CN101911279A - 用于动态对准束校准的系统和方法 - Google Patents

用于动态对准束校准的系统和方法 Download PDF

Info

Publication number
CN101911279A
CN101911279A CN2008801240467A CN200880124046A CN101911279A CN 101911279 A CN101911279 A CN 101911279A CN 2008801240467 A CN2008801240467 A CN 2008801240467A CN 200880124046 A CN200880124046 A CN 200880124046A CN 101911279 A CN101911279 A CN 101911279A
Authority
CN
China
Prior art keywords
end effector
wafer
center
visual cues
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801240467A
Other languages
English (en)
Other versions
CN101911279B (zh
Inventor
克里斯蒂娜·艾伦布兰切特
马特·罗德尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN101911279A publication Critical patent/CN101911279A/zh
Application granted granted Critical
Publication of CN101911279B publication Critical patent/CN101911279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/248Components associated with the control of the tube
    • H01J2237/2482Optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

提供一种在等离子处理系统中执行DA(动态对准)束校准的方法。该方法包括获得位置差,该位置差光学成像方法取得。该光学成像方法由下列步骤组成:将该晶片设在该末端执行器上,获得该晶片在该末端执行器上的静止图像,处理该静止图像以确定该晶片的中心和由该末端执行器限定的末端执行器限定中心,和确定该该晶片的中心和由该末端执行器限定的末端执行器限定中心之间的位置差。该方法还包括通过利用机器移动补偿来补偿该晶片和该末端执行器之间的位置差将晶片相对末端执行器定心。该方法包括移动该晶片和该末端执行器通过与等离子处理模块关联的DA束。该方法还包括通过记录DA束的中断-然后-恢复样式获得基准DA束样式。随着该晶片和该末端执行器移动通过该DA束,出现该中断-然后-恢复样式。

