CN101901832B - Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof - Google Patents

Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof Download PDF

Info

Publication number
CN101901832B
CN101901832B CN2010102121784A CN201010212178A CN101901832B CN 101901832 B CN101901832 B CN 101901832B CN 2010102121784 A CN2010102121784 A CN 2010102121784A CN 201010212178 A CN201010212178 A CN 201010212178A CN 101901832 B CN101901832 B CN 101901832B
Authority
CN
China
Prior art keywords
gallium
diffusion
punchthrough
break
silicon chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102121784A
Other languages
Chinese (zh)
Other versions
CN101901832A (en
Inventor
周健
耿开远
朱法扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jilai Microelectronics Co.,Ltd.
Original Assignee
QIDONG JILAI ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QIDONG JILAI ELECTRONIC CO Ltd filed Critical QIDONG JILAI ELECTRONIC CO Ltd
Priority to CN2010102121784A priority Critical patent/CN101901832B/en
Publication of CN101901832A publication Critical patent/CN101901832A/en
Application granted granted Critical
Publication of CN101901832B publication Critical patent/CN101901832B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a controlled silicon punchthrough structure formed by gallium diffusion and a production method thereof, wherein the controlled silicon punchthrough structure formed by the gallium diffusion comprises a long base region of the controlled silicon and gallium punchthrough diffusion regions; and the gallium punchthrough diffusion regions are arranged at left and right sides of the long base region, the upper and lower angles of the two gallium punchthrough diffusion regions are provided with gallium etch tanks; and the production method of the controlled silicon punchthrough structure formed by the gallium diffusion comprises the following steps: a step of a N silicon wafer growth oxide layer and a photoetching punchthrough ring and a step of the etch tanks, the gallium diffusion and the reduction and gallium punchthrough diffusion. The invention has the advantages that boron punchthrough diffusion can be carried out under the temperatures of 1260 DEG C and 1270 DEG C, the corresponding punchthrough time is 170 hours and 120 hours; the punchthrough temperature is low, the punchthrough time is short, minority carrier lifetime is long and the controlled silicon voltage is high; and concentration of the gallium diffusion is low, ohms per square R is about 100-200 omega/square and reverse blocking voltage is low.

