolyte 106 to form hydrochloric acid; and X) by the second cation is disposed between the anode electrolyte 116 and the fourth electrolyte exchange membrane 106, to prevent 116 chloride ions migrate from the electrolyte to the fourth anode electrolyte 106, wherein selecting the second cation exchange membrane 118 to prevent migration of anions from the fourth electrolyte 116 to the anode electrolyte 106.

[0044] 在该系统的这一实施方案中,如上述制造氢氧离子的实施方案那样,任选将阴极处产生的氢气导向阳极,在此将其氧化,或排出该气体。 [0044] In this embodiment of the system, such as the manufacture of the above embodiments as hydroxide ions, optionally hydrogen to the anode will be produced at the cathode, where it is oxidized, or the exhaust gas. 在排出氢气的实施方案中,另一氢气源向阳极提供氢气。 In an embodiment the discharge of hydrogen gas, other hydrogen source to provide hydrogen gas to the anode. 在该系统的各种实施方案中,如氢氧离子的生产那样,从该系统中不时取出在阴极电解质中制成的碳酸根离子和/或碳酸氢根离子,同时不时用水补充该阴极电解质和第三电解质中的氯化钠以维持该系统的连续运行。 In various embodiments of the system, such as the production of hydroxide ions, carbonate ions extracted and / or bicarbonate ions produced in the cathode electrolyte from the system from time to time, often while the cathode electrolyte and water added sodium chloride in the third electrolyte to maintain continuous operation of the system. 在各种实施方案中,该系统和方法适用于其它运行模式,例如分批或半分批流程。 In various embodiments, the system and method is applicable to other modes of operation, such as batch or semi-batch process.

[0045] 在各种实施方案中,本领域普通技术人员会认识到,阳极和阴极之间的电压取决于阳极电解质和阴极电解质的PH值以及这些电解质之间的pH差。 [0045] In various embodiments, those of ordinary skill in the art will recognize that the voltage between the anode and the cathode depending on the pH value of the anolyte between the PH and catholyte electrolyte and the difference. 因此,在各种实施方案中,当在阳极和阴极之间施加的电压低于3、2. 9、2. 8、2. 7、2. 6、2. 5、2. 4、2. 3、2. 2、2. 1、 2· 0、1· 9、1· 8、1· 7、1· 6、1· 5、1· 4、1· 3、1· 2、1· 1、1· 0、0· 9、0· 8、0· 7、0· 6、0· 5、0· 4、0· 3、0· 2 或〇. IV或更低时,在阳极电解质和阴极电解质之间的pH差为0、1、2、3、4、5、6、7、8、9、10、11、 12、13、14pH单位或更大的同时;和在该阳极电解质的pH值自1至7pH单位变化且该阴极电解质的PH值为7至HpH单位或更大的同时,在阴极电解质中产生氢氧离子、碳酸根离子和/或碳酸氢根离子。 Thus, in various embodiments, when a voltage is applied between the anode and the cathode is less than 3,2. 9,2. 8,2. 7,2. 6,2. 5,2. 4,2. 3 , 2. 2, 2. 1, 2 * 0,1 * 9,1 * 8,1 * 7,1 * 6,1 * 5,1 * 4,1 * 3,1 * 2,1 * 1,1 · 0,0 · 9,0 · 8,0 · 7,0 · 6,0 · 5,0 · 4,0 · 3,0 · 2 or square. when the IV or less, in the anolyte and catholyte the difference between the pH of 0,1,2,3,4,5,6,7,8,9,10,11, 12,13,14pH or more units at the same time; and at a pH value from the anolyte 7pH unit 1 to change the PH value and the catholyte to HpH 7 or more units simultaneously, hydroxide ions, carbonate ions and / or bicarbonate ions in the cathode electrolyte.

[0046] 在各种实施方案中和参照图1,通过在阳极电解质106和第四电解质116之间选择性安置第二阳离子交换膜118,在阳极108和阴极104之间施加本发明的电压时,在阳极108处通过氢气氧化形成的质子迁移到阳极电解质106中,它们从此处穿过第二阳离子交换膜118迁移到第四电解质116中。 When [0046] 1, the voltage applied to the present invention in various embodiments and with reference to FIGS. 106 through the electrolyte between the anode electrolyte 116 and the fourth second cation exchange membrane is selectively disposed between the anode 118 and the cathode 104 108 , migrate to the anode 108 at the anode electrolyte 106 is formed by the oxidation of hydrogen protons, which migrate exchange membrane 118 to the fourth electrolyte 116 through the second cation from here. 但是,由于第四电解质116与第三电解质110被阴离子交换膜120隔开,阻止质子从第四电解质116穿过第三电解质110向阴极进一步迁移;因此,质子积聚在第四电解质116中以形成酸,例如盐酸。 However, since the fourth electrolyte 116 and the third electrolyte 1 10 is separated from the anion exchange membrane 120, 110 to prevent further third electrolyte protons migrate towards the cathode through the electrolyte from the fourth 116; therefore, the accumulation of protons in the electrolyte 116 to form a fourth acids, such as hydrochloric acid.

[0047] 类似地,参照图1,通过在阴极电解质102和第三电解质110之间选择性安置第一阳离子交换膜112,在阳极108和阴极104之间施加低电压时,在阴极电解质102中形成氢氧离子或碳酸根离子或碳酸氢根离子,用第一阳离子交换膜112阻止它们从此处迁移到第三电解质110中。 When [0047] Similarly, 1,, a low voltage is applied by referring to FIG selective exchange membrane is disposed between the first 102 and the third cation cathode electrolyte 112 electrolyte 110 between the anode 108 and the cathode 104, in the cathode electrolyte 102 forming hydroxide ions or carbonate ions or bicarbonate ions, to prevent them from migrating from the third electrolyte 1 10 where a first cation exchange membrane 112. 因此,氢氧离子或碳酸根离子或碳酸氢根离子包含在阴极电解质102中。 Thus, hydroxide ions or carbonate ions or bicarbonate ions in the cathode electrolyte 102 are contained. 同时,由阴极104处的水还原而在阴极104处形成的氢气被排出或导向阳极以便在阳极处氧化该气体。 Meanwhile, hydrogen gas is formed by the reduction of water at the cathode 104 are discharged at the cathode 104 to the anode or to oxidation of the gas at the anode. 如果排出该氢气,则使用其它外源氢源向阳极提供氢气。 If the hydrogen gas is discharged, then other exogenous hydrogen source providing hydrogen to the anode.

[0048] 在各种实施方案中和参照图1,由于第一阳离子交换膜112允许阳离子从第三电解质110迁移到阴极电解质102中且阴离子交换膜120允许阴离子从第三电解质110迁移到第四电解质116中,在阳极和阴极之间施加电压时,阳离子,例如钠离子会从第三电解质110迁移到阴极电解质102中且阴离子,例如氯离子会从第三电解质110迁移到第四电解质116 中。 [0048] In various embodiments and with reference to FIG. 1, since the first cation exchange membrane 112 allows cations to migrate from the third electrolyte 1 10 to the cathode electrolyte 102 and anion exchange membrane 120 allows migration of anions from the third electrolyte 1 10 to the fourth electrolyte 116, a voltage is applied between the anode and the cathode, cations such as sodium ions will migrate from the third electrolyte 1 10 to the cathode electrolyte 102 and anions such as chloride ions will migrate from the third electrolyte 1 10 to the fourth electrolyte 1 16 .

[0049] 因此,在第三电解质110最初含有氯化钠的实施方案中,钠离子会从第三电解质迁移到阴极电解质102中以根据阴极电解质102的pH值形成氢氧化钠或碳酸氢钠或碳酸钠。 [0049] Thus, in the first embodiment of the third electrolyte 110 containing sodium chloride, sodium ions will migrate from the third electrolyte to the cathode electrolyte 102 to form sodium hydroxide or sodium bicarbonate, depending on the pH of the cathode electrolyte 102 or Sodium carbonate. 类似地,氯离子会从第三电解质110迁移到第四电解质中,从而与从阳极电解质106迁移而来的质子形成盐酸148。 Similarly, chloride ions will migrate from the third electrolyte 1 10 to the fourth electrolyte to form hydrochloric acid and 148 from the anode electrolyte 106 from migrating protons. 因此,在各种实施方案中,在第三电解质110中产生了从其中除去了钠离子和氯离子的部分脱盐水150。 Thus, in various embodiments, it is generated from a part of desalinated water which is removed sodium ions and chloride ions in the third electrolyte 1 10 150.

[0050] 在其中氢气不用于在阳极处氧化的各种实施方案中,该系统和方法适用于在阴极电解质中产生氢氧根、碳酸氢根和碳酸根离子和在阴极处产生氢气的同时在阳极处产生气体,例如氧气或氯气。 [0050] in which hydrogen is not used in various embodiments of the anodic oxidation, the system and method adapted to produce hydroxide in the cathode electrolyte, bicarbonate and carbonate ions and simultaneous generation of hydrogen gas at the cathode in the gas produced at the anode, e.g., oxygen or chlorine. 如其它实施方案那样,在此实施方案中,该系统和方法适用于在阳极处形成气体例如氧气或氯气的同时,在第四电解质中形成酸和在第三电解质中形成部分脱盐水。 As other embodiments above, in this embodiment, the system and method is applicable to e.g., oxygen or chlorine at the same time, forming an acid in the fourth electrolyte and partially desalinated water is formed in the third electrolyte gas formed at the anode. 但是,在此实施方案中,由于氢气不在阳极处氧化,在阴极和阳极之间通常需要更高电压以驱动该系统中的电化学反应。 However, in this embodiment, since hydrogen is not oxidized at the anode, between the anode and the cathode generally require higher voltage to drive the electrochemical reaction in the system.

[0051] 在各种实施方案中和参照图1,借助在阴极104和阳极108之间施加如本文所述的电压,在阳极处形成和迁移到阳极电解质106中以及穿过第二阳离子交换膜118迁移到第四电解质116中的质子,可根据流经该系统的电解质流量调节阳极电解质106和第四电解质116的pH。 [0051] In various embodiments and with reference to FIG. 1, by means of a voltage as described herein is applied between the anode 108 and cathode 104, are formed, and migration into the anode electrolyte 106 through the second cation exchange membrane and the anode protons 118 migrate to the fourth electrolyte 116, the flow rate can be adjusted and the pH of the anode electrolyte 106 according to the fourth electrolyte 116 flowing through the electrolyte system. 同时,由于防止阴极电解质102中形成的氢氧离子、碳酸氢根离子或碳酸根离子从该阴极电解质穿过第一阳离子交换膜迁移,可以根据流经该系统的电解质流量调节阴极电解质102的pH。 Meanwhile, since the cathode electrolyte 102 to prevent the hydroxide ions formed, bicarbonate ions or carbonate ions through the first cation exchange membrane from the cathode electrolyte migration, the flow rate can be adjusted according to the pH of the cathode electrolyte 102, the electrolyte flowing through the system . 因此,在各种实施方案中,在阴极电解质102和阳极电解质106之间获得pH差,例如根据流经该系统的电解质流量,至少1、2、3、4、5、6、7、8、9、10、11、12、13或HpH单位或更大的差值。 Thus, in various embodiments, the electrolyte 102 between the cathode and the anode electrolyte 106 to obtain a pH difference, for example, according to the electrolyte flow through the system, at least 1,2,3,4,5,6,7,8, 9,10,11,12,13 or HpH unit difference or greater. 类似地,由于质子从阳极电解质106迁移到第四电解质116中,在第四电解质116和阴极电解质102之间获得pH差,例如根据流经该系统的电解质流量,至少1、2、3、4、5、6、7、8、9、10、11、12、13 或14pH 单位或更大的差值。 Similarly, since the migration of protons from the anode electrolyte 106 to the fourth electrolyte 116, the electrolyte 116 between the fourth and the pH difference between the cathode electrolyte 102 obtains, for example, according to the electrolyte flow through the system, at least 1,2,3,4 ,, 12, 13 or 14pH unit difference or greater.

[0052] 在该系统和方法的具体实施方案的下列示例性描述中,为举例说明,系统如图1 中那样构造,其中使用浓氯化钠水溶液142作为第一阳离子交换膜112和阴离子交换膜120 之间的初始第三电解质110。 [0052] In the following exemplary description of specific embodiments of the systems and methods, as exemplified, as the system configuration in FIG. 1, in which a first concentrated aqueous sodium chloride solution as a cation exchange membrane 142 and anion exchange membrane 112 the third electrolyte 110 between the initial 120. 也在该系统中,使用导电水或低浓度氢氧化钠溶液或碳酸氢钠溶液或碳酸钠溶液作为初始阴极电解质102 ;在该系统中,使用导电水作为阳极电解质106 ;仍在该系统中,使用第四电解质116中制成的低浓度盐酸作为初始第四电解质。 Also in this system, using a conductive or low-concentration aqueous sodium hydroxide solution or sodium carbonate or sodium bicarbonate as a starting catholyte solution 102; In this system, the use of water as the conductive anode electrolyte 106; still in the system, low concentration of hydrochloric acid in the fourth electrolyte 116 is made as an initial fourth electrolyte.

[0053] 因此,在该系统中,在阳极108和阴极104之间施加电压时,钠离子从第三电解质110迁移到阴极电解质102中,且氯离子从第三电解质迁移到第四电解质116中;在阴极电解质102中(取决于是否将二氧化碳气体添加到电解质中)产生氢氧离子或碳酸根离子或碳酸氢根离子;在阴极104处产生氢气;向阳极108供应的氢气在阳极处被氧化成质子;且该质子迁移到阳极电解质106中,它们从此处穿过第二阳离子交换膜118迁移到第四电解质116中,由于阴离子交换膜120会阻止它们进一步迁移到第三电解质110中,它们积聚在此处。 [0053] Thus, in this system, when a voltage applied between the anode 108 and the cathode 104, the sodium ions migrate from the third electrolyte 1 10 to the cathode electrolyte 102, and the chloride ions migrate from the third electrolyte 1 16 to the fourth electrolyte ; 102 (depending on whether the carbon dioxide gas is added to the electrolyte) to produce hydroxide ions or carbonate ions or bicarbonate ions in the cathode electrolyte; produce hydrogen gas at the cathode 104; 108 supplies hydrogen to the anode is oxidized at the anode protons; and the protons migrate to the anode electrolyte 106, 118 are moved to the fourth exchange membrane electrolyte 116 through the second cation from here, since the anion exchange membrane 120 will prevent their further migrated to the third electrolyte 1 10, which accumulate here.

[0054] 因此,在各种实施方案中,在阳极和阴极之间施加电压时,在该系统中,在阴极电解质中产生氢氧化钠;在第四电解质中产生盐酸;第三电解质中的氯化钠的浓度降低;氢气在阳极处氧化;并在阴极处生成氢气。 [0054] Thus, in various embodiments, when a voltage is applied between the anode and the cathode, in this system, sodium hydroxide produced in the cathode electrolyte; hydrochloric acid produced in the fourth electrolyte; chloride in the third electrolyte the sodium concentration decreased; oxidation of hydrogen at the anode; and hydrogen gas is generated at the cathode.

[0055] 在该系统的一个实施方案中--其中将二氧化碳气体溶解在阴极电解质中,该系统和方法另外在阴极电解质中产生碳酸氢根和/或碳酸根离子;因此,在此实施方案中,根据该阴极电解质的PH值,在该阴极电解质中产生碳酸氢钠和/或碳酸钠。 [0055] In one embodiment of the system, - wherein the carbon dioxide gas is dissolved in the cathode electrolyte, the system and method additionally produce bicarbonate and / or carbonate ions in the cathode electrolyte; Thus, in this embodiment the PH value of the cathode electrolyte, to produce bicarbonate and / or sodium carbonate in the cathode electrolyte. 在此实施方案中, 如不将二氧化碳溶解在阴极电解质中的实施方案那样,该系统和方法在第四电解质中产生盐酸;第三电解质中的氯化钠浓度降低;氢气在阳极处氧化;并在阴极处生成氢气。 In this embodiment, as carbon dioxide is not dissolved in the embodiment as the cathode electrolyte, the system and method to produce hydrochloric acid in the fourth electrolyte; reduced concentration of sodium chloride in the third electrolyte; oxidation of hydrogen at the anode; and hydrogen gas is generated at the cathode.

[0056] 本领域普通技术人员会认识到,本系统和方法不限于氯化钠溶液作为第三电解质的这种示例性用途,而是适用于在第三电解质中使用同等的离子盐溶液,例如硫酸钾。 [0056] Those of ordinary skill in the art will recognize that the present system and methods are not limited to, sodium chloride solution as such a third exemplary use of electrolytes, but is equally applicable to the use of the third ion in the electrolyte salt solution, e.g. potassium sulfate. 因此,例如,如果使用硫酸钾,在第四电解质中产生硫酸并在阴极电解质中产生氢氧化钾、碳酸氢钾和/或碳酸钾。 Thus, for example, if potassium sulfate, sulfuric acid produced in the fourth electrolyte and produce potassium hydroxide, potassium bicarbonate and / or potassium carbonate in the cathode electrolyte. 可以认识到,以硫酸钾作为第三电解质的该系统和方法会通过氧化向阳极供应的氢气来在阳极处产生质子;在阴极处形成氢气;和脱除第三电解质的钾和硫酸根离子。 Be appreciated that the system and method will potassium sulfate as the third electrolyte to the hydrogen gas produced by the oxidation of the anode supply protons at the anode; hydrogen formed at the cathode; and potassium and sulfate ions removed in the third electrolyte. 在将二氧化碳气体溶解在阴极电解质中的实施方案中,以硫酸钾作为第三电解质的该系统和方法会在阴极电解质中产生碳酸氢根和碳酸根离子。 In embodiments where carbon dioxide gas is dissolved in the cathode electrolyte, the system and method to potassium sulfate as the third electrolyte will produce bicarbonate and carbonate ions in the cathode electrolyte. 因此,在这种等效系统中,根据该阴极电解质的PH值,在阴极电解质中产生氢氧化钾、碳酸氢钾和/或碳酸钾。 Thus, in such equivalent systems, according to the PH value of the cathode electrolyte to produce potassium hydroxide, potassium bicarbonate and / or potassium carbonate in the cathode electrolyte. 可用于制造本系统中的电解质的其它电解质包括海水、微咸水和盐水。 Other electrolytes useful in making the present system electrolytes include seawater, brackish water, and brine. 这类等效系统和方法因此在本系统和方法的范围内。 Such equivalent systems and methods within the scope of the present system and method.

[0057] 本领域技术人员也会认识到,在将二氧化碳溶解在阴极电解质中以制造碳酸氢根和碳酸根阴离子的实施方案中,在水中反应、溶解和离子化的其它同等气体会产生同等结果。 [0057] Those skilled in the art will recognize that, in the carbon dioxide dissolved in the cathode electrolyte to manufacture embodiments of bicarbonate and carbonate anions in the reaction water, and other equally ionized gas dissolution produces equivalent results . 因此,例如,可溶于该阴极电解质的酸性气体如二氧化硫和氮氧化物,会在该阴极电解质中产生同等的阴离子。 Thus, for example, it may be dissolved in the cathode electrolyte acidic gases such as sulfur dioxide and of nitrogen oxides, an anion equivalent is generated in the cathode electrolyte. 因此,就同等气体如二氧化碳那样溶解在第三电解质中以产生同等阴离子而言,这样的系统和方法也在本系统和方法的范围内。 Therefore, a gas such as carbon dioxide, the same as in the third electrolyte is dissolved to produce equivalent anions, such a system and method within the scope of the present system and method also.

[0058] 在各种实施方案中,该系统和方法适用于将部分或全部阴极电解质从流出流提取到阴极隔室的流入流中。 [0058] In various embodiments, the system and method adapted to extract part or all of the catholyte from the outflow to the inflow stream in the cathode compartment. 该系统和方法也适用于将部分或全部第四电解质从流出流提取到第四电解质的流入流中。 The system and method is also applicable to some or all of the electrolyte extraction from the effluent stream of fourth inflow to the fourth electrolyte. 在各种实施方案中,该系统和方法适用于分批、半分批或连续流作业,伴随或不伴随将阴极处生成的氢气导向在阳极处氧化,和伴随或不伴随提取和补充该系统中的电解质。 In various embodiments, the system and method is applicable to batch, semi-batch or continuous flow operation, with or without guide hydrogen peroxide generated at the cathode the anode, and with or without added and extraction in the system electrolyte.

[0059] 在各种实施方案中,该系统包括用于使氢气从阴极循环到阳极的氢气转移系统。 [0059] In various embodiments, the system includes a hydrogen gas transfer system of hydrogen from the cathode to the anode circulation. 在另一实施方案中,该系统包括用于将二氧化碳气体溶解在阴极电解质中的二氧化碳输送系统。 In another embodiment, the system includes a carbon dioxide gas is dissolved in the cathode electrolyte carbon dioxide delivery system. 在各种实施方案中,该系统有效地连接到包含燃烧气体的工业废气流,以向阴极电解质供应气体,例如二氧化碳。 In various embodiments, the system is operatively connected to an industrial waste gas stream comprising combustion gas, to supply electrolyte to the cathode gas, such as carbon dioxide. 在各种实施方案中,该废气流包括来自化石燃料供能的发电厂、水泥制造厂和其它工厂的燃烧气体。 In various embodiments, the waste gas stream comprising energizing power plants, cement manufacturing plants and other combustion gases from fossil fuels. 在各种实施方案中,该废气包括酸性气体,例如氮氧化物(一氧化二氮、氧化一氮)和硫气体(二氧化硫、硫化氢),其在该阴极电解质中溶解形成阴离子,这类似于在二氧化碳溶解在该阴极电解质中时碳酸氢根和碳酸根离子的生成。 In various embodiments, the waste gas includes acidic gases, such as nitrogen oxides (nitrous oxide, nitric oxide) and sulfur gases (sulfur dioxide, hydrogen sulfide), which is dissolved in the cathode electrolyte to form an anion, which is similar to bicarbonate and carbonate ions generated in the carbon dioxide dissolved in the cathode electrolyte.