Description

用于动态对准束校准的系统和方法
背景技术
在半导体基片(例如,晶片)的处理中,往往采用等离子。在等离子处理,使用等离子处理系统处理晶片,其通常包括多个处理模块。基片(例如,晶片)在等离子处理过程中设在处理模块的卡盘上。
为了将晶片移进移出该处理模块,通常将晶片设在末端执行器上并传送到卡盘上。末端执行器是用于在晶片传送过程中支撑该片的结构部件。末端执行器通常设在机械臂上。图1示出代表性的现有技术末端执行器102,用以在晶片传送过程中支撑晶片104。为了说明目的,还示出机械臂106的一部分。
大体而言,在晶片传送顺序期间,机械臂首先移动末端执行器以从晶片存储盒或台拿起该晶片。一旦将晶片设在末端执行器上,机械臂然后会移动该晶片穿过该处理模块中的门进入该等离子处理模块,该机械臂然后将该末端执行器和该晶片定位在该卡盘上方,并将该晶片放在该卡盘上用以等离子处理。
为了确保正确地处理晶片(由此确保可控的和可重复的工艺结果),晶片需要在等离子处理过程中设在卡盘中心。如果末端执行器正确地相对卡盘定心以及晶片正确地相对末端执行器定心,那么当机械臂将晶片放在卡盘上,晶片将正确地相对卡盘定心。然而,由于许多原因,其中一些将在下面讨论,这个理想情况很少出现。
由于处理室的各个不同部件之间的机加工和/或制造公差,在给定的处理模块中,末端执行器限定的中心(这里称作该“末端执行器中心”或该“末端执行器限定的中心”)有可能相对该卡盘的中心稍微偏移。结果,末端执行器限定的中心有可能在机械臂位置上不正确地与卡盘的中心对准,机器控制器认为该位置为正确的晶片设置位置。如果这个末端执行器/卡盘的不对准没有在生产过程中弥补,则在晶片处理期间,晶片会不精确地相对卡盘中心设置。同时待决的专利申请中,主题为“SYSTEMSAND METHODS FOR CALIBRATING END EFFECTOR ALIGNMENT IN PLASMA PROCESSING SYSTEM”,代理档案号LMRX-P143/P1747,由本申请的发明人在同一日期递交,并通过引用结合在这里,提出了解决这个末端执行器/卡盘不对准的技术。在下面的讨论部分A中回顾关于前面提到的专利申请“SYSTEMS AND METHODS FOR CALIBRATING END EFFECTOR ALIGNMENT IN PLASMA PROCESSING SYSTEM”中讨论的技术的细节。
然而,即使末端执行器中心与卡盘中心正确对准(或可实现正确对准的效果),但是还有另一潜在的误差源可导致生产过程中晶片/卡盘不对准。也就是,不同的生产晶片有差别地设在该末端执行器上。如果末端执行器中心没有正确地或一致地与该晶片的中心对准,则在生产过程中仍然会出现晶片/卡盘不对准。这种情况下,尽管末端执行器中心与卡盘中心正确对准,但是当末端执行器将晶片设在卡盘上用以处理时,晶片/末端执行器不对准将会导致晶片相对卡盘偏移。
与末端执行器/卡盘不对准问题不同,其对于给定的处理模块中所有晶片往往是恒定的误差,因为对准误差来源与室部件公差和机器校准问题,晶片/末端执行器不对准会随着生产晶片变化。也就是说,每个生产晶片可有差别地设在末端执行器上,导致该不对准中的差异。因而,解决这种末端执行器/晶片不对准的方案需要动态的方法,即,一种在生产过程中可以调节每个单独的生产晶片相对末端执行器误差的方法。
现有技术中,该末端执行器/晶片不对准使用动态对准束方法来解决。动态对准(DA)束检测系统通常采用两个位于等离子处理模块门入口的束(即激光束)。随着晶片移动通过DA束(该束与该晶片平移平面正交),该DA束在晶片进入该束时被中断,然后在该晶片不再出现时恢复。这个束信号中断-然后-恢复样式生成生产DA束样式。
在该动态对准束方法中,必须获得基准DA束样式,即,在晶片正确地在该末端执行器上定心的情况下移动通过该DA束所获得的DA束样式。通过对比该生产DA束样式(即,生产晶片获得的束样式)与该基准DA束样式,可获得误差向量。该机器控制器然后将机械臂移动所需的距离以修整在生产过程中的该末端执行器/晶片不对准。关于动态对准束的更多信息可在,例如,公告的美国专利No.6,502,054和6,629,053中找到,通过引用结合在这里。
获得基准DA束样式的过程这里称作DA束校准。为了校准该DA束,那么就需要取得或者获得DA束校准组件,其包括正确在该末端执行器上定心的晶片,以及移动DA束校准组件通过该DA束,从而取得基准DA束样式。
现有技术中,使用制造的碟片(其模拟晶片)获取该DA束校准组件。该碟片具有向下突出的法兰,其安装在该末端执行器的槽口上(如图1中末端执行器102的槽口110)。一旦该碟片安装在该末端执行器的槽口,这个组合模拟正确定心的晶片相对末端执行器。模拟的晶片/末端执行器的组合然后由该机械臂以直线轨迹路径移动到该处理模块中、朝向该卡盘、穿过该DA束,以便获得基准DA束样式。
然而,为了获取基准DA束样式的目的使用晶片模拟碟片来建立校准组件的现有技术有一些缺陷。首先,将实体的机械固定装置(如模拟晶片的碟片)贴在该卡盘上有可能损伤该卡盘。另外,如果这个校准在该处理模块中已经执行一些等离子循环之后实地进行,则将实体或机械校准固定装置贴附于该卡盘会导致在该卡盘上或附近沉积颗粒,从而会剥落掉进处理室。在随后的处理循环中,这种颗粒形成颗粒污染物,这是不希望出现的。
另外,因为校准是在大气压下进行的,所以现有的校准技术不能有效地复制制造过程中存在的条件。这是因为制造过程中,处理模块的部件设在真空下,使得一个或多个部件由于真空环境和周围大气的压差而出现偏移。由于该校准条件没有如实地复制该制造条件,所以不可能进行准确的校准。如果该校准工艺室是不准确的,在生产过程中会出现不准确的晶片设置,导致成品率降低,以及所制造的产品的报废和/或故障率增加。
发明内容
在一个实施方式中,本发明涉及在等离子处理系统中执行DA(动态对准)束校准的方法。该方法包括获得位置差,该位置差通过光学成像方法取得。该光学成像方法包括将该晶片设在该末端执行器上,获得该晶片在该末端执行器上的静止图像,处理该静止图像以确定该晶片的中心和由该末端执行器限定的末端执行器限定中心,和确定该该晶片的中心和由该末端执行器限定的末端执行器限定中心之间的位置差。该方法还包括通过利用机器移动补偿来补偿该晶片和该末端执行器之间的位置差以将晶片相对末端执行器定心。该方法包括移动该晶片和该末端执行器通过与等离子处理模块关联的DA束。该方法还包括通过记录DA束的中断-然后-恢复样式获得基准DA束样式。该中断-然后-恢复样式随着该晶片和该末端执行器移动通过该DA束而出现。
上述概要只涉及这里所公开的本发明许多实施方式的一个并且不是为了限制本发明的范围,这里在权利要求中阐述该范围。本发明的这些和其他特征在下面对本发明的详细说明中结合附图更详细的描述。
附图说明
在附图中,本发明作为示例而不是作为限制来说明,其中类似的参考标号指出相似的元件,其中:
图1示出用于在晶片传送过程中支撑晶片的典型现有技术末端执行器。
图2示出,按照本发明的实施方式,等离子处理系统的示意表示,说明光学晶片定心系统至少一部分的俯视图,用以能够创建或模拟用于DA束校准目的的正确定心的晶片/末端执行器组件。
图3示出,按照本发明的实施方式,使用光学晶片定心技术创建或模拟将晶片相对该末端执行器限定中心定心以便于DA束校准的步骤的说明性流程图。
讨论A的图A1示出代表性的用于在晶片传输过程中支撑晶片的现有末端执行器。
讨论A的图A2示出,按照本发明的实施方式,等离子处理系统的示意性表示,说明用于原位校准该末端执行器的原位光学末端执行器校准系统至少一部分的俯视图。
讨论A的图A3示出,按照本发明的实施方式,该原位光学末端执行器校准方法的说明性流程图。
具体实施方式