Description

A kind of gallium diffuses to form the production method of controllable silicon break-through structure
Technical field
The present invention relates to the production method that a kind of gallium diffuses to form controllable silicon break-through structure.
Background technology
Controllable silicon break-through diffusion of the prior art is often referred to boron break-through diffusion, but boron break-through diffusion temperature is high, reaches 1270 degrees centigrade, and diffusion time is long, wants 180 hours usually; The temperature height causes minority carrier life time to reduce greatly, causes the controllable silicon blocking voltage to reduce; Boron diffusion concentration overrich causes controllable silicon reverse blocking voltage to reduce.
Summary of the invention
The purpose of this invention is to provide the production method that a kind of gallium diffuses to form controllable silicon break-through structure.
The technical scheme that the present invention adopts is:
A kind of gallium diffuses to form the production method of controllable silicon break-through structure, comprises N type silicon chip growth oxide layer and photoetching break-through ring step, also comprises etching tank, gallium diffusion, attenuate and gallium break-through diffusing step,
Said etching tank step is: will carry out controlled silicon chip behind the photoetching break-through ring and place and carry out the etching tank operation in the container that fills 0 degree centigrade of chemical corrosion liquid, and corrosion groove depth 16-24 micron, wherein chemical corrosion liquid is that volume ratio is glacial acetic acid: HF: HNO 3:=1.5: 3: 10;
Said gallium diffusing step is: the controlled silicon chip that will carry out behind the etching tank places in the high temperature dispersing furnace, does the gallium source with gallic oxide and carries out the diffusion of open pipe gallium, diffusion temperature: T=1200 degree centigrade, time t=90-120 minute, feeds nitrogen 3-4L/ minute during diffusion; Feed hydrogen simultaneously, said hydrogen feeds earlier and fills in the airtight container of deionized water, passes deionized water then and enters in the high temperature dispersing furnace again, and the speed that gets into high temperature dispersing furnace is with a deionized water 100-150 bubble/minute be as the criterion; After the gallium diffusion is accomplished, all form one deck gallium diffusion region in silicon chip surface and the etching tank, diffusion concentration is R=100-200 Ω/, junction depth X j=15-20 μ m;
Said attenuate step is: the controlled silicon chip that will accomplish after gallium spreads utilizes the attenuate machine to carry out attenuate, is thinned to etching tank degree of depth 5-7 micron;
Said gallium break-through diffusing step is: the controlled silicon chip behind the attenuate is placed carry out the break-through diffusion in the high temperature dispersing furnace; Gallium in the etching tank diffuses to controlled silicon chip when high temperature inner; Diffusion temperature 1260-1270 degree centigrade, 120-170 hour diffusion time, fed nitrogen 3-4L/ minute during diffusion; After the gallium diffusion is accomplished, form the gallium reach through region in the silicon slice corrosion groove, positive back side gallium diffusion zone handing-over distance is between the 120-160 micron.
Advantage of the present invention is: boron break-through diffusion all can be carried out break-through under 1260 degrees centigrade and 1270 degrees centigrade of temperature, the break-through time corresponds to 170 hours and 120 hours; The break-through temperature is low, the break-through time short, and minority carrier life time is long, and silicon controlled rectifier voltage is high; The gallium diffusion concentration is low, the about 100-200 Ω/ of R, and reverse blocking voltage is low.
Embodiment
Embodiment 1
A kind of gallium diffuses to form the production method of controllable silicon break-through structure, comprises N type silicon chip growth oxide layer and photoetching break-through ring step, also comprises etching tank, gallium diffusion, attenuate and boron break-through diffusing step,
N type silicon chip growth oxide layer step: place high temperature dispersing furnace to carry out oxidation controlled silicon chip; In oxidizing temperature is under 1130 degree; At first carried out dry-oxygen oxidation 1 hour; Carried out wet-oxygen oxidation then 5 hours, and carried out dry-oxygen oxidation again 1 hour at last, realize that the once oxidation layer thickness of controlled silicon chip reaches 0.6 micron;
Photoetching break-through ring step: the controlled silicon chip after the oxidation is placed on the double face photoetching machine; Behind positive back side reticle figure aligning; Controlled silicon chip is carried out photoetching, utilize oxide layer chemical corrosion liquid (deionized water: ammonium fluoride: hydrofluoric acid=10ml: 6g: 3ml) break-through ring internal oxidation layer is thoroughly eroded, form the break-through ring; Thereby expose silicon, photoresist is not removed;
Said etching tank step is: will carry out controlled silicon chip behind the photoetching break-through ring and place and carry out the etching tank operation in the container that fills 0 degree centigrade of chemical corrosion liquid, and 16 microns of corrosion groove depths, wherein chemical corrosion liquid is that volume ratio is glacial acetic acid: HF: HNO 3:=1.5: 3: 10 volume ratios;
Said gallium diffusing step is: the controlled silicon chip that will carry out behind the etching tank places in the high temperature dispersing furnace, does the gallium source with gallic oxide and carries out the diffusion of open pipe gallium, diffusion temperature: T=1200 degree centigrade, time t=90 minute, feeds nitrogen 3L/ minute during diffusion; Feed hydrogen simultaneously, said hydrogen feeds earlier and fills in the airtight container of deionized water, passes deionized water then and enters in the high temperature dispersing furnace again, and the speed that gets into high temperature dispersing furnace is with 100 bubbles of deionized water/minute be as the criterion; After the gallium diffusion is accomplished, all form one deck gallium diffusion region in silicon chip surface and the etching tank, diffusion concentration is R=200 Ω/, junction depth X j=15 μ m;
