CN101940320B - 薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体 - Google Patents

薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体 Download PDF

Info

Publication number
CN101940320B
CN101940320B CN2010102474911A CN201010247491A CN101940320B CN 101940320 B CN101940320 B CN 101940320B CN 2010102474911 A CN2010102474911 A CN 2010102474911A CN 201010247491 A CN201010247491 A CN 201010247491A CN 101940320 B CN101940320 B CN 101940320B
Authority
CN
China
Prior art keywords
fatty acid
chain fatty
medium
mcfas
lecithin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102474911A
Other languages
English (en)
Other versions
CN101940320A (zh
Inventor
刘伟
刘玮琳
刘成梅
郑会娟
梁瑞红
王瑞莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN2010102474911A priority Critical patent/CN101940320B/zh
Publication of CN101940320A publication Critical patent/CN101940320A/zh
Application granted granted Critical
Publication of CN101940320B publication Critical patent/CN101940320B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Abstract

一种中链脂肪酸(MCFAs)纳米脂质体的制备方法,是以脂溶性MCFAs为原料,卵磷脂和胆固醇为壁材,采用薄膜分散-动态高压微射流(DHPM)法,经溶解、混匀、真空除溶剂、水合洗膜、DHPM处理制备MCFAs纳米脂质体。本发明制备的纳米脂质体包封率达70%以上,平均粒度为70nm-100nm,分散系数小于0.20,zeta电位为(-30mV)-(-50mV),分布均匀,泄漏率低,长期贮藏稳定性良好。