现在将根据其如在附图中说明的几个实施方式来具体描述本发明。在下面的描述中,阐述许多具体细节以提供对本发明的彻底理解。然而,对于本领域技术人员,显然,本发明可不利用这些具体细节的一些或者全部而实施。在有的情况下,公知的工艺步骤和/或结构没有说明,以避免不必要的混淆本发明。
这里描述了各种实施方式,包括方法和技术。应当记住,本发明还覆盖包括计算机可读介质的制造品,在该介质上存储有用于实施该创新性技术的实施方式的计算机可读指令。该计算机可读介质可包括,例如,半导体、光磁、光学或其他形式的用于存储计算机可读代码的计算机可读介质。进而,本发明还覆盖执行本发明的设备或系统。这种设备包括专用和/或可编程电路以执行与本发明实施方式有关的操作。这种设备的示例包括适当编程的通用目的计算机和/或专用计算装置,并且包括计算机/计算装置和适于与本发明实施方式有关的各种操作的专用/可编程电路的组合。
本发明的实施方式涉及为了校准DA(动态对准)束的目的建立DA束校准组件的方法和设备。在一个实施方式中,DA束校准组件的(该校准晶片相对该末端执行器的)晶片定心要求通过使用机械臂移动以补偿校准晶片在该末端执行器上的不正确定位来模拟。光学晶片定心方法用来确定机械臂补偿该不正确末端执行器/晶片对准需要的修正量。通过使用机械臂移动来补偿该不正确的末端执行器/晶片对准,在末端执行器上正确定位的晶片的效果通过模拟来实现。
一旦机械臂移动必须的量以补偿不正确的末端执行器/晶片对准(使用前面提到的光学晶片定心方法获得的补偿数据),所得到的DA束校准组件可移动通过DA束以获得所需的基准DA束样式。有利地,本发明的实施方式实现了DA束校准,而不需要机械固定装置(例如,模拟晶片的碟片),或存在与该现有DA束校准方法相关的缺陷。
本发明的一个或多个实施方式中,光学晶片定心技术用来确定校准晶片(即,用于DA束校准的晶片)相对末端执行器限定中心的位置。注意校准晶片可代表任何基本与用于生产的晶片类似的晶片或晶片坯料。这个光学晶片定心工艺产生能够使机器控制器将机械臂移动所需量的数据,以调节校准晶片中心和末端执行器中心之间的任何偏移。
本发明的一个或多个实施方式中,当校准晶片设在末端执行器上时,至少获取该校准晶片至少一部分和该末端执行器至少一部分的静止图像。该末端执行器提供有一个或多个视觉标识,其使得处理单元能够从获取的该静止图像确定该末端执行器限定中心。本发明的一个或多个实施方式中,该末端执行器提供有划线(或任何形成圆弧的基准标记)。该划线设在该末端执行器上,从而即使晶片设在该末端执行器上也可获取该划线的静止图像。在一个实施方式中,该末端执行器上的该划线构造为一段圆弧,其中心与该末端执行器限定中心一致。通过确定该圆弧和该划线所在圆的中心,可确定该末端执行器限定中心。
该晶片类似地具有一个或多个视觉特征(如该晶片边缘通常圆的外形)以使该处理单元能确定该晶片的中心。在具有该末端执行器的情况下,为该校准晶片可选地或额外地提供一个或多个视觉标识以允许该处理单元更有效地确定该晶片的中心。然而,在优选实施方式中,该晶片的外缘本身构成这样的所需视觉标识。一旦该晶片中心和该末端执行器中心由该处理单元确定,计算这两个中心之间的偏移(即,“Δ”)。
一般而言,有至少两种技术来修正晶片/末端执行器不对准。第一种技术是物理修正。物理修正通过将末端执行器和晶片移动至固定台来完成。晶片然后设在固定台上,然后机械臂将末端执行器移动距离“Δ”以修正光学晶片定心方法发现的偏移。末端执行器然后再次拾取晶片用于光学分析。实际上,执行将晶片在末端执行器上实体重定位。该过程可反复执行直到发现该晶片已经令人满意地在该末端执行器上定心。
第二种修正晶片/末端执行器不对准的技术是将机械臂移动基于光学晶片定心过程确定的数据的误差修正矢量,其有效移动末端执行器和晶片组件。这个朝向DA束的移动模拟校准晶片出现的、使该校准晶片正确在该末端执行器上定心的晶片位置。在这种修正之后,该末端执行器/晶片组件可移动通过该DA束(优选地以直线),以获得所需基准DA束。
参照下面的附图和讨论可以更好地理解本发明的特征和优点。
图2示出,按照本发明的实施方式,等离子处理系统220的示意表示,说明光学晶片定心系统至少一部分的俯视图,用以能够创建或模拟用于DA束校准目的的正确定心的晶片/末端执行器组件。如图2中所见,该光学晶片定心系统包括末端执行器202,其上具有划线标记204。图2的例子中,该划线标记204是表示圆的一部分的弧线,其中心与该末端执行器限定中心一致。
图2还示出晶片206,表示待用来建立该基准DA束样式的校准晶片。该光学晶片定心系统构造为使用光学方法确定该晶片的中心和该末端执行器限定中心,以为执行实际的该晶片在该末端执行器上的定心,或为了DA束校准目的而模拟该末端执行器上正确定位的晶片。
光学晶片定心期间,图像捕获装置250(例如,设在末端执行器202和晶片206上方的摄像机)可至少获取末端执行器202的静止图像,包括划线标记204,以及晶片206的静止图像。注意如果摄像机和/或透镜装置从上面获取该静止图像,那么一部分末端执行器202可隐藏在晶片206下面。不论怎样,重要的是在该静止图像中捕获一些或全部划线标记204。
处理单元224(例如,包含在逻辑模块208中)能够重新构建晶片206的圆形边缘形成的圆,以及确定该圆的中心(其表示该晶片206的中心210)。类似地,处理单元224(例如,包含在逻辑模块208中)能够重新构建划线204所在的圆,以及确定该圆的中心。这个圆在图2中用虚线圆212表示。
图2还示出末端执行器中心214,表示由前面提到的处理单元确定的末端执行器限定的中心202。然后生成Δ216(即计算出的晶片中心210与末端执行器中心214的差)。这个Δ216,表示该机械臂采用的、将该校准晶片从其当前位置(相对相对该末端执行器不正确定心)移向正确定心的校准晶片将占据的位置的修正因数。
换句话说,一旦这个修正由机械臂进行,则设在该末端执行器上的晶片将以与在该末端执行器上正确定心所显示出的方式相同的方式显示于该DA束。通过记录该DA束的中断-然后-恢复样式,可获得基准DA束样式。如所讨论的,这个基准DA束样式可在生产过程中用于比较该生产DA束样式(即,利用生产晶片获得的DA束样式)以确定在生产过程中生产晶片需要的机械臂修正量。
或者,如之前所讨论的,该机械臂可将该校准晶片移至固定台或夹头。一旦该校准晶片设在该固定台或夹头上,该机械臂可将该末端执行器移动该位置修正向量(在该光学晶片定心工艺过程中获得的)以将该末端执行器相对该校准晶片重新定位。成像、分析偏移和将该晶片在该末端执行器上重定位的过程可重复执行直到该晶片令人满意地在该末端执行器上定心。所得到的校准固定装置(即,该末端执行器上正确定位的晶片)然后用来以之前讨论的方式获得该基准DA束样式。
在一个实施方式中,该光学晶片定心系统可原位执行(例如,使用可获得静止图像的摄像机和/或透镜系统,而该晶片和该末端执行器设在该处理模块内)。在相同或可选的实施方式中,该处理模块设在基本上接近该生产条件的条件下。尽管不是绝对必要,原位光学晶片定心和/或原位DA束校准有利地允许在基本上类似该生产条件的条件下执行定心和/或校准,由此减少与定心有关的误差和/或与校准有关的误差。
一旦原位获得该静止图像,包括该校准晶片和该末端执行器的组件从该处理模块去除。然后进行任何希望的修正以解决该末端执行器/晶片不对准。在该修正进行后,将包括该校准晶片和该末端执行器的组件再次穿过该DA束引入该处理模块,以产生所需的基准DA束样式。
另一实施方式中,该光学晶片定心技术可在该处理模块外面执行。一旦获得静止图像,进行分析和任何必要的修正,将包括该校准晶片和该末端执行器的校准组件再次通过该DA束引入该处理模块,以产生所需的DA束样式。
图3示出,按照本发明的实施方式,使用光学晶片定心技术创建或模拟将晶片相对该末端执行器限定中心定心以便于DA束校准的步骤的说明性流程图。该方法可通过例如采用一个或多个参照图2的示例讨论的部件来执行。在步骤302,晶片设在该末端执行器上从而获取静止图像,其包括该末端执行器的一个或多个视觉标识和该晶片的一个或多个视觉标识。