[0060] 参照图1,在一个实施方案中,系统100包含:与阴极104接触的第一电解质,即阴极电解质102 ;与阳极108接触的第二电解质,即阳极电解质106 ;被第一阳离子交换膜112 与阴极电解质102隔开的第三电解质110 ;被第二阳离子交换膜118与阳极电解质106隔开的第四电解质116 ;将第三电解质110和第四电解质116隔开的第三离子交换膜120。 [0060] Referring to Figure 1, in one embodiment, the system 100 comprises: a first electrolyte in contact with the cathode 104, i.e., the cathode electrolyte 102; a second electrolyte in contact with the anode 108, i.e., the anode electrolyte 106; a first cation exchange electrolyte film 112 and the cathode 102 spaced from a third electrolyte 110; 118 spaced from anode electrolyte 106 and the fourth electrolyte second cation exchange membrane 116; the third electrolyte 110 and the third fourth ion exchange electrolyte 116 spaced apart film 120. 在各种实施方案中,第一离子交换膜包含阳离子交换膜;第二离子交换膜包含阳离子交换膜; 且第三离子交换膜包含阴离子交换膜。 In various embodiments, the first ion exchange membrane comprises a cation exchange membrane; second ion exchange membrane comprises a cation exchange membrane; and a third ion-exchange membrane comprising an anion exchange membrane.

[0061] 在图1中所示的系统中,阴极电解质102与阴极104流体接触且两者都容纳在由第一阳离子交换膜112和第一侧壁124限定出的第一电池122中。 [0061] In the system shown in FIG. 1, the cathode electrolyte 102 in contact with the fluid and cathode 104 are both housed in the first side wall 112 and the first battery 122 by a first cation exchange membrane 124 defining the. 类似地,阳极电解质106 与阳极108流体接触且两者都容纳在由第二阳离子交换膜118和第二侧壁128限定出的第二电池126中。 Similarly, fluid in contact with the anode electrolyte 106 and anode 108 are both housed in the second cell 126 by the film 118 and a second sidewall defining a second cation exchange 128 in. 由第一阳离子交换膜112和阴离子交换膜120限定出容纳第三电解质110 的第三电池130 ;并由阴离子交换膜120和第二阳离子交换膜118限定出容纳第四电解质116的第四电池132。 112 by a first cation exchange membrane and anion exchange membrane 120 defines a third battery 110 receiving the third electrolyte 130; 120 by the anion exchange membrane and a second cation exchange membrane 118 defines a fourth receiving an electrolyte of the fourth battery 132 116 .

[0062] 也参照图1,系统100在各种实施方案中包括能在阳极108和阴极104之间施加电压的电压源134。 [0062] Referring also to FIG. 1, system 100 includes a voltage source capable of applying a voltage between the anode 108 and the cathode 104] In various embodiments, 134. 在各种实施方案中,该系统中的阴极和阳极由非反应性的导电材料,如镍或钼构成。 In various embodiments, the system of the cathode and anode made of a conductive non-reactive material, such as nickel or molybdenum. 该系统包括适用于使阴极104处生成的氢气循环以在阳极108处氧化的氢气循环系统136。 The system includes a cathode 104 suitable for generating hydrogen gas circulating anodic oxidation of hydrogen in the circulation system at 108,136. 在各种实施方案中,该氢气可有效地连接到外部氢供应源(未显示)以向阳极提供氢气,例如当来自阴极的氢供应不足时在该操作启动时提供。 In various embodiments, the hydrogen gas can efficiently be connected to an external hydrogen supply source (not shown) to provide hydrogen gas to the anode, for example, provided when the operation is started when there is insufficient supply of hydrogen from the cathode.

[0063] 在各种实施方案中,该系统包括适用于从容纳阴极电解质的第一电池122中提取全部或部分阴极电解质102的阴极电解质提取和补充系统138。 [0063] In various embodiments, the system is adapted to extract comprising all or part of the cathode electrolyte from the first cell 122 accommodating the cathode electrolyte and cathode electrolyte replenishing system 102 to extract 138. 在各种实施方案中,该系统包括适用于对容纳第四电解质的第四电池132提取和补充全部或部分第四电解质116的第四电解质提取和补充系统140。 In various embodiments, the system 132 includes a suitable extraction and supplement all or part of the fourth electrolyte extraction fourth electrolyte 116 and a fourth supplemental battery receiving system 140 of the fourth electrolyte. 在各种实施方案中,该系统包括用于向第三电解质电池130 提供盐溶液142例如浓氯化钠的盐供应系统。 In various embodiments, the system includes means for providing 142 a salt solution such as concentrated sodium chloride salt supply system 130 to the third electrolyte battery. 在各种实施方案中,该系统包括用于向阴极电解质102提供气体例如二氧化碳的气体供应系统144。 In various embodiments, the system includes means for providing a gas such as carbon dioxide gas supply system 144 to the cathode electrolyte 102. 在各种实施方案中,该系统包括二氧化碳混合系统152,其中通过在位于流出流中、或位于流入流中或位于它们之间的一个或多个隔室中将该气体溶解于阴极(电解质),向该阴极电解质供应二氧化碳。 In various embodiments, the system includes a carbon dioxide mixing system 152, which is located by the effluent stream, or in the stream or flow into one or more compartments located between them in the gas dissolved in the cathode (electrolyte) , carbon dioxide supplied to the cathode electrolyte. 在各种实施方案中,该系统包括用于将流体引入电池(122、126、130、132)的入口(未显示)和用于从电池中移去流体的出口(未显示)。 In various embodiments, the system includes an inlet for introducing fluid into the battery (122,126,130,132) (not shown), and an outlet for removing fluid (not shown) from the cell.

[0064] 在各种运行模式,例如连续流、分批流或混合模式中,该系统在装有氯化钠溶液142时会在阴极电解质102中产生氢氧化钠溶液146,在第四电解质116中产生盐酸148,和产生其中阳离子和阴离子含量降低的部分脱盐的水溶液150。 [0064] In various operating modes, such as a continuous flow, batch flow, or mixed mode, the system 146 produces a sodium hydroxide solution in the cathode electrolyte 102 at the time NaCl solution containing 142, 116 in the fourth electrolyte 148 hydrochloric acid is generated, and wherein the aqueous solution to produce a reduced content of the cation and anion part of desalination 150. 在各种实施方案中,该部分脱盐的水溶液150用作脱盐水处理装置(未显示)的进料水以进一步加工,从而除去例如该溶液中存在的其它离子。 In various embodiments, the portion of the feed water 150 is used as an aqueous solution of desalted water desalination apparatus (not shown) for further processing, for example to remove other ions present in the solution. 在另一些实施方案中,该水溶液150用于制备向第一电池122、第二电池126、第三电池130和第四电池132中装入电解质用的初始电解质溶液。 In other embodiments, the aqueous solution used to prepare 150 to the first cell 122, second cell 126, the third 130 and the fourth battery cell 132 charged in the initial electrolyte solution electrolyte.

[0065] 可以认识到,在各种实施方案中和参照图1,尽管:i)用第一阳离子交换膜112将阴极电解质102与第三电解质110隔开;和ii)用第二阳离子交换膜118将第四电解质116 与阳极电解质106隔开;和iii)用阴离子交换膜120将第四电解质116与第三电解质110 隔开;但是,当在阳极108和阴极104之间施加电压134时,电解质中的带负电的阴离子试图(attempt)向正阳极108迁移,带正电的阳离子试图穿过第一阳离子交换膜112、第二阳离子交换膜118和阴离子交换膜120向负阴极104迁移。 [0065] can be appreciated that in various embodiments and with reference to FIG. 1, although: i) 112 with a first cation exchange membrane to the cathode electrolyte 102 and spaced apart from the third electrolyte 110; and ii) a second cation-exchange membrane 118 and the fourth electrolyte separated from the anode electrolyte 116 106; and iii) with an anion-exchange membrane to the fourth electrolyte 120 and 116 spaced apart from the third electrolyte 110; however, when applied between the anode 134 and the cathode 104 voltage 108, electrolyte negatively charged anion attempt (attempt) migrate towards the positive anode 108, positively charged cations of the first attempt to pass through the cation exchange membrane 112, a second cation exchange membrane 118 and anion exchange membrane 120 migrate to the negative cathode 104.

[0066] 因此,例如,参照图1,其中先通过分别向电解质中加入少量氢氧化钠和盐酸来使阴极电解质102和阳极电解质106导电;第四电解质116是水溶液,先通过将少量盐酸添加到该溶液中来使其导电;先将氯化钠浓溶液置于第三电解质110中;和先将氢气流136经由阳极电解质106导向阳极108以在阳极108处氧化,在阳极108和阴极104之间施加电压134时,如下在阳极108处由向该阳极供应的氢气136的氧化形成质子,同时在阴极电解质116处由水的还原形成氢氧离子和氢气138 : [0066] Thus, for example, referring to FIG. 1, respectively, wherein the first to make by adding a small amount of sodium hydroxide and hydrochloric acid to the electrolyte 102 and the conductive cathode electrolyte anode electrolyte 106; 116 fourth electrolyte is an aqueous solution, by adding a small amount of hydrochloric acid prior to the solution was allowed to conductivity; first concentrated solution of sodium chloride was placed in the third electrolyte 110; 108 and a first hydrogen stream 136 to oxidation at the anode 108 through the anode electrolyte 106 to the anode, the anode 108 and the cathode 104 when a voltage is applied between the 134, as protons are formed from the oxidation of hydrogen supplied to the anode 136 at the anode 108, 116 at the same time to form hydroxyl ions and hydrogen gas 138 by the reduction of water in the cathode electrolyte:

[0067] H2 = 2H++2f (阳极,氧化反应) [0067] H2 = 2H ++ 2f (anode oxidation)

[0068] 2H20+2e- = H2+20H-(阴极,还原反应) [0068] 2H20 + 2e- = H2 + 20H- (cathodic reduction reaction)

[0069] 本领域普通技术人员会认识到,参照图1,由于在阳极处108由向阳极108供应的氢气136形成质子;且由于在阳极108处不形成气体如氧气;且由于水在阴极电解质中电解以在阴极104处形成氢氧离子和氢气138,因此,当在阳极108和阴极104之间施加电压时,该系统在阴极电解质102中产生氢氧离子和在阳极电解质106中产生质子。 [0069] Those of ordinary skill in the art will recognize that, with reference to FIG. 1, since at the anode 108 from the hydrogen supply to the anode 108136 to form protons; and since without forming a gas such as oxygen at the anode 108; and since the water in the cathode electrolyte electrolysis to form hydroxide ions and hydrogen gas 138 at the cathode 104, and therefore, when a voltage is applied between the anode 108 and the cathode 104, the system produces hydroxide ions and protons in the anode electrolyte 106 in the cathode electrolyte 102.

[0070] 此外,本领域技术人员可以认识到,与在阳极处生成气体例如氯气的传统系统中需要的更高的电压相比,在本系统中,由于在阳极处不形成气体,当在阳极和阴极之间施加低于3V时,该系统会在阴极电解质中产生氢氧离子和在阳极处产生氢气。 [0070] Moreover, those skilled in the art may recognize, as compared with the higher voltage generating gas at the anode chlorine gas, for example, conventional systems require, in the present system, since the gas does not form at the anode when the anode when applied between the cathode and is less than 3V, the system will produce hydroxide ions in the cathode electrolyte and hydrogen gas generated at the anode. 例如,在各种实施方案中,当在阳极和阴极之间施加低于低于2. 0、1. 5、1. 4、1. 3、1. 2、1. 1、1. 0、0. 9、0. 8、 0. 7、0. 6、0. 5、0. 4、0. 3、0. 2、0. IV或更低时,产生氢氧离子。 For example, in various embodiments, when applied between the anode and the cathode is less than less than 2. 0,1. 5,1. 4,1. 3,1. 2,1. 1,1. 0,0 . 9,0. 8, 0. 7,0. 6,0. 5,0. 4,0. 3,0. 2,0. when the IV or less, hydroxide ions.

[0071] 此外,本领域普通技术人员会认识到,参照图1,在阳极108和阴极104之间施加电压时,在阳极处形成的带正电的质子试图经由阳极电解质106迁移至阴极104,同时在阴极104处形成的带负电的氢氧离子试图经由阴极电解质102迁移至阳极108。 [0071] Further, those of ordinary skill in the art will recognize that, with reference to FIG. 1, when a voltage applied between the anode 108 and the cathode 104, the positively charged protons formed at the anode attempt to migrate to the cathode 104 through the anode electrolyte 106, while the negatively charged hydroxide ions formed at the cathode 104 attempt to migrate to the anode 102 via the cathode electrolyte 108.

[0072] 但是,如图1中所示和关于阴极电解质102中的氢氧离子,由于第一阳离子交换膜112将阴极电解质102包纳在第一电池122中,且由于第一阳离子交换膜112阻止阴离子从阴极电解质102迁移到第三电解质110中,会阻止阴极电解质102中生成的氢氧离子穿过该第一阳离子交换膜112迁移出阴极电解质。 [0072] However, as shown on hydroxide ions in the cathode electrolyte 102 in FIG. 1, since the first cation exchange membrane to the cathode electrolyte 102 112 accommodated in the first battery pack 122, and since the first cation exchange membrane 112 prevent migration of anions from the cathode electrolyte 102 to 110 in the third electrolyte, the cathode electrolyte 102 prevents hydroxide ions generated through the first cation exchange membrane 112 from migrating out of the cathode electrolyte. 因此,在阳极和阴极之间施加电压134时,阴极处产生的氢氧离子包含在阴极电解质102中。 Thus, when a voltage is applied between the anode 134 and the cathode, hydroxide ions produced at the cathode 102 contained in the cathode electrolyte. 因此,根据流体流入和流出阴极电解质的流速,可调节该阴极电解质的pH,例如该pH可以提高、降低或保持相同。 Thus, according to the flow rate of fluid into and out of the catholyte, the catholyte pH may be adjusted, for example, the pH may increase, decrease or remain the same.

[0073] 类似地,关于在阳极108处生成的质子,在阴极104和阳极108之间的外加电压134下,该质子会进入阳极电解质106并穿过第二阳离子交换膜118迁移到第四电解质中。 [0073] Similarly, regarding the protons generated at the anode 108, 134 in the applied voltage between the anode 108 and cathode 104, the protons will enter the anode electrolyte 106 and 118 through the second cation exchange membrane to the fourth electrolyte migration in. 但是,由于第四电解质116和第三电解质110之间的阴离子交换膜120阻止阳离子从第四电解质116移向第三电解质110,因此,防止第四电解质116中的质子从第四电解质迁移到第三电解质110中。 However, due to the anionic electrolyte 116 between the fourth and the third electrolyte 110 from the cation exchange membrane 120 prevents the fourth electrolyte 110 toward the third electrolyte 116, thus preventing the electrolyte 116 in the fourth protons migrate from the first to the fourth electrolyte three electrolyte 110. 因此,在阳极和阴极之间施加电压134时,阳极处产生的质子包含在第四电解质116中。 Thus, when a voltage is applied between the anode and the cathode 134, the protons produced at the anode electrolyte 116 contained in the fourth. 因此,根据流体流入和流出第四电解质的流速,调节该第四电解质的pH, 例如该pH可以提高、降低或保持相同。 Thus, according to the fourth flow rate of fluid into and out of the electrolyte, the pH was adjusted fourth electrolyte, for example, the pH may increase, decrease or remain the same.

[0074] 关于最初含有钠离子和氯离子的浓溶液并被阴离子交换膜120和第一阳离子交换膜112包夹在第三电池130中的第三电解质110,在阳极108和阴极104之间施加电压时,第三电解质110中的阴离子例如氯离子试图向阳极108迁移,而第三电解质的阳离子例如钠离子试图向阴极104迁移。 [0074] For the first concentrated solution containing sodium ions and anions and chloride ion-exchange membrane 120 and the first cation exchange membrane 112 sandwiched third battery 130 in the third electrolyte 110 between the anode 108 and the cathode 104 is applied voltage, the third electrolyte 110, for example, chloride anions migrate to the anode 108 attempt, while the third electrolyte cations such as sodium ions migrate towards the cathode 104 attempt. 由于阴离子交换膜120允许阴离子从第三电解质110迁移到第四电解质116中,第三电解质110中存在的氯离子会迁移到第四电解质中,在此它们与来自阳极的质子形成酸,例如盐酸。 Since the anion exchange membrane 120 allows migration of anions from the third electrolyte 1 10 to the fourth electrolyte 116, 110 present in the third electrolyte chloride ions will migrate to the fourth electrolyte, they form with the protons from the anode acids, such as hydrochloric acid .

[0075] 此外,由于第一阳离子交换膜112允许阳离子从第三电解质110迁移到阴极电解质102中,第三电解质110中存在的钠离子会迁移到阴极电解质102中,在此它们会与阴极104处生成的氢氧离子形成氢氧化钠。 [0075] Further, since the first cation exchange membrane 112 allows cations to migrate from the third electrolyte 1 10 to the cathode electrolyte 102, the electrolyte 110 in the third sodium ions present in the electrolyte will migrate to the cathode 102, the cathode 104 where they will be hydroxide ions generated at the formation of sodium hydroxide. 因此,如图1中所示,在阳极108和阴极104之间施加电压时,阳离子例如钠离子,和阴离子例如氯离子会从第三电解质110中迁移出,由此在第三电解质中形成脱盐水。 Thus, as shown in Figure, a voltage applied between the anode 108 and the cathode 104, cations such as sodium ions, and anions such as chloride ions will migrate from the third electrolyte 1 out of 110, thereby forming a third electrolyte desalted water.

[0076] 在各种实施方案中和如图1中所示,在阴极104处由阴极电解质中的水的还原生成氢气120。 [0076] and shown in Figure 1, the cathode 104 is generated by the cathode electrolyte 120 in the hydrogen reduction of water in various embodiments. 这种气体可以从阴极排出或导向阳极108,在此如本文所述将其氧化成质子。 This gas may be vented from the cathode or to the anode 108, as described herein herein, it is oxidized to protons.

[0077] 在另一些实施方案中,根据所需离子物类,可以将其它反应物溶解在阴极电解质中以制造所需离子。 [0077] In certain other embodiments, depending on the desired ionic species, other reactants may be dissolved in the cathode electrolyte to produce the desired ions. 因此,例如,在各种实施方案中,将二氧化碳添加到阴极电解质中以制造碳酸根和碳酸氢根离子。 Thus, for example, in various embodiments, carbon dioxide is added to the cathode electrolyte to produce carbonate and bicarbonate ions. 二氧化碳气体可通过将其直接鼓泡(bubbling)进入电解质来添加到该电解质中;或者,二氧化碳气体可以溶解在阴极电解质中或可以溶解在单独隔室152中,该隔室用导管连接到阴极隔室以如上所述将含有溶解的二氧化碳的溶液添加到该阴极隔室中。 Carbon dioxide gas may be bubbled directly (the bubbling) into the electrolyte by the electrolyte to be added; alternatively, the carbon dioxide gas may be dissolved in the cathode electrolyte or may be dissolved in a separate compartment 152, the compartment with the conduit to the cathode compartment chamber as described above to a solution containing the dissolved carbon dioxide was added to the cathode compartment.