Description

薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体
技术领域
本发明涉及食品营养领域,具体涉及一种中链脂肪酸纳米脂质体的制备方法。
背景技术
从营养生理学观点看,中链脂肪酸(medium-chain fatty acids,MCFAs)是指碳元素为8的辛酸(octanoic acid;C8:0)和碳元素为10的癸酸(decanoic acid;C10:0)。中链脂肪酸(MCFAs)具有颇多独特的生理功能,与在淋巴系统中吸收的长链脂肪酸(long-chain fatty acids,LCFAs)相比,具有吸收快、不易在体内积蓄、极易提供能量等特点,主要表现在以下方面:(1)中链脂肪酸(MCFAs)低熔点、小分子量,常温下为液态、能量值低;(2)不依赖L-肉毒碱作载体,直接透过线粒体的双层膜而进入线粒体内,氧化迅速,为机体快速提供能量,可作为运动员、有脂肪吸收障碍症者的能量来源;(3)中链脂肪酸(MCFAs)不易在肝组织和脂肪组织中蓄积,可增加饱腹感,具有保持肌肉而不增加脂肪组织的作用,可作为肥胖症者的营养食疗剂;(4)中链脂肪酸(MCFAs)可调节对脂多糖的免疫反应和提高免疫球蛋白A的分泌表达,保护消化道,起到抗炎症作用,可用于短肠综合症病人的治疗。但短时间内摄入过量中链脂肪酸(MCFAs)会导致胃肠道不适症状,如恶心、呕吐、胃气胀、腹部疼痛性痉挛、腹泻,还会刺激缩胆囊素或其它肠内激素的分泌。
脂质体是由磷脂等双亲性分子在水相溶液中形成的具有细胞膜类似结构的优良载体,可以包裹亲水、亲脂和两亲性的药物和营养因子,既可保护药物和营养因子,降低其毒副作用,达到缓释目的,又可提高药物的靶向性和生物利用度。脂质体的制备方法主要有薄膜分散法、乙醇注入法、冻融法、逆向蒸发法、高压均质法等。尽管这些方法制备工艺简单,但主要缺点是使用了大量有毒试剂,而且不适于大规模的工业生产。
动态高压微射流(dynamic high-pressure microfluidization,DHPM)是一种高压均质技术,它利用液压泵使流体产生高压,在撞击腔内的微孔道中,流体被分散成两股或多股细流进行强烈的高速撞击,在此过程中瞬间产生巨大的压力降,实现高速撞击、高频剪切、气蚀、高频振动、瞬时压降等综合作用,在100MPa下,时间小于5s即可达到使物料细化、乳化、均质和改性等目的。
发明内容
本发明的目的是针对现有技术的不足和中链脂肪酸的弱点,提供一种安全、功能性质优良的中链脂肪酸(MCFAs)纳米脂质体,为脂肪吸收障碍者、运动员和肥胖症者提供特殊营养补充。
本发明所采取的技术方案是:采用动态高压微射流结合薄膜分散法制备中链脂肪酸纳米脂质体。
本发明的工艺步骤如下:
1、中链脂肪酸(MCFAs)纳米脂质体原材料各组分及其重量百分比为:中链脂肪酸(MCFAs)0.5%-2.0%,卵磷脂4.0%-8.0%,胆固醇0.8%-1.2%,吐温-80 1.5%-2.5%,维生素E0.1%-0.3%,其余的是浓度为0.05M的磷酸盐缓冲溶液(PBS),为86.0%-93.1%;
2、按上述重量比例分别称取中链脂肪酸(MCFAs)、卵磷脂、胆固醇、吐温-80和维生素E,在40℃条件下,按1g卵磷脂溶于20ml无水乙醇,完全溶解各组分;
3、将步骤2所得溶液于真空旋转蒸发仪上除去无水乙醇,形成均匀薄膜;
4、按8%脂质浓度(卵磷脂与胆固醇总量占缓冲溶液体积的百分比)加入pH7.4、0.05M的磷酸盐缓冲溶液(PBS)洗膜,形成粗脂质体悬浊液;
5、用高压微射流均质机处理步骤4得到的粗脂质体悬浊液,压力为140MPa,处理次数为4次,得中链脂肪酸(MCFAs)纳米脂质体。
本发明的有益效果是:
制备的中链脂肪酸(MCFAs)纳米脂质体,既克服了中链脂肪酸(MCFAs)功能上的弱点,而且脂质体性质稳定,生物利用率更高的脂质体,包封率可达70%以上,平均粒度为70-100nm,分散系数小于0.20,zeta电位为(-30mV)-(-50mV),泄漏率低,长期贮藏稳定性良好。
附图说明
附图为制备中链脂肪酸(MCFAs)纳米脂质体的工艺路线示意图:
具体实施方式
实施例1
称取0.45g中链脂肪酸(MCFAs)、2.06g卵磷脂、0.34g胆固醇、0.62g吐温-80和0.04g维生素E,完全溶解于42ml无水乙醇中,在40℃水浴条件下真空旋转除去无水乙醇,形成均匀薄膜。加入30ml pH7.4、浓度为0.05M的磷酸盐缓冲溶液(PBS)洗膜,形成的均匀悬浊液即为粗脂质体。将粗脂质体加入到DHPM中,于140MPa条件下微流化处理4次,即制备得到中链脂肪酸(MCFAs)纳米脂质体。制得的中链脂肪酸(MCFAs)纳米脂质体为较透明淡黄色溶液,包封率为73.33%,平均粒径为70.5nm,分散系数为0.187,zeta电位为-44.07mV。
实施例2
称取0.90g中链脂肪酸(MCFAs)、4.12g卵磷脂、0.68g胆固醇、1.20g吐温-80和0.08g维生素E,完全溶解于83ml无水乙醇中,在40℃水浴条件下真空旋转除去无水乙醇,形成均匀薄膜。加入60ml pH7.4、浓度为0.05M的磷酸盐缓冲溶液(PBS)洗膜,形成的均匀悬浊液即为粗脂质体。将粗脂质体加入到DHPM中,于140MPa条件下微流化处理4次,即制备得到中链脂肪酸(MCFAs)纳米脂质体。制得的中链脂肪酸(MCFAs)纳米脂质体为较透明淡黄色溶液,包封率为70.48%,平均粒径为78.9nm,分散系数为0.191,zeta电位为-38.93mV。
实施例3
称取0.45g中链脂肪酸(MCFAs)、2.06g卵磷脂、0.34g胆固醇、0.82g吐温-80和0.08g维生素E,完全溶解于42ml无水乙醇中,在40℃水浴条件下真空旋转除去无水乙醇,形成均匀薄膜。加入30ml pH7.4、浓度为0.05M的磷酸盐缓冲溶液(PBS)洗膜,形成的均匀悬浊液即为粗脂质体。将粗脂质体加入到DHPM中,于140MPa条件下微流化处理4次,即制备得到中链脂肪酸(MCFAs)纳米脂质体。制得的中链脂肪酸(MCFAs)纳米脂质体为较透明淡黄色溶液,包封率为72.68%,平均粒径为84.1nm,分散系数为0.180,zeta电位为-45.44mV。
实施例4
称取0.90g中链脂肪酸(MCFAs)、4.12g卵磷脂、0.68g胆固醇、1.64g吐温-80和0.16g维生素E,完全溶解于83ml无水乙醇中,在40℃水浴条件下真空旋转除去无水乙醇,形成均匀薄膜。加入60ml pH7.4、浓度为0.05M的磷酸盐缓冲溶液(PBS)洗膜,形成的均匀悬浊液即为粗脂质体。将粗脂质体加入到DHPM中,于140MPa条件下微流化处理4次,即制备得到中链脂肪酸(MCFAs)纳米脂质体。制得的中链脂肪酸(MCFAs)纳米脂质体为较透明淡黄色溶液,包封率为70.21%,平均粒径为89.2nm,分散系数为0.179,zeta电位为-41.86mV。