在步骤304,以结合图2讨论的方式获取该末端执行器、该末端执行器的一个或多个视觉标识和该晶片的静止图像。
在步骤306,着手进行图像处理以确定该末端执行器的该一个或多个视觉标识(例如,该前面提到的划线),以及确定该晶片的外缘形成的圆。在一个实施方式中,分析该静止图像用以对比。为了协助处理单元,该摄像机和/或透镜可这样构造,为确定反差优化光频率、照明条件、光圈、焦距、视场等,并允许该处理单元获得提供数据以确定该末端执行器中心和该晶片中心的视觉标识。本领域技术人员从前面所述容易认识到可对这些参数和条件以及其他与图像相关的参数进行控制以提高图像的反差和/或致使图像处理更准确。
在一个实施方式中,步骤308包含沿该静止图像中的反差像素生成多个数据点以及执行曲线拟合以重新建立所需的圆。这种图像处理技术和曲线拟合技术是精通本领域其他技术的人员所公知的,并且可使用许多通用的、非特别设计的处理单元包来进行(例如与CV-3002系列控制器CV-H3N一起使用的Keyence通信软件,可从Keyence Corporation Woodcliff Lake,NJ公司获得)。
在步骤310,根据由该处理单元从该末端执行器视觉标识(例如,该划线)建立的圆确定该末端执行器限定中心。
在步骤312,根据由该处理单元从该晶片视觉标识(例如,该晶片的外缘)建立的圆确定该晶片的中心。
在步骤314,然后生成该两个中心之间的差(即晶片中心与末端执行器中心的计算差)。例如,在一个实施方式中,该DA束样式用来重新构建表示该两个晶片的圆(例如,该生产晶片和该校准晶片)以确定它们的中心(以及该晶片中心之间的差)。采用一种算法来确定所需的、移动该机械臂的位置修正向量,以允许相对该末端执行器不正确定心的晶片显示在该DA束就像晶片相对该末端执行器正确定心。
在步骤316,这个误差向量提供给该机器控制器以允许该机器控制器执行补偿。一旦该末端执行器/晶片不对准得到补偿,则包括该校准晶片和该末端执行器的校准固定装置移动通过该DA束,优选地以直线方式,以获得前面提到的基准DA束样式。
如从前面所述可以认识到的,本发明的实施方式促进基准DA束样式的获取,并且没有与该现有机械固定装置方法相关的缺陷。此外,不需要使用特别构造的碟片来模拟正确定位的晶片避免将不相似的硬件引入该等离子处理模块,由此减少与校准有关的末端执行器损伤和与校准有关的颗粒污染的可能性。
讨论A[开始]
在半导体基片(例如,晶片)的处理中,往往采用等离子。在等离子处理,使用等离子处理系统处理该晶片,其通常包括多个处理模块。基片(例如,晶片)在等离子处理过程中设在处理模块的卡盘。
为了将晶片移进移出处理模块,晶片通常设在末端执行器上并传送到卡盘上。末端执行器是用于在晶片传送过程中支撑晶片的结构部件。末端执行器通常设在机械臂上。图1示出代表性的现有技术末端执行器A102,用以在晶片传送过程中支撑晶片A104。为了说明目的,还示出机械臂A106的一部分。
大体而言,在晶片传送顺序期间,机械臂首先移动末端执行器以从晶片存储盒或台拿起该晶片。一旦将晶片设在末端执行器上,机械臂然后会移动晶片穿过处理模块中的门进入等离子处理模块,机械臂然后将末端执行器和晶片定位在卡盘上方,并将晶片放在卡盘上用于等离子处理。
为了确保正确地处理晶片(由此确保可控的和可重复的工艺结果),晶片需要在等离子处理过程中设在卡盘中心。如果末端执行器正确地相对卡盘定心以及晶片正确地相对末端执行器定心,那么当机械臂将晶片放在该卡盘上,晶片将正确地相对卡盘定心。
从机器人控制器的角度看,重要的是知道卡盘的中心以使机器人控制器将末端执行器中心定位在卡盘上方以进行晶圆放置。相应地,对于任何给定的等离子体处理模块,机器人控制器需要被教导卡盘和卡盘中心的位置。换句话说,机器人控制器必须在它自己的坐标系中确定卡盘和卡盘中心的精确位置,因为每个卡盘可能在每个处理模块中被稍有不同地定位(例如,由于机器人加工和/或制造和/或装配公差)。
为了弥补该末端执行器/卡盘不对准,校准过程中的通常策略包括:将机械臂移到末端执行器限定的中心实际对准该卡盘的中心的位置。为了完成末端执行器校准,操作者必须能够确定实际的末端执行器/卡盘对准位置。现有技术中,该末端执行器限定的中心与该卡盘中心的对准使用制造的机械固定装置来完成,该装置安装在卡盘的边缘上或连接到处理模块内部。该机械固定装置具有键结构(实质上是对该末端执行器的中心突出),其允许该末端执行器就搁在该校准固定装置的键结构正对面。由于该固定装置相对该卡盘定心,则当该末端执行器对着该固定装置的键结构设置时,该末端执行器将设在该卡盘的中心。通常,该末端执行器靠着该键结构定位通过操作者拉或推该末端执行器靠在该键结构上来完成,从而该末端执行器靠着该键结构。
在操作者已经将末端执行器靠着键结构定位之后,操作者将机械臂位置与机器控制系统对准,从而该机器控制系统可记录(在机器控制的坐标系统中)实现这个实际末端执行器/卡盘对准的机械臂位置。
在制造过程中,机械臂将末端执行器移至与这个执行器/卡盘对准位置相关的坐标。如果晶片设在相对该末端执行器的中心,则当晶片由机械臂设在卡盘上用以晶片处理时,末端执行器限定的中心现在实际上与卡盘中心对准的情况将使得该晶片设在相对该卡盘的中心。
然而,现有技术中为了校准目的将末端执行器相对卡盘定心有一些缺点。首先,有许多种已知的卡盘和处理模块。所以,为了使用机械固定装置方法来进行校准,必须制造和储备许多不同的机械固定装置。并且,将实体的机械固定装置(其有一个或多个硬的金属边缘或表面)贴在卡盘上有可能损伤卡盘。另外,如果校准在处理模块中已经执行一些等离子循环之后实地进行(例如,因为担心末端执行器在后面的制造中可能没有设在相对该卡盘的中心),则将实体校准固定装置贴附于卡盘会导致在卡盘上或附近沉积颗粒,从而会剥落掉进处理室。在随后的处理循环中,这种颗粒形成颗粒污染物,这是不希望出现的。
另外,因为该校准是在大气压下进行的,所以现有的校准技术不能有效地复制制造过程中存在的条件。这是因为制造过程中,处理模块的部件设在真空下,使得一个或多个部件由于真空环境和周围大气的压差而出现偏移。由于该校准条件没有如实地复制制造条件,所以不可能进行准确的校准。
此外,如果手动将末端执行器定位在末端执行器/卡盘对准位置(例如,包括操作者拉或推末端执行器以正对该机械固定装置的键结构设置),则当操作者放开机械臂并利用机器控制器对准这个末端执行器/卡盘对准位置时,机械臂位置会有偏移。这个偏移出现的原因有许多,包括例如断开机器马达。当机械臂离开,尽管只是少到对于机器操作者察觉不到的量,但是这个偏移会导致校准工艺不精确。如果校准过程不准确,那么制造过程中会出现不准确的晶片位置,导致成品率降低,以及所制造的产品的报废和/或故障率增加。
本发明的实施方式涉及执行末端执行器校准的原位方法和设备而不使用机械固定装置或存在该现有末端执行器校准方法相关的缺点。如前面所提到的,为了执行末端执行器校准,该末端执行器中心或该末端执行器限定中心(即,该末端执行器限定/确定的中心,其可以是或者可以不必是该末端执行器的质量或集合中心)需要与该卡盘中心对准。为了确定实际的末端执行器/卡盘对准,现有技术采用机械固定装置,其涉及许多之前所述的缺点。
本发明的一个或多个实施方式中,原位光学技术用来确定实际的末端执行器/卡盘对准位置。这个确定过程生成数据,该数据使该机器控制器在生产过程中能够移动该机械臂所需的量以解决末端执行器/卡盘不对准。
本发明的一个或多个实施方式中,该原位光学末端执行器校准技术包括当该末端执行器和该卡盘在它们的理论末端执行器/卡盘对准时(即,当该机器控制器相信该末端执行器相对该卡盘理论上定心时,该末端执行器相对该卡盘占据的位置),获取该末端执行器和该卡盘的静止图像。该末端执行器提供有一个或多个视觉标识,其使得该处理单元能从获取的静止图像确定该末端执行器限定中心。该卡盘类似地具有一个或多个视觉标识(如该卡盘边缘通常圆的形状),以使得该处理单元能确定该卡盘的中心。