[0078] 在将二氧化碳溶解在阴极电解质中的实施方案中,如上所述和参照图1,在阳极108和阴极104之间施加电压时,系统100会如下产生氢氧离子、碳酸氢根离子、碳酸根离子和氢气: [0078] In embodiments where carbon dioxide dissolved in the cathode electrolyte, as described above, and with reference to FIG. 1, when a voltage applied between the anode 108 and the cathode 104, the system 100 would look hydroxide ions, bicarbonate ions, carbonate ions and hydrogen:

[0079] 2H20+2丨=H2+20F (水在阴极处还原) [0079] 2H20 + 2 Shu = H2 + 20F (reduction of water at the cathode)

[0080] 在阴极电解质102中,根据电解质的pH,二氧化碳气体会如下溶解形成碳酸、质子、碳酸氢根离子和碳酸根离子: [0080] In the cathode electrolyte 102, depending on the pH of the electrolyte, the carbon dioxide forms carbonic acid gas will be dissolved as protons, bicarbonate ions and carbonate ions:

[0081] H2CHCO2 = H2CO3 = H.+HCCV = 2H++C〇32- [0081] H2CHCO2 = H2CO3 = H. + HCCV = 2H ++ C〇32-

[0082] 由于阴极电解质102中二氧化碳的溶解以及碳酸氢根和碳酸根离子的浓度依赖于PH,第一(阴极)电池122中的总体反应为: [0082] Since the concentration of dissolved carbon dioxide in the cathode electrolyte 102 and the bicarbonate and carbonate ions is dependent on the PH, the overall reaction of the first (cathode) 122 of the battery:

[0083] 情况I :2H20+2C02+2e- = H2+2HC(V ;或 [0083] where I: 2H20 + 2C02 + 2e- = H2 + 2HC (V; or

[0084] 情况2 :H20+C02+2e- = H2+C032- [0084] The case 2: H20 + C02 + 2e- = H2 + C032-

[0085] 或两者的组合,如下列碳酸盐物种形成图中所示,这取决于阴极电解质102的pH : Or a combination of both [0085], as shown below in FIG carbonate species formed in, depending on the pH of the cathode electrolyte 102:

Figure CN101984749BD00141

[0087] H2O中的碳酸盐/碳酸氢盐物种形成vs.在25°C下的pH [0087] H2O in carbonate / bicarbonate speciation vs. pH at 25 ° C and

[0088] 对于任一情况,可以由下列公式通过该反应的吉布斯能变化确定总电池电势: [0088] For either case, by the following reaction formula by which to determine the total Gibbs energy change cell potential:

[0089] E 电池=-Δ G/nF [0089] E cell = -Δ G / nF

[0090] 或,在标准温度和压力条件下: [0090] or, at standard temperature and pressure conditions:

[0091] E° 电池=_AG° /nF [0091] E ° cell = _AG ° / nF

[0092] 其中,E_是电池电压,AG是该反应的吉布斯能,η是转移的电子数,F是法拉第常数(96485J/Vmol)。 [0092] wherein, E_ battery voltage, AG is the Gibbs energy of the reaction, η is the number of electrons transferred, F is the Faraday constant (96485J / Vmol). 这些反应各自的E 根据如下面对情况1所示的能斯特方程依赖于pH : These reactions E in each case 1 to face according to the following Nernst equation depends on the pH:

Figure CN101984749BD00151

[0094] 情况I :阴极电解质中的碳酸氢根离子生成 [0094] where I: bicarbonate ions generated in the cathode electrolyte

[0095] 对于任一情况,可以通过各半电池反应的能斯特方程的组合确定总电池电势: [0095] For either case, the cell potential can be determined by combining a total Nernst Equation half cell reaction:

[0096] E = E。 [0096] E = E. -RTln(Q)AiF -RTln (Q) AiF

[0097] 其中,E°是标准还原电势,R是通用气体常数,(8.314J/mol K)T是绝对温度,η是参与该半电池反应的电子数,F是法拉第常数(96485J/Vmol),且Q是反应商,以使: [0097] wherein, E ° is a standard reduction potential, R is the universal gas constant, (8.314J / mol K) T is the absolute temperature, η is involved in the number of electrons of the half-cell reaction, F is the Faraday constant (96485J / Vmol) , and Q is the reaction quotient, such that:

[0098] E总量=E酿+E阳极 [0098] total E = E + E stuffed anode

[0099] 当如下在阳极处将氢氧化成质子时: [0099] When following the hydrogen is oxidized to protons at the anode:

[0100] H2 = 2H++2e-, [0100] H2 = 2H ++ 2e-,

[0101] E°是0. 00V,n是2,且Q是H+的活性的平方,以使: [0101] E ° is 0. 00V, n is 2, and Q is the square of the activity of H + so that:

[0102] E 阳极=-0· 059pHa, [0102] E anode = -0 · 059pHa,

[0103] 其中pHa是阳极电解质的pH。 [0103] wherein the pH of the anode electrolyte is pHa.

[0104] 当如下在阴极处将水还原成氢氧离子和氢气时: [0104] When following the reduction of water at the cathode to hydroxide ions and hydrogen gas:

[0105] 2H20+2e = H2+20H, [0105] 2H20 + 2e = H2 + 20H,

[0106] E°是-0. 83V,η是2,且Q是0H_的活性的平方,以使: [0106] E ° is -0 83V, η is 2, and Q is the square of the active 0H_ so that:

[0107] E 阴极=-0· 059pHc, [0107] E cathode = -0 · 059pHc,

[0108] 其中pHc是阴极电解质的pH。 [0108] wherein the pH of the cathode electrolyte is pHc.

[0109] 对于任一情况,阴极和阳极反应的E随阳极和阴极电解质的pH而变。 [0109] For either situation, E of the cathode and anode reactions with the pH of the anode electrolyte and the cathode becomes. 因此,对于情况1,如果在酸性环境中发生的阳极反应处于PH 0,则对于该半电池反应,该反应的E为0V。 Thus, the case 1, if the anode reaction occurs in an acidic environment at PH 0, then the reaction to the half-cell, E is the reaction 0V. 对于阴极反应,如果碳酸氢根离子的生成在PH 7发生,则对于该半电池反应,理论E为7x(0. 059V) = 0. 413V,其中负数E意味着需要将能量输入该半电池或整个电池以使该反应继续进行。 For the cathodic reaction, if generated bicarbonate ions occurs PH 7, the half-cell reaction to the theoretical E is 7x (0. 059V) = 0. 413V, which means that a negative input energy E of the half cell or whole cells to the reaction to proceed. 因此,如果阳极PH为0且阴极pH为7,则总电池电势为0. 413V,其中: Accordingly, if the anode and the cathode pH PH is 0 to 7, the total cell potential is 0. 413V, wherein:

[0110] E 总量=0· 059(pHa_pHc) = 0· 059ΛρΗ· [0110] total E = 0 · 059 (pHa_pHc) = 0 · 059ΛρΗ ·

[0111] 对于情况2,其中产生碳酸根离子,如果阳极pH为0且阴极pH为10,这代表0. 59V 的E。 [0111] In the case of 2, wherein the carbonate ion is generated, if the anode pH is 0 and the cathode pH of 10, which represents the E. 0. 59V

[0112] 因此,在各种实施方案中,将CO2导入阴极电解质(以降低该阴极电解质的pH和在该阴极电解质中产生碳酸氢根离子和/或碳酸根离子)的效果是降低在该阴极电解质中制造氢氧化物、碳酸盐和/或碳酸氢盐所需的在系统的阳极和阴极之间的电压。 [0112] Thus, in various embodiments, the CO2 introduced into the catholyte (to lower the pH of the cathode electrolyte and produce bicarbonate ions and / or carbonate ions in the cathode electrolyte) is to reduce the effect of the cathode electrolyte produced hydroxides, carbonates and / or bicarbonates desired voltage between the anode and the cathode of the system. 在情况1 中,可以认识到,如果使阴极电解质升至14或更大的pH,阳极半电池电势(表示为细水平虚线)和阴极半电池电势(表示为粗实心斜线)之差升至0.83V。 In Case 1, it can be appreciated that if the cathode electrolyte the pH was raised to 14 greater, or an anode half-cell potential (represented as the thin dashed horizontal line) and the cathode half-cell potential (represented as a crude solid diagonal lines) raised to the difference between 0.83V. 随着在没有添加CO 2或没有其它干预例如用水稀释的情况下的电池运行持续时间的提高,所需电池电势继续提高。 Without the addition of CO 2 with or without other intervention such as increased duration battery operation in case of dilution with water, the required cell potential continue to improve. 因此可以认识到,在7或更大的阴极pH下的电化学电池运行显著节省能量。 Can be appreciated, the electrochemical cell operated at pH 7 or more cathode significant savings in energy.

[0113] 因此,本领域普通技术人员可以认识到,对于阴极电解质和阳极电解质中的不同pH值,当在阳极和阴极之间施加的电压低于3、2. 9、2. 8、2. 7、2. 6、2. 5、2. 4、2. 3、2. 2、2. 1、 2· 0、1· 9、1· 8、1· 7、1· 6、1· 5、1· 4、1· 3、1· 2、1· 1、1· 0、0· 9、0· 8、0· 7、0· 6、0· 5、0· 4、0· 3、0· 2 或0. IV或更低时,在阴极电解质中产生氢氧离子、碳酸根离子和/或碳酸氢根离子,同时阳极电解质和阴极电解质之间的pH差为大于0、1、2、3、4、5、6、7、8、9、10、11、12、13、14或更大。 [0113] Accordingly, those of ordinary skill in the art may recognize that, for different pH of the catholyte and the anolyte, when the voltage applied between the anode and the cathode is less than 3,2. 9,2. 8,2. 7,2. 6,2. 5,2. 4,2. 3,2. 2,2. 1, 2 * 0,1 * 9,1 * 8,1 * 7,1 * 6,1 * 5, 1 * 4,1 * 3,1 * 2,1 * 1,1 * 0,0 * 9,0 * 8,0 * 7,0 * 6,0 * 5,0 * 4,0 * 3,0 * 2 or less or 0. IV, hydroxide ions, carbonate ions and / or bicarbonate ions in the cathode electrolyte, while the pH difference between the anode electrolyte and cathode electrolyte greater than 0,1,2,3 , 4,5,6,7,8,9,10,11,12,13,14 or greater.

[0114] 本领域技术人员也会认识到,在需要制造碳酸氢根和/或碳酸根离子的实施方案中,如图1中所示和如上文参照氢氧离子的生成所述的系统适用于通过将二氧化碳溶解在阴极电解质102中和在阴极104和阳极108之间施加低于3V,或低于2. 5V,或低于2V,或低于I. 5V的电压来在阴极电解质102中制造碳酸氢根离子和/或碳酸根离子,同时:i)在阳极108处将氢气氧化以在阳极108处产生质子;ii)使阳极108处形成的质子从阳极108 经由阳极电解质106和穿过第二阳离子交换膜118迁移到第四电解质116中;iii)在阳极108和阴极104之间施加电压以便在阳极108处不形成气体;iv)在阴极104处制造氢气和任选使该气体循环至阳极108 ;v)通过在阴极电解质102和第三电解质110之间安置第一阳离子交换膜112,阻止阴极电解质102中制成的碳酸根离子和/或碳酸氢根阴离子迁移到相邻第三电解质110中 [0114] Those skilled in the art will recognize, the need to manufacture bicarbonate and / or carbonate ions in the embodiments, the generation of the shown in FIG. 1 and described above with reference to a system suitable for hydroxide ions 102 and the cathode 104 is applied between the anode 108 and less than 3V, or below 2. 5V, or less than 2V, or less than I. 5V voltage is produced by dissolving carbon dioxide in the cathode electrolyte in the cathode electrolyte 102 bicarbonate ions and / or carbonate ions, at the same time of: i) oxidizing hydrogen gas at the anode to produce protons at the anode 108 108; II) protons formed at the anode from the anode 108 through the anode electrolyte 106 and 108 through the first two cation exchange membrane 118 migrate to the fourth electrolyte 1 16; iii) applying a voltage between the anode 108 and the cathode 104 so as not to form a gas at the anode 108; IV) producing hydrogen gas at the cathode 104 and optionally circulating the gas to make the an anode 108; v) through a first cation disposed between the cathode electrolyte 102 and the third 110 exchange membrane electrolyte 112 to prevent the cathode electrolyte 102 made of carbonate ion and / or bicarbonate anions migrating to the adjacent third electrolyte 110 ,其中选择该阳离子交换膜以阻止阴离子从阴极电解质102中迁移;vi)使钠离子从第三电解质110穿过第一阳离子交换膜112迁移到阴极电解质102中; vii)在阴极电解质102中,使钠离子与碳酸根离子和/或碳酸氢根离子结合以在阴极电解质102形成碳酸钠和/或碳酸氢钠;viii)使氯离子从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中;ix)在第四电解质116中,使氯离子与从阳极电解质106迁移而来的质子结合形成盐酸;和X)通过在第四电解质116和阳极电解质106之间安置第二阳离子交换膜,阻止氯离子从第四电解质116迁移到阳极电解质106中,其中选择第二阳离子交换膜118以阻止阴离子从第四电解质116迁移到阳极电解质106中。 , Wherein selecting the cation exchange membrane to prevent migration of anions from the cathode electrolyte 102; VI) sodium ion exchange membrane 112 to the cathode electrolyte 102 to migrate through the first cation from the third electrolyte 110; vii) in the cathode electrolyte 102, sodium ions with carbonate ions and / or bicarbonate ions in the cathode electrolyte 102 are combined to form sodium carbonate and / or bicarbonate; VIII) chloride ions from the third electrolyte across the anion exchange membrane 110 to the fourth migration 120 electrolyte 116; IX) in the fourth electrolyte 116, the chlorine ion binding protons 106 migrated from the anode electrolyte formed from hydrochloric acid; and X) by exchanging the fourth electrolyte 106 disposed between the anode electrolyte 116 and the second cation film to prevent migration of chloride ions from the fourth electrolyte 116 into the anode electrolyte 106, wherein selecting the second cation exchange membrane 118 to prevent migration of anions from the fourth electrolyte 116 to the anode electrolyte 106.

[0115] 因此,在阴极电解质102中制造碳酸根/碳酸氢根离子时,如上述在不向阴极电解质中加入二氧化碳的情况下在阴极电解质中制造氢氧离子的实施方案那样,阳极108、第一阳离子交换膜118、阴离子交换膜120、第一阳离子交换膜112、阳极电解质、第四电解质和第三电解质在功能上相同。 When [0115] Accordingly, for producing a carbonate / bicarbonate ions in the cathode electrolyte 102, as the above-described embodiments for producing hydroxyl ions in the cathode electrolyte without the addition of carbon dioxide to the cathode electrolyte as an anode 108, a first a cation exchange membrane 118, anion exchange membrane 120, a first cation exchange membrane 112, an anode electrolyte, the electrolyte and the third electrolyte fourth functionally identical.

[0116] 如氢氧离子的生成那样,在碳酸根和或碳酸氢根的生成中,在阴极104处产生的氢气136任选导送用于在阳极108处的氢气氧化;从第三电解质110中获得脱除氯化钠的脱盐水150,并在第四电解质中产生盐酸148。 [0116] The hydroxide ion generated as in the generation and carbonate or bicarbonate, the hydrogen produced at the cathode 104 the Feeder 136 for optionally hydrogen peroxide at the anode 108; 110 from the third electrolyte removal of sodium chloride obtained in desalinated water 150, and 148 to generate hydrochloric acid in the fourth electrolyte. 此外,在各种实施方案中,如氢氧离子的生成那样,可以从该系统中不时地(continually)取出在阴极电解质中制成的碳酸根离子或碳酸氢根离子,同时不时补充该阴极电解质中的水和第三电解质中的氯化钠以维持该系统的连续运行。 Further, in various embodiments, hydroxide ions generated as above, may from time to time (continually) remove carbonate ions or bicarbonate ions produced in the cathode electrolyte from the system, from time to time while the cathode electrolyte supplement water and sodium chloride in the third electrolyte to maintain continuous operation of the system. 在各种实施方案中,该系统和方法适用于其它运行模式,例如分批或半分批流程。 In various embodiments, the system and method is applicable to other modes of operation, such as batch or semi-batch process.

[0117] 本领域技术人员可以认识到,在各种实施方案中,该系统可以构造成以各种生产模式,包括分批模式、半分批模式、连续流模式运行,可选择或不可选择提取部分在阴极电解质中制成的氢氧化钠或提取全部或部分在第四电解质中制成的酸,或将阴极处产生的氢气导向阳极,在此可将其氧化。 [0117] Those skilled in the art will recognize that, in various embodiments, the system may be configured, semi-batch mode, continuous flow mode of production in various modes, including batch mode, selectable or non-selectable extraction section sodium hydroxide produced in the cathode electrolyte or withdraw all or acid produced in the fourth electrolyte portion, or hydrogen produced at the cathode to the anode, this can be oxidized.

[0118] 在各种实施方案中,当在阳极和阴极之间施加的电压低于3、2. 9或更低,2. 8或更低,2. 7或更低,2. 6或更低,2. 5或更低,2. 4或更低,2. 3或更低,2. 2或更低,2. 1或更低, 2. 0或更低,1. 9或更低,1. 8或更低,1. 7或更低,1. 6或更低,1. 5或更低,1. 4或更低,1. 3 或更低,1. 2或更低,I. 1或更低,I. 0或更低,0. 9或更低,0. 8或更低,0. 7或更低,0. 6或更低,0. 5或更低,0. 4或更低,0. 3或更低,0. 2或更低,或0. IV或更低时,在阴极电解质中产生氢氧离子、碳酸氢根离子和/或碳酸根离子溶液。 [0118] In various embodiments, when a voltage is applied between the anode and the cathode is less than 3,2. 9 or less, 2.8 or less, 2.7 or less, 2.6 or less lower, 2.5 or less, 2.4 or less, 2.3 or less, 2.2 or less, 2.1 or less, 2.0 or less, 1.9 or less , 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, I. 1 or less, I. 0 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0 4 or less, 0.3 or less, 0.2 or less, or 0. IV or lower, hydroxide ions, bicarbonate ions and / or carbonate ions in the cathode electrolyte solution.

[0119] 在另一实施方案中,该系统和方法适用于在阴极电解质中产生氢氧离子、碳酸根离子和碳酸氢根离子和在阴极处生成氢气的同时,在阳极处形成气体,例如氧气或氯气。 [0119] In another embodiment, the system and method suitable for generating hydroxide ions in the cathode electrolyte, carbonate ions and bicarbonate ions and hydrogen gas generated at the cathode while forming a gas at the anode, oxygen e.g. or chlorine. 但是,在此实施方案中,不向阳极供应氢气。 However, in this embodiment, hydrogen gas is not supplied to the anode. 尽管在此实施方案中会在阳极处产生质子和在阴极电解质中产生氢氧化钠、碳酸钠和/或碳酸氢钠,但阳极和阴极之间的电压通常高于在阳极处不形成气体而是在阳极处将氢气氧化的实施方案。 Although the protons generated at the anode in this embodiment, and produce sodium hydroxide, sodium carbonate and / or bicarbonate in the cathode electrolyte, the voltage between the anode and the cathode is generally higher than the gas does not form at the anode but hydrogen gas at the anode oxidation scheme embodiment.

[0120] 在各种实施方案中和参照图1,可用的阴离子交换膜120包括常规阴离子交换的离子交换膜。 [0120] In various embodiments and with reference to FIG. 1, available anion exchange membrane 120 comprises a conventional ion-exchanged anion exchange membrane. 优选地,这类膜应可用于大约o°c至大约KKTC或更高的酸性和/或碱性电解溶液温度。 Preferably, such films should be used for about o ° c to about KKTC or more acidic and / or basic electrolytic solution temperatures. 类似地,第一阳离子交换膜112和第二阳离子交换膜118可选自常规阳离子交换膜并应可用于约〇°C至大约100°C或更高的酸性和/或碱性电解溶液温度。 Similarly, the first cation exchange membrane 112 and second cation exchange membrane 118 may be selected from the conventional cation exchange membranes can be used and should be approximately square ° C to about or 100 ° C more acidic and / or basic electrolytic solution temperatures.

[0121] 合适的阳离子交换膜的例子包括例如可获自Asahi Kasei of Tokyo, Japan的Teflon™-基膜。 [0121] Examples of suitable cation exchange membranes include, for example, available from Asahi Kasei of Tokyo, Japan's Teflon ™ - the base film. 通常,示例性阳离子交换膜应能用在大约(TC至大约120°C和更高的温度范围内的强碱性溶液中。但是,参照图1,可以认识到,由于本系统的低电压和低温运行,也可以采用其它低成本经基阳离子交换膜。这类经基膜可获自例如Membrane Internationalof Glen Rock,NJ,USA。 Typically, exemplary cation exchange membrane can be from about (TC to about 120 ° C and a strong alkaline solution in the higher temperature range. However, referring to FIG 1, can be appreciated, due to the low voltage of the present system and low temperature operation, low cost may be used by other base cation exchange membrane. such base film was available from e.g. membrane Internationalof Glen Rock, NJ, USA.

[0122] 类似地,典型的煙基阴离子交换膜也可获自Membrane Internationalof Glen Rock,NJ,USA。 [0122] Similarly, a typical cigarette-yl anion exchange membrane is also available from Membrane Internationalof Glen Rock, NJ, USA. 通常,这类阴离子交换膜应该表现出高的离子选择性、低离子电阻、高爆裂强度和在大约〇°C至大约KKTC或更高的酸性电解溶液温度范围中的高稳定性。 Generally, such anion exchange membranes should exhibit high ion selectivity, low ionic resistance, high burst strength and about KKTC or more acidic electrolytic solution at a temperature range of approximately square ° C to a high stability.

[0123] 本领域技术人员会认识到,由于阳离子交换膜是选择性的以使阳离子在两种相邻电解质之间迁移,在如图1中所示将阳离子交换膜置于电化学系统中的两种电解质之间时,该膜允许阳离子从一种电解质朝阴极方向迁移到相邻电解质中。 [0123] Those skilled in the art will recognize that, due to the cation exchange membrane is selective for the cations to migrate between the two adjacent electrolytes, as shown in FIG 1 in the cation exchange membrane was placed in the electrochemical system when the electrolyte between the two, the membrane allows cations to migrate towards the cathode electrolyte from one direction to the adjacent electrolyte. 因此,例如,和参照图1,在阴极104和阳极108之间施加电压时,阳离子例如钠离子,会从第三电解质110穿过第一阳离子交换膜112迁移到阴极电解质102中。 Thus, for example, and with reference to FIG. 1, when a voltage is applied between the cathode 104 and anode 108, a cation such as sodium ion exchange membrane 112 will migrate to the cathode electrolyte 102 through the first cation from the third electrolyte 110. 也会认识到,同时,对阳离子选择性的第一阳离子交换膜112会阻止阴离子从阴极电解质朝阳极108方向迁移到第三电解质110中。 Will be appreciated that, while a first cation selective cation exchange membrane 112 will prevent migration of anions from the direction of the cathode towards the anode electrolyte 108 to 110 in the third electrolyte.