Claims (1)

1.薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体的方法,其特征在于,所述脂质体原材料各组分及其重量百分比为:中链脂肪酸(MCFAs)0.5%-2.0%,卵磷脂4.0%-8.0%,胆固醇0.8%-1.2%,吐温-801.5%-2.5%,维生素E 0.1%-0.3%,其余的是浓度为0.05M的磷酸盐缓冲溶液(PBS),为86.0%-93.1%;制备步骤为:
(1)按上述重量百分比分别称取中链脂肪酸(MCFAs)、卵磷脂、胆固醇、吐温-80和维生素E,在40℃条件下,按1g卵磷脂溶于20ml无水乙醇,完全溶解各组分;
(2)将步骤1所得溶液于真空旋转蒸发仪上除去无水乙醇,形成均匀薄膜;
(3)按卵磷脂与胆固醇总量占缓冲溶液体积8%的脂质浓度加入pH7.4、0.05M的磷酸盐缓冲溶液洗膜,形成粗脂质体悬浊液;
(4)用高压微射流均质机处理步骤3得到的粗脂质体悬浊液,压力为140MPa,处理次数为4次,得中链脂肪酸纳米脂质体。
CN2010102474911A 2010-08-06 2010-08-06 薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体 Expired - Fee Related CN101940320B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102474911A CN101940320B (zh) 2010-08-06 2010-08-06 薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102474911A CN101940320B (zh) 2010-08-06 2010-08-06 薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体

Publications (2)

Publication Number Publication Date
CN101940320A CN101940320A (zh) 2011-01-12
CN101940320B true CN101940320B (zh) 2012-08-29

Family

ID=43432677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102474911A Expired - Fee Related CN101940320B (zh) 2010-08-06 2010-08-06 薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体

Country Status (1)

Country Link
CN (1) CN101940320B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103462895A (zh) * 2013-07-05 2013-12-25 南昌大学 一种层层自组装法双重修饰脂质体的制备方法
CN105287382A (zh) * 2015-12-10 2016-02-03 南昌大学 叶酸-壳聚糖修饰姜黄素纳米脂质体的制备方法
CN106075414A (zh) * 2016-06-22 2016-11-09 中国热带农业科学院农产品加工研究所 一种菠萝蛋白酶脂质体及其制备方法
CN108741080B (zh) * 2018-04-03 2021-07-13 浙江工商大学 一种微藻dha-花青素双相纳米脂质体及其制备方法
CN112006288A (zh) * 2019-05-31 2020-12-01 山东理工大学 一种制备双层修饰还原型谷胱甘肽纳米脂质体的方法
CN113208116A (zh) * 2021-02-10 2021-08-06 大连工业大学 一种包埋蛋清肽钙复合物的纳米脂质体及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376056A (zh) * 1999-10-01 2002-10-23 利普森技术有限公司 脂质体包封的dna口服疫苗
CN101019851A (zh) * 2007-02-12 2007-08-22 南昌大学 中链脂肪酸脂质体及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060046962A1 (en) * 2004-08-25 2006-03-02 Aegis Therapeutics Llc Absorption enhancers for drug administration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376056A (zh) * 1999-10-01 2002-10-23 利普森技术有限公司 脂质体包封的dna口服疫苗
CN101019851A (zh) * 2007-02-12 2007-08-22 南昌大学 中链脂肪酸脂质体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘成梅等.中链脂肪酸脂质体的制备及其特性评价.《食品科学》.2007,第28卷(第10期),143-146. *

Also Published As

Publication number Publication date
CN101940320A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
CN101940320B (zh) 薄膜分散-动态高压微射流制备中链脂肪酸纳米脂质体
Liu et al. Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers
Jain et al. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity
Ma et al. Cellular uptake and intracellular antioxidant activity of zein/chitosan nanoparticles incorporated with quercetin
Bai et al. Development of oral delivery systems with enhanced antioxidant and anticancer activity: Coix seed oil and β-carotene coloaded liposomes
Kassem et al. Enhancement of 8-methoxypsoralen topical delivery via nanosized niosomal vesicles: Formulation development, in vitro and in vivo evaluation of skin deposition
Shen et al. Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis
RU2437583C2 (ru) Применение дгк (dha), эпк (epa) или эпк, полученных из дгк, для лечения патологии, связанной с окислительным повреждением клетки, a также их нетерапевтические применения
KR102053280B1 (ko) 역미셀을 형성하는 발효유화제, 이를 포함하는 조성물 및 발효유화제 제조방법
Usman et al. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs-A review
CN104337851B (zh) 鸦胆子油纳米结构脂质载体及其冻干粉的制备方法
CN109152734A (zh) 辅酶q10增溶组合物及其制备方法
Feng et al. Preparation and characterization of zein-based phytosterol nanodispersions fabricated by ultrasonic assistant anti-solvent precipitation
CN109463751B (zh) 一种辅酶q10脂质体的保健食品的制备方法
Hao et al. The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation
CN1850070A (zh) 槲皮素固体脂质纳米粒制剂及其制备方法
CN101940321B (zh) 动态高压微射流-冻融法制备中链脂肪酸纳米脂质体
Shishir et al. Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside
Li et al. Interfacial engineering strategy to improve the stabilizing effect of curcumin-loaded nanostructured lipid carriers
Ricaurte et al. Edible gelatin-based nanofibres loaded with oil encapsulating high-oleic palm oil emulsions
Torlopov et al. Surface, rheopexy, digestive stability and toxicity of olive oil emulsions stabilized by chitin nanocrystals for vitamin D3 delivery
Zeng et al. Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice
CN103976961B (zh) 一种还原型谷胱甘肽固体脂质纳米粒的制备方法及其应用
Raviadaran et al. Simple and multiple emulsions emphasizing on industrial applications and stability assessment
CN105963254A (zh) 一种辅酶q10 药物组合物及其制备工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20150806

EXPY Termination of patent right or utility model