一旦该处理单元确定该末端执行器中心和该卡盘中心,计算这两个中心之间的偏移(即,“Δ”)。然后计算将该末端执行器从该理论末端执行器/卡盘对准位置移动到该实际的末端执行器/卡盘对准位置所需的位置向量。这个位置向量然后提供给该机器控制器以使得该机器控制器能够补偿末端执行器/卡盘不对准。
在一个或多个实施方式中,原位光学技术采用图像捕获装置(例如,摄像机和/或透镜),其获得该末端执行器和该卡盘的光学图像,而在生产条件下,将该末端执行器和该卡盘设在该等离子处理室中。换句话说,该末端执行器校准工艺过程中,该等离子处理室可设在真空条件下,其基本上类似于在生产过程中存在的真空条件。该摄像机和/或透镜可设在该等离子处理室内部,或优选地在该等离子处理室外面但是具有通到该末端执行器和该卡盘的、包含该前面提到的视觉标识的区域的光学通道(例如,通过适当设计的窗或孔)。通过在基本上与在生产过程中经历的条件完全相同的条件下执行校准,则可基本上消除由于压力差导致的校准误差。
本发明的一个或多个实施方式中,该末端执行器提供有划线。该划线设在该末端执行器上,从而在原位光学校准期间,可获取该划线的静止图像。在一个实施方式中,该末端执行器上的划线构造为一段圆弧,其中心与该末端执行器限定中心一致。通过确定该弧线以及该划线/弧线所在圆的中心,可确定该末端执行器限定中心。然而,在别的实施方式中,设想也可以采用任何可用来导出该末端执行器限定中心的替代基准标记。
此外,原位光学校准过程中,该图像获取设备(摄像机和/或透镜)设置为该图像还具有该卡盘边缘的一些或全部,或者该卡盘的或其上的可用来推断该卡盘的中心的视觉标识。在带有该末端执行器的情况下,可为该卡盘提供一个或多个视觉标识以允许该处理单元确定该卡盘的中心。在一个实施方式中,该卡盘的外缘本身构成这样的所需的视觉标识。
在一个实施方式中,通过确定由该卡盘视觉标识(例如,在一个实施方式中,该卡盘圆形边缘)描述的圆,可确定该卡盘的中心。如所提到的,一旦确定该末端执行器中心和该卡盘中心,该差(“Δ“)可确定并作为修正因子提供到机器控制系统以补偿末端执行器/卡盘不对准。
参照下面的附图和讨论可以更好地理解本发明的特征和优点。
图A2示出,按照本发明的实施方式,等离子处理系统A220的示意性表示,说明用于原位校准末端执行器的原位光学末端执行器校准系统A200至少一部分的俯视图,(例如,半导体器件生产条件下,等离子处理系统A220),而不需要机械固定装置。如图A2中可见,该原位光学末端执行器校准系统A200包括末端执行器A202,其上具有划线标记A204。图A2的示例中,该划线标记A204是表示圆的一部分的弧线,其中心与该末端执行器A202限定的中心一致。该圆中心的确定以及与该圆有关的弧线的划线在本领域技术人员的技术能力范围内。
图A2还示出卡盘A206,表示该处理模块内的卡盘。该原位光学末端执行器校准技术构造为使用原位光学方法确定该卡盘的中心和该末端执行器限定中心,以便生成该机械臂控制系统A222所必要的修正向量。校准过程中,图像捕获装置A250(例如,设在末端执行器A202和卡盘A206的摄像机)可至少获取至少一部分末端执行器A202(包括划线标记A204)和至少一部分卡盘A206的静止图像。注意如果由摄像机和/或透镜装置从上方获取图像,那么一部分卡盘A206可隐藏在末端执行器A202下方。
不过,处理单元A224(例如,包含在逻辑模块A210中)能够重新构建该由卡盘A206的圆形边缘形成的圆,并确定该圆的中心(其表示该卡盘A202的中心)。类似地,处理单元A224(例如,包含在逻辑模块A210中)能够重新构建划线/弧线A204所在的圆,以及以确定该圆的中心。这个圆在图A2中由虚线圆A212表示。
图A2还示出末端执行器中心A214,表示该末端执行器限定的中心A202由该前面提到的处理单元A224确定。还示出卡盘中心A216,表示该中心卡盘A206。然后生成末端执行器中心A214与卡盘中心A216的位置差向量A218。由于末端执行器中心A214表示该理论末端执行器/卡盘对准位置,而卡盘中心A216表示该实际的末端执行器/卡盘对准位置,所以该位置差向量A218表示将该末端执行器中心A214与卡盘中心A216对准所需的修正。末端执行器A214与卡盘中心A216对准时,实现实际的末端执行器/卡盘对准。通过将这个位置差向量A218提供给机器控制系统A222,该机器控制系统A222在生产过程中能够将机器人移动由该距末端执行器中心A214的位置差向量A218提供的距离和方向,由此有效修正该末端执行器/卡盘不对准。
图A3示出,按照本发明的实施方式,该原位光学末端执行器校准方法的说明性流程图。该方法可通过例如采用一个或多个采用参照图A2的示例讨论的部件来执行。在步骤A302,该末端执行器由该机械臂移动到该理论末端执行器/卡盘对准位置,即,该位置该机器控制系统认为将该末端执行器相对该卡盘理论上定心。在步骤A304,以关于图A2讨论的方式获取该末端执行器、该末端执行器上的视觉标识和该卡盘的静止图像。
在步骤A306,进行图像处理以获取该末端执行器上的该视觉标识(例如,该前面提到的划线标记),并确定该卡盘的外缘形成的圆。为了协助处理单元,该摄像机和/或透镜可这样构造,为确定反差优化光频率、照明条件、光圈、焦距、视场等,并允许该处理单元获得提供数据以确定该末端执行器中心和该晶片中心的视觉标识。
在一个实施方式中,步骤A308包含沿该静止图像中的反差像素生成多个数据点以及执行曲线拟合以重新建立所需的圆。这种图像处理技术和曲线拟合技术是现有技术中其他里关于中所公知的,并且可使用许多通用的、非特别设计的处理单元包来进行(例如与CV-3002系列控制器CV-H3N一起使用的Keyence通信软件,可从Keyence Corporation Woodcliff Lake,NJ公司获得)。
在步骤A310,根据由该处理单元从该末端执行器视觉标识(例如,该划线)建立的圆确定该末端执行器限定中心。在步骤A312,根据由该处理单元从该卡盘视觉标识(例如,该卡盘的外缘)建立的圆确定该卡盘的中心。在步骤A314,确定该末端执行器中心与该卡盘中心的差向量。在步骤A316,这个差向量提供到该机器控制系统,以使得该机器控制系统能够在生产过程中移动该机械臂以补偿该末端执行器/卡盘不对准。
如从前面所述可以认识到的,本发明的实施方式实现末端执行器校准,基本上没有与现有技术机械固定装置校准方法相关的缺陷。通过执行原位校准,忠实地重现在生产过程中的条件,得到更准确的校准工艺。这些条件包括,例如,类似的真空条件和类似的机器人伺服电机参数。由于没有采用机械固定装置,可节省为不同的等离子处理模块制造和保持大量不同的机械校准固定装置相关的成本。此外,使用非接触、非实体校准技术避免了与校准有关的卡盘损伤以及与校准有关的颗粒污染,使得可以更频繁地和/或在生产过程中执行该校准而不会使室和/或所制造的器件存在风险。
讨论A[结束]
尽管本发明依照多个实施方式描述,但是存在落入本发明范围内的改变、置换和各种替代等同物。尽管这里提供多个不同示例,但是意图是这些示例是说明性的而不是对本发明的限制。
并且,这里为了方便提供标题和概要,不应当用来解释这里的权利要求的范围。进而,摘要是以高度概括的形式撰写的并且在这里为了方便而提供,因此不应当用来解释或者限制在权利要求中表述的总的发明。如果这里使用了术语“组”,这种术语意图是具有数学意义上的一般理解,涵盖零个、一个或多于一个元素。还应当注意,有许多实现本发明方法和设备的方式。所以,所以,其意图是下面所附的权利要求解释为包括所有这样的落入本发明主旨和范围内的改变、置换和各种替代等同物。