[0124] 本领域技术人员也会认识到,由于阴离子交换膜是选择性的以使阴离子在两种相邻电解质之间迁移,在如图1中所示将阴离子交换膜置于电化学系统中的两种电解质之间时,该膜允许阴离子从一种电解质朝阳极方向迁移到相邻电解质中。 [0124] Those skilled in the art will recognize that, since the anion exchange membrane is selective to cause migration of anions between the two adjacent electrolytes, as shown in FIG. 1 anion exchange membrane placed in an electrochemical system when the electrolyte between the two, which allows the migration of anions from the membrane electrode an electrolyte sunrise direction to the adjacent electrolyte.

[0125] 因此,例如,和参照图1,在阴极104和阳极108之间施加电压时,阴离子例如氯离子,会从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中。 [0125] Thus, for example, and with reference to FIG. 1, when a voltage is applied between the anode 108 and cathode 104, an anion such as chloride, will migrate exchange membrane 120 to the fourth electrolyte 116 from the third electrolyte across the anion 110. 也会认识到,同时,对阴离子选择性的阴离子交换膜120会阻止阳离子从第四电解质116朝阴极104方向迁移到第三电解质110中。 Will be appreciated that, while the selectivity of the anion exchange membrane 120 will prevent cations migrating from the fourth electrolyte 116 toward the direction of the cathode 104 to 110 in the third electrolyte.

[0126] 参照图1和2,方法200在一个实施方案中包括步骤202 :例如与阴极接触地安置第一电解质,即阴极电解质,和与阳极接触地安置第二电解质,即阳极电解质;例如安置第三电解质以使其通过第一阳离子交换膜与阴极电解质隔开的步骤204;例如安置第四电解质以使其通过阴离子交换膜与第三电解质隔开和通过第二阳离子交换膜与阳极电解质隔开的步骤206 ;和例如通过在阳极和阴极之间施加电压来在阴极电解质中形成氢氧离子的步骤208。 [0126] Referring to Figures 1 and 2, in one embodiment, method 200 includes step 202: for example, a first electrolyte disposed in contact with the cathode, i.e. the cathode electrolyte, and an anode disposed in contact with the second electrolyte, i.e. the anolyte; disposed e.g. the third step of the electrolyte so as to exchange the electrolyte membrane and a cathode 204 spaced apart by a first cation; a fourth electrolyte such that it is disposed, for example, separated by an anion exchange membrane and the third electrolyte exchange membrane and the anode compartment by a second cation electrolyte apart step 206; step is formed, for example hydroxide ions in the cathode electrolyte by applying a voltage between the anode and the cathode 208. 在各种实施方案中,当在阳极和阴极之间施加的电压低于3或更低,2. 9或更低, 2. 8或更低,2. 7或更低,2. 6或更低,2. 5或更低,2. 4或更低,2. 3或更低,2. 2或更低,2. 1 或更低,2. 0或更低,1. 9或更低,1. 8或更低,1. 7或更低,1. 6或更低,1. 5或更低,1. 4或更低,1. 3或更低,1. 2或更低,I. 1或更低,I. 0或更低,0. 9或更低,0. 8或更低,0. 7或更低, 〇. 6或更低,0. 5或更低,0. 4或更低,0. 3或更低,0. 2或更低,或0. IV或更低时,方法200在阳极处不形成气体,同时向阳极提供氢气,在此将其氧化成质子。 In various embodiments, when a voltage is applied between the anode and the cathode is less than 3 or less, 2.9 or less, 2.8 or less, 2.7 or less, 2.6 or less lower, 2.5 or less, 2.4 or less, 2.3 or less, 2.2 or less, 2.1 or less, 2.0 or less, 1.9 or less , 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, I. 1 or less, the I. 0 or less, 0.9 or less, 0.8 or less, 0.7 or less, square. 6 or less, 0.5 or less, 0 4 or less, 0.3 or less, 0.2 or less, or 0. IV or lower, method 200 does not form a gas at the anode, while providing hydrogen to the anode where it is oxidized to proton. 本领域普通技术人员会认识到,通过在阳极处不形成气体和通过向阳极提供氢气以便在阳极处氧化,以及通过以其它方式控制该系统中的电阻,可以用本发明的较低电压在阴极电解质中产生氢氧离子。 Those of ordinary skill in the art will recognize that, by not forming a gas at the anode and by otherwise controlling the resistance in the system, a lower voltage can be used in the present invention by providing a cathode for hydrogen oxidation at the anode, and the anode generating hydroxide ions in the electrolyte.

[0127] 在各种实施方案中,方法200进一步包括例如将二氧化碳144气体导入阴极电解质102的步骤;例如在与阴极104接触地安置阴极电解质之前或之后将二氧化碳气体144 导入阴极电解质的步骤;例如在阴极104和阳极108之间施加低于3V,或低于2V,或低于I. 5V,或低于IV,或低于0. 5V的电压134的步骤;例如在阴极处形成氢气136的步骤;例如在阳极108处将氢氧化以形成质子的步骤;例如通过在阳极和阴极之间施加低于3V,或低于2V,或低于I. 5V,或低于IV,或低于0. 5V的电压,在阳极处不形成气体的情况下在阳极和阴极电解质之间形成1、2、3、4、5、6、7、8、9、10、11、12、13、14?!1单位或更大的? [0127] In various embodiments, method 200 further comprises, for example, carbon dioxide gas is introduced into the step 144 of the cathode electrolyte 102; e.g. 144 or after the step of introducing carbon dioxide gas in the cathode electrolyte 104 and the cathode prior to electrolyte disposed in contact with the cathode; e.g. between the cathode 104 and the anode 108 voltage lower than 3V, or less than 2V, or less than I. 5V, or less than IV, step 0. 5V voltage 134 or below; e.g. hydrogen gas formed at the cathode 136 step; for example at the anode 108 to form a step hydroxide protons; for example, by applying between the anode and the cathode is lower than 3V, or less than 2V, or less than I. 5V, below, or IV, or below 0 voltage. 5V is, in the case without forming a gas at the anode 1,2,3,4,5,6,7,8,9,10,11,12,13,14 formed between the anode and cathode electrolyte? ! 1 unit or more? !1差的步骤; 通过在阳极和阴极之间施加3V或更低,或低于2V,或低于I. 5V,或低于I. 0V,或低于0. 5V 的电压,在第四电解质116和阴极电解质102之间形成1、2、3、4、5、6、7、8、9、10、11、12、13、 HpH单位或更大的pH差的步骤;例如在阴极电解质102中形成氢氧离子、碳酸氢根离子、 碳酸根离子和/或其组合的步骤;例如在阴极电解质102中形成氢氧化钠、碳酸氢钠或碳酸钠的步骤;例如使质子从阳极电解质106穿过第二阳离子交换膜118迁移到第四电解质116中的步骤;例如使阴离子从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中的步骤;例如使氯离子从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中的步骤;例如在第四电解质中形成酸148的步骤;例如在第四电解质中形成盐酸148 的步骤;例如使阳离子从第三电解质110穿过第一阳离子交换膜112 ! 1 step difference; by applying between the anode and the cathode 3V or less, or less than 2V, or less than I. 5V, or less than I. 0V, the voltage at or below 0. 5V, in the fourth 1,2,3,4,5,6,7,8,9,10,11,12,13, HpH pH unit difference or more in step 116 is formed between the electrolyte and the cathode electrolyte 102; e.g. in the cathode electrolyte hydroxide ions, bicarbonate ions, carbonate ions and / or a combination of steps 102 is formed; step e.g. sodium hydroxide, sodium bicarbonate or sodium carbonate is formed in the cathode electrolyte 102; for example protons from the anode electrolyte 106 118 through the second cation exchange membrane proceeds to step 116 in the fourth electrolyte; e.g. anion exchange membrane 120 migrate across the anion to step 116 in the fourth electrolyte from the third electrolyte 110; e.g. chloride ions from the third electrolyte 110 migrate through the anion exchange membrane 120 to step 116 in the fourth electrolyte; example, step 148 of acid formed in the fourth electrolyte; e.g. hydrochloric step 148 is formed in the fourth electrolyte; e.g. cationic pass from the third electrolyte 110 through the first cation exchange membrane 112 迁移至阴极104的步骤;例如使钠离子从第三电解质110穿过第一阳离子交换膜112迁移到阴极电解质102中的步骤;例如将阴极104处形成的氢气送往在阳极108处氧化该气体的步骤;例如经由流出流取出阴极电解质102和经由进入该阴极电解质的流入流补充阴极电解质的步骤;例如经由流出流取出第四阴极电解质116和经由第四电解质的流入流补充该第四电解质的步骤。 The cathode migrate to step 104; e.g. sodium ion exchange membrane cathode electrolyte 112 proceeds to step 102 through the first cation from the third electrolyte 110; for example, the hydrogen formed at the cathode 104 of the gas sent to oxidation at anode 108 steps; e.g. catholyte withdrawn via the effluent stream entering the cathode 102 via the electrolyte and the cathode electrolyte inflow of supplementary step; e.g. withdrawn via a fourth cathode electrolyte 116 and the fourth electrolyte inflow supplement the effluent stream via fourth electrolyte step.

[0128] 参照图3和1,在另一实施方案中,方法300包括例如与阴极104接触地安置阴极电解质102和与阳极108接触地安置阳极电解质106的步骤302 ;例如安置第三电解质110 以使其通过第一阳离子交换膜112与阴极电解质102隔开的步骤304 ;例如安置第四电解质116以使其通过阴离子交换膜120与第三电解质110隔开和通过第二阳离子交换膜118 与阳极电解质106隔开的步骤306 ;和例如通过在阳极和阴极之间施加电压来在阴极电解质102中形成氢氧离子的步骤308。 [0128] Referring to FIGS. 1 and 3, in another embodiment, method 300 includes a cathode 104 with a cathode disposed in contact with an electrolyte, for example, steps 102 and 108 disposed in contact with the anode electrolyte 106 to the anode 302; 110 to the third electrolyte disposed e.g. so-exchange membrane electrolyte 112 and the cathode 102 in step 304 spaced by a first cation; e.g. fourth electrolyte 116 disposed so as to spaced apart by an anion exchange membrane 110 and the electrolyte 120 and the third exchange membrane and the anode 118 through the second cation step 106 spaced apart from the electrolyte 306; and a step of forming, for example, hydroxide ions in the cathode electrolyte 102 by applying a voltage between the anode and the cathode 308.

[0129] 在各种实施方案中,方法300如方法200那样,当在阳极和阴极之间施加的电压低于3、2· 9、2· 8、2· 7、2· 6、2· 5、2· 4、2· 3、2· 2、2· 1、2· 0、1· 9、1· 8、1· 7、1· 6、1· 5、1· 4、1· 3、1· 2、 I. 1、1. 0、0. 9、0. 8、0. 7、0. 6、0. 5、0. 4、0. 3、0. 2 或0. IV或更低时,在阳极108 处不形成气体, 同时向阳极提供氢气,在此将其氧化成质子。 [0129] In various embodiments, the method 300 such as method 200, when a voltage is applied between the anode and the cathode is lower than 3,2 · 9,2 · 8,2 · 7,2 · 6,2 · 5 , 2 · 4,2 · 3,2 · 2,2 · 1,2 · 0,1 · 9,1 · 8,1 · 7,1 · 6,1 · 5,1 · 4,1 · 3,1 · 2, I. 1,1. 0,0. 9,0. 8,0. 7,0. 6,0. 5,0. 4,0. 3,0. 2 or lower, or 0. IV , gas does not form at the anode 108, while providing hydrogen to the anode where it is oxidized to protons. 本领域普通技术人员会认识到,通过在阳极处不形成气体和通过向阳极提供氢气以便在阳极处氧化,用本发明的电压在阴极电解质中产生氢氧离子。 Those of ordinary skill in the art will recognize that, by not forming a gas at the anode for oxidation at the anode and by providing hydrogen gas to the anode, the voltage present invention produces hydroxide ions in the cathode electrolyte. 在各种实施方案中,与图1的系统结合的方法300进一步包括例如在阳极108 和阴极104之间施加电压以防止在阳极处形成气体例如氧气或氯气的步骤;例如在阴极电解质102中形成碳酸氢根离子、碳酸根离子或碳酸氢根和碳酸根离子的混合物的步骤;例如在阳极108处供应和氧化氢气的步骤;在阴极和阳极之间施加3、2. 9、2. 8、2. 7、2. 6、2. 5、 2· 4、2· 3、2· 2、2· 1、2· 0、1· 9、1· 8、1· 7、1· 6、1· 5、1· 4、1· 3、1· 2、1· 1、1· 0、0· 9、0· 8、0· 7、0· 6、 0. 5、0. 4、0. 3、0. 2或0. IV或更低的电压;例如在阴极104处形成氢气;例如在阳极处将氢气氧化以在阳极处形成质子的步骤;例如在阳极处不形成气体的情况下在阳极电解质和阴极电解质之间形成1、2、3、4、5、6、7、8、9、10、11、12、13、14?!1单位或更大的? In various embodiments, the method in conjunction with the system 300 of FIG. 1, for example, further comprising applying a voltage between the anode 108 and the cathode 104 to prevent the forming gas such as oxygen or chlorine at the anode; e.g. formed in the cathode electrolyte 102 bicarbonate ion, the step of carbonate ions or a mixture of bicarbonate and carbonate ions; e.g. oxidation step and supplying hydrogen at the anode 108; applied between the cathode and the anode 8 3,2 9,2,. 2. 7,2. 6,2. 5, 2 · 4,2 · 3,2 · 2,2 · 1,2 · 0,1 · 9,1 · 8,1 · 7,1 · 6,1 · 5,1 * 4,1 * 3,1 * 2,1 * 1,1 * 0,0 * 9,0 * 8,0 * 7,0 * 6, 0. 5,0. 4,0. 3, in the case where, for example, the anode electrolyte without forming a gas at the anode; 0. IV or 0.2 or lower voltage; for example, the cathode 104 form hydrogen gas; e.g. hydrogen gas at the anode oxidation step to form protons at the anode between the cathode and the electrolyte to form 1,2,3,4,5,6,7,8,9,10,11,12,13,14?! 1 unit or more? !1差的步骤;例如在阳极处不形成气体的情况下在第四电解质和阴极电解质之间形成1、2、3、4、5、6、7、8、 9、10、11、12、13、HpH单位或更大的pH差的pH梯度的步骤;例如在阴极电解质102中形成碳酸钠、碳酸氢钠或碳酸钠和碳酸氢钠的混合物的步骤;例如使质子从阳极电解质106穿过第二阳离子交换膜118迁移到第四电解质116中的步骤;使阴离子从第三电解质110穿过阴离子交换膜迁移到第四电解质116中的步骤;例如使氯离子从第三电解质110穿过阴离子交换膜120迁移到第四电解质116中的步骤;例如在第四电解质中形成酸148的步骤; 例如在第四电解质中形成盐酸148的步骤;例如使阳离子从第三电解质110穿过第一阳离子交换膜112迁移到阴极电解质102中的步骤;例如使钠离子从第三电解质110穿过第一阳离子交换膜112迁移到阴极电解质102中的步骤;例如使阴极104处 ! Poor step 1; for example, a 1,2,3,4,5,6,7,8 9,10,11,12 in the case without forming a gas at the anode of the fourth electrolyte between the electrolyte and the cathode, 13, HpH pH unit difference or more steps of a pH gradient; step e.g. sodium carbonate, sodium bicarbonate or mixtures of sodium carbonate and sodium bicarbonate in the cathode electrolyte 102 is formed; for example protons pass through the electrolyte from the anode 106 second cation exchange membrane 118 proceeds to step 116 in the fourth electrolyte; anion to migrate across the anion exchange membrane electrolyte 116 in the fourth step from the third electrolyte 110; e.g. chloride ions from the third electrolyte across the anion 110 exchange membrane 120 proceeds to step 116 in the fourth electrolyte; example, step 148 of acid formed in the fourth electrolyte; e.g. hydrochloric step 148 is formed in the fourth electrolyte; e.g. cation from the third electrolyte across the first cation 110 exchange membrane 112 proceeds to step 102 in the cathode electrolyte; e.g. sodium ion exchange membrane cathode electrolyte 112 proceeds to step 102 through the first cation from the third electrolyte 110; for example, the cathode 104 形成的氢气136循环以在阳极108处氧化的步骤;例如使至少部分阴极电解质102从流出流循环到该阴极电解质的流入流中的步骤;例如使部分第四电解质116从流出流循环到流入流中的步骤。 Hydrogen circulation 136 formed in the step of oxidation in the anode 108; for example, at least a portion of the cathode electrolyte 102 Step inflow of the cathode electrolyte circulating from the effluent stream; for example, so that part of the fourth electrolyte from the effluent stream 116 is recycled to the inflow in steps.

[0130] 在各种实施方案中,在阳极处不形成气体的情况下,当在阳极和阴极之间施加的电压低于3· 0、2· 9、2· 8、2· 7、2· 6、2· 5、2· 4、2· 3、2· 2、2· 1、2· 0、1· 9、1· 8、1· 7、1· 6、1· 5、1· 4、 1. 3、1· 2、1· 1、1· 0、0· 9、0· 8、0· 7、0· 6、0· 5、0· 4、0· 3、0· 2、0· IV 或更低时,产生碳酸氢根离子和碳酸根离子。 [0130] In various embodiments, in a case where gas does not form at the anode, when a voltage is applied between the anode and the cathode is less than 3 · 0,2 · 9,2 · 8,2 · 7,2 · 6,2 · 5,2 · 4,2 · 3,2 · 2,2 · 1,2 · 0,1 · 9,1 · 8,1 · 7,1 · 6,1 · 5,1 · 4, 1. 3,1 * 2,1 * 1,1 * 0,0 * 9,0 * 8,0 * 7,0 * 6,0 * 5,0 * 4,0 * 3,0 * 2,0 * when IV or less, to produce bicarbonate ions and carbonate ions. 在各种实施方案中,该方法适用于以分批、半分批或连续运行模式提取至少一部分阴极电解质及第四电解质中的酸和补充回该系统。 In various embodiments, the method is applicable to batch, semi-batch or continuous mode of extracting at least a portion of the catholyte and the acid in the fourth electrolyte and back into the supplement system.

[0131] 参照图1,当在阳极和阴极之间施加电压时,在该阴极电解质中形成氢氧离子或碳酸根和/或碳酸氢根离子,因此调节该阴极电解质的PH值。 [0131] Referring to FIG 1, when a voltage is applied between the anode and the cathode, forming hydroxide ions or carbonate and / or bicarbonate ions in the cathode electrolyte, thus adjusting the PH value of the cathode electrolyte. 在一个实施方案中,当在阳极和阴极之间施加〇. IV或更低,0. 2V或更低,0. 4V或更低,0. 6V或更低,0. 8V或更低,I. OV或更低,I. 5V或更低,或2. OV或更低,例如0. 8V或更低的电压时,该阴极电解质溶液的pH值提高;在另一实施方案中,当在阳极和阴极之间施加0. 01至2. 5V,或0. OlV至2. 0V,或0. IV 至2. OV,或0· 1 至2. OV,或0· IV 至I. 5V,或0· IV 至I. OV,或0· IV 至0· 8V,或0· IV 至0· 6V, 或0· IV 至0· 4V,或0· IV 至0· 2V,或0· OlV 至I. 5V,或0· OlV 至I. OV,或0· OlV 至0· 8V,或0· OlV 至0· 6V,或0· OlV 至0· 4V,或0· OlV 至0· 2V,或0· OlV 至0· IV,例如0· IV 至2. OV 的电压时,该阴极电解质的PH值提高;在再一实施方案中,当在阳极和阴极之间施加大约0. 1 至IV的电压时,该阴极电解质的pH值溶液提高。 In one embodiment, when applied between the anode and the cathode billion. IV or less, 0. 2V or less, 0. 4V or less, 0. 6V or lower, 0. 8V or lower, the I . the OV or lower, I 5V or less, or 2. OV or lower, or for example, lower voltages 0. 8V, the catholyte solution to raise the pH value;. in another embodiment, when the applying 0.01 to 2. 5V, or 0. OlV to 2. 0V, or 0. IV to 2. OV between the anode and the cathode, or 0 to 2. OV-1, 0.5 or IV to I. 5V, or 0 · IV to I. OV, or 0 · IV to 0 · 8V, or 0 · IV to 0 · 6V, or 0 · IV to 0 · 4V, or 0 · IV to 0 · 2V, or 0 · OlV to I. 5V, or 0 · OlV to I. OV, or 0 · OlV to 0 · 8V, or 0 · OlV to 0 · 6V, or 0 · OlV to 0 · 4V, or 0 · OlV to 0 · 2V, or 0.5 to 0.5 OLV IV, for example 0.5 to 2. OV voltage of IV, PH value of the electrolyte is improved cathode; in another embodiment, when applied to IV of about 0.1 between the anode and the cathode voltage, pH value increased in the cathode electrolyte solution. 用电极之间0. IV至0. 8V ;0. IV至0. 7V ; 0· 1至(λ 6V ;0· IV至(λ 5V ;0· IV至(λ 4V ;和(λ IV至(λ 3V的电压可实现类似结果。 Between the electrodes with 0. IV to 0. 8V;. 0 IV to 0. 7V; 0 · 1 to (λ 6V; 0 · IV to (λ 5V; 0 · IV to (λ 4V; and (λ IV to ( λ 3V voltage can achieve a similar result.