Said attenuate step is: the controlled silicon chip that will accomplish after gallium spreads utilizes the attenuate machine to carry out attenuate, is thinned to 5 microns of the etching tank degree of depth;
Said gallium break-through diffusing step is: the controlled silicon chip behind the attenuate is placed carry out the break-through diffusion in the high temperature dispersing furnace; Gallium in the etching tank diffuses to controlled silicon chip when high temperature inner; 1260 degrees centigrade of diffusion temperatures, fed nitrogen 3L/ minute during diffusion at 170 hours diffusion times; After the gallium diffusion is accomplished, form the gallium reach through region in the silicon slice corrosion groove, positive back side gallium diffusion zone handing-over distance is at 120 microns.
The utility model has the advantages that: gallium break-through diffusion all can be carried out break-through under 1260 degrees centigrade and 1270 degrees centigrade of temperature, the break-through time corresponds to 170 hours and 120 hours; The break-through temperature is low, the break-through time short, and minority carrier life time is long, and silicon controlled rectifier voltage is high; The gallium diffusion concentration is low, the about 100-200 Ω/ of R, and reverse blocking voltage is low.
Embodiment 2
A kind of gallium diffuses to form the production method of controllable silicon break-through structure, comprises N type silicon chip growth oxide layer and photoetching break-through ring step, also comprises etching tank, gallium diffusion, attenuate and gallium break-through diffusing step,
Said etching tank step is: will carry out controlled silicon chip behind the photoetching break-through ring and place and carry out the etching tank operation in the container that fills 0 degree centigrade of chemical corrosion liquid, and 20 microns of corrosion groove depths, wherein chemical corrosion liquid is that volume ratio is glacial acetic acid: HF: HNO 3:=1.5: 3: 10 volume ratios;
Said gallium diffusing step is: the controlled silicon chip that will carry out behind the etching tank places in the high temperature dispersing furnace, does the gallium source with gallic oxide and carries out the diffusion of open pipe gallium, diffusion temperature: T=1200 degree centigrade, time t=100 minute, feeds nitrogen 3.5L/ minute during diffusion; Feed hydrogen simultaneously, said hydrogen feeds earlier and fills in the airtight container of deionized water, passes deionized water then and enters in the high temperature dispersing furnace again, and the speed that gets into high temperature dispersing furnace is with 120 bubbles of deionized water/minute be as the criterion; After the gallium diffusion is accomplished, all form one deck gallium diffusion region in silicon chip surface and the etching tank, diffusion concentration is R=150 Ω/, junction depth X j=18 μ m;
Said attenuate step is: the controlled silicon chip that will accomplish after gallium spreads utilizes the attenuate machine to carry out attenuate, is thinned to 6 microns of the etching tank degree of depth;
Said gallium break-through diffusing step is: the controlled silicon chip behind the attenuate is placed carry out the break-through diffusion in the high temperature dispersing furnace; Gallium in the etching tank diffuses to controlled silicon chip when high temperature inner; 1265 degrees centigrade of diffusion temperatures, fed nitrogen 3.5L/ minute during diffusion at 150 hours diffusion times; After the gallium diffusion is accomplished, form the gallium reach through region in the silicon slice corrosion groove, positive back side gallium diffusion zone handing-over distance is at 140 microns.
All the other are with embodiment 1.
Embodiment 3
A kind of gallium diffuses to form the production method of controllable silicon break-through structure, comprises N type silicon chip growth oxide layer and photoetching break-through ring step, also comprises etching tank, gallium diffusion, attenuate and gallium break-through diffusing step,
Said etching tank step is: will carry out controlled silicon chip behind the photoetching break-through ring and place and carry out the etching tank operation in the container that fills 0 degree centigrade of chemical corrosion liquid, and 24 microns of corrosion groove depths, wherein chemical corrosion liquid is that volume ratio is glacial acetic acid: HF: HNO 3:=1.5: 3: 10 volume ratios; Said gallium diffusing step is: the controlled silicon chip that will carry out behind the etching tank places in the high temperature dispersing furnace, does the gallium source with gallic oxide and carries out the diffusion of open pipe gallium, diffusion temperature: T=1200 degree centigrade, time t=120 minute, feeds nitrogen 4L/ minute during diffusion; Feed hydrogen simultaneously, said hydrogen feeds earlier and fills in the airtight container of deionized water, passes deionized water then and enters in the high temperature dispersing furnace again, and the speed that gets into high temperature dispersing furnace is with 150 bubbles of deionized water/minute be as the criterion; After the gallium diffusion is accomplished, all form one deck gallium diffusion region in silicon chip surface and the etching tank, diffusion concentration is R=100 Ω/, junction depth X j=20 μ m;
Said attenuate step is: the controlled silicon chip that will accomplish after gallium spreads utilizes the attenuate machine to carry out attenuate, is thinned to 7 microns of the etching tank degree of depth;
Said gallium break-through diffusing step is: the controlled silicon chip behind the attenuate is placed carry out the break-through diffusion in the high temperature dispersing furnace; Gallium in the etching tank diffuses to controlled silicon chip when high temperature inner; 1270 degrees centigrade of diffusion temperatures, fed nitrogen 4L/ minute during diffusion at 120 hours diffusion times; After the gallium diffusion is accomplished, form the gallium reach through region in the silicon slice corrosion groove, positive back side gallium diffusion zone handing-over distance is at 160 microns.All the other are with embodiment 1.