Claims (19)

1.一种在等离子处理系统中执行DA(动态对准)束校准的方法,所述方法包括:
获得位置差,所述位置差通过光学成像方法取得,所述光学成像方法包括:
将晶片设在末端执行器上,
取得所述晶片在所述末端执行器上的静止图像,
处理所述静止图像以确定所述晶片的中心和由所述末端执行器限定的末端执行器限定中心,
确定所述晶片的中心和所述由所述末端执行器限定的末端执行器限定中心之间的位置差,
通过利用机器移动补偿来补偿所述晶片和所述末端执行器之间的所述位置差而将晶片相对末端执行器定心;
移动所述晶片和所述末端执行器通过与等离子处理模块关联的DA束;和
通过记录所述DA束的中断-然后-恢复样式获得基准DA束样式,所述中断-然后-恢复样式随着所述晶片和所述末端执行器移动通过所述DA束出现。
2.根据权利要求1所述的方法,进一步包括在所述末端执行器上提供第一视觉标识,使得处理单元能够从所述静止图像确定所述末端执行器限定中心,所述第一视觉标识表示用来导出所述末端执行器限定中心的基准标记。
3.根据权利要求1所述的方法,进一步包括在所述晶片上提供第一视觉标识,使得处理单元能够从所述静止图像确定所述晶片的中心,所述第一视觉标识用来确定由所述第一视觉标识描述的圆,由此能够确定所述晶片的中心。
4.根据权利要求1所述的方法,进一步包括采用图像捕获装置来获取所述晶片和所述末端执行器的静止图像从而可在生产条件条件下校准所述DA束。
5.根据权利要求4所述的方法,其中所述图像捕获装置的至少一部分实现在等离子处理室内部。
6.根据权利要求1所述的方法,进一步包括通过光学通道获得所述静止图像,该通道允许所述静止图像包括所述末端执行器的第一视觉标识的图像的至少一部分和所述晶片的第一视觉标识的图像的至少一部分两者,所述末端执行器的所述第一视觉标识表示用来导出所述末端执行器限定中心的基准标记,所述晶片的所述第一视觉标识用来确定由所述晶片的所述第一视觉标识描述的圆。
7.一种用于在等离子处理系统中执行DA(动态对准)束校准的系统,所述系统包括:
机器控制器,所述机器控制器构造为执行下列至少一个
通过利用机器移动补偿来补偿晶片和末端执行器之间的位置差而将晶片相对末端执行器定心,
移动所述晶片和所述末端执行器通过与等离子处理模块关联的DA束;
图像捕获装置,所述图像捕获装置构造为取得所述晶片和所述末端执行器的至少一个的一个或多个静止图像;
处理单元,至少执行:处理所述一个或多个静止图像以确定所述末端执行器限定中心和所述晶片的中心和确定所述末端执行器限定中心和所述晶片的中心之间的所述位置差,其中所述位置差使用原位光学成像方法获得;和
逻辑模块,所述逻辑模块构造用于通过记录所述DA束的中断-然后-恢复样式获得基准DA束样式,随着所述晶片和所述末端执行器移动通过所述DA束出现所述中断-然后-恢复样式。
8.根据权利要求7所述的系统,其中所述末端执行器提供有第一视觉标识,由此使得所述处理单元能够从所述一个或多个静止图像确定所述末端执行器限定中心,所述第一视觉标识表示用来导出所述末端执行器限定中心的基准标记。
9.根据权利要求7所述的系统,其中所述晶片提供有第一视觉标识,由此使得所述处理单元能够从所述一个或多个静止图像确定所述晶片的中心,所述第一视觉标识用来确定由所述第一视觉标识描述的圆,由此能够确定所述晶片的中心。
10.根据权利要求7所述的系统,其中所述图像捕获装置的至少一部分实现在所述处理系统的等离子处理室内部。
11.根据权利要求7所述的系统,其中通过光学通道获得所述一个或多个静止图像,该通道允许所述一个或多个静止图像包括所述末端执行器的第一视觉标识的图像的至少一部分和所述晶片的第一视觉标识的图像的至少一部分两者,所述末端执行器的所述第一视觉标识表示用来导出所述末端执行器限定中心的基准标记,所述晶片的所述第一视觉标识用来确定由所述晶片的所述第一视觉标识描述的圆。
12.一种执行DA(动态对准)束校准的等离子处理系统,所述等离子处理系统包括:
机器控制器,所述机器控制器构造为至少用于
通过利用机器移动补偿来补偿晶片和末端执行器之间的位置差将晶片相对末端执行器定心,
移动所述晶片和所述末端执行器通过与等离子处理模块关联的DA束;
光学成像系统,所述原位光学系统构造为获取所述位置差;
逻辑模块,所述逻辑模块构造用于通过记录所述DA束的中断-然后-恢复样式获得基准DA束样式,所述中断-然后-恢复样式随着所述晶片和所述末端执行器移动通过所述DA束出现。
13.根据权利要求12所述的系统,其中所述原位光学成像系统构造为包括至少
光学成像系统,所述光学成像系统构造为取得所述晶片和所述末端执行器的一个或多个静止图像;
处理单元,所述处理单元构造为确定所述晶片的中心和所述末端执行器限定中心;和
逻辑模块,所述逻辑模块构造为确定所述末端执行器限定中心和所述晶片的中心的所述位置差。
14.根据权利要求13所述的系统,其中所述末端执行器提供有第一视觉标识,由此使得处理单元能够从所述一个或多个静止图像确定所述末端执行器限定中心,所述第一视觉标识表示用来导出所述末端执行器限定中心的基准标记。
15.根据权利要求14所述的系统,其中所述第一视觉标识是划线,所述划线构造为一段圆弧使得该圆的中心与所述末端执行器限定中心一致。
16.根据权利要求13所述的系统,其中所述晶片提供有第一视觉标识,由此使得处理单元能够从所述一个或多个静止图像确定所述晶片的中心,所述第一视觉标识用来确定由所述第一视觉标识所描述的圆,由此能够确定所述晶片的中心。
17.根据权利要求16所述的系统,其中所述第一视觉标识是所述晶片的外缘。
18.根据权利要求13所述的系统,其中所述光学成像系统的至少一部分实现在等离子处理室内部。
19.根据权利要求13所述的系统,其中通过光学通道获得所述一个或多个静止图像,所述光学通道允许所述一个或多个静止图像包括所述末端执行器的第一视觉标识的图像的至少一部分和所述晶片的第一视觉标识的图像的至少一部分两者,所述末端执行器的所述第一视觉标识表示用来导出所述末端执行器限定中心的基准标记,所述晶片的所述第一视觉标识用来确定由所述晶片的所述第一视觉标识描述的圆。
CN2008801240467A 2007-12-27 2008-12-19 用于动态对准束校准的系统和方法 Active CN101911279B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US1714607P 2007-12-27 2007-12-27
US1714707P 2007-12-27 2007-12-27
US61/017,146 2007-12-27
US61/017,147 2007-12-27
PCT/US2008/087684 WO2009086109A2 (en) 2007-12-27 2008-12-19 Systems and methods for dynamic alignment beam calibration