[0132] 用本系统实现的示例性结果概括在下表1中。 [0132] are summarized in Table 1 with the results of the present exemplary system implementation. 使用270cm220-目Ni网(gauze)作为阴极和50cm 2100-目Pt网作为阳极,进行几次24小时运行,其中在室温下将氢气流至阳极的流速控制为20毫升/分钟,同时在阳极和阴极之间施加各种电压。 270cm220- mesh network using Ni (Gauze) as a cathode and the mesh 50cm 2100- Pt mesh as an anode, several 24-hour operation, wherein the hydrogen gas stream at room temperature to the anode is controlled to a flow rate of 20 ml / min, while the anode and various voltages applied between the cathode. Solartron™恒电位仪用于电化学测量,并分别选择来自GMbH ™ Membranes of Germany的PC Acid和PC SK 离子交换膜作为阴离子交换膜和阳离子交换膜。 Solartron ™ potentiostat for electrochemical measurement, and were selected from GMbH ™ Membranes of Germany and the PC SK PC Acid ion-exchange membrane as the anion exchange membrane and a cation exchange membrane.

[0133] 表1.24小时分析概要 [0133] Analysis Summary Table 1.24 hours

Figure CN101984749BD00201

[0135] 例如,在具体实施方案中,当在阳极和阴极之间施加3V或更低,2. 9V或更低,或2. 5V或更低,或2V或更低的电压时,该方法和系统能够在阳极电解质溶液和阴极电解质溶液之间产生大于〇.5pH单位的pH差,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 [0135] For example, in particular embodiments, when applied between the anode and the cathode 3V or less, 2. 9V or less, or 2. 5V or lower, or a voltage of 2V or less, the method and the system can produce a pH greater than the difference between the units 〇.5pH anolyte solution and catholyte solution, and the two electrolyte solutions are, for example, one or more ion exchange membrane. 在一些实施方案中,当在阳极和阴极之间施加0. IV或更低的电压时,该方法和系统能够在第一电解质溶液和第二电解质溶液之间产生大于I. OpH单位,或2pH单位,或4pH单位,或6pH单位,或8pH单位,或IOpH单位,或12pH单位,或14pH单位的pH差,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 In some embodiments, 0. IV or less when a voltage is applied between the anode and the cathode, the method and system capable of producing greater than I. OpH units between a first electrolyte solution and the second electrolyte solution, or 2pH unit, or units 4pH, or 6pH unit, or 8pH unit, or IOpH units, or units 12pH, pH unit difference or 14pH, wherein the first electrolyte solution contacts an anode and the second electrolyte solution contacts the cathode, and the two electrolyte solutions for example, one or more ion exchange membrane. 在一些实施方案中,本发明提供能够在阳极和阴极之间施加〇. 2V或更低的电压时在第一电解质溶液和第二电解质溶液之间产生大于2. OpH单位的pH差的系统,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 In some embodiments, the present invention provides a square can be applied between the anode and the cathode. Yield a pH greater than 2. OpH difference system units between a first electrolyte solution and the second electrolyte solution while voltage is 2V or lower, wherein the first electrolyte solution contacts an anode and the second electrolyte solution contacts the cathode, and the two electrolyte solutions are e.g. one or more ion exchange membrane.

[0136] 在另一些实施方案中,当在阳极和阴极之间施加0. 4V或更低的电压时,该方法和系统能够在第一电解质溶液和第二电解质溶液之间产生大于4. OpH单位的pH差,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 [0136] In certain other embodiments, when 0. 4V or lower voltage applied between the anode and the cathode, the method and system can be generated between the first electrolyte solution and the second electrolyte solution is greater than 4. OpH pH units difference, wherein the first electrolyte solution contacts an anode and the second electrolyte solution contacts the cathode, and the two electrolyte solutions are e.g. one or more ion exchange membrane. 在一些实施方案中,本发明提供能够在阳极和阴极之间施加〇. 6V或更低的电压时在第一电解质溶液和第二电解质溶液之间产生大于6pH单位的pH差的系统,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 In some embodiments, the present invention provides a square can be applied between the anode and the cathode. Yield a pH of the system is greater than the difference between the first unit 6pH electrolyte solution and the second electrolyte solution when the voltage 6V or less, wherein the first a second electrolyte solution contacts an anode and a cathode in contact with an electrolyte solution, the electrolyte solution, for example, and both are one or more ion exchange membrane. 在一些实施方案中,本发明提供能够在阳极和阴极之间施加〇. 8V 或更低的电压时在第一电解质溶液和第二电解质溶液之间产生大于8pH单位的pH差的系统,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 In some embodiments, the present invention provides a square can be applied between the anode and the cathode. Yield a pH of the system is greater than the difference between the first unit 8pH electrolyte solution and the second electrolyte solution when a voltage 8V or lower, wherein the first a second electrolyte solution contacts an anode and a cathode in contact with an electrolyte solution, the electrolyte solution, for example, and both are one or more ion exchange membrane. 在具体实施方案中,本发明提供能够在阳极和阴极之间施加I. OV或更低的电压时在第一电解质溶液和第二电解质溶液之间产生大于8pH单位的pH 差的系统,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 PH difference is greater than a system generating unit 8pH In particular embodiments, the present invention provides I. OV or lower voltages can be applied between the anode and the cathode in the electrolyte solution between the first and the second electrolyte solution, wherein the first a second electrolyte solution contacts an anode and a cathode in contact with an electrolyte solution, the electrolyte solution, for example, and both are one or more ion exchange membrane. 在一些实施方案中,本发明提供能够在阳极和阴极之间施加I. 2V或更低的电压时在第一电解质溶液和第二电解质溶液之间产生大于IOpH单位的pH差的系统,其中第一电解质溶液接触阳极且第二电解质溶液接触阴极,且这两种电解质溶液例如被一个或多个离子交换膜隔开。 PH difference is greater than a system generating unit IOpH In some embodiments, the present invention provides I. 2V or lower voltages can be applied between the anode and the cathode in the electrolyte solution between the first and the second electrolyte solution, wherein the first a second electrolyte solution contacts an anode and a cathode in contact with an electrolyte solution, the electrolyte solution, for example, and both are one or more ion exchange membrane.

[0137] 本领域技术人员会认识到,电压不需要保持恒定,当这两种电解质的pH相同或pH 接近时,在阳极和阴极之间施加的电压可以非常低,例如0.05V或更低,随着pH差提高,可以按需要提高电压。 [0137] Those skilled in the art will recognize that the voltage necessary to maintain a constant, when the same or a pH close to the pH of both electrolytes, a voltage is applied between the anode and the cathode may be very low, e.g. 0.05V or less, as the pH difference increase, the voltage can be increased as needed. 由此,可以用最小平均电压实现所需PH差或氢氧离子、碳酸根离子和碳酸氢根离子的生产。 Thus, the minimum average voltage may be used to achieve the desired difference in PH or hydroxide ions, carbonate ions and bicarbonate ions produced. 因此,在前一段中所述的一些实施方案中,该平均电压可以为低于80 %、70 %、60 %,或低于50 %的前一段中对具体实施方案给出的电压。 Thus, in some embodiments according to some of the previous embodiment, the average voltage may be less than 80%, 70%, 60%, or less than 50% of the voltage in the preceding paragraph specific embodiments set forth.

[0138] 在各种实施方案中和参照图1,将阴极104处形成的氢气导向阳极108。 [0138] In various embodiments the guide and hydrogen Referring to FIG 1, the cathode 104 formed on the anode 108. 不受制于任何理论,但据信,氢气吸附和/或吸收到阳极中并随后在阳极处氧化形成质子。 Without being bound by any theory, it is believed that hydrogen adsorption and / or absorption into the anode and subsequently oxidized to form protons at the anode.

[0139] 在一些实施方案中,在其中电解质与离子交换膜接触的该方法的部分过程中,从该电解质溶液中移除二价阳离子,例如镁或钙。 [0139] In some embodiments, the method in which part of the process with an ion exchange membrane electrolyte in contact with, the removal of divalent cations from the electrolyte solution, such as magnesium or calcium. 这是为了防止膜的结垢,如果针对特定膜必要的话。 This is to prevent fouling of the membrane, if necessary for a particular film, then. 因此,在各种实施方案中,当电解质溶液与离子交换膜接触任何可测时间(appreciable time)时,该电解质溶液中的二价阳离子总浓度低于0.06摩尔/千克溶液, 或低于0. 06摩尔/千克溶液,或低于0. 04摩尔/千克溶液,或低于0. 02摩尔/千克溶液, 或低于0. 01摩尔/千克溶液,或低于0. 005摩尔/千克溶液,或低于0. 001摩尔/千克溶液,或低于〇. 0005摩尔/千克溶液,或低于0. 0001摩尔/千克溶液,或低于0. 00005摩尔/千克溶液。 Thus, in various embodiments, when the electrolyte solution in contact with the ion exchange membrane may be any measured time (appreciable time), the total concentration of divalent cation of the electrolyte solution is less than 0.06 mol / kg solution, or less than 0. 06 mol / kg solution, or less than 0.04 mol / kg solution, or less than 0.02 mol / kg solution, or less than 0.01 mol / kg solution, or less than 0.005 mol / kg solution, or less than 0.001 mol / kg solution, or less than square. 0005 mol / kg solution, or less than 0.0001 mol / kg solution, or less than 0.00005 mol / kg solution.

[0140] 在将二氧化碳气体溶解在阴极电解质中的实施方案中,随着从阴极电解质中除去质子,可以溶解更多二氧化碳以形成碳酸氢根和/或碳酸根离子。 [0140] In embodiments where carbon dioxide gas is dissolved in the cathode electrolyte, as protons are removed from the cathode electrolyte, more carbon dioxide may be dissolved to form bicarbonate and / or carbonate ions. 根据该阴极电解质的PH, 如本领域中充分理解和如上述碳酸盐物种形成图中所示的那样,该平衡移向碳酸氢根或移向碳酸根。 The PH of the cathode electrolyte, as is well understood in the art as described above, and a carbonate forming species, as shown in the drawing, toward the equilibrium toward carbonate or bicarbonate. 在这些实施方案中,根据与二氧化碳引入速率相比的质子除去速率,该阴极电解质溶液的PH可能降低,保持相同或提高。 In these embodiments, according to the carbon dioxide removal rate compared to the rate of introduction of protons, the PH catholyte solution may decrease, increase or remain the same. 要认识到,在这些实施方案中不形成氢氧离子、碳酸根或碳酸氢根离子,或氢氧离子、碳酸根、碳酸氢根可能在一个时期不形成但在另一时期形成。 It will be appreciated, do not form hydroxide ions, carbonate or bicarbonate ions, or hydroxide ions, carbonate In these embodiments, bicarbonate may be formed at one time, but not formed in another period.

[0141] 在另一实施方案中,本系统和方法与碳酸盐和/或碳酸氢盐沉淀系统(未显示) 集成,其中二价阳离子溶液在添加到本阴极电解质中时导致形成二价碳酸盐和/或碳酸氢盐化合物,例如碳酸钙或碳酸镁和/或它们的碳酸氢盐的沉淀物。 [0141] In another embodiment, the present system and method with a carbonate and / or bicarbonate precipitation system (not shown) is integrated, wherein the divalent cation solution, when added to the present cathode electrolyte results in the formation divalent carbon salt and / or bicarbonate compounds, such as calcium carbonate or magnesium carbonate and / or bicarbonate thereof to precipitate. 在各种实施方案中,该沉淀的二价碳酸盐和/或碳酸氢盐化合物用作建筑材料,例如水泥和集料,如全文经此引用并入本文的2008年5月23日提交的共同转让的美国专利申请no. 12/126,776中所述。 In various embodiments, the precipitated divalent carbonate and / or bicarbonate compounds used as building materials such as cement and aggregate, such as entirety is incorporated herein by reference in May 23, 2008, filed commonly assigned U.S. patent application no. 12 / 126,776.

[0142] 在另一实施方案中,本系统和方法与矿物和/或材料溶解和回收系统(未显示) 集成,其中使用酸性第四电解质溶液116或碱性阴极电解质102溶解富含钙和/或镁的矿物,例如蛇纹石或橄榄石,或废料,例如飞灰、红泥等,以形成用于如本文所述沉淀碳酸盐和/或碳酸氢盐的二价阳离子溶液。 [0142] In another embodiment, the present system and method integrated with a mineral and / or material is dissolved and recovery system (not shown), wherein the fourth acidic or alkaline electrolyte solution 116 rich in calcium dissolution cathode electrolyte 102 and / or magnesium minerals such as olivine or serpentine, or waste, such as fly ash, red mud, etc., as described herein, to form a precipitation of carbonate and / or divalent cation bicarbonate solution. 在各种实施方案中,该沉淀的二价碳酸盐和/或碳酸氢盐化合物用作建筑材料,例如水泥和集料,如全文经此引用并入本文的2008年5月23日提交的共同转让的美国专利申请no. 12/126,776中所述。 In various embodiments, the precipitated divalent carbonate and / or bicarbonate compounds used as building materials such as cement and aggregate, such as entirety is incorporated herein by reference in May 23, 2008, filed commonly assigned U.S. patent application no. 12 / 126,776.

[0143] 在另一实施方案中,本系统和方法与用于封存二氧化碳和工业废气的其它成分例如硫气体、氮氧化物气体、金属和微粒的工业废气处理系统(未显示)集成,其中如全文经此引用并入本文的2008年12月24日提交的共同转让的美国专利申请no. 12/344,019中所述通过使烟道气与包含二价阳离子的溶液和包含氢氧根、碳酸氢根和/或碳酸根离子的本阴极电解质接触,沉淀二价阳离子碳酸盐和/或碳酸氢盐。 [0143] In another embodiment, the present system and method for a gas such as sulfur, nitrogen oxide gas, and the metal fine particle industrial waste gas treatment system (not shown) integrated with the other ingredients and sequestering carbon dioxide for industrial waste gas, wherein such entirety by reference in commonly assigned, filed December 24, 2008 is incorporated herein U.S. Patent application no. 12 / 344,019 in the flue gas by the divalent cations and containing a solution comprising a hydroxide, hydrogen roots and / or carbonate ions present cathode electrolyte in contact, divalent cation precipitated carbonate and / or bicarbonate. 该包含例如钙和/或镁的碳酸盐和碳酸氢盐的沉淀物在各种实施方案中用作建筑材料,例如用作水泥和集料,如全文经此引用并入本文的2008年5月23日提交的共同转让的美国专利申请no. 12/126,776中所述。 This includes, for example calcium and / or magnesium carbonates and bicarbonates are used as construction materials in various embodiments, for example, as cements and aggregates, such as the entirety by reference herein is incorporated in 2008 5 commonly assigned US patent filed on May 23, no. 12 / 126,776.

[0144] 在另一实施方案中,本系统和方法与水性脱盐系统(未显示)集成,其中本系统的第三电解质的部分脱盐水150用作该脱盐系统的进料水,如全文经此引用并入本文的2008 年6月27日提交的共同转让的美国专利申请no. 12/163,205中所述。 [0144] In another embodiment, the present system and method with an aqueous desalination system (not shown) is integrated, wherein a third portion of desalinated water electrolyte of the present system 150 is used as the feed water desalination system, such as the text after this referenced commonly assigned June 27, 2008, incorporated herein filed US patent application no. 12 / 163,205.

[0145] 在另一实施方案中,本系统和方法与碳酸盐和/或碳酸氢盐溶液处置系统(未显示)集成,其中,该系统制造包含碳酸盐和/或碳酸氢盐的浆料或悬浮液,而非通过使二价阳离子的溶液与第一电解质溶液接触以形成沉淀物来制造沉淀物。 [0145] In another embodiment, the present system and method for integrated with a carbonate and / or bicarbonate solution disposal system (not shown), wherein the manufacturing system comprises a carbonate and / or bicarbonate paste or suspension, rather than through a solution of divalent cations in contact with the first electrolyte solution to form a precipitate produced precipitate. 在各种实施方案中,将该浆料/悬浮液弃置在使其保持长期稳定的地点,例如如全文经此引用并入本文的2008年12月24日提交的美国专利申请no. 12/344, 019中所述,将该浆料/悬浮液弃置在处于温度和压力足以无限期地使该浆料保持稳定的深度的海洋中。 In various embodiments, the slurry / suspension abandoned in place to keep long-term stability, such as full-text by reference US patent application no incorporated herein by December 24, 2008 submission. 12/344 , in the 019, the slurry / suspension is disposed in the ocean depth is at a temperature and pressure sufficient to maintain the slurry indefinitely stable in.

[0146] 尽管本文中已经显示和描述了该系统和方法的若干实施方案,但本领域技术人员显而易见的是,这些实施方案作为实例而非作为限制提供。 [0146] Although described herein have been shown and described several embodiments of the system and method, those skilled in the art will be apparent that these embodiments are provided as examples and not by way of limitation. 本领域技术人员会想到在所附权利要求的范围内的变动、修改和替代。 Those skilled in the art will appreciate variations within the scope of the appended claims, modifications and substitutions.

Claims (36)

1. 电化学系统,其包含: 包括与阴极接触的阴极电解质的第一电池, 其中该阴极经构造以产生氢氧离子及氢气, 其中该第一电池有效连接到一系统,所述系统选自构造成将二氧化碳输送到容纳阴极电解质的第一电池中的二氧化碳气体输送系统;或构造成将二氧化碳吸收到容纳阴极电解质的第一电池中的气体吸收系统; 其中该阴极电解质包含碳酸氢根离子,其中阳极电解质和阴极电解质具有6-12的pH 差; 包括与阳极接触的阳极电解质的第二电池,其中该阳极构造成将氢气氧化成质子; 构造成将气体从阴极导向阳极的气体转移系统; 包括被第一离子交换膜与该阴极电解质隔开的第三电解质的第三电池; 包括被第二离子交换膜与该阳极电解质隔开的第四电解质的第四电池; 隔开该第三和该第四电池的第三离子交换膜,且跨过阳极和阴极的能斯特电池 1. electrochemical system, comprising: a first cell comprising a cathode electrolyte in contact with the cathode, wherein the cathode is constructed to generate hydrogen gas and hydroxide ions, wherein the cell linked to a first system, said system is selected from configured carbon dioxide supplied to the gas delivery system receiving a first cell in the cathode electrolyte; or configured to absorb the carbon dioxide gas into the first cell receiving the catholyte absorbing system; wherein the cathode electrolyte comprises bicarbonate ions, wherein the anolyte and catholyte pH 6-12 with difference; cell comprises a second anode electrolyte in contact with the anode, wherein the anode is configured to oxidation of hydrogen to protons; configured to guide the gas from the cathode of the anode gas transfer system; comprising spaced apart first ion exchange membrane electrolyte and the cathode of the third battery third electrolyte; fourth battery comprising the electrolyte is a fourth ion exchange membrane and the second electrolyte separated from the anode; spaced from the third and the third fourth ion exchange membrane cell, the anode and the cathode and across the Nernst cell 电压小于0. 8V。 Voltage is less than 0. 8V.
2. 权利要求1的系统,其中第一离子交换膜包含阳离子交换膜;第二离子交换膜包含阳离子交换膜;且第三离子交换膜包含阴离子交换膜。 The system of claim 1, wherein the first ion exchange membrane comprises a cation exchange membrane; second ion exchange membrane comprises a cation exchange membrane; and a third ion-exchange membrane comprising an anion exchange membrane.
3. 权利要求1的系统,其中该气体转移系统被构造成将氢气导入阳极电解质中,或导到阳极上,或其组合,以在阳极处氧化该气体。 The system of claim 1, wherein the gas transfer system is configured Hydrogen was introduced into the anode electrolyte, or leads to the anode, or a combination thereof, to oxidation of the gas at the anode.
4. 权利要求1的系统,其中该二氧化碳气体输送系统可有效地连接到包含燃烧气体的工业废气流系统。 The system of claim 1, wherein the carbon dioxide gas delivery system may be operatively connected to an industrial waste gas stream comprising combustion gases system.
5. 权利要求1的系统,其中该二氧化碳气体输送系统可有效地连接到化石供以燃料的发电厂或水泥厂排气系统。 The system of claim 1, wherein the carbon dioxide gas delivery system may be operably linked to a fossil-fueled power plants or cement exhaust system.
6. 权利要求1的系统,其中该系统经构造以在电极之间施加电压时在阳极处不形成气体的情况下在阴极电解质中形成氢氧离子。 The system of claim 1, wherein the case where the system is configured to a voltage applied between the electrodes without forming a gas at the anode is formed hydroxide ions in the cathode electrolyte.
7. 权利要求6的系统,进一步包括经构造以在阳极和阴极之间施加低于0. 6V的电压的电压源。 The system of claim 6, further comprising constructed to applied between the anode and the cathode voltage is lower than the source voltage of 0. 6V.
8. 权利要求1的系统,其中该系统经构造以在电极之间施加电压时在阳极处不形成气体的情况下在阴极电解质中形成氢氧离子、碳酸氢根离子和/或碳酸根离子。 The system of claim 1, wherein the case where the system is configured to a voltage applied between the electrodes without forming a gas at the anode forming hydroxide ions, bicarbonate ions and / or carbonate ions in the cathode electrolyte.
9. 权利要求1的系统,其中该系统经构造以在阳极处不生成气体的情况下从第三电解质中除去钠离子和氯离子。 9. The system of claim 1, wherein the system is configured to without generating a gas at the anode remove sodium and chloride ions from the third electrolyte.
10. 权利要求1的系统,其中该系统经构造以在阳极处不生成气体的情况下在第四电解质中形成酸溶液。 10. The system of claim 1, wherein the system is configured to without generating a gas at the anode an acid solution is formed in the fourth electrolyte.
11. 权利要求1的系统,进一步包含适用于使部分的阴极电解质从流出流循环到阴极电解质的流入流中的循环系统。 11. The system of claim 1, further comprising a suitable portion of the cathode electrolyte is circulated from the catholyte effluent stream to an inflow stream of the circulation system.
12. 权利要求1的系统,进一步包含用于使部分的第四电解质从流出流循环到第四电解质的流入流中的循环系统。 12. The system of claim 1, further comprising means for circulating electrolyte portion of the fourth electrolyte inflow into the fourth circulation system from the effluent stream.
13. 权利要求1的系统,其中该系统适用于分批、半分批或连续流作业。 13. The system of claim 1, wherein the system is suitable for batch, semi-batch or continuous flow operation.
14. 权利要求1的系统,其中该系统适用于连续流作业。 14. The system of claim 1, wherein the system is suitable for continuous flow operation.
15. 权利要求1的系统,其中该阴极电解质包含溶解的二氧化碳。 15. The system of claim 1, wherein the cathode electrolyte comprises a dissolved carbon dioxide.
16. 权利要求15的系统,其中该阴极电解质包含氢氧根、碳酸氢根离子和/或碳酸根离子。 16. The system of claim 15, wherein the cathode electrolyte comprises hydroxide, bicarbonate ions and / or carbonate ions.
17. 权利要求15的系统,其中该阴极电解质包含碳酸氢钠、碳酸钠或其组合。 17. The system of claim 15, wherein the cathode electrolyte comprises sodium bicarbonate, sodium carbonate or combinations thereof.
18. 权利要求1的系统,其中该第四电解质包含质子和氯离子。 18. The system of claim 1, wherein the fourth electrolyte comprises chloride ions and protons.
19. 权利要求1的系统,其中该阳极电解质包含质子。 19. The system of claim 1, wherein the anode electrolyte comprises a proton.
20. 电化学方法,其包括: 与阴极接触地安置阴极电解质,其中阴极产生氢氧离子和氢气; 与阳极接触地安置阳极电解质,其中阳极将氢气氧化成氢离子; 安置通过第一离子交换膜与该阴极电解质隔开的第三电解质; 安置通过第三离子交换膜与该第三电解质隔开和通过第二离子交换膜与该阳极电解质隔开的第四电解质; 将在阴极产生的氢气导向阳极; 将包含二氧化碳的工业废气或溶解的二氧化碳溶液导向容纳阴极电解质的第一电池中; 在阴极电解质中将碳酸氢根离子转化成碳酸根离子并在阳极电解质和阴极电解质之间产生6-12的pH差;且跨过阴极和阳极施加小于0. 8V的能斯特电池电压。 20. The electrochemical process, comprising: a cathode disposed in contact with the cathode electrolyte, wherein the cathode to generate hydroxide ions and hydrogen gas; anode disposed in contact with the anode electrolyte, wherein the anodic oxidation of hydrogen gas to hydrogen ions; disposed through a first ion exchange membrane a third electrolyte separated from the cathode electrolyte; and switching the fourth electrolyte separated from the anode electrolyte membrane separated by a second ion-exchange membrane is disposed and the third through the third electrolyte ions; guide hydrogen generated at the cathode an anode; a first cell solution comprising a guide industrial waste gas carbon dioxide or the carbon dioxide dissolved in the cathode electrolyte accommodated; 6-12 and generate bicarbonate ions in the cathode electrolyte converted into carbonate ions in the electrolyte between the anode and the cathode electrolyte the pH differential; and across the cathode and anode Nernst cell voltage is less than 0. 8V is applied.
21. 权利要求20的方法,其中第一离子交换膜包含阳离子交换膜;第二离子交换膜包含阳离子交换膜;且第三离子交换膜包含阴离子交换膜。 21. The method of claim 20, wherein the first ion exchange membrane comprises a cation exchange membrane; second ion exchange membrane comprises a cation exchange membrane; and a third ion-exchange membrane comprising an anion exchange membrane.
22. 权利要求20的方法,其中在阳极处不形成气体。 22. The method of claim 20, wherein the gas does not form at the anode.
23. 权利要求20的方法,其中在与阴极接触地安置阴极电解质之前或之后将二氧化碳导入阴极电解质。 23. The method of claim 20, wherein prior to placement in the cathode electrolyte in contact with the cathode or after the carbon dioxide into the cathode electrolyte.
24. 权利要求20的方法,包括在阴极和阳极之间施加低于0. 6V的电压。 24. The method of claim 20, comprising less than 0. 6V voltage is applied between the cathode and the anode.
25. 权利要求20的方法,包括在阴极电解质中形成氢氧离子、碳酸氢根离子、碳酸根离子和/或其组合。 25. The method of claim 20, comprising forming hydroxide ions in the cathode electrolyte, bicarbonate ions, carbonate ions and / or combinations thereof.
26. 权利要求20的方法,包括在阴极电解质中形成氢氧化钠、碳酸氢钠或碳酸钠。 26. The method as claimed in claim 20, comprising forming sodium hydroxide, sodium carbonate or sodium bicarbonate in the cathode electrolyte.
27. 权利要求20的方法,包括使质子从阳极电解质穿过第二阳离子交换膜迁移到第四电解质中。 27. The method of claim 20, comprising protons migrate through the second cation exchange membrane to the fourth electrolyte from the anolyte.
28. 权利要求27的方法,包括使阴离子从第三电解质穿过阴离子交换膜迁移到第四电解质中。 28. A method as claimed in claim 27, comprising an anion migrate through the anion exchange membrane to the fourth electrolyte from the third electrolyte.
29. 权利要求28的方法,包括使氯离子从第三电解质穿过阴离子交换膜迁移到第四电解质中。 29. The method of claim 28, comprising chloride ions migrate across the anion exchange membrane to the fourth electrolyte from the third electrolyte.
30. 权利要求29的方法,包括在第四电解质中形成酸。 30. The method of claim 29, comprising forming an acid in the fourth electrolyte.
31. 权利要求29的方法,包括在第四电解质中形成盐酸。 31. The method of claim 29, comprising forming hydrochloric acid in the fourth electrolyte.
32. 权利要求28的方法,包括使阳离子从第三电解质穿过第一阳离子交换膜迁移至阴极。 32. The method of claim 28, comprising a cation exchange membrane to the cathode migrate through the first cation from the third electrolyte.
33. 权利要求20的方法,包括使钠离子从第三电解质穿过第一阳离子交换膜迁移到阴极电解质中。 33. The method of claim 20, comprising sodium ions migrate through the first cation exchange membrane to the cathode electrolyte from the third electrolyte.
34. 权利要求20的方法,包括使阴极电解质从流出流循环到该阴极电解质的流入流中。 34. The method of claim 20, comprising circulating the electrolyte from the cathode outflow to the inflow of the cathode electrolyte.
35. 权利要求20的方法,包括使第四阴极电解质从流出流循环到该第四电解质的流入流中。 35. The method of claim 20, comprising a fourth cathode electrolyte circulating inflow from outflow to the fourth electrolyte.
36. 权利要求10的系统,进一步包括有效地连接到电化学系统的材料溶解系统,且该材料溶解系统经构造以利用酸来溶解富含钙和/或镁的材料和产生二价阳离子溶液。 36. The system as claimed in claim 10, further comprising a material operatively connected to the electrochemical system dissolution system, and the material was dissolved system is constructed to use an acid to dissolve the calcium-rich and / or magnesium material and divalent cation produce a solution.
CN200980101611.2A 2008-07-16 2009-06-24 Low-energy 4-cell electrochemical system with carbon dioxide gas CN101984749B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US8129908P true 2008-07-16 2008-07-16
US61/081299 2008-07-16
US9172908P true 2008-08-25 2008-08-25
US61/091729 2008-08-25
USPCT/US2008/088242 2008-12-23
PCT/US2008/088242 WO2010074686A1 (en) 2008-12-23 2008-12-23 Low-energy electrochemical hydroxide system and method
USPCT/US2009/032301 2009-01-28
PCT/US2009/032301 WO2010087823A1 (en) 2009-01-28 2009-01-28 Low-energy electrochemical bicarbonate ion solution
PCT/US2009/048511 WO2010008896A1 (en) 2008-07-16 2009-06-24 Low-energy 4-cell electrochemical system with carbon dioxide gas

Publications (2)

Publication Number Publication Date
CN101984749A CN101984749A (en) 2011-03-09
CN101984749B true CN101984749B (en) 2015-02-18

Family

ID=42762630

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410836715.0A CN104722466A (en) 2008-07-16 2009-06-24 Low-energy 4-cell Electrochemical System With Carbon Dioxide Gas
CN200980101611.2A CN101984749B (en) 2008-07-16 2009-06-24 Low-energy 4-cell electrochemical system with carbon dioxide gas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410836715.0A CN104722466A (en) 2008-07-16 2009-06-24 Low-energy 4-cell Electrochemical System With Carbon Dioxide Gas

Country Status (7)

Country Link
US (1) US7875163B2 (en)
EP (1) EP2212033A4 (en)
JP (1) JP2011528405A (en)
CN (2) CN104722466A (en)
AU (1) AU2009271304B2 (en)
CA (1) CA2700721C (en)
WO (1) WO2010008896A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727374B2 (en) 2004-09-23 2010-06-01 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
ES2521415T3 (en) 2006-03-10 2014-11-12 C-Quest Technologies International Llc Procedure sequestering carbon dioxide production facilities cement
JP2009535198A (en) * 2006-04-27 2009-10-01 ザ ペン ステイト リサーチ ファンデーション Capture and related processes of carbon dioxide
WO2008026201A2 (en) * 2006-08-29 2008-03-06 Yeda Research And Development Co.Ltd Methods and apparatuses for decreasing the co2 concentration of a fluid
BRPI0812383A2 (en) * 2007-05-24 2014-12-02 Calera Corp Hydraulic cements comprising carbonate compound compositions
US20100144521A1 (en) * 2008-05-29 2010-06-10 Brent Constantz Rocks and Aggregate, and Methods of Making and Using the Same
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US7753618B2 (en) 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
EP2155350A4 (en) 2007-06-28 2010-07-21 Calera Corp Desalination methods and systems that include carbonate compound precipitation
US20100258035A1 (en) * 2008-12-24 2010-10-14 Brent Constantz Compositions and methods using substances containing carbon
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
CA2930096A1 (en) * 2007-09-20 2009-03-26 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US20100313794A1 (en) * 2007-12-28 2010-12-16 Constantz Brent R Production of carbonate-containing compositions from material comprising metal silicates
CN101687648B (en) * 2007-12-28 2015-01-28 卡勒拉公司 Methods of sequestering CO2
US20100239467A1 (en) * 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
US8159956B2 (en) * 2008-07-01 2012-04-17 Finisar Corporation Diagnostics for serial communication busses
WO2010009273A1 (en) 2008-07-16 2010-01-21 Calera Corporation Co2 utilization in electrochemical systems
US7993500B2 (en) * 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US20110147227A1 (en) * 2009-07-15 2011-06-23 Gilliam Ryan J Acid separation by acid retardation on an ion exchange resin in an electrochemical system
US20110079515A1 (en) * 2009-07-15 2011-04-07 Gilliam Ryan J Alkaline production using a gas diffusion anode with a hydrostatic pressure
US7993511B2 (en) * 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US9061940B2 (en) 2008-09-30 2015-06-23 Calera Corporation Concrete compositions and methods
EP2200948A4 (en) 2008-09-30 2014-09-03 Calera Corp Co2-sequestering formed building materials
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
WO2010068924A1 (en) * 2008-12-11 2010-06-17 Calera Corporation Processing co2 utilizing a recirculating solution
CA2696075A1 (en) * 2009-01-28 2010-07-28 Calera Corporation Low-energy electrochemical bicarbonate ion solution
EP2245215A4 (en) 2009-02-10 2011-04-27 Calera Corp Low-voltage alkaline production using hydrogen and electrocatlytic electrodes
CN101977842A (en) * 2009-03-02 2011-02-16 卡勒拉公司 Gas stream multi-pollutants control systems and methods
US20100224503A1 (en) * 2009-03-05 2010-09-09 Kirk Donald W Low-energy electrochemical hydroxide system and method
AU2010201373A1 (en) * 2009-03-10 2010-09-30 Calera Corporation System and methods for processing CO2
WO2011097468A2 (en) * 2010-02-05 2011-08-11 Calera Corporation Acid separation by acid retardation on an ion exchange resin in an electrochemical system
US20110035154A1 (en) * 2009-08-07 2011-02-10 Treavor Kendall Utilizing salts for carbon capture and storage
WO2011038076A1 (en) * 2009-09-24 2011-03-31 Calera Corporation METHODS AND SYSTEMS FOR UTILIZATION OF HCl
MX2012007072A (en) * 2009-12-18 2012-09-07 Skyonic Corp Carbon dioxide sequestration through formation of group-2 carbonates and silicon dioxide.
US8114214B2 (en) 2009-12-31 2012-02-14 Calera Corporation Methods and compositions using calcium carbonate
US8906156B2 (en) 2009-12-31 2014-12-09 Calera Corporation Cement and concrete with reinforced material
CN107673352A (en) 2010-07-08 2018-02-09 斯凯约尼克公司 Carbon dioxide sequestrations involving two-salt-based thermolytic processes
KR20130112037A (en) 2010-09-24 2013-10-11 데트 노르스키 베리타스 에이에스 Method and apparatus for the electrochemical reduction of carbon dioxide
US8691175B2 (en) 2011-04-28 2014-04-08 Calera Corporation Calcium sulfate and CO2 sequestration
CN103635428B (en) 2011-04-28 2017-02-15 卡勒拉公司 Calcium carbonate and stabilizers to methods and compositions
KR101813930B1 (en) 2011-05-19 2018-01-02 칼레라 코포레이션 Electrochemical hydroxide systems and methods using metal oxidation
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
WO2013016708A1 (en) * 2011-07-27 2013-01-31 Yale University Electrochemical desalination cell
US8999057B2 (en) 2011-09-28 2015-04-07 Calera Corporation Cement and concrete with calcium aluminates
JP6030916B2 (en) * 2012-10-19 2016-11-24 公益財団法人神奈川科学技術アカデミー The method of manufacturing formaldehyde
US9695050B2 (en) 2012-11-02 2017-07-04 Terra Co2 Technologies Ltd. Methods and systems using electrochemical cells for processing metal sulfate compounds from mine waste and sequestering CO2
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股份有限公司 System and method using an electrochemical metal hydroxides, oxides
US20150122668A1 (en) * 2013-11-01 2015-05-07 Wood Stone Corporation Apparatuses and Methods for Conditioning Water, and Systems and Processes Incorporating Same
TW201532658A (en) 2014-01-17 2015-09-01 Skyonic Corp Systems and methods for acid gas removal from a gaseous stream
US9902652B2 (en) 2014-04-23 2018-02-27 Calera Corporation Methods and systems for utilizing carbide lime or slag
CN104131311B (en) * 2014-07-07 2016-10-19 四川大学 Mineralization CO <sub> 2 Method </ sub> Preparation of sodium bicarbonate or an external output power
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
US9880124B2 (en) 2014-11-10 2018-01-30 Calera Corporation Measurement of ion concentration in presence of organics
CN107532314A (en) 2015-03-16 2018-01-02 卡勒拉公司 Ion exchange membranes, electrochemical systems, and methods
WO2017147388A1 (en) 2016-02-25 2017-08-31 Calera Corporation On-line monitoring of process/system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165460A (en) * 1962-04-11 1965-01-12 American Mach & Foundry Electrolytic acid generator
US20050224363A1 (en) * 2003-11-11 2005-10-13 Permelec Electrode Ltd. Process of producing peroxo-carbonate
CN101068610A (en) * 2004-09-23 2007-11-07 乔·大卫·琼斯 Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals

Family Cites Families (334)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1678345A (en) 1921-06-25 1928-07-24 Keasbey & Mattison Company Millboard product and process
GB271852A (en) 1926-05-28 1927-11-10 Ig Farbenindustrie Ag Improvements in and means for the extraction of carbon dioxide from gaseous mixtures
US1865833A (en) 1929-01-21 1932-07-05 Heinz H Chesny Process of forming sodium bicarbonate
US2304391A (en) 1939-10-23 1942-12-08 Kerr Dental Mfg Company Cement
US2329940A (en) 1940-12-12 1943-09-21 Missouri Portland Cement Co Manufacture of cement
US2383674A (en) 1941-08-21 1945-08-28 Hooker Electrochemical Co Process for production of sodium bicarbonate
US2458039A (en) 1945-10-05 1949-01-04 Bertrand H Wait Aggregate for improving portland cement concretes
US2606839A (en) 1951-03-21 1952-08-12 Dow Chemical Co Noncaking sea salt and method of producing the same
US2967807A (en) 1952-01-23 1961-01-10 Hooker Chemical Corp Electrolytic decomposition of sodium chloride
US2934419A (en) 1955-09-19 1960-04-26 Dixie Chemical Company Inc Method of treating sea water
NL95503C (en) 1958-04-01
US3046152A (en) 1958-11-25 1962-07-24 Shiraishi Tsuneyoshi Method of preparing colloidal calcium magnesium silicate
US3120426A (en) 1959-06-24 1964-02-04 Kaiser Aluminium Chem Corp Process for the production of aragonite crystals
US3124520A (en) 1959-09-28 1964-03-10 Electrode
NL282666A (en) 1961-09-06
US3202522A (en) 1961-12-28 1965-08-24 Johns Manville Cementitious product
DE1233366B (en) 1963-06-28 1967-02-02 Ceskoslovenska Akademie Ved Electrolyser for the simultaneous production of chlorine and alkali metal carbonates
US3350292A (en) 1964-05-14 1967-10-31 American Cyanamid Co Utilization of saline water
DE1243165B (en) 1964-12-31 1967-06-29 Halomet Ag A process for obtaining pure metal chlorides
US3558769A (en) 1965-09-24 1971-01-26 Guardian Chemical Corp Compositions for dental prophylaxis
US3463814A (en) 1967-03-24 1969-08-26 Us Interior Chemical cycle for evaporative water desalination plant
US3511712A (en) 1967-03-30 1970-05-12 United Aircraft Corp Process of removing carbon dioxide from gas streams using fuel cell
US3511595A (en) 1967-05-18 1970-05-12 Treadwell Corp The Method of removing carbon dioxide and water vapor from air
US3420775A (en) 1967-07-05 1969-01-07 Edgar A Cadwallader Prevention of scale in saline water evaporators using carbon dioxide under special conditions
US3574530A (en) 1967-10-02 1971-04-13 Pullman Inc Method of removing sulfur dioxide from waste gases
US3525675A (en) 1968-05-22 1970-08-25 Orca Inc Desalination distillation using barium carbonate as descaling agent
GB1281685A (en) 1968-08-15 1972-07-12 Ici Ltd Precipitated calcium carbonate
US3627479A (en) 1968-10-10 1971-12-14 Atomic Energy Commission Chemical-electro-chemical cycle for desalination of water
US3630762A (en) 1969-12-29 1971-12-28 Mineral Products Corp Waterproofing barrier
US3686372A (en) 1970-09-16 1972-08-22 Gen Portland Cement Co Method for making cement
US3861928A (en) 1970-10-30 1975-01-21 Flintkote Co Hydraulic cement and method of producing same
US3917795A (en) 1970-11-30 1975-11-04 Black Sivalls & Bryson Inc Method of treating coal refuse
US3953569A (en) 1971-07-22 1976-04-27 Maomi Seko Concentration of uranium 235 in mixtures with uranium 238 using ion exchange resins
US3725267A (en) 1972-02-14 1973-04-03 Interior Softening of sea water by addition of barium carbonate and co2
GB1426335A (en) 1972-09-04 1976-02-25 Woodall Duckham Ltd Treatment of inorganic dust
US3864236A (en) 1972-09-29 1975-02-04 Hooker Chemicals Plastics Corp Apparatus for the electrolytic production of alkali
US3963592A (en) 1972-09-29 1976-06-15 Hooker Chemicals & Plastics Corporation Method for the electrolytic production of alkali
GB1392907A (en) 1973-03-20 1975-05-07 Wilkinson Sword Ltd Preparation of p-menthane carboxylic acid
US3904496A (en) 1974-01-02 1975-09-09 Hooker Chemicals Plastics Corp Electrolytic production of chlorine dioxide, chlorine, alkali metal hydroxide and hydrogen
US4264367A (en) 1974-08-01 1981-04-28 Sika Chemical Corporation Admixtures and method for accelerating the setting of portland cement compositions
US4164537A (en) 1974-09-30 1979-08-14 Drostholm F H Brick press and associated equipment for making bricks
DE2450259B2 (en) 1974-10-23 1979-03-29 Bayer Ag, 5090 Leverkusen
AR205953A1 (en) 1975-01-22 1976-06-15 Diamond Shamrock Corp Production of metal carbonates to Calinos in a cell membrane
US4026716A (en) 1975-03-17 1977-05-31 Woodville Lime And Chemical Company Concrete composition
US4036749A (en) 1975-04-30 1977-07-19 Anderson Donald R Purification of saline water
US4107112A (en) 1975-07-28 1978-08-15 Latta Jr Laurence Epoxy resin soil stabilizing compositions
US4033848A (en) 1975-10-15 1977-07-05 Diamond Shamrock Corporation Wafer electrode for an electrolytic cell
DE2626885C2 (en) 1976-06-16 1978-05-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen
NL7607470A (en) 1976-07-07 1978-01-10 Electrochem Energieconversie Electrodes for gaseous fuel cells - with porous electrically conducting layer and ion exchange layer, can be run on air contg. carbon di:oxide
US4128462A (en) 1976-08-16 1978-12-05 Ghiringhelli Hugh A Electrochemical process for recovering precious metals from their ores
DE2653649A1 (en) 1976-11-25 1978-06-01 Kraftwerk Union Ag Sea water desalination plant - with distillation unit preceded by precipitation tanks and followed by alkali electrolysis plant
US4147599A (en) 1977-07-19 1979-04-03 Diamond Shamrock Corporation Production of alkali metal carbonates in a cell having a carboxyl membrane
US4188291A (en) 1978-04-06 1980-02-12 Anderson Donald R Treatment of industrial waste water
US4217186A (en) 1978-09-14 1980-08-12 Ionics Inc. Process for chloro-alkali electrolysis cell
GB2032441B (en) 1978-10-16 1983-01-12 Inst Khim Fiz An Sssr Composite material and method of producing the same
US4361475A (en) 1980-01-10 1982-11-30 Innova, Inc. Membrane block construction and electrochemical cell
US4253922A (en) 1979-02-23 1981-03-03 Ppg Industries, Inc. Cathode electrocatalysts for solid polymer electrolyte chlor-alkali cells
US4246075A (en) 1979-03-19 1981-01-20 Marine Resources Company Mineral accretion of large surface structures, building components and elements
US4242185A (en) 1979-09-04 1980-12-30 Ionics Inc. Process and apparatus for controlling impurities and pollution from membrane chlor-alkali cells
US4335788A (en) 1980-01-24 1982-06-22 Halliburton Company Acid dissolvable cements and methods of using the same
US4370307A (en) 1980-02-29 1983-01-25 Martin Marietta Corporation Preparation of pure magnesian values
US4588443A (en) 1980-05-01 1986-05-13 Aktieselskabet Aalborg Pottland-Cement-Fabrik Shaped article and composite material and method for producing same
US4308298A (en) 1980-05-08 1981-12-29 International Paper Company Upgrading of cellulosic boards
US4377640A (en) 1981-05-20 1983-03-22 Texasgulf Inc. Sulphur gas geochemical prospecting
US4376101A (en) 1981-11-13 1983-03-08 Exxon Research And Engineering Co. Process for removing acid gases using a basic salt activated with a non-sterically hindered diamine
DE3146326C2 (en) 1981-11-23 1983-11-10 Kraftwerk Union Ag, 4330 Muelheim, De
US4410606A (en) 1982-04-21 1983-10-18 Loutfy Raouf O Low temperature thermally regenerative electrochemical system
US4450009A (en) 1983-04-29 1984-05-22 Halliburton Company Method of preparing a light weight cement composition from sea water
US4561945A (en) 1984-07-30 1985-12-31 United Technologies Corporation Electrolysis of alkali metal salts with hydrogen depolarized anodes
GB8423642D0 (en) 1984-09-19 1984-10-24 Ici Plc Electrolysis of alkali metal chloride solution
US5100633A (en) 1985-11-07 1992-03-31 Passamaquoddy Technology Limited Partnership Method for scrubbing pollutants from an exhaust gas stream
US4915914A (en) 1986-07-25 1990-04-10 Passamaquaddy Tribe System for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom
US4716027A (en) 1986-07-25 1987-12-29 Passamaquoddy Tribe, A Sovereign Indian Tribe Recognized By The Government Of The United States Of America Method for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom
AU592408B2 (en) 1986-01-07 1990-01-11 Ausmintec Corp. Limited Magnesium cement
DE3638317A1 (en) 1986-01-21 1987-06-25 Hermann Dr Rer Na Killesreiter Thermoelectric solar cell
US4804449A (en) 1986-02-25 1989-02-14 Sweeney Charles T Electrolytic cell
US4818367A (en) 1986-04-14 1989-04-04 J. H. Diamond Company Asphalt, copolymer and elastomer composition
US4931264A (en) 1986-11-07 1990-06-05 Board Of Regents, The University Of Texas System Process for removing sulfur from sulfur-containing gases
US4899544A (en) 1987-08-13 1990-02-13 Boyd Randall T Cogeneration/CO2 production process and plant
NZ225964A (en) 1987-09-16 1991-11-26 Passamaquoddy Tribe Scrubbing acid gases from exhaust stream using slurry of ash
JP2648313B2 (en) 1987-11-30 1997-08-27 田中貴金属工業株式会社 Electrolytic process
US5037286A (en) 1988-06-24 1991-08-06 Rolite, Inc. Incineration residue treatment apparatus
US6638413B1 (en) 1989-10-10 2003-10-28 Lectro Press, Inc. Methods and apparatus for electrolysis of water
DE69015326D1 (en) 1989-11-21 1995-02-02 Mitsubishi Heavy Ind Ltd A process for fixing carbon dioxide and apparatus for treating carbon dioxide.
DE4021465C2 (en) 1990-07-05 1992-10-29 Dirk Dr. 3000 Hannover De Kettel
US5334564A (en) 1990-07-16 1994-08-02 Board Of Trustees Operating Michigan State University Method for the preparation of highly reactive clay composites for the removal of SOx from flue gas streams
JPH04190831A (en) 1990-11-22 1992-07-09 Hitachi Ltd Recycling system for carbon dioxide as renewable resource
US5244304A (en) 1991-03-13 1993-09-14 American Stone-Mix, Inc. Cement based patching composition for asphalt pavement
IT1248564B (en) 1991-06-27 1995-01-19 Permelec Spa Nora Process of electrochemical decomposition of neutral salts without co-production of halogens or acid and electrolysis cell suitable for its realization.
US5230734A (en) 1991-07-29 1993-07-27 Okutama Kogyo Co., Ltd. Calcium-magnesium carbonate composite and method for the preparation thereof
US5536310A (en) 1991-11-27 1996-07-16 Sandoz Ltd. Cementitious compositions containing fly ash
US5766338A (en) 1991-12-03 1998-06-16 American Fly Ash Company Road base material containing fly ash
US5246551A (en) 1992-02-11 1993-09-21 Chemetics International Company Ltd. Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
DE4207923A1 (en) 1992-03-13 1993-09-16 Solvay Barium Strontium Gmbh Calcium, barium or strontium carbonate granulation for use in glass mfr. - by mixing powder with binder, drying and calcining opt. without contact with inorganic refractory material, to avoid contamination
DE4208068A1 (en) 1992-03-13 1993-09-16 Solvay Barium Strontium Gmbh Calcium, barium or strontium carbonate granulation - with binder addn. and without contact by refractory material
US5282935A (en) 1992-04-13 1994-02-01 Olin Corporation Electrodialytic process for producing an alkali solution
DK49592D0 (en) 1992-04-13 1992-04-13 Aalborg Portland As cement Composition
US5531865A (en) 1992-08-19 1996-07-02 Cole; Leland G. Electrolytic water purification process
DE4311665C1 (en) 1993-04-08 1994-08-18 Metallgesellschaft Ag Method for preparing alkali metal peroxide solutions
DK70693D0 (en) 1993-06-14 1993-06-14 Niels Ole Vesterager A method for removing undesirable substances in a gas
JP3240766B2 (en) 1993-08-24 2001-12-25 株式会社イナックス CaCO3 method of solidifying
US5599638A (en) 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5855759A (en) 1993-11-22 1999-01-05 E. I. Du Pont De Nemours And Company Electrochemical cell and process for splitting a sulfate solution and producing a hyroxide solution sulfuric acid and a halogen gas
US5470671A (en) 1993-12-22 1995-11-28 Ballard Power Systems Inc. Electrochemical fuel cell employing ambient air as the oxidant and coolant
NL9500594A (en) 1994-03-31 1995-11-01 Inax Corp Process for the hardening of CaCO3 and / or MgCO3.
US5846669A (en) 1994-05-12 1998-12-08 Illinois Institute Of Technology Hybrid electrolyte system
US5547027A (en) 1994-07-14 1996-08-20 Dowell, A Division Of Schlumberger Technology Corporation Low temperature, low rheology synthetic cement
JP3632222B2 (en) 1994-09-13 2005-03-23 株式会社Inax CaCO3 method of solidifying
US5690729A (en) 1994-09-21 1997-11-25 Materials Technology, Limited Cement mixtures with alkali-intolerant matter and method
US5624493A (en) 1995-04-19 1997-04-29 The United States Of America As Represented By The Department Of Energy Quick-setting concrete and a method for making quick-setting concrete
WO1996034997A1 (en) 1995-05-01 1996-11-07 E.I. Du Pont De Nemours And Company Electrochemical cell and process for splitting a sulfate solution and producing a hydroxide solution, sulfuric acid and a halogen gas
WO1996038384A1 (en) 1995-06-01 1996-12-05 Upscale Technologies, Inc. Method and apparatus for removing nitrates from water
US5569558A (en) 1995-06-05 1996-10-29 Wilson Greatbatch Ltd. Reduced voltage delay additive for nonaqueous electrolyte in alkali metal electrochemical cell
DE19529246A1 (en) 1995-08-09 1997-02-13 Thomas Weimer A process for Kohlendioxidabreinigung from gas mixtures
US5531821A (en) 1995-08-24 1996-07-02 Ecc International Inc. Surface modified calcium carbonate composition and uses therefor
US5785868A (en) 1995-09-11 1998-07-28 Board Of Regents, Univ. Of Texas System Method for selective separation of products at hydrothermal conditions
CA2185943C (en) 1995-09-21 2005-03-29 Donald Stephen Hopkins Cement containing bottom ash
JP2000501173A (en) 1995-11-14 2000-02-02 フーア、ギュンター Apparatus and methods for adjusting the ion concentration
EP0865415B1 (en) 1995-12-05 2011-02-16 Dolomatrix International Limited A settable composition and uses therefor
US6080297A (en) 1996-12-06 2000-06-27 Electron Transfer Technologies, Inc. Method and apparatus for constant composition delivery of hydride gases for semiconductor processing
US6190428B1 (en) 1996-03-25 2001-02-20 The United States Of America As Represented By The Secretary Of The Navy Electrochemical process for removing low-valent sulfur from carbon
CA2258257A1 (en) 1996-05-20 1997-11-27 Materials Technology, Limited Hardened hydraulic cement, ceramic or coarse concrete aggregate treated with high pressure fluids
DE19631794A1 (en) 1996-08-07 1997-08-07 Peter Prof Pohl Removal of carbon di:oxide from exhaust gas of incinerators
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US6071336A (en) 1996-09-05 2000-06-06 Minerals Technologies Inc. Acicular calcite and aragonite calcium carbonate
US5803894A (en) 1996-12-24 1998-09-08 Cement-Lock L.L.C. Process for preparing enviromentally stable products by the remediation of contaminated sediments and soils
US5855666A (en) 1996-12-24 1999-01-05 Cement-Lock Group, L.L.C. Process for preparing environmentally stable products by the remediation of contaminated sediments and soils
US5925255A (en) 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US6180012B1 (en) 1997-03-19 2001-01-30 Paul I. Rongved Sea water desalination using CO2 gas from combustion exhaust
JPH10305212A (en) 1997-05-02 1998-11-17 Kayoko Jingu Separation of combustion gas and method of fixing separated carbon dioxide
US5766339A (en) 1997-05-07 1998-06-16 Dravo Lime Company Process for producing cement from a flue gas desulfurization process waste product
AU7573998A (en) 1997-05-15 1998-12-08 Edcd East, Lc Solidification and stabilization of dredged materials
US5897704A (en) 1997-05-19 1999-04-27 Materials Technology, Limited Hardened hydraulic cement, ceramic or coarse concrete aggregate treated with high pressure fluids
WO1998057892A1 (en) 1997-06-19 1998-12-23 Applied Specialties, Inc. Water treatment process
WO1999000178A1 (en) * 1997-06-30 1999-01-07 Electrosynthesis Company, Inc. Electrochemical methods for recovery of ascorbic acid
AU9087498A (en) 1997-09-15 1999-04-05 Den Norske Stats Oljeselskap A.S. Installation for separation of co2 from gas turbine flue gas
US6264736B1 (en) 1997-10-15 2001-07-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Pressure-assisted molding and carbonation of cementitious materials
US5885478A (en) 1997-10-29 1999-03-23 Fritz Industries, Inc Concrete mix water
US7753973B2 (en) 2002-06-27 2010-07-13 Galloway Terry R Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
PT1114219E (en) 1998-02-20 2004-03-31 L Air Liquide Sa A Dir Con Sur Process calcium carbonate and the product synthesis
US6200543B1 (en) 1998-02-25 2001-03-13 Mississippi Lime Company Apparatus and methods for reducing carbon dioxide content of an air stream
NO981106D0 (en) 1998-03-12 1998-03-12 Ronny O Solsvik A process for producing heat resistant material, and the use thereof
US6024848A (en) * 1998-04-15 2000-02-15 International Fuel Cells, Corporation Electrochemical cell with a porous support plate
US6090197A (en) 1998-05-08 2000-07-18 Gage Products, Inc. Method for recycling particulate waste material and product obtained thereby
JP3859358B2 (en) 1998-05-26 2006-12-20 クロリンエンジニアズ株式会社 Electrolytic water production equipment
US6334895B1 (en) 1998-07-20 2002-01-01 The University Of Wyoming Research Corporation System for producing manufactured materials from coal combustion ash
WO2000010691A1 (en) 1998-08-18 2000-03-02 United States Department Of Energy Method and apparatus for extracting and sequestering carbon dioxide
DE19844059A1 (en) 1998-09-25 2000-03-30 Degussa Electrolytic cell and their use
JP3248514B2 (en) 1998-10-29 2002-01-21 日本鋼管株式会社 A method of reducing exhaust carbon dioxide
JP2000128612A (en) 1998-10-30 2000-05-09 Faimatekku:Kk Concrete containing aqueous slurry of heavy calcium carbonate
CN1356966A (en) 1998-12-08 2002-07-03 威廉·J·小麦克纳尔蒂 Inorganic cementatious material
US6841512B1 (en) 1999-04-12 2005-01-11 Ovonic Battery Company, Inc. Finely divided metal catalyst and method for making same
US6475460B1 (en) 1999-07-12 2002-11-05 Marine Desalination Systems Llc Desalination and concomitant carbon dioxide capture yielding liquid carbon dioxide
US6251356B1 (en) 1999-07-21 2001-06-26 G. R. International, Inc. High speed manufacturing process for precipitated calcium carbonate employing sequential perssure carbonation
US6375825B1 (en) 1999-10-28 2002-04-23 Chemical Products Corporation Process for the production of alkaline earth hydroxide
NZ520426A (en) 2000-01-27 2004-09-24 Tececo Pty Ltd A hydraulic cement comprising a reactive magnesium oxide
DE10004878A1 (en) 2000-02-04 2001-08-09 Sgl Technik Gmbh Method and apparatus for the simultaneous production of acid and base high purity
US20030213937A1 (en) 2001-02-22 2003-11-20 Isaac Yaniv Precipitated aragonite and a process for producing it
US6602630B1 (en) 2000-03-14 2003-08-05 The Electrosynthesis Company, Inc. Membrane electrode assemblies for electrochemical cells
US6352576B1 (en) 2000-03-30 2002-03-05 The Regents Of The University Of California Methods of selectively separating CO2 from a multicomponent gaseous stream using CO2 hydrate promoters
US6623555B1 (en) 2000-06-01 2003-09-23 Jukka P. Haverinen Composite precipitated calcium carbonate/silicon compound pigment and method of making same
US7440871B2 (en) 2002-12-09 2008-10-21 Verisae, Inc. Method and system for tracking and reporting emissions
NO319666B1 (en) 2000-06-16 2005-09-05 Enpro As The process feed to the removal of salt from brine, and the use thereof
IL137102D0 (en) 2000-06-29 2001-06-14 Israel Garden A process and apparatus for brine reformation
US6416574B1 (en) 2000-07-12 2002-07-09 Southern Ionica Incorporated Method and apparatus for recycling cement kiln dust
US6495013B2 (en) 2000-07-13 2002-12-17 The Electrosynthesis Company, Inc. Bipolar membrane electrodialysis of multivalent metal salts whose corresponding base is insoluble
AU9505501A (en) 2000-10-04 2002-04-15 James Hardie Res Pty Ltd Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances
US20090043687A1 (en) 2000-11-01 2009-02-12 Van Soestbergen Mark Method and System for Banking and Exchanging Emission Reduction Credits
US6855754B2 (en) 2000-12-18 2005-02-15 Basf Ag Asphalt-based formulations and method of making and using the same for paving and coating applications
GB0031413D0 (en) 2000-12-21 2001-02-07 Aea Technology Plc Electrochemical processing
US20020127474A1 (en) 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
JP2002273163A (en) 2001-03-19 2002-09-24 Susumu Otsuki Method for removing carbon dioxide included in combustion exhaust gas
CA2443222C (en) 2001-04-13 2009-09-15 Co2 Solution Inc. A process and a plant for the production of portland cement clinker
WO2002086029A2 (en) 2001-04-24 2002-10-31 Shell Oil Company In situ recovery from a relatively low permeability formation containing heavy hydrocarbons
CN1166019C (en) 2001-05-25 2004-09-08 中国科学院长春应用化学研究所 Preparation of nano electrical catalyst for proton exchange film fuel cell
US6712946B2 (en) 2001-06-18 2004-03-30 The Electrosynthesis Company, Inc. Electrodialysis of multivalent metal salts
US6786963B2 (en) 2001-06-27 2004-09-07 Bj Services Company Paving compositions and methods for their use
CA2352626A1 (en) 2001-07-12 2003-01-12 Co2 Solution Inc. Coupling for linking a hydrogen fuel cell to an enzyme bioreactor for processing and sequestering co2
WO2003008071A1 (en) 2001-07-17 2003-01-30 Sigurd Fongen Method and device for absorption of co2 in seawater
US20030017088A1 (en) 2001-07-20 2003-01-23 William Downs Method for simultaneous removal and sequestration of CO2 in a highly energy efficient manner
JP2003041388A (en) 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry Electrolysis cell with ion exchange membrane and electrolysis method
US6607707B2 (en) 2001-08-15 2003-08-19 Ovonic Battery Company, Inc. Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
US7459020B2 (en) 2001-10-23 2008-12-02 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture, cement composition, and cement concrete made therefrom
AU2002365135A1 (en) 2001-10-23 2003-07-09 Anteon Corporation Integrated oxygen generation and carbon dioxide absorption method, apparatus and systems
CN1671944B (en) 2001-10-24 2011-06-08 国际壳牌研究有限公司 Installation and use of removable heaters in a hydrocarbon containing formation
US6776972B2 (en) 2001-10-29 2004-08-17 Council Of Scientific And Industrial Research Recovery of common salt and marine chemicals from brine
US6648949B1 (en) 2001-11-28 2003-11-18 The United States Of America As Represented By The United States Department Of Energy System for small particle and CO2 removal from flue gas using an improved chimney or stack
US20030229572A1 (en) 2001-12-28 2003-12-11 Icf Consulting Measurement and verification protocol for tradable residential emissions reductions
WO2003055804A1 (en) 2001-12-31 2003-07-10 Nanomaterials Technology Pte Ltd. Calcium carbonate of different shapes and the preparing process thereof
US20030123930A1 (en) 2001-12-31 2003-07-03 Jacobs Gregory F. Matrix element magnetic pavement marker and method of making same
US7055325B2 (en) 2002-01-07 2006-06-06 Wolken Myron B Process and apparatus for generating power, producing fertilizer, and sequestering, carbon dioxide using renewable biomass
CA2476540C (en) 2002-02-13 2012-08-28 Nittetsu Mining Co., Ltd. Basic magnesium carbonate, production method and use of the same
NO317918B1 (en) 2002-02-15 2005-01-03 Sargas As The process feed for the production of fresh water and the purification of carbon dioxide
US6755905B2 (en) 2002-02-15 2004-06-29 Lafarge Canada Inc. Use of high carbon coal ash
US7108777B2 (en) 2002-03-15 2006-09-19 Millennium Cell, Inc. Hydrogen-assisted electrolysis processes
US6936573B2 (en) 2002-03-26 2005-08-30 Georgia-Pacific Resins, Inc. Slow release nitrogen root treatment
WO2003086973A1 (en) 2002-04-05 2003-10-23 Bertshell Pty Ltd Process and apparatus for use in preparing an aqueous magnesium bicarbonate solution
US7455854B2 (en) 2002-04-18 2008-11-25 University Of Florida Research Foundation, Inc. Method for producing a mineral fiber
US20060184445A1 (en) 2002-07-20 2006-08-17 Richard Sandor Systems and methods for trading emission reductions
US7214290B2 (en) 2002-09-04 2007-05-08 Shaw Liquid Solutions Llc. Treatment of spent caustic refinery effluents
US7090868B2 (en) 2002-09-13 2006-08-15 University Of Florida Materials and methods for drug delivery and uptake
CA2405635A1 (en) 2002-09-27 2004-03-27 C02 Solution Inc. A process and a plant for the production of useful carbonated species and for the recycling of carbon dioxide emissions from power plants
RU2005115499A (en) 2002-10-22 2006-01-20 Дэнни Маршал ДЭЙ (US) Production and use of structurant soil obtained combined hydrogen production, fixed carbon and using the waste product gases containing carbon dioxide
US20040126293A1 (en) 2002-10-23 2004-07-01 Geerlings Jacobus Johannes Cornelis Process for removal of carbon dioxide from flue gases
MXPA02010615A (en) 2002-10-25 2004-04-29 Hermosillo Angel Ayala System to eliminate polluting gases produced by the combustion of hydrocarbons.
US7595001B2 (en) 2002-11-05 2009-09-29 Geo-Processors Usa, Inc. Process for the treatment of saline water
US6964302B2 (en) 2002-12-10 2005-11-15 Halliburton Energy Services, Inc. Zeolite-containing cement composition
CA2414949C (en) 2002-12-20 2010-04-13 Imperial Oil Resources Limited Integrated water treatment and flue gas desulfurization process
CN1232465C (en) 2002-12-24 2005-12-21 清华大学 Binary coagulated stones wet cement and use thereof
JP2004261658A (en) 2003-02-26 2004-09-24 Tokyo Electric Power Co Inc:The Method for absorbing/fixing carbon dioxide in combustion exhaust gas
CN100551826C (en) 2003-02-27 2009-10-21 奥多摩工业株式会社 Spherical calcium carbonate and method for production thereof
US7282189B2 (en) 2003-04-09 2007-10-16 Bert Zauderer Production of hydrogen and removal and sequestration of carbon dioxide from coal-fired furnaces and boilers
US20040213705A1 (en) 2003-04-23 2004-10-28 Blencoe James G. Carbonation of metal silicates for long-term CO2 sequestration
AU2003222696A1 (en) 2003-04-29 2004-11-23 Consejo Superior De Investigaciones Cientificas In-situ capture of carbon dioxide and sulphur dioxide in a fluidized bed combustor
US7604787B2 (en) 2003-05-02 2009-10-20 The Penn State Research Foundation Process for sequestering carbon dioxide and sulfur dioxide
US7132090B2 (en) 2003-05-02 2006-11-07 General Motors Corporation Sequestration of carbon dioxide
JP2005008478A (en) 2003-06-18 2005-01-13 Toshiba Corp Carbon dioxide recovery system and carbon dioxide recovery method in exhaust gas
US20040259231A1 (en) 2003-06-18 2004-12-23 Bhattacharya Sanjoy K. Enzyme facilitated solubilization of carbon dioxide from emission streams in novel attachable reactors/devices
US7135604B2 (en) 2003-06-25 2006-11-14 Exxonmobil Chemical Patents Inc. Process for separating carbon dioxide from an oxygenate-to-olefin effluent stream
US20050011770A1 (en) 2003-07-18 2005-01-20 Tatenuma Katsuyoshi Reduction method of atmospheric carbon dioxide, recovery and removal method of carbonate contained in seawater, and disposal method of the recovered carbonate
AU2003264549A1 (en) 2003-09-22 2005-04-11 Taiheiyo Cement Corporation Method and apparatus for treating drain water from step of washing fly ash with water
US7255842B1 (en) 2003-09-22 2007-08-14 United States Of America Department Of Energy Multi-component removal in flue gas by aqua ammonia
CA2478516C (en) 2003-09-30 2007-12-11 Jaguar Nickel Inc. A process for the recovery of value metals from base metal sulfide ores
FR2861494B1 (en) 2003-10-28 2005-12-23 Commissariat Energie Atomique Use of mixed carbonates frit for the containment of radioactive atoms.
US7198722B2 (en) 2003-11-11 2007-04-03 Mohammed Azam Hussain Process for pre-treating and desalinating sea water
WO2005046863A1 (en) 2003-11-14 2005-05-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Pre-treatment of lime-based sorbents using hydration
RU2420833C2 (en) 2003-11-14 2011-06-10 Зи Юнивесити оф Экрон Fuel cell of direct electrochemical oxidation (versions) and generation method of electric energy from solid-phase organic fuel (versions)
US7241521B2 (en) 2003-11-18 2007-07-10 Npl Associates, Inc. Hydrogen/hydrogen peroxide fuel cell
US7722842B2 (en) 2003-12-31 2010-05-25 The Ohio State University Carbon dioxide sequestration using alkaline earth metal-bearing minerals
US20050154669A1 (en) 2004-01-08 2005-07-14 Foy Streetman Carbon credit marketing system
DE102004004689B4 (en) 2004-01-29 2006-10-05 Clauser, Christoph, Prof. Dr. Method and a system for storing and permanent fixation of CO2 dissolved in water in geological formations
WO2005072851A1 (en) 2004-01-30 2005-08-11 Kabushiki Kaisha Toshiba System and method for recovering carbon dioxide in exhaust gas
US7232483B2 (en) 2005-02-01 2007-06-19 W. R. Grace & Co.-Conn. Cement composition having chromium reducer
DE102004006915B4 (en) 2004-02-12 2005-11-24 Mayer, Günter, Dipl.-Ing. Fuel cell and process for reducing the concentration of carbon dioxide
WO2005086843A2 (en) 2004-03-08 2005-09-22 University Of New Hampshire Method for sequestering carbon dioxide
US20050232855A1 (en) 2004-04-19 2005-10-20 Texaco Inc. Reactor with carbon dioxide fixing material
US7384621B2 (en) 2004-04-19 2008-06-10 Texaco Inc. Reforming with hydration of carbon dioxide fixing material
US7699909B2 (en) 2004-05-04 2010-04-20 The Trustees Of Columbia University In The City Of New York Systems and methods for extraction of carbon dioxide from air
WO2006009600A2 (en) 2004-05-04 2006-01-26 The Trustees Of Columbia University In The City Of New York Systems and methods for extraction of carbon dioxide from air
US7947239B2 (en) 2004-05-04 2011-05-24 The Trustees Of Columbia University In The City Of New York Carbon dioxide capture and mitigation of carbon dioxide emissions
WO2006008242A1 (en) 2004-07-19 2006-01-26 Shell Internationale Research Maatschappij B.V. Process for producing caco3 or mgco3
KR20070053767A (en) 2004-08-20 2007-05-25 글로벌 리서치 테크놀로지스, 엘엘씨 Removal of carbon dioxide from air
US20060051274A1 (en) 2004-08-23 2006-03-09 Wright Allen B Removal of carbon dioxide from air
ES2382091T3 (en) 2004-09-13 2012-06-05 University Of South Carolina Water desalination process and apparatus therefor
US7727374B2 (en) 2004-09-23 2010-06-01 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US7314847B1 (en) 2004-10-21 2008-01-01 The United States Of America As Represented By The United States Department Of Energy Regenerable sorbents for CO2 capture from moderate and high temperature gas streams
US7261912B2 (en) 2004-11-18 2007-08-28 Arthur William Zeigler Method of producing useful products from seawater and similar microflora containing brines
USH2241H1 (en) * 2004-12-03 2010-06-01 Kevin M Colbow Fuel cell electric power generating system
US7569671B2 (en) 2005-01-06 2009-08-04 The Board Of Trustees Of The University Of Illinois Method and system for corn fractionation
US9028607B2 (en) 2005-02-24 2015-05-12 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US7390444B2 (en) 2005-02-24 2008-06-24 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US7678351B2 (en) 2005-03-17 2010-03-16 The Ohio State University High temperature CO2 capture using engineered eggshells: a route to carbon management
EP2021894A4 (en) 2006-05-05 2010-10-13 Plascoenergy Ip Holdings Slb A gas homogenization system
FI118629B (en) 2005-06-15 2008-01-31 Metso Power Oy Method and apparatus for removing carbon dioxide from sulfur dioxide containing flue gases
EP1893546A1 (en) 2005-06-15 2008-03-05 Solvay SA Use of particles of calcium carbonate in the production of construction materials
CA2613096C (en) 2005-07-05 2012-08-21 Greensols Australia Pty Ltd. Preparation and use of cationic halides, sequestration of carbon dioxide
DE112007000739A5 (en) 2006-01-18 2008-12-24 Osing, Dirk A. CO2 usage, binding, consumption
WO2007018558A2 (en) 2005-07-20 2007-02-15 The Trustees Of Columbia University In The City Of New York Electrochemical recovery of carbon dioxide from alkaline solvents
MX2008001054A (en) 2005-07-28 2008-03-19 Global Res Technologies Llc Removal of carbon dioxide from air.
WO2007025280A2 (en) 2005-08-25 2007-03-01 Ceramatec, Inc. Electrochemical cell for the production of synthesis gas using atmospheric air and water
CA2515822C (en) 2005-08-30 2012-07-03 Joe Ru He Zhao Method to regulate temperature and reduce heat island effect
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
AU2006301857A1 (en) * 2005-10-13 2007-04-19 Mantra Energy Alternatives Ltd. Continuous co-current electrochemical reduction of carbon dioxide
WO2007060149A1 (en) 2005-11-23 2007-05-31 Shell Internationale Research Maatschappij B.V. A process for sequestration of carbon dioxide by mineral carbonation
NO20055571D0 (en) 2005-11-24 2005-11-24 Inst Energiteknik The process feed for a immobilize C02 in an industrial process for the production of magnesium carbonate, micro-silica, iron, chromium and platinum group metals from dunite or other olivine rich rocks
EP1966092B1 (en) 2005-12-20 2010-09-15 Shell Internationale Research Maatschappij B.V. Process for sequestration of carbon dioxide
US8673257B2 (en) 2006-01-03 2014-03-18 University Of Wyoming Apparatus and method to sequester contaminants
CA2577564C (en) 2006-02-15 2011-07-12 Lafarge Canada Inc. Binder for mine tailings, alluvial sand and rock fill, or combinations thereof
NO20060807L (en) 2006-02-17 2007-08-20 Omar Chaalal The process Mate purifying saline
GB0603443D0 (en) 2006-02-21 2006-04-05 Hills Colin D Production of secondary aggregates
ES2521415T3 (en) 2006-03-10 2014-11-12 C-Quest Technologies International Llc Procedure sequestering carbon dioxide production facilities cement
US20080059206A1 (en) 2006-03-14 2008-03-06 Federico Jenkins Method of distributing the cost of preserving the environment
WO2007106883A2 (en) 2006-03-15 2007-09-20 Carbon Trap Technologies, L.P. Processes and systems for the sequestration of carbon dioxide utilizing effluent streams
US20090081096A1 (en) 2007-03-28 2009-03-26 Pellegrin Roy J Method and means for capture and long-term sequestration of carbon dioxide
US7572318B2 (en) 2006-04-18 2009-08-11 Gas Technology Institute High-temperature membrane for CO2 and/or H2S separation
US7670139B2 (en) 2006-04-19 2010-03-02 Wells Products Group, Inc. Method and apparatus for reduced emissions fuel combustion
JP2009535198A (en) 2006-04-27 2009-10-01 ザ ペン ステイト リサーチ ファンデーション Capture and related processes of carbon dioxide
WO2007142945A2 (en) 2006-05-30 2007-12-13 Jasper John P Tracing processes between precursors and products by utilizing isotopic relationships
NO20062465L (en) 2006-05-30 2007-12-03 Omar Chaalal Method and for the cleaning of gases and uses thereof
GB2452664B (en) 2006-06-09 2012-02-01 Rodolfo Antonio M Gomez Electrolytic activation of water
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US7736485B2 (en) 2006-08-11 2010-06-15 Aqua Resources Corporation Nanoplatelet magnesium hydroxides and methods of preparing same
WO2008026201A2 (en) 2006-08-29 2008-03-06 Yeda Research And Development Co.Ltd Methods and apparatuses for decreasing the co2 concentration of a fluid
EP1900688A1 (en) 2006-09-14 2008-03-19 SOLVAY (Société Anonyme) Method for obtaining sodium carbonate crystals
JP5313911B2 (en) 2006-11-22 2013-10-09 オリカ エクスプロージブズ テクノロジー プロプライアタリー リミティド Integrated chemical methods
WO2008068322A1 (en) 2006-12-08 2008-06-12 Solvay (Société Anonyme) Coated alkaline-earth metal carbonate particles, use of such particles in the production of construction materials and construction materials compositions containing such particles
MX2009007239A (en) 2007-01-03 2009-10-08 Council Scient Ind Res A process utilizing natural carbon-13 isotope for identification of early breakthrough of injection water in oil wells.
JP5690486B2 (en) 2007-01-31 2015-03-25 ノボザイムス アクティーゼルスカブ Thermostable carbonic anhydrase and use thereof
WO2008101293A1 (en) 2007-02-20 2008-08-28 Hunwick Richard J System, apparatus and method for carbon dioxide sequestration
GB2452169A (en) 2007-02-25 2009-02-25 Puregeneration Carbon dioxide sequestering fuel synthesis system and use thereof
AU2007100157A4 (en) 2007-02-28 2007-04-19 Green, Kenneth Mr Improved method of sequestering carbon dioxide as calcium carbonate
NO332158B1 (en) 2007-03-05 2012-07-09 Aker Clean Carbon As The process feed for removing CO2 from an exhaust gas
CN101280926A (en) 2007-04-02 2008-10-08 卢冠均 Exhaust gas purifying device and purification method thereof
US20080245660A1 (en) 2007-04-03 2008-10-09 New Sky Energy, Inc. Renewable energy system for hydrogen production and carbon dioxide capture
US7941975B2 (en) 2007-04-11 2011-05-17 Erla Dogg Ingjaldsdottir Affordable, sustainable buildings comprised of recyclable materials and methods thereof
AU2008209322B2 (en) 2007-04-20 2012-10-25 Rodolfo Antonio M. Gomez Carbon dioxide sequestration and capture
US8271363B2 (en) 2007-04-25 2012-09-18 Bennett Hill Branscomb System and method for banking downstream resource costs
US20080275149A1 (en) 2007-05-04 2008-11-06 Nova Chemicals Inc. Durable concrete compositions
US20080277319A1 (en) 2007-05-11 2008-11-13 Wyrsta Michael D Fine particle carbon dioxide transformation and sequestration
US20080289495A1 (en) 2007-05-21 2008-11-27 Peter Eisenberger System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same
US20100196235A1 (en) 2007-05-21 2010-08-05 Jacobus Johannes Cornelis Geerlings Process for sequestration of carbon dioxide by mineral carbonation
AU2008252987B2 (en) 2007-05-21 2011-07-21 Shell Internationale Research Maatschappij B.V. A process for preparing an activated mineral
BRPI0812383A2 (en) 2007-05-24 2014-12-02 Calera Corp Hydraulic cements comprising carbonate compound compositions
WO2008151060A1 (en) 2007-05-30 2008-12-11 New Sky Energy, Inc. Use of photoelectrochemical water splitting to generate materials for sequestering carbon dioxide
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US20100144521A1 (en) 2008-05-29 2010-06-10 Brent Constantz Rocks and Aggregate, and Methods of Making and Using the Same
EP2240257A4 (en) 2008-05-29 2010-10-20 Calera Corp Rocks and aggregate, and methods of making and using the same
US7753618B2 (en) 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
EP2155350A4 (en) 2007-06-28 2010-07-21 Calera Corp Desalination methods and systems that include carbonate compound precipitation
GB0716360D0 (en) 2007-08-22 2007-10-03 Univ Greenwich Production of secondary aggregates
EP2185270A2 (en) 2007-09-06 2010-05-19 Haase, Richard A. Means for sequestration and conversion of cox and nox, conox
CN101889068A (en) 2007-09-11 2010-11-17 蓝宝石能源公司 Methods of producing organic products with photosynthetic organisms and products and compositions thereof
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
CA2700467C (en) 2007-09-26 2016-01-05 Bioteq Environmental Technologies Inc. Selective sulphate removal by exclusive anion exchange from hard water waste streams
US7655202B2 (en) 2007-10-09 2010-02-02 Ceramatec, Inc. Coal fired flue gas treatment and process
NZ585096A (en) 2007-11-15 2013-06-28 Univ Rutgers Systems and methods for capture and sequestration of greenhouse gases and compositions such as ceramic derived therefrom
JP2011504806A (en) 2007-11-27 2011-02-17 ウェステック エンバイロメンタル ソルーションズ エルエルシー Capture and long isolation methods of carbon dioxide, and means
US20090148238A1 (en) 2007-12-07 2009-06-11 Smith Troy A Method for reclaiming hydraulically dredged material
KR20110061546A (en) 2008-07-10 2011-06-09 칼레라 코포레이션 Production of carbonate-containing compositions from material comprising metal silicates
AU2009290159B2 (en) 2008-09-30 2010-08-12 Calera Corporation Compositions and methods using substances containing carbon
CN101687648B (en) 2007-12-28 2015-01-28 卡勒拉公司 Methods of sequestering CO2
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
US7919064B2 (en) 2008-02-12 2011-04-05 Michigan Technological University Capture and sequestration of carbon dioxide in flue gases
MX339437B (en) 2008-02-19 2016-05-26 Global Res Technologies Llc Extraction and sequestration of carbon dioxide.
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US7674443B1 (en) 2008-08-18 2010-03-09 Irvin Davis Zero emission gasification, power generation, carbon oxides management and metallurgical reduction processes, apparatus, systems, and integration thereof
WO2010030826A1 (en) 2008-09-11 2010-03-18 Calera Corporation Co2 commodity trading system and method
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
EP2200948A4 (en) 2008-09-30 2014-09-03 Calera Corp Co2-sequestering formed building materials
CA2694980C (en) 2008-10-31 2011-09-20 Calera Corporation Non-cementitious compositions comprising co2 sequestering additives
WO2010068924A1 (en) 2008-12-11 2010-06-17 Calera Corporation Processing co2 utilizing a recirculating solution
US7790012B2 (en) 2008-12-23 2010-09-07 Calera Corporation Low energy electrochemical hydroxide system and method
CA2696075A1 (en) 2009-01-28 2010-07-28 Calera Corporation Low-energy electrochemical bicarbonate ion solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165460A (en) * 1962-04-11 1965-01-12 American Mach & Foundry Electrolytic acid generator
US20050224363A1 (en) * 2003-11-11 2005-10-13 Permelec Electrode Ltd. Process of producing peroxo-carbonate
CN101068610A (en) * 2004-09-23 2007-11-07 乔·大卫·琼斯 Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals

Also Published As

Publication number Publication date
CA2700721C (en) 2015-04-21
EP2212033A4 (en) 2013-04-24
CN101984749A (en) 2011-03-09
US7875163B2 (en) 2011-01-25
CN104722466A (en) 2015-06-24
JP2011528405A (en) 2011-11-17
AU2009271304A1 (en) 2010-01-21
AU2009271304B2 (en) 2013-08-15
CA2700721A1 (en) 2010-01-21
US20100116683A1 (en) 2010-05-13
WO2010008896A1 (en) 2010-01-21
EP2212033A1 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US5246551A (en) Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
US6294066B1 (en) Apparatus and process for electrodialysis of salts
CN1102073C (en) Elecrochemical methods for recovery of ascorbic acid
US8227127B2 (en) Electrochemical apparatus to generate hydrogen and sequester carbon dioxide
Xu et al. Electrodialysis‐based separation technologies: a critical review
CN102066268B (en) Method, apparatus and plant for desalinating saltwater using concentration difference energy
US3964985A (en) Electrodialysis apparatus and process for ion modification
US20080245671A1 (en) Electrochemical Process to Recycle Aqueous Alkali Chemicals Using Ceramic Ion Conducting Solid Membranes
CA2270199C (en) Electrolytic cell and electrolyzed water generating device
US4219396A (en) Electrodialytic process
CA2731677C (en) Recovery of lithium from aqueous solutions
Werner et al. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell
US6627061B2 (en) Apparatus and process for electrodialysis of salts
EP1966413A2 (en) Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes
US8518225B2 (en) Apparatus and method for producing hydrogen-dissolved drinking water
JP3174036U (en) Low energy of the electrodeionization apparatus
EP1951933A1 (en) Continuous co-current electrochemical reduction of carbon dioxide
AU2009270879B2 (en) CO2 utilization in electrochemical systems
Paidar et al. Membrane electrolysis—History, current status and perspective
Xu Development of bipolar membrane-based processes
US20110036728A1 (en) Low-energy electrochemical proton transfer system and method
US9267211B2 (en) Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
JP2012505733A (en) Processing solution or waste water
CA2666147C (en) Low-energy electrochemical hydroxide system and method
GB2253860A (en) Electrolytic treatment of water

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C53 Correction of patent for invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: GILLIAM RYAN J. ALBRECHT THOMAS A. NIKHIL JALANI ANTONY KNOTT NIGEL VALENTIN DECKER MICHAEL KOSTOWSKYJ BRYAN BOGGS KASRA FARSAD TO: GILLIAM RYAN J. ALBRECHT THOMAS A. NIKHIL JALANI ANTONY KNOTT NIGEL VALENTIN DECKER MICHAEL KOSTOWSKYJ BRYAN BOGGS KASRA FARSAD GAORUOER A.

C14 Grant of patent or utility model