Claims (1)

1. a gallium diffuses to form the production method of controllable silicon break-through structure, comprises N type silicon chip growth oxide layer and photoetching break-through ring step, it is characterized in that: also comprise etching tank, gallium diffusion, attenuate and gallium break-through diffusing step,
Said etching tank step is: will carry out controlled silicon chip behind the photoetching break-through ring and place and carry out the etching tank operation in the container that fills 0 degree centigrade of chemical corrosion liquid, and corrosion groove depth 16-24 micron, wherein chemical corrosion liquid is that volume ratio is glacial acetic acid: HF: HNO 3:=1.5: 3: 10;
Said gallium diffusing step is: the controlled silicon chip that will carry out behind the etching tank places in the high temperature dispersing furnace, does the gallium source with gallic oxide and carries out the diffusion of open pipe gallium, diffusion temperature: T=1200 degree centigrade, time t=90-120 minute, feeds nitrogen 3-4L/ minute during diffusion; Feed hydrogen simultaneously, said hydrogen feeds earlier and fills in the airtight container of deionized water, passes deionized water then and enters in the high temperature dispersing furnace again, and the speed that gets into high temperature dispersing furnace is with a deionized water 100-150 bubble/minute be as the criterion; After the gallium diffusion is accomplished, all form one deck gallium diffusion region in silicon chip surface and the etching tank, diffusion concentration is R=100-200 Ω/, junction depth X j=15-20 μ m;
Said attenuate step is: the controlled silicon chip that will accomplish after gallium spreads utilizes the attenuate machine to carry out attenuate, is thinned to etching tank degree of depth 5-7 micron;
Said gallium break-through diffusing step is: the controlled silicon chip behind the attenuate is placed carry out the break-through diffusion in the high temperature dispersing furnace; Gallium in the etching tank diffuses to controlled silicon chip when high temperature inner; Diffusion temperature 1260-1270 degree centigrade, 120-170 hour diffusion time, fed nitrogen 3-4L/ minute during diffusion; After the gallium diffusion is accomplished, form the gallium reach through region in the silicon slice corrosion groove, positive back side gallium diffusion zone handing-over distance is between the 120-160 micron.
CN2010102121784A 2010-06-28 2010-06-28 Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof Active CN101901832B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102121784A CN101901832B (en) 2010-06-28 2010-06-28 Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102121784A CN101901832B (en) 2010-06-28 2010-06-28 Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof

Publications (2)

Publication Number Publication Date
CN101901832A CN101901832A (en) 2010-12-01
CN101901832B true CN101901832B (en) 2012-05-23

Family

ID=43227225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102121784A Active CN101901832B (en) 2010-06-28 2010-06-28 Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof

Country Status (1)

Country Link
CN (1) CN101901832B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157547A (en) * 2011-04-01 2011-08-17 启东吉莱电子有限公司 Short base region structure for improving high voltage and large current tolerance of thyristor and production method thereof
CN102789981B (en) * 2012-07-18 2015-02-25 启东吉莱电子有限公司 Production process of silicon-controlled rectifier
CN102789980B (en) * 2012-07-18 2015-01-07 启东吉莱电子有限公司 Production process of short base region structure for improving voltage
CN103151263B (en) * 2013-03-11 2015-08-19 浙江正邦电力电子有限公司 A kind of thyristor chip preparation method
CN111816553B (en) * 2020-05-29 2023-01-03 济宁东方芯电子科技有限公司 Production method of silicon-controlled chip with punch-through structure
CN111933684B (en) * 2020-06-23 2022-12-09 济宁东方芯电子科技有限公司 Silicon controlled rectifier isolation wall and short base region synchronous diffusion structure and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110386A (en) * 1977-03-08 1978-09-27 Toshiba Corp Semiconductor device
JPS6013310B2 (en) * 1979-03-15 1985-04-06 三菱電機株式会社 semiconductor equipment
US6448589B1 (en) * 2000-05-19 2002-09-10 Teccor Electronics, L.P. Single side contacts for a semiconductor device
US20050250272A1 (en) * 2004-05-03 2005-11-10 Holm-Kennedy James W Biosensor performance enhancement features and designs
EP1746661A1 (en) * 2005-07-22 2007-01-24 ABB Technology AG Power semiconductor device
CN100414685C (en) * 2006-08-28 2008-08-27 汤庆敏 Manufacturing process of semiconductor device chip punch through isolation area and PN junction
CN101236903A (en) * 2008-03-11 2008-08-06 启东吉莱电子有限公司 Technology method for improving bidirectional small thyristor III quadrant trigger sensibility
CN201804871U (en) * 2010-06-28 2011-04-20 启东吉莱电子有限公司 Silicon controlled penetrating structure formed by gallium diffusion

Also Published As

Publication number Publication date
CN101901832A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
CN101901832B (en) Controlled silicon punchthrough structure formed by gallium diffusion and production method thereof
CN103710705B (en) A kind of additive of polycrystalline silicon wafer acidity texture preparation liquid and application thereof
CN102082093B (en) Manufacturing technique of chip for two-way voltage regulator diode DB3
CN104505437B (en) A kind of diamond wire cutting making herbs into wool pretreatment fluid of polysilicon chip, making herbs into wool preprocess method and making herbs into wool pretreatment silicon chip and application thereof
CN103403875A (en) Method for the wet-chemical etching back of a solar cell emitter
CN104201102A (en) Fast recovery diode FRD chip and production process for same
CN104078353B (en) Reverse GPP high-voltage diodes chip and production technology in a kind of automobile module
CN105355654B (en) The low pressure Transient Suppression Diode chip and production method of Low dark curient high reliability
CN102543722A (en) High-voltage transient voltage suppressor chip and production process
CN101916786A (en) High-power planar junction bidirectional TVS diode chip and production method thereof
CN105609549A (en) Bi-directional discharge tube chip and manufacturing method thereof
CN109103242A (en) A kind of controlled silicon chip and its production method of punch-through
CN109449251A (en) A kind of preparation method of selective emitter of solar battery
CN104143589B (en) Double-sided diffusion method of solar cell
WO2020220665A1 (en) Manufacturing process for four-diode integrated chip
CN111816553B (en) Production method of silicon-controlled chip with punch-through structure
CN102169833A (en) Manufacturing process of low-power consumption diode
CN205385026U (en) Two -way discharge tube chip
CN110112130B (en) Manufacturing process of novel four-diode integrated chip
CN106133922A (en) The manufacture method of solaode and solaode
CN101901833B (en) Monodirectional silicon controlled rectifier structure for improving switching speed and production method thereof
CN109980043A (en) A kind of efficient volume production preparation method of the black silicon wafer of wet process
CN105448807A (en) Opposite-through isolation manufacturing technology for semiconductor device chip
RU2011134068A (en) METHOD FOR INCREASING SURFACE RESISTANCE OF PLATE AND / OR POWER DENSITY LEVEL OF PHOTOELECTRIC ELEMENT
CN104022187B (en) The implementation method of the selective emitter junction structure of N-type crystalline silicon solaode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: No.1800, Mudanjiang West Road, Huilong Town, Nantong City, Jiangsu Province, 226000

Patentee after: Jiangsu Jilai Microelectronics Co.,Ltd.

Address before: 1261 Gongyuan North Road, Huilong Town, Qidong City, Nantong City, Jiangsu Province

Patentee before: QIDONG JILAI ELECTRONICS Co.,Ltd.

CP03 Change of name, title or address