Publications (2)

Publication Number Publication Date
CN101911279A true CN101911279A (zh) 2010-12-08
CN101911279B CN101911279B (zh) 2012-05-16

Family

ID=40825037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801240467A Active CN101911279B (zh) 2007-12-27 2008-12-19 用于动态对准束校准的系统和方法

Country Status (7)

Country Link
US (1) US9269529B2 (zh)
JP (1) JP5336513B2 (zh)
KR (1) KR101590655B1 (zh)
CN (1) CN101911279B (zh)
SG (1) SG186664A1 (zh)
TW (1) TWI518834B (zh)
WO (1) WO2009086109A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280400A (zh) * 2011-09-05 2011-12-14 清华大学 一种激光束加工处理中的晶圆片对准方法
CN109103122A (zh) * 2017-06-20 2018-12-28 梭特科技股份有限公司 影像校准的置晶方法及置晶设备
TWI670154B (zh) * 2013-04-29 2019-09-01 格羅方德半導體公司 監控晶圓處理及晶圓處理機之系統及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658222B2 (en) 2015-01-16 2020-05-19 Lam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
US10134623B2 (en) 2015-07-13 2018-11-20 Brooks Automation, Inc. On the fly automatic wafer centering method and apparatus
US9831110B2 (en) * 2015-07-30 2017-11-28 Lam Research Corporation Vision-based wafer notch position measurement
EP3988257B1 (en) 2016-02-08 2023-05-03 Berkshire Grey Operating Company, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US10541168B2 (en) * 2016-11-14 2020-01-21 Lam Research Corporation Edge ring centering method using ring dynamic alignment data
US11088004B2 (en) 2018-01-30 2021-08-10 Brooks Automation, Inc. Automatic wafer centering method and apparatus
JP7103200B2 (ja) * 2018-12-18 2022-07-20 株式会社安川電機 搬送システム及び搬送制御方法
CN110286072B (zh) * 2019-06-25 2022-10-21 华北水利水电大学 一种基于模式识别的风沙输移动态量测方法
EP4100874A1 (en) 2020-02-06 2022-12-14 Berkshire Grey Operating Company, Inc. Systems and methods for camera calibration with a fiducial of unknown position on an articulated arm of a programmable motion device
US11813757B2 (en) * 2020-10-13 2023-11-14 Applied Materials, Inc. Centerfinding for a process kit or process kit carrier at a manufacturing system

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055376A (en) * 1975-10-02 1977-10-25 Rockwell International Corporation Calibration reticle for measuring microscopes
US4819167A (en) * 1987-04-20 1989-04-04 Applied Materials, Inc. System and method for detecting the center of an integrated circuit wafer
US4971443A (en) * 1987-12-25 1990-11-20 Dainippon Screen Mfg. Co., Ltd. Optical position detecting method and apparatus therefor
CA2044649A1 (en) 1990-06-19 1991-12-20 Masanori Nishiguchi Method and apparatus for packaging a semiconductor device
US5530548A (en) * 1994-11-07 1996-06-25 Automotive Systems Laboratory, Inc. Calibratable optical distance sensing system and method
US5675407A (en) * 1995-03-02 1997-10-07 Zheng Jason Geng Color ranging method for high speed low-cost three dimensional surface profile measurement
US5822213A (en) * 1996-03-29 1998-10-13 Lam Research Corporation Method and apparatus for determining the center and orientation of a wafer-like object
EP0837333A3 (en) * 1996-10-18 1999-06-09 Tokyo Electron Limited Apparatus for aligning a semiconductor wafer with an inspection contactor
EP0996963A4 (en) 1997-07-11 2006-01-18 Genmark Automation Inc MULTI-POSITION SCANNER
US6114705A (en) * 1997-09-10 2000-09-05 Varian Semiconductor Equipment Associates, Inc. System for correcting eccentricity and rotational error of a workpiece
BE1011535A3 (nl) * 1997-11-05 1999-10-05 Framatome Connectors Belgium Werkwijze en inrichting voor het opmeten van de positie van een reeks contactpennen en voor het aanbrengen van deze reeks in een plaat met gedrukte schakelingen.
US6126382A (en) * 1997-11-26 2000-10-03 Novellus Systems, Inc. Apparatus for aligning substrate to chuck in processing chamber
US6244121B1 (en) * 1998-03-06 2001-06-12 Applied Materials, Inc. Sensor device for non-intrusive diagnosis of a semiconductor processing system
JP3957413B2 (ja) 1998-10-08 2007-08-15 松下電器産業株式会社 ウェーハ位置検出方法及びその検出装置
US6188323B1 (en) * 1998-10-15 2001-02-13 Asyst Technologies, Inc. Wafer mapping system
US6275742B1 (en) 1999-04-16 2001-08-14 Berkeley Process Control, Inc. Wafer aligner system
US6191851B1 (en) * 1999-04-28 2001-02-20 Battelle Memorial Institute Apparatus and method for calibrating downward viewing image acquisition systems
US6195619B1 (en) * 1999-07-28 2001-02-27 Brooks Automation, Inc. System for aligning rectangular wafers
US7552440B1 (en) * 1999-09-28 2009-06-23 Rockwell Automation Technologies, Inc. Process communication multiplexer
JP4389305B2 (ja) * 1999-10-06 2009-12-24 東京エレクトロン株式会社 処理装置
US6629053B1 (en) * 1999-11-22 2003-09-30 Lam Research Corporation Method and apparatus for determining substrate offset using optimization techniques
US6502054B1 (en) * 1999-11-22 2002-12-31 Lam Research Corporation Method of and apparatus for dynamic alignment of substrates
US6409463B1 (en) * 2000-02-08 2002-06-25 Seh America, Inc. Apparatuses and methods for adjusting a substrate centering system
JP4942129B2 (ja) 2000-04-07 2012-05-30 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド GaAsウエハ用のウエハ方向センサー
US6856863B1 (en) 2000-07-27 2005-02-15 Applied Materials, Inc. Method and apparatus for automatic calibration of robots
JP4740405B2 (ja) * 2000-11-09 2011-08-03 東京エレクトロン株式会社 位置合わせ方法及びプログラム記録媒体
US6591160B2 (en) * 2000-12-04 2003-07-08 Asyst Technologies, Inc. Self teaching robot
JP3920587B2 (ja) 2001-04-16 2007-05-30 東京エレクトロン株式会社 基板搬送手段のティーチング方法
US6747746B2 (en) * 2001-07-16 2004-06-08 Therma-Wave, Inc. System and method for finding the center of rotation of an R-theta stage
US7106490B2 (en) * 2001-12-14 2006-09-12 Micronic Laser Systems Ab Methods and systems for improved boundary contrast
TWI274393B (en) 2002-04-08 2007-02-21 Acm Res Inc Electropolishing and/or electroplating apparatus and methods
US7233841B2 (en) * 2002-04-19 2007-06-19 Applied Materials, Inc. Vision system
JP4260423B2 (ja) * 2002-05-30 2009-04-30 ローツェ株式会社 円盤状物の基準位置教示方法、位置決め方法および搬送方法並びに、それらの方法を使用する円盤状物の基準位置教示装置、位置決め装置、搬送装置および半導体製造設備
US6900877B2 (en) * 2002-06-12 2005-05-31 Asm American, Inc. Semiconductor wafer position shift measurement and correction
JP4257570B2 (ja) 2002-07-17 2009-04-22 株式会社安川電機 搬送用ロボットのティーチング装置および搬送用ロボットのティーチング方法
WO2004059699A2 (en) * 2002-12-20 2004-07-15 Brooks Automation, Inc. System and method for on-the-fly eccentricity recognition
JP2004288792A (ja) 2003-03-20 2004-10-14 Lintec Corp アライメント装置及びアライメント方法
US6748293B1 (en) 2003-03-24 2004-06-08 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for high speed object handling
US6952255B2 (en) * 2003-08-06 2005-10-04 Lam Research Corporation System and method for integrated multi-use optical alignment
JP4501103B2 (ja) 2003-10-17 2010-07-14 株式会社安川電機 半導体ウェハ搬送ロボットのキャリブレーション方法およびそれを備えた半導体ウェハ搬送ロボット、ウェハ搬送装置
US7319920B2 (en) * 2003-11-10 2008-01-15 Applied Materials, Inc. Method and apparatus for self-calibration of a substrate handling robot
US20050137751A1 (en) * 2003-12-05 2005-06-23 Cox Damon K. Auto-diagnostic method and apparatus
KR20050087361A (ko) * 2004-02-26 2005-08-31 세메스 주식회사 기판 이송 장치
KR100577582B1 (ko) * 2004-06-09 2006-05-08 삼성전자주식회사 반도체 포토 스피너 설비 및 이를 이용한 웨이퍼 티칭불량방지방법
US20060009047A1 (en) 2004-07-09 2006-01-12 Wirth Paul Z Modular tool unit for processing microelectronic workpieces
US20060045666A1 (en) 2004-07-09 2006-03-02 Harris Randy A Modular tool unit for processing of microfeature workpieces
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US20060167583A1 (en) * 2005-01-22 2006-07-27 Applied Materials, Inc. Method and apparatus for on the fly positioning and continuous monitoring of a substrate in a chamber
US7197828B2 (en) * 2005-05-31 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing FPD chuck Z position measurement
US20070177963A1 (en) 2006-02-01 2007-08-02 Tang Chee W End effector for transferring a wafer
KR20080023890A (ko) * 2006-09-12 2008-03-17 삼성전자주식회사 반도체 제조설비의 웨이퍼 정렬장치
JP2008251968A (ja) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp ウエハ処理装置の運転方法
US8099192B2 (en) * 2007-11-06 2012-01-17 Novellus Systems, Inc. Method and apparatus for teaching a workpiece transfer robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280400A (zh) * 2011-09-05 2011-12-14 清华大学 一种激光束加工处理中的晶圆片对准方法
TWI670154B (zh) * 2013-04-29 2019-09-01 格羅方德半導體公司 監控晶圓處理及晶圓處理機之系統及方法
CN109103122A (zh) * 2017-06-20 2018-12-28 梭特科技股份有限公司 影像校准的置晶方法及置晶设备
CN109103122B (zh) * 2017-06-20 2020-10-16 梭特科技股份有限公司 影像校准的置晶方法及置晶设备

Also Published As

Publication number Publication date
WO2009086109A2 (en) 2009-07-09
KR101590655B1 (ko) 2016-02-18
US20100272347A1 (en) 2010-10-28
US9269529B2 (en) 2016-02-23
JP5336513B2 (ja) 2013-11-06
KR20100116590A (ko) 2010-11-01
JP2011508975A (ja) 2011-03-17
CN101911279B (zh) 2012-05-16
TWI518834B (zh) 2016-01-21
SG186664A1 (en) 2013-01-30
WO2009086109A3 (en) 2009-09-17
TW200943465A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
CN101911279B (zh) 用于动态对准束校准的系统和方法
CN102027568B (zh) 用于校准等离子体处理系统中的末端执行器对准的系统和方法
CN101911276B (zh) 使用至少一个光源校准末端执行器对准的系统和方法
US11642747B2 (en) Aligning parts using multi-part scanning and feature based coordinate systems
CN105320399B (zh) 激光图案化偏斜校正
CN103945653B (zh) 柔性线路板印刷的多自由度平台的自动校正方法
CN107972071B (zh) 一种基于末端点平面约束的工业机器人连杆参数标定方法
US20040144760A1 (en) Method and system for marking a workpiece such as a semiconductor wafer and laser marker for use therein
JP2019169156A (ja) 対象物の仮想組立により組立システムをトレーニングするためのビジョンシステム
CN110785248B (zh) 增材制造装置的功率辐射源的头部系统校准
KR101452928B1 (ko) 카메라와 변위센서를 이용한 스테이지 캘리브레이션 방법
US9302345B2 (en) Laser machining calibration method
CN109570750A (zh) 一种激光振镜精度在线校正系统及方法
JP2008004358A (ja) アライメント方法及びアライメント装置並びに有機el素子形成装置
CN115666125B (zh) 基于机器视觉的贴片机xy平台定位误差检测与补偿方法
TW201408410A (zh) 用於將鐳射對準於工作表面的鐳射裝置和方法
US7675633B2 (en) Method for measuring positions of structures on a substrate with a coordinate measuring machine
JP2012133122A (ja) 近接露光装置及びそのギャップ測定方法
CN114571199A (zh) 一种锁螺丝机及螺丝定位方法
JP2003233424A (ja) Xyステージの位置補正方法、装置、及び、これを用いた位置決め方法、装置
KR100693016B1 (ko) 비전시스템을 이용한 로봇의 캘리브레이션 방법
JP2001013189A (ja) 回路基板検査装置の制御方法
Buschhaus et al. Inline calibration method for robot supported process tasks with high accuracy requirements
JP2016161825A (ja) 露光装置、基板、および露光方法
WO2023219568A2 (en) Methods, systems and apparatuses for equipment alignment and position teach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant