CN101883796A - 用于生产具有高共聚单体掺入量的聚合物的聚合催化剂 - Google Patents

用于生产具有高共聚单体掺入量的聚合物的聚合催化剂 Download PDF

Info

Publication number
CN101883796A
CN101883796A CN2008801089867A CN200880108986A CN101883796A CN 101883796 A CN101883796 A CN 101883796A CN 2008801089867 A CN2008801089867 A CN 2008801089867A CN 200880108986 A CN200880108986 A CN 200880108986A CN 101883796 A CN101883796 A CN 101883796A
Authority
CN
China
Prior art keywords
group
activator
compound
alkyl
metallocene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801089867A
Other languages
English (en)
Other versions
CN101883796B (zh
Inventor
杨清
T·R·克莱恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron Phillips Chemical Co LLC
Original Assignee
Chevron Phillips Chemical Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Phillips Chemical Co LLC filed Critical Chevron Phillips Chemical Co LLC
Publication of CN101883796A publication Critical patent/CN101883796A/zh
Application granted granted Critical
Publication of CN101883796B publication Critical patent/CN101883796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/07Catalyst support treated by an anion, e.g. Cl-, F-, SO42-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/09Cyclic bridge, i.e. Cp or analog where the bridging unit linking the two Cps or analogs is part of a cyclic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Abstract

本技术涉及包含第4族茂金属化合物的催化剂组合物、方法和聚合物,一般与助催化剂和活化剂结合,第4族茂金属化合物包括桥连η5-环戊二烯基型配体。桥连η5-环戊二烯基型配体通过环状取代基连接。本技术的催化剂在共聚单体掺入聚烯烃聚合物的骨架中可以是更有效的。

Description

用于生产具有高共聚单体掺入量的聚合物的聚合催化剂
背景技术
本技术涉及有机金属组合物、烯烃聚合催化剂组合物以及使用催化剂组合物的烯烃聚合和共聚合方法的领域。
这部分意欲将可能与将在以下描述和/或要求保护的本发明方面相关的技术方面介绍给读者。因此,应该理解的是,这些陈述应根据这个角度来阅读,而不作为对现有技术的承认。
使用引起各种单体例如α烯烃结合成聚合物链的催化剂和各种类型的聚合反应器,可以制造聚烯烃。通过将烃类例如油加工成为各种石油化学制品获得这些α烯烃。如果两者或多种不同α烯烃单体被聚合形成共聚物,可以得到不同的性质。如果聚合使用相同的α烯烃,聚合物可以被称为均聚物。随着这些聚合物链在聚合期间的成长,它们可以形成固体颗粒例如碎屑(fluff)或小粒,其具有某些性质,并对包含这些聚合物的最终产物赋予各种机械和物理性质。
由聚烯烃制造的产品作为塑料产品在社会上已经变得日益普遍。这些聚烯烃的一个益处是当与各种货物或产品接触时它们一般为非反应的。特别是,来自聚烯烃聚合物(例如聚乙烯、聚丙烯和它们的共聚物)的塑料产品用于零售和药品包装(例如展示袋(display bags)、瓶和药品容器)、食品和饮料包装(例如果汁和汽水瓶)、家用和工业容器(例如桶、鼓和盒子)、家庭用品(例如用具、家具、地毯和玩具)、汽车零件、流体、气体和电导产品(例如电缆外壳、管道和导管)以及各种其它工业和消费产品。
多种方法用于从聚烯烃制造产品,其包括但不限于吹塑、注射成型、旋转模塑、各种挤出方法、热成型、片状成型和浇铸。最终产品应用的机械要求——例如拉伸强度和密度——和/或化学要求——例如热稳定性、分子量和化学反应性——一般确定什么类型的聚烯烃合适,并且在制造期间提供最佳加工能力。
附图简述
当阅读以下详细描述后和当参考附图后,本发明的优势可以变得显而易见的,在附图中:
图1代表根据本技术的实施方式的示例性茂金属的化学结构;
图2代表参照茂金属的化学结构。
详细描述
将在以下描述本发明的一个或多个具体的实施方式方式。在努力提供这些实施方式的简明描述中,不是所有的实际实施特征都在说明书中描述。应该意识到,在任何这些实际实施的开发中,如同在任何工程或设计项目中一样,必须做出多个实施特定的决定以实现开发者的特定目标,例如与系统相关和商业相关的约束的依从性,其可以从一种实施变为另一个实施。另外,应该意识到,这样的开发尝试可能是复杂且耗时的,但是仍然是得到本公开益处的本领域技术人员进行设计、加工和制造的常规任务。
促进单体聚合的催化剂可以加入到反应器中。例如,催化剂可以是经过反应器进料流加入的颗粒,并且一旦被加入,其悬浮在反应器内的流体介质中。催化剂可以包括作为催化剂颗粒一部分的载体或者与催化剂颗粒分离的载体。此外,助催化剂例如活化剂可以与催化剂一起加入或者作为催化剂颗粒的一部分被加入,以活化和/或增加催化剂的活性。没有这些助催化剂,聚合反应可能是非常低的或者不发生。活性是催化剂性能的量度,表示为使用的催化剂的每个质量产生的聚合物的质量。应该注意,聚合催化剂一般不被严格地消耗,而是通常作为聚合物中的惰性残余物而保留。
可以在烯烃单体到聚烯烃(例如乙烯到聚乙烯)的聚合中使用的催化剂包括有机金属络合物,其是包含金属原子诸如钛、锆、钒、铬等的有机化合物。在聚合中,这些催化剂临时连接到单体以形成活性中心,该活性中心促进单体单元的顺序加成以形成较长的聚合物链。催化剂经常与载体或活化剂-载体(例如,固体氧化物)结合。另外,金属催化剂和固体氧化物可以与助催化剂混合以进一步活化用于聚合的催化剂。有机金属络合物的催化剂组合物可以用于乙烯的均聚反应以及用于乙烯与共聚单体例如丙烯、1-丁烯、1-己烯或其它高级α-烯烃的共聚合反应。
共聚单体的掺入降低聚合物的结晶度、熔点和密度。这产生了比等价分子量的均聚物的硬度要小和冲击强度要高的聚合物。更重要的是,改变共聚单体的量和类型的能力使聚合物的性质针对特定应用而被调整。这种调整的实例可包括奶瓶——其可能需要坚硬的高密度聚乙烯——到拉伸薄膜树脂——其可能需要非常低密度的挠性聚乙烯。
有效的共聚合可能常常要求共聚单体以比在最终产物中存在的明显更高的浓度加入反应器中。这是掺入聚合物链中的共聚单体比期望的要低的结果。这种低掺入降低了方法的效率、增加了生产成本。此外,某些类型的催化剂可能显示不佳的共聚单体掺入量,这限制了它们在共聚物形成中的使用。
用于生产聚烯烃的多种类型的催化剂体系不会有效地掺入共聚单体。因此,这些催化剂体系对于低密度树脂的生产可能不是理想的。然而,相比于其它催化剂体系,某些茂金属催化剂能够有效地掺入共聚单体,并且在低密度树脂的生产中可以是有用的。此外,依照本技术制造的茂金属催化剂可以以比用于在淤浆法中生产低密度树脂(<0.92g/cc)的目前茂金属催化剂更高的速度掺入共聚单体。因此,本技术的茂金属对于在淤浆法中生产弹性体可以是有用的。
本技术包括新的催化剂组合物、制备催化剂组合物的方法以及使用催化剂组合物聚合烯烃的方法。在一些实施方式中,本技术包括通过使紧密桥连的柄型-茂金属化合物——包括连接两个η5-环戊二烯基型配体的环状桥连基团、活化剂和任选有机铝化合物接触而制备的催化剂组合物。作为接触产物形成的催化剂组合物可以包括接触化合物、由接触化合物形成的反应产物或者两者。这种催化剂组合物相对于其它类型的茂金属系统可以提高共聚单体掺入量。在其它实施方式中,本技术包括制备本文提出的催化剂组合物的方法,和仍在其它实施方式中,本技术包括使用本文提出的催化剂组合物聚合烯烃的方法。如上描述,指定有机铝化合物作为接触产物中的任选成分意图反映:当可以不必赋予包括接触产物的组合物催化活性时,有机铝化合物可以为任选的,如本领域技术人员所理解的。为了有助于目前技术的讨论,包含在本文中的公开以章节提出。
章节I提出根据本技术的实施方式的催化剂组合物和成分。催化剂组合物和成分包括示例性茂金属化合物、任选的有机铝化合物、活化剂/助催化剂、催化剂组合物的非限制性实例以及可以在本技术中应用的烯烃单体。
章节II提出使用在章节I中讨论的成分制备示例性催化剂组合物的技术。这些制备包括:催化剂成分与烯烃的预接触,多个预接触步骤的应用,可以在本技术的催化剂组合物中使用的组分比例,示例性催化剂制备过程,和可以从本技术的催化剂组合物得到的催化剂的活性(就每重量催化剂每小时产生的聚合物而言)。
章节III讨论在聚合中可以使用本技术的催化剂组合物的各种方法。讨论的特定方法包括回路淤浆聚合、气相聚合和溶液相聚合。与实施本技术的催化剂组合物有关的其它信息也在这个章节提出,其包括进料到反应器和从反应器移出聚合物的工厂系统(plant systems)、特定的聚合条件和可以从使用本技术的催化剂组合物形成的聚合物制备的示例产品。
章节IV提出使用根据本技术的实施方式的催化剂组合物制备的聚合物的非限制性实例。实例包括显示共聚单体掺入量提高的数据,该数据是对使用本技术的示例性催化剂组合物制备的聚合物可以得到的。使用示例性催化剂组合物可以得到的分子量和催化剂活性的结果也被讨论。
章节V提出可以用来制造和测试根据本技术实施方式的示例性催化剂组合物的试验步骤。讨论了测定孔径大小的方法。此外,该章节包括对可以用于测量共聚单体掺入量的技术的讨论。章节V也讨论各种聚合物成分合成的示例性技术。这些步骤包括制备氟化二氧化硅-氧化铝和硫酸化活化剂-载体的技术。这些步骤也包括制备根据本技术实施方式的示例性茂金属和聚合物的技术。
I.催化剂组合物和成分
A.茂金属化合物
1.概述
在一个实施方式中,本技术可以包括催化剂组合物,其具有紧密桥连的柄型-茂金属化合物(其包括与环戊二烯基配体结合的烷基或链烯基)、活化剂和任选的有机铝化合物。柄型-茂金属络合物的概括描述在下面的小节2中呈现。
术语“桥连”或“柄型-茂金属”可以指茂金属化合物,其中分子中的两个η5-环二烯基型配体通过桥连部分连接。有用的柄型-茂金属可以为“紧密桥连的”,其指两个η5-环链二烯基型配体通过桥连基团连接,其中在η5-环链二烯基型配体之间的桥连部分的最短连接是单个原子。本文描述的茂金属因此是桥连的双(η5-环链二烯基)-型化合物。连接η5-环链二烯基型配体的桥连基团可以具有式E(Cyc),其中E可以是碳原子、硅原子、锗原子或锡原子,并且E与X1和X2结合,并且其中Cyc可以是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构(在本文也称为“环状桥连部分”)。
在各种实施方式中,桥连基团E(Cyc)可以具有通式:>C(Cyc)、>Si(Cyc)、>Ge(Cyc)或>Sn(Cyc),其中Cyc可以是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构。这些桥连的E(Cyc)基团可以包括例如>C(CH2CH2CH2CH2)、>C(CH2CH2CH2CH2CH2)、>Si(CH2CH2CH2CH2)、>Si(CH2CH2CH2CH2CH2)、>Ge(CH2CH2CH2CH2)、>Ge(CH2CH2CH2CH2CH2)、>Sn(CH2CH2CH2CH2)和>Sn(CH2CH2CH2CH2CH2),以及其它。在这些实例中,碳链的每端连接到起始的碳。Cyc基团也可以在多点之一处由以下列出的任一基团取代。
此外,η5-环戊二烯基型配体上的一个取代基可以是具有多达12个碳原子的取代或未取代的烷基或链烯基基团。在本技术的实施方式中,烷基或链烯基基团可以与η5-环戊二烯基配体结合。在下面的小节3中呈现的通用结构式中可见这些实施方式。根据本发明的实施方式的示例性茂金属络合物在以下小节4中显示。
2.茂金属通式
在本技术的实施方式中,本技术的柄型-茂金属可以由以下通式表达:
(X1)(X2)(X3)(X4)M1
在该式中,M1可以是钛、锆或铪,X1和X2独立为取代的环戊二烯基、取代的茚基或取代的芴基。在X1和X2上的一个取代基是具有式E(Cyc)的桥连基团,其中E可以是碳原子、硅原子、锗原子或锡原子,并且E与X1和X2结合,和其中Cyc可以是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构。在本技术的实施方式中,在η5-环戊二烯基型配体上的一个取代基可以是具有多达12个碳原子的取代的或未取代的烷基或链烯基基团。取代基X3和X4可以独立地为:F、Cl、Br或I;具有多达20个碳原子的烃基、H或BH4;烃氧基(hydrocarbyloxide)基团、烃基氨基(hydrocarbylamino)基团或三烃基甲硅烷基(trihydrocarbylsilyl)基团,其中的任何一个可以具有多达20个碳原子;和/或OBRA 2或SO3RA,其中RA可以是烷基或芳基,其中的任一个具有多达12个碳原子。在取代的环戊二烯基、取代的茚基、取代的芴基、取代的烷基或链烯基基团上、或在Cyc上的任何另外的取代基可以独立地为脂族基、芳族基、环状基团、脂族基和环状基团的组合、氧基团、硫基团、氮基团、磷基团、砷基团、碳基团、硅基团或硼基团,其任何一个可以具有1到20的碳原子。可选地,可以存在另外的取代基,包括卤根或氢。
结合到η5-环戊二烯基型配体的烷基或链烯基基团可以具有多达大约20个碳原子。在示例性实施方式中,烷基或链烯基基团可以具有多达大约12个碳原子、多达8个碳原子或多达大约6个碳原子。示例性烷基可以包括丁基、戊基、己基、庚基或辛基,以及其它。示例性链烯基可以包括3-丁烯基、4-戊烯基、5-己烯基、6-庚烯基或7-辛烯基,以及其它。
虽然在η5-环戊二烯基型配体上的烷基或链烯基取代基可以是未取代的,但是可选地,烷基或链烯基基团可以是取代的。存在的任何取代基可以独立地选自脂族基、芳族基、环状基团、脂族基和环状基团的组合、氧基团、硫基团、氮基团、磷基团、砷基团、碳基团、硅基团、硼基团或其取代的类似物,其任何一个可以具有1到大约20个碳原子。取代基也可以包括卤根或氢。此外,在烷基或链烯基基团上的其它取代基的这种描述可以包括这些部分的取代的、未取代的、支化的、线性的或杂原子取代的类似物。
除了包含如上描述的具有式E(Cyc)的桥连基团以及烷基或链烯基基团外,η5-环戊二烯基型配体也可以具有其它取代基。例如,这些取代基可以与能够作为柄型-茂金属的X3和X4配体相同的化学基团或部分。因此,η5-环戊二烯基型配体上的任何另外的取代基、取代烷基或链烯基基团上的任何取代基、Cyc基团上的任何取代基、X3和X4可以独立地为包括下述的基团:脂族基、芳族基、环状基团、脂族基和环状基团的组合、氧基团、硫基团、氮基团、磷基团、砷基团、碳基团、硅基团、硼基团或其取代的类似物,其任何一个具有1到大约20个碳原子。取代基也可以包括卤根或氢,只要这些基团不终止催化剂组合物的活性。此外,这个清单可以包括可以以多于一个这些类别为特征的取代基,例如苄基。取代基也可以包括取代的茚基和取代的芴基,其包括部分饱和的茚基和芴基,例如,诸如,四氢茚基、四氢芴基和八氢芴基。每个这些取代基团的实例在以下讨论。
可以用作为取代基的脂族基包括例如烷基、环烷基、链烯基、环烯基、炔基、链二烯基、环状基团等。这可以包括其全部取代的、未取代的、支化的和线性的类似物或衍生物,其中每个基团可以具有1至大约20个碳原子。因此,脂族基可以包括例如烃基,诸如链烷烃和链烯基。例如,脂族基可以包括这些基团如甲基、乙基、丙基、正丁基、叔丁基、仲丁基、异丁基、戊基、异戊基、己基、环己基、庚基、辛基、壬基、癸基、十二烷基、2-乙基己基、戊烯基、丁烯基等。
可以用作为取代基的芳族基包括例如苯基、萘基、蒽基等。这些化合物的取代衍生物也可以被包括,其中每个基团可以具有6到大约25个碳。这些取代的衍生物可以包括例如甲苯基、二甲苯基、基
Figure GPA00001073158600071
等,包括其任何杂原子取代的衍生物。
可以用作为取代基的环状基团包括例如环烷、环烯烃、环炔烃、芳烃诸如苯基、双环状基团等以及其取代的衍生物,在每种情况下具有大约3到大约20个碳原子。因此,取代的杂原子取代的环状基团例如呋喃基可以被包括在本文中。这些取代基可以包括脂族和环状基团,例如具有脂族部分和环部分的基团。这些取代基的实例包括基团例如:-(CH2)mC6HqR5-q,其中m可以是1到大约10的整数,和q可以是1到5的整数,包括1和5;-(CH2)mC6HqR11-q,其中m可以是1到大约10的整数,和q可以是1到11的整数,包括1和11;或-(CH2)mC5HqR9-q,其中m可以是1到大约10的整数,和q可以是1到9的整数,1和9包括在内。如以上所定义,R可以独立地选自:脂族基;芳族基;环状基团;其任何组合;其任何取代的衍生物,包括但不限于卤根-、烷氧基-或酰胺取代的衍生物或其类似物;其任何一个具有1到大约20个碳原子;或氢。在各种实施方式中,这些脂族和环状基团可以包括例如:-CH2C6H5;-CH2C6H4F;-CH2C6H4Cl;-CH2C6H4Br;-CH2C6H4I;-CH2C6H4OMe;-CH2C6H4OEt;-CH2C6H4NH2;-CH2C6H4NMe2;-CH2C6H4NEt2;-CH2CH2C6H5;-CH2CH2C6H4F;-CH2CH2C6H4Cl;-CH2CH2C6H4Br;-CH2CH2C6H4I;-CH2CH2C6H4OMe;-CH2CH2C6H4OEt;-CH2CH2C6H4NH2;-CH2CH2C6H4NMe2;-CH2CH2C6H4NEt2;其任何位置异构体(regioisomer)和其任何取代的衍生物。
取代基可以包含杂原子,杂原子包括卤根、氧、硫、氮、磷或砷。卤素的实例包括氟根、氯根、溴根和碘根。如本文使用,氧基团是含氧基团,其包括例如烷氧基或芳氧基基团(-OR)及类似物,其中R可以是烷基、环烷基、芳基、芳烷基、取代烷基、取代芳基或取代芳烷基,它们具有1至大约20个碳原子。这些烷氧基或芳氧基(-OR)基团可以包括例如甲氧基、乙氧基、丙氧基、丁氧基、苯氧基或取代苯氧基,以及其它。如本文使用的,硫基团是含硫基团,其包括例如-SR及类似物,其中R在各种实施方式中可以是烷基、环烷基、芳基、芳烷基、取代的烷基、取代的芳基或取代的芳烷基,它们具有1至大约20个碳原子。如本文使用的,氮基团是含氮基团,其可以包括例如-NR2或吡啶基基团及类似物,其中R在各种实施方式中可以是烷基、环烷基、芳基、芳烷基、取代的烷基、取代的芳基或取代的芳烷基,它们具有1至大约20个碳原子。如本文使用的,磷基团是含磷基团,其可以包括例如-PR2及类似物,其中R在各种实施方式中可以是烷基、环烷基、芳基、芳烷基、取代的烷基、取代的芳基或取代的芳烷基,它们具有1至大约20个碳原子。如本文使用的,砷基团是含砷基团,其可以包括例如-AsR2及类似物,其中R在各种实施方式中可以是烷基、环烷基、芳基、芳烷基、取代的烷基、取代的芳基或取代的芳烷基,它们具有1至大约20个碳原子。
如本文使用的,碳基团是含碳基团,其可以包括例如烷基卤基团。这些烷基卤基团可以包括具有1至大约20个碳原子的卤根取代的烷基基团、具有1至大约20个碳原子的烯基或卤代烯烃基团、具有1至大约20个碳原子的芳烷基或芳烷基卤基团等,包括它们取代的衍生物。
如本文使用的,硅基团是含硅基团,其可以包括例如甲硅烷基基团,如烷基甲硅烷基基团、芳基甲硅烷基基团、芳基烷基甲硅烷基基团、甲硅烷氧基基团及类似物,它们具有1至大约20个碳原子。例如,硅基团包括三甲基甲硅烷基和苯基辛基甲硅烷基基团。
如本文使用的,硼基团是含硼基团,其可以包括例如-BR2、-BX2、-BRX,其中X可以是单阴离子基团,例如卤根、氢负离子、烷氧基、烷基硫羟酸根(alkyl thiolate)等。R在各种实施方式中可以是烷基、环烷基、芳基、芳烷基、取代的烷基、取代的芳基或取代的芳烷基,它们具有1至大约20个碳原子。
在金属中心上的剩余取代基X3和X4可以独立地为脂族基、环状基团、脂族基和环状基团的组合、酰胺基、磷基团(phosphido group)、烷基醚基团(alkyloxide group)、芳醚基团(aryloxide group)、链烷磺酸根(alkanesulfonate)、芳烃磺酸根或三烷基甲硅烷基,或其取代衍生物,它们中的任何一个具有1至大约20碳原子;或卤根。更具体地,X3和X4可以独立为:氟、氯、溴或碘;具有多达20个碳原子的烃基、氢、或BH4;烃基氧基团、烃基氨基基团、或三烃基甲硅烷基基团,它们中的任何一个具有多达20个碳原子;OBRA 2或SO3RA,其中RA可以是烷基基团或芳基基团,它们中的任何一个具有多达12个碳原子。
3.茂金属催化剂的通用结构式
本技术的实施方式可以包括具有下式的柄型-茂金属:
Figure GPA00001073158600101
其中M1可以是锆或铪;以及X’和X”可以独立为氟、氯、溴或碘。E可以是碳或硅,以及n可以是1到3的整数,1和3包括在内。R3A和R3B可以独立地是烃基基团或三烃基甲硅烷基基团,其中的任何一个具有多达20个碳原子,或可以是氢。下标‘m’可以是0到10范围内的整数,0和10包括在内。R4A和R4B可以独立地为具有多达12个碳原子的烃基基团;或可以是氢。键‘a’可以是单键或双键。
在其它实施方式中,柄型-茂金属可以包括具有下式的化合物:
Figure GPA00001073158600102
在该式中,M1可以是锆或铪,以及X’和X”可以独立为氟、氯、溴、或碘。E可以是碳或硅,以及‘n’可以是1到3的整数,1和3包括在内。R3A和R3B可以独立地为氢、甲基、乙基、丙基、烯丙基、苄基、丁基、戊基、己基或三甲基甲硅烷基,以及‘m’可以是1到6的整数,1和6包括在内。R4A和R4B可以独立为具有多达6个碳原子的烃基基团,或氢。键‘a’可以是单键或双键。
仍在其它实施方式中,柄型-茂金属可以包括具有下式的化合物:
Figure GPA00001073158600103
在该式中,M1可以是锆或铪,以及X’和X”可以独立地为氟、氯、溴或碘。E可以为碳或硅,以及‘n’可以是1或2。R3A和R3B可以独立地为氢或甲基,以及‘m’可以是1或2。R4A和R4B可以独立地为氢或叔丁基。键‘a’可以是单键或双键。
仍在其它实施方式中,本技术的柄型-茂金属可以包括具有下式的化合物:
Figure GPA00001073158600111
在该式中,M1可以是锆或铪,以及X’和X”可以独立地为氢、BH4、甲基、苯基、苄基、新戊基、三甲基甲硅烷基甲基、CH2CMe2Ph;CH2SiMe2Ph;CH2CMe2CH2Ph;或CH2SiMeCH2Ph。E可以是碳或硅,以及n可以是1到3的整数,1和3包括在内。R3A和R3B可以独立地为烃基基团或三烃基甲硅烷基基团——其中的任何一个具有多达20个碳原子——或氢;和n可以是0到10的整数,0和10包括在内。R4A和R4B独立地为具有多达12个碳原子的烃基基团,或氢。键‘a’可以是单键或双键。
4.茂金属结构的非限制性实例
在示例性实施方式中,柄型-茂金属可以包括化合物(I-1)或(I-2)中的任一个,如在图1中显示,或其任何组合。制备可以在本技术中使用的茂金属化合物的很多方法已经被报道。例如,美国专利4,939,217、5,191,132、5,210,352、5,347,026、5,399,636、5,401,817、5,420,320、5,436,305、5,451,649、5,496,781、5,498,581、5,541,272、5,554,795、5,563,284、5,565,592、5,571,880、5,594,078、5,631,203、5,631,335、5,654,454、5,668,230、5,705,578、5,705,579、6,187,880和6,509,427描述了这些方法,其每一个通过参考整体并入本文。
B.任选的有机铝化合物
在一个实施方式中,本技术可以包括催化剂组合物,其包括紧密桥连的柄型-茂金属化合物——其具有连接到η5-环戊二烯基型配体的环状桥连部分;固体氧化物活化剂-载体;以及任选的有机铝化合物。有机铝化合物指定为“任选的”意欲反映:当可以不必赋予包括接触产物的组合物催化活性时,有机铝化合物可以是任选的,如本领域技术人员所理解,如在本文中所提出。
可以用在本技术中使用的有机铝化合物包括例如具有下式的化合物:
Al(X5)n(X6)3-n
其中X5可以是具有1至大约20个碳原子的烃基;X6是烷氧基或芳氧基——其中的任何一个具有1至大约20个碳原子、卤根或氢负离子;并且n可以是1至3的数,1和3包括在内。X5可以是具有1至大约10个碳原子的烷基。用于X5的部分可以包括例如甲基、乙基、丙基、丁基、仲丁基、异丁基、1-己基、2-己基、3-己基、异己基、庚基或辛基以及类似基团。可选地,X6可以独立地为氟根、氯根、溴根、甲氧基、乙氧基或氢负离子。在又一实施方式中,X6可以是氯根。
在式Al(X5)n(X6)3-n中,n可以是1至3的数,1和3包括在内,并且在示例性实施方式中,n可以是3。n的值并不限定为整数,因此该式可以包括倍半卤化物(sesquihalide)化合物、其它有机铝簇合物以及类似物。
一般而言,可以在本技术中使用的有机铝化合物可以包括三烷基铝化合物、卤化二烷基铝化合物(dialkylaluminium halide compounds)、二烷基烷醇铝化合物(dialkylaluminum alkoxide compounds)、氢化二烷基铝化合物(dialkylaluminum hydride compounds)及它们的组合。这些有机铝化合物的实例包括三甲基铝、三乙基铝(TEA)、三丙基铝、三丁基铝、三正丁基铝(TNBA)、三异丁基铝(TIBA)、三己基铝、三异己基铝、三辛基铝、二乙基乙醇铝(diethylaluminum ethoxide)、氢化二异丁基铝或氯化二乙基铝,或它们的任何组合。如果没有指定具体的烷基异构体,则化合物可以包括能从具体指出的烷基产生的所有异构体。
在一些实施方式中,本技术可以包括使柄型-茂金属与有机铝化合物和烯烃单体预接触以形成预接触混合物,然后使该预接触混合物与固体氧化物活化剂-载体接触而形成活性催化剂。当催化剂组合物以此种方式被制备时,一部分有机铝化合物可以被加入预接触混合物中,而另一部分有机铝化合物可以被加入当该预接触混合物与固体氧化物活化剂接触时而制备的后接触混合物中。然而,所有有机铝化合物可以在预接触或后接触步骤中被用于制备催化剂。可选地,固体氧化物在用茂金属或其它混合物处理之前也可以用烷基铝处理。这些预接触步骤不是必要的,并且所有的催化剂成分可以在一个步骤中接触。
此外,在预接触或后接触步骤中,或在催化剂成分被接触的任何步骤中,可以使用一种以上的有机铝化合物。当有机铝化合物在多个步骤中被加入时,在此所提出的有机铝化合物的量包括在预接触和后接触混合物中使用的有机铝化合物以及被加入聚合反应器中的任何另外的有机铝化合物的总量。因此,提出有机铝化合物的总量,不管是否使用单一有机铝化合物还是使用一种以上的有机铝化合物。再次,在本技术的实施方式中使用的示例性有机铝化合物可以包括例如三乙基铝(TEA)、三正丁基铝、三异丁基铝等,或它们的任何组合。
C.活化剂/助催化剂
1.概述
本技术的实施方式包括催化剂组合物,其包括:如本文提出的紧密桥连的柄型-茂金属化合物;任选地,有机铝化合物;和活化剂。活化剂可以被用于削弱金属中心与配体X3或X4之间的键,使金属中心与烯烃络合。此外,活化剂或助催化剂可以用具有单键连接到金属的碳基团取代X3或X4。活化剂可以是活化剂-载体,该活化剂-载体包括:用吸电子阴离子处理的固体氧化物,如在以下小节2中讨论的;离子可交换的或层状矿物活化剂-载体,如在以下的小节3中讨论的;有机铝氧烷化合物,如在以下的小节4中讨论的;有机硼或有机硼酸盐化合物,如在以下的小节5中讨论的;或电离化合物,如在以下的小节6中讨论的;或任意这些活化剂的任何组合。
在本技术的一些实施方式中,铝氧烷不是形成如本文提出的催化剂组合物所必需的。因此,在一些实施方式中,AlR3-型有机铝化合物和一种或多种活化剂载体可以在不存在铝氧烷的情况下使用。虽然不期望被理论所束缚,但是据认为,有机铝化合物可以不以与有机铝氧烷相同的方式活化茂金属催化剂。
另外,硼酸盐化合物或MgCl2对形成本技术的催化剂组合物不是必需的,尽管铝氧烷、硼酸盐化合物、MgCl2或它们的任何组合可以任选被用在本技术的催化剂组合物中。此外,在这些化合物如铝氧烷、有机硼化合物、电离化离子化合物或它们的任何组合可以用作柄型-茂金属的助催化剂,无论存在或者缺乏活化剂-载体。这些助催化剂可以与柄型-茂金属一起使用,无论存在或者不存在有机铝化合物,如本文说明的。因此,有机铝化合物可以是任选的:当在茂金属上的配体是烃基基团、H或BH4时;当活化剂包括有机铝氧烷化合物时;或当这些条件都存在时。然而,本技术的催化剂组合物在基本上没有助催化剂如铝氧烷、有机硼化合物、电离化离子化合物、或它们的任何组合的情况下可以是有活性的。
2.化学处理的固体氧化物活化剂-载体
a.概述
本技术包括催化剂组合物,其包含酸性活化剂-载体,例如,诸如,化学处理的固体氧化物(CTSO)。CTSO可以结合有机铝化合物一起使用。活化剂-载体可以包括用吸电子阴离子处理的固体氧化物。固体氧化物可以包括这样的化合物,如二氧化硅、氧化铝、二氧化硅-氧化铝、磷铝酸盐、磷酸铝、铝酸锌、杂多钨酸盐、二氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、它们的混合氧化物,和类似物,或者它们的任何混合物或组合物。吸电子阴离子可以包括氟根、氯根、溴根、碘根、磷酸根、三氟甲磺酸根、硫酸氢根、硫酸根、氟硼酸根、氟硫酸根、三氟乙酸根、磷酸根、氟磷酸根、氟锆酸根、氟硅酸根、氟钛酸根、高锰酸根、取代的或未取代的链烷磺酸根、取代的或未取代的芳烃磺酸根、取代的或未取代的烷基硫酸根、或它们的任何组合。
活化剂-载体可以包括固体氧化物化合物和吸电子阴离子源的接触产物,如在以下小节b中提出。固体氧化物化合物可以包括无机氧化物,并且在接触吸电子阴离子源之前,固体氧化物可以任选地被煅烧。在固体氧化物化合物与吸电子阴离子源接触过程中或者之后,接触产物也可以被煅烧。在这个实施方式中,固体氧化物化合物可以被煅烧或可以不被煅烧。在另一个实施方式中,活化剂-载体可以包括煅烧的固体氧化物化合物和吸电子阴离子源的接触产物。
与相应的未处理固体氧化物化合物相比,处理的活化剂-载体可以表现出增强的活性。尽管不期望被理论所约束,然而,据认为,活化剂-载体能够起着固体氧化物支撑化合物的功能,以及通过削弱茂金属中阴离子配体与金属之间的金属-配体键,具有另外的电离化、极化或键削弱的功能,总称为“活化”功能。因此,活化剂-载体被认为表现“活化”功能,而不管它是否电离化茂金属,夺取阴离子配体而形成离子对,削弱茂金属中的金属-配体键,当其与活化剂-载体接触时简单地与阴离子配体配位,还是可以发生电离化、极化或键削弱的任何其它机理。在制备本技术的茂金属-基催化剂组合物时,当茂金属化合物不含有可活化配体时,活化剂-载体典型与这样的成分一起使用,该成分向茂金属提供可活化配体例如烷基或氢负离子配体,其包括但不限于有机铝化合物。在一个实施方式中,处理的固体氧化物可以在被暴露于茂金属之前与烷基铝接触。
活化剂-载体可以包括固体无机氧化物物质、混合氧化物物质或无机氧化物物质的组合,其可以用吸电子成分进行化学处理,并任选地用另一种金属离子处理。因此,本技术的固体氧化物包括氧化物物质如氧化铝、“混合氧化物”化合物如二氧化硅-氧化铝或二氧化硅-氧化锆或二氧化硅-二氧化钛,以及其组合和混合物。具有一种以上金属与氧结合形成固体氧化物化合物的混合金属氧化物化合物如二氧化硅-氧化铝,可以通过共凝胶、浸渍或化学沉积制备,并且被本技术包括。
此外,活化剂-载体可以包括额外的金属或金属离子,如锌、镍、钒、银、铜、镓、锡、钨、钼或它们的任何组合。还包括金属或金属离子的活化剂-载体的实例包括例如锌浸渍的氯化氧化铝(zinc-impregnated chlorided alumina)、锌浸渍的氟化氧化铝(zinc-impregnated fluorided alumina)、锌浸渍的氯化二氧化硅-氧化铝(zinc-impregnated chlorided silica-alumina)、锌浸渍的氟化二氧化硅-氧化铝(zinc-impregnated fluorided silica-alumina)、锌浸渍的硫酸化氧化铝(zinc-impregnated sulfated alumina),或它们的任何组合。
本技术的活化剂-载体包括相对高孔隙率的固体氧化物,其表现出路易斯酸性或布朗斯台德酸性性质。固体氧化物可以用吸电子成分——一般为吸电子阴离子——进行化学处理,以形成活化剂-载体。尽管不意欲被任何理论约束,但据认为,用吸电子成分处理无机氧化物增加或提高了氧化物的酸性。因此,活化剂-载体表现出一般可以比未处理固体氧化物的路易斯或布朗斯台德酸性大的路易斯或布朗斯台德酸性。相对于未处理的固体氧化显示的活性,化学处理的固体氧化物的聚合活性可以被增强。
化学处理固体氧化物可以包括固体无机氧化物,固体无机氧化物包括氧和选自周期表2、3、4、5、6、7、8、9、10、11、12、13、14或15族的元素,或者包括氧和选自镧系或锕系元素的元素。例如,无机氧化物可以包括氧和选自Al、B、Be、Bi、Cd、Co、Cr、Cu、Fe、Ga、La、Mn、Mo、Ni、Sb、Si、Sn、Sr、Th、Ti、V、W、P、Y、Zn或Zr的元素。
可以被用在本技术的化学处理固体氧化物中的合适的固体氧化物物质或化合物可以包括例如Al2O3、B2O3、BeO、Bi2O3、CdO、Co3O4、Cr2O3、CuO、Fe2O3、Ga2O3、La2O3、Mn2O3、MoO3、NiO、P2O5、Sb2O5、SiO2、SnO2、SrO、ThO2、TiO2、V2O5、WO3、Y2O3、ZnO、ZrO2及类似物,包括它们的混合氧化物和它们的组合。可以被用在本技术的活化剂-载体中的混合氧化物的实例可以包括例如以下任何组合的混合氧化物:Al、B、Be、Bi、Cd、Co、Cr、Cu、Fe、Ga、La、Mn、Mo、Ni、P、Sb、Si、Sn、Sr、Th、Ti、V、W、Y、Zn、Zr及其类似物。可以被用在本技术活化剂-载体中的混合氧化物的实例也可以包括例如二氧化硅-氧化铝、二氧化硅-二氧化钛、二氧化硅-氧化锆、沸石、许多粘土矿物质、柱撑粘土、氧化铝-二氧化钛、氧化铝-氧化锆、磷铝酸盐及类似物。形成这些固体氧化物和示例性化学处理的固体氧化物的步骤在以下小节c和d中分别呈现。可以用于形成化学处理的固体氧化物的吸电子阴离子的浓度在以下小节e中提出。
b.固体氧化物的化学处理
可以在本技术中使用的固体氧化物物质可以通过使其与吸电子成分——一般为吸电子阴离子源——接触而被化学处理,以促使或增强茂金属络合物的活性。此外,固体氧化物物质可以用另一种金属离子——其可以与组成固体氧化物物质的任何金属元素相同或不同——进行化学处理,然后煅烧而形成含金属或金属浸渍的化学处理的固体氧化物。可选地,固体氧化物物质和吸电子阴离子源的接触和煅烧可以同时进行。氧化物可以与吸电子成分——一般为吸电子阴离子的盐或酸——接触的方法可以包括例如胶凝、共胶凝、一种化合物浸渍到另一种上、一种化合物蒸发到其它化合物上以及类似方法。在本技术的实施方式中,在任何接触方法之后,氧化物化合物、吸电子阴离子和任选的金属离子的接触混合物可以被煅烧。
用于处理氧化物的吸电子成分可以是在处理时增加固体氧化物的路易斯或布朗斯台德酸性的任何成分。在一个实施方式中,吸电子成分一般是吸电子阴离子,其衍生自盐、酸或其它化合物例如可以用作该阴离子的来源或前体的挥发性有机化合物。吸电子阴离子的实例包括例如氟根、氯根、溴根、碘根、磷酸根、三氟甲磺酸根(三氟甲磺酸根,triflate)、硫酸氢根、硫酸根、氟硼酸根、氟硫酸根、三氟乙酸根、磷酸根、氟磷酸根、氟锆酸根、氟硅酸根、氟钛酸根、高锰酸根、取代的或未取代的链烷磺酸根、取代的或未取代的芳烃磺酸根、取代或未取代的烷基硫酸根及其类似物,包括它们的任何混合物和组合。另外,用作这些吸电子阴离子来源的其它离子或非离子化合物也可以被用在本技术中。化学处理的固体氧化物包括硫酸化固体氧化物或硫酸化氧化铝。
术语链烷磺酸根和烷基硫酸根分别指具有通式[RBSO2O]-和[(RBO)SO2O]-的阴离子,其中RB可以是具有多达20个碳原子的直链或支链烷基基团,其可以用独立地选自F、Cl、Br、I、OH、OMc、OEt、OCF3、Ph、二甲苯基、基、或OPh的基团取代。因此,链烷磺酸根和烷基硫酸根可以被称为是取代的或未被取代的。链烷磺酸根或烷基硫酸根的烷基可以具有多达12、多达8个碳原子或多达6个碳原子。这些链烷磺酸根可以包括例如甲基磺酸根、乙基磺酸根、1-丙基磺酸根、2-丙基磺酸根、3-甲基丁基磺酸根、三氟甲基磺酸根、三氯甲基磺酸根、氟甲基磺酸根、1-羟基乙基磺酸根、2-羟基-2-丙基磺酸根、1-甲氧基-2-丙基磺酸根等。在其它实施方式中,烷基硫酸根的实例包括例如甲基硫酸根、乙基硫酸根、1-丙基硫酸根、2-丙基硫酸根、3-甲基丁基硫酸根、三氟甲烷硫酸根、三氯甲基硫酸根、氯甲基硫酸根、1-羟乙基硫酸根、2-羟基-2-丙基硫酸根、1-甲氧基-2-丙基硫酸根及其类似物。
术语芳烃磺酸根(arenesulfonate)指具有通式[ArASO2O]-的阴离子,其中ArA可以是具有多达14个碳原子的芳基基团,并且其可以任选地用独立地选自F、Cl、Br、I、Me、Et、Pr、Bu、OH、OMe、OEt、OPr、OBu、OCF3、Ph、OPh或RC的基团取代,其中RC可以是具有多达20个碳原子的直链或支链烷基基团。因此,芳烃磺酸根可以被称为取代的或未取代的芳烃磺酸根。因为可以用可包含长烷基侧链的烷基侧链RC取代芳基基团ArA,所以术语芳烃磺酸根拟包括洗涤剂。芳烃磺酸根的芳基基团可以具有多达10个碳原子或多达6个碳原子。这些芳烃磺酸根的实例包括例如苯磺酸根、萘磺酸根、对甲苯磺酸根、间甲苯磺酸根、3,5-二甲苯磺酸根、三氟甲氧基苯磺酸根、三氯甲氧基苯磺酸根、三氟甲基苯磺酸根、三氯甲基苯磺酸根、氟苯磺酸根、氯苯磺酸根、1-羟基乙烷苯磺酸根、3-氟-4-甲氧基苯磺酸根及其类似物。
当吸电子成分包括吸电子阴离子的盐时,该盐的抗衡离子或阳离子可以是使盐在煅烧过程中回复或分解恢复为酸的任何阳离子。指示可作为吸电子阴离子源的具体盐的适宜性的因素可以包括例如:盐在期望溶剂中的溶解度、阳离子不利反应性的缺乏、阳离子和阴离子之间的离子配对效应、由阳离子赋予盐的吸湿性质及类似因素,以及阴离子的热稳定性。在吸电子阴离子的盐中的合适阳离子的实例包括例如铵、三烷基铵、四烷基铵、四烷基鏻、H+、[H(OEt2)2]+及类似物。
c.生产化学处理的固体氧化物方法的实例
一种或多种不同吸电子阴离子以不同比例的组合物可以被用于使活化剂-载体的特定酸度调节为期望的水平。这些组合物可以与氧化物物质同时或单独地接触,并且以提供期望的活化剂-载体酸度的任何顺序。例如,本技术可以在两个或多个单独的接触步骤中使用两种或多种吸电子阴离子源化合物。因此,可以制备活化剂-载体的这样方法的一个实例如下。选择的固体氧化物化合物或氧化物化合物的组合物可以与第一吸电子阴离子源化合物接触,以形成第一混合物,然后可以煅烧该第一混合物。该煅烧的第一混合物可以与第二吸电子阴离子源化合物接触,以形成第二混合物。可以煅烧第二混合物以形成处理的固体氧化物化合物。在这样的过程中,第一和第二吸电子阴离子源化合物可以是不同的化合物或者它们可以是相同的化合物。
固体氧化物活化剂-载体可以通过包括使固体氧化物化合物与吸电子阴离子源化合物接触以形成第一混合物的方法生产。第一混合物可以随后被煅烧以形成固体氧化物活化剂-载体。
可选地,固体氧化物活化剂-载体可以通过包括使固体氧化物化合物与第一吸电子阴离子源化合物接触而形成第一混合物的方法产生。第一化合物可以被煅烧,并且随后煅烧后的第一混合物可以与第二吸电子阴离子源化合物接触而形成第二混合物。第二混合物可以被煅烧而形成固体氧化物活化剂-载体。固体氧化物活化剂-载体可以被称为化学处理的固体氧化物(CTSO)化合物。
在另一个可选方法中,通过使固体氧化物与吸电子阴离子源化合物接触可以生产固体氧化物活化剂-载体。在这个步骤中,固体氧化物化合物可以在接触吸电子阴离子源之前、期间或之后,并且当铝氧烷或有机硼酸盐存在时被煅烧。
处理的固体氧化物的煅烧可以在环境或惰性气氛下,典型地在干燥的环境气氛下,在大约200°至大约900℃的温度下,进行大约1分钟至大约100小时的时间。煅烧也可以在大约300℃至大约800℃或大约400℃至大约700℃的温度下进行。煅烧可以进行大约1小时至大约50小时或大约3小时至大约20小时。在实施方式中,煅烧可以在大约350℃至大约550℃的温度下进行大约1小时至大约10小时。
此外,煅烧一般可以在升高温度的环境气氛中进行。一般而言,煅烧可以在氧化气氛例如空气中进行。可选地,煅烧可以在惰性气氛例如氮或氩中进行,或在还原气氛例如氢或一氧化碳中进行。
用于制备化学处理固体氧化物的固体氧化物成分可以具有大于大约0.1cc/g的孔体积、大于大约0.5cc/g的孔体积或大于大约1.0cc/g的孔体积。固体氧化物成分可以具有大约100至大约1000m2/g、大约200至大约800m2/g或大约250至大约600m2/g的表面积。
d.化学处理的固体氧化物的实例
固体氧化物物质可以用卤素离子源或硫酸根离子源,或阴离子源的组合来处理,以及任选用金属离子处理,然后煅烧以提供颗粒固体形式的活化剂-载体。在一个实施方式中,固体氧化物物质可以用下述进行处理:硫酸根来源,被称为硫酸化剂(sulfating agent);氯离子来源,被称为氯化剂(chloriding agent);氟离子来源,被称为氟化剂(fluoriding agent);或者它们的组合,并煅烧以提供固体氧化物活化剂。有用的酸性活化剂-载体的实例可以包括例如:溴化氧化铝;氯化氧化铝;氟化氧化铝;硫酸化氧化铝;溴化二氧化硅-氧化铝;氯化二氧化硅-氧化铝;氟化二氧化硅-氧化铝;硫酸化二氧化硅-氧化铝;溴化二氧化硅-氧化锆;氯化二氧化硅-氧化锆;氟化二氧化硅-氧化锆;硫酸化二氧化硅-氧化锆;氯化锌-氧化铝;三氟甲磺酸盐处理的二氧化硅-氧化铝;柱撑粘土例如柱状蒙脱石,任选用氟化物、氯化物或硫酸盐处理;磷酸化氧化铝或者其它磷铝酸盐,任选用硫酸盐、氟化物或氯化物处理;或者它们的任何组合。此外,任何活化剂-载体可以任选用另一种金属离子——典型地源自金属盐或化合物——处理,其中金属离子可以与组成固体氧化物物质的任何金属相同或不同。
处理的氧化物活化剂-载体可以包括颗粒固体形式的氟化固体氧化物,因此通过用氟化剂进行处理,氟离子源被加入氧化物中。例如,通过在合适的溶剂中形成氧化物的浆液,可以将氟离子加入氧化物中,所述溶剂例如醇或水,包括例如具有1至3个碳的醇。由于它们挥发性和低表面张力,所以可以选择这些醇。可以被用在本技术中的氟化剂的实例包括氢氟酸(HF)、氟化铵(NH4F)、氟化氢铵(NH4HF2)、四氟硼酸铵(ammonium tetrafluoroborate)(NH4BF4)、氟硅酸铵(ammoniumsilicofluoride(六氟硅酸盐(hexafluorosilicate))((NH4)2SiF6)、六氟磷酸铵(ammonium hexafluorophosphate)(NH4PF6)、四氟硼酸(HBF4)、六氟钛酸铵(ammonium hexafluorotitanate)((NH4)2TiF6)、六氟锆酸铵(ammonium hexafluorozirconate)((NH4)2ZrF6),它们的类似物及其组合。可以经常使用特定的氟化剂,氟化氢铵NH4HF2,原因在于其使用方便且容易得到。
固体氧化物可以在煅烧步骤期间用氟化剂来处理。可以使用在煅烧步骤期间能够充分接触固体氧化物的任何氟化剂。例如,除了前面所述的那些氟化剂之外,可以使用挥发性有机氟化剂。可以在实施方式中使用的这些挥发性有机氟化剂包括例如氟利昂、全氟己烷(perfluorohexane)、全氟苯(perfluorobenzene)、氟代甲烷、三氟乙醇及它们的组合。如果在煅烧期间氟化的话,气态氟化氢或氟本身也可与固体氧化物一起使用。使固体氧化物与氟化剂接触的一种方便的方法可以是在煅烧期间使氟化剂蒸发到用于流化固体氧化物的气流中。
类似地,化学处理的固体氧化物包括固体颗粒形式的氯化固体氧化物,因此通过用氯化剂进行处理,氯离子源可以被加入氧化物中。通过在合适的溶剂中形成氧化物的浆液,可以将氯离子加入氧化物中。固体氧化物也可以在煅烧步骤期间用氯化剂来处理。在煅烧步骤期间能够用作氯根来源且能够充分接触氧化物的任何氯化剂可以被使用。例如,可以使用挥发性有机氯化剂。这些挥发性有机氯化剂的实例包括例如某些氟利昂(freons)、全氯苯(perchlorobenzene)、氯代甲烷、二氯甲烷、氯仿、四氯化碳、三氯乙醇或它们的任何组合。在煅烧期间,气态氯化氢或氯本身也可以与固体氧化物一起使用。使氧化物与氯化剂接触的一种方便的方法是在煅烧期间使氯化剂蒸发到用于流化固体氧化物的气流中。
e.吸电子阴离子的浓度
当活化剂-载体包括含有用吸电子阴离子处理的固体氧化物的化学处理固体氧化物时,吸电子阴离子可以以按固体氧化物的重量计大约1%以上的量被加入固体氧化物中。吸电子阴离子可以以按固体氧化物的重量计大约2%以上、按固体氧化物的重量计大约3%以上、按固体氧化物的重量计大约5%以上或按固体氧化物的重量计大约7%以上的量被加入固体氧化物中。
在煅烧固体氧化物之前存在的吸电子阴离子例如氟离子或氯离子的量可以为按重量计算从大约2至大约50%,其中重量百分比是基于煅烧之前的固体氧化物如二氧化硅-氧化铝的重量。在煅烧固体氧化物之前存在的吸电子阴离子例如氟离子或氯离子的量可以为按重量计大约3至大约25%或按重量计大约4至大约20%。可选地,卤素离子可以以足以在煅烧之后沉积的量使用,卤素离子相对于固体氧化物的重量为按重量计大约0.1%至大约50%、大约0.5%至大约40%或大约1%至大约30%。如果氟离子或氯离子是在煅烧过程中被加入的,例如当在CCl4存在下煅烧时,煅烧前在固体氧化物中一般没有或仅有痕量水平的氟离子或氯离子。一旦用卤化物浸渍,卤化氧化物可以用任何方法干燥。这些方法可以包括例如吸滤(suction filtration)之后蒸发、在真空下干燥、喷雾干燥及类似方法。不干燥浸渍的固体氧化物而立刻开始煅烧步骤也可以是可能的。
用于制备处理的二氧化硅-氧化铝的二氧化硅-氧化铝可以具有大约0.5cc/g以上的孔体积。可选地,孔体积可以是大约0.8cc/g以上或大约1.0cc/g以上。此外,二氧化硅-氧化铝可以具有大约100m2/g以上、大约250m2/g以上或350m2/g以上的表面积。一般而言,本技术的二氧化硅-氧化铝可以具有大约5至大约95%的氧化铝含量。可选地,二氧化硅-氧化铝的氧化铝含量可以为按重量计大约5至大约50%或大约8%至大约30%氧化铝。
硫酸化固体氧化物可以包括硫酸盐和颗粒固体形式的固体氧化物成分例如氧化铝或二氧化硅-氧化铝。任选地,硫酸化氧化物可以进一步用金属离子处理,以使煅烧的硫酸化氧化物可以包括金属。例如,硫酸化固体氧化物包括硫酸盐和氧化铝。硫酸化氧化铝可以通过其中氧化铝可以用硫酸根源处理的方法而形成,所述硫酸根源包括例如硫酸或硫酸盐诸如硫酸铵、硫酸锌、硫酸铝、硫酸镍或硫酸铜以及其它。通过在合适的溶剂例如醇或水中形成氧化铝的浆液,可以进行该过程,在所述溶剂中,期望浓度的硫酸化剂(sulfating agent)已被加入。合适的有机溶剂包括例如1至3个碳的醇,原因在于它们的挥发性和低表面张力。
煅烧前存在的硫酸根离子的量可以为按重量计大约1%至大约50%、按重量计大约2%至大约30%或按重量计大约5%至大约25%,其中重量百分比是基于煅烧之前的固体氧化物的重量。一旦用硫酸盐浸渍后,硫酸化氧化物可以用任何方法干燥,其包括但不限于吸滤之后蒸发、在真空下干燥、喷雾干燥及类似方法,尽管立刻开始煅烧步骤也可以是可能的。
除了用吸电子成分例如卤素离子或硫酸根离子进行处理之外,本技术的固体无机氧化物可以用包括金属盐或含金属化合物在内的金属源处理。这些化合物可以被加入或以溶液形式浸渍到固体氧化物上,并且在煅烧时随后转化为载体上的金属(supported metal)。因此,固体无机氧化物可以进一步包括锌、镍、钒、银、铜、镓、锡、钨、钼或它们的组合。例如,锌可以被用于浸渍固体氧化物,因为它提供良好的催化剂活性和低成本。在用吸电子阴离子处理固体氧化物之前、之后或者同时,固体氧化物可以用金属盐或含金属化合物处理。
此外,可以使用用金属浸渍固体氧化物物质的任何方法。使氧化物可以与金属源——一般为盐或含金属化合物——接触的方法可以包括例如胶凝、共胶凝、一种化合物浸渍到另一种化合物上及类似技术。在任何接触方法之后,氧化物化合物、吸电子阴离子和金属离子的接触混合物可以被煅烧。可选地,固体氧化物物质、吸电子阴离子源和金属盐或含金属化合物的接触和煅烧可以同时进行。
柄型-茂金属化合物可以与烯烃单体和有机铝助催化剂接触第一段时间,然后使该混合物与酸性活化剂-载体接触。一旦茂金属、单体和提供给茂金属可活化配体的成分——例如有机铝助催化剂——的预接触混合物与酸性活化剂-载体接触,该组合物被称为“后接触”混合物。在被加入到将进行聚合过程的反应器中之前,可以使该后接触混合物保持进一步接触第二段时间。
制备可以被用在本技术中的固体氧化物活化剂-载体的各种方法已经被报道。例如,美国专利6,107,230、6,165,929、6,294,494、6,300,271、6,316,553、6,355,594、6,376,415、6,391,816、6,395,666、6,524,987和6,548,441描述了这些方法,它们中的每一个通过参考整体并入本文。
3.可离子交换和层状矿物质的活化剂-载体
本技术的活化剂-载体可以包括具有可交换阳离子以及能够扩张的层的粘土矿物质。这些活化剂载体包括可交换离子的材料,例如,诸如,硅酸盐和硅铝酸盐化合物或矿物质,其具有分层或不分层结构,以及它们的任意组合。典型的粘土矿物质活化剂-载体包括层状硅铝酸盐如柱撑粘土。尽管可以使用术语“载体(support)”,其并不意味着被解释为催化剂组合物的惰性成分,但相反地可以被认为是催化剂组合物的活性部分,原因在于其与柄型-茂金属和给茂金属提供可活化配体的成分如有机铝的密切相关。尽管不意欲被理论所约束,据认为,可离子交换的活化剂-载体可以作为不溶性反应物,其与柄型-茂金属和有机铝组成分反应而形成用于生产聚合物的催化剂组合物。当酸性活化剂-载体包括可离子交换的活化剂-载体时,它可以任选地用吸电子阴离子如上面所讨论的那些进行处理,尽管可离子交换的活化剂-载体一般不用吸电子阴离子处理。
本技术的粘土物质可以包括处于其天然状态的物质,或者包括已经用各种离子通过湿润、离子交换或柱化(pillaring)处理的物质。本技术的粘土物质活化剂-载体可以包括已经与大的阳离子进行离子交换的粘土,所述大的阳离子包括多核、高度带电金属配合物阳离子。然而,本技术的粘土物质活化剂-载体也包括已与简单盐进行离子交换的粘土,所述简单盐包括但不限于Al(III)、Fe(II)、Fe(III)和Zn(II)与配体如卤根、乙酸根、硫酸根、硝酸根或亚硝酸根的盐。
本技术的粘土活化剂-载体可以包括柱撑粘土。术语柱撑粘土可以用于指已经与大的、典型是多核的高度带电金属络合物阳离子进行离子交换的粘土物质。这样的离子实例包括例如可具有例如7+电荷的Keggin离子、各种多金属氧酸根及其它大离子。因此,术语柱化(pillaring)指的是简单的交换反应,其中粘土物质的可交换阳离子被大的高度带电的离子如Keggin离子置换。然后,这些聚合阳离子可以被固定在粘土的夹层内,并且当煅烧时被转化为金属氧化物“柱”,有效地作为柱状结构(column-like structures)支撑粘土层。因此,一旦粘土被干燥并煅烧而在粘土层之间产生支撑柱后,扩张的晶格结构可以被保持,孔隙率得以提高。所形成的孔的形状和尺寸可以作为柱化物质及所使用的母粘土物质的函数而变化。柱化和柱撑粘土的实例可以在美国专利4,452,910、5,376,611和4,060,480号中找到,它们中的每一个整体并入本文。
柱化方法利用具有可交换阳离子和能够扩张的层的粘土矿物质。可以使用在本技术的催化剂组合物中能够增强烯烃聚合的任何柱撑粘土。因此,用于柱化的合适的粘土矿物质可以包括例如:水铝石英;绿土,其包括双八面体(Al)和三八面体(Mg)绿土及其衍生物如蒙脱石(膨润土)、绿脱石、锂蒙脱石或硅酸镁锂(laponites);多水高岭土;蛭石;云母;氟化云母(fluoromicas);绿泥石;混合层粘土;纤维状粘土,例如海泡石和绿坡缕石(蒙德土有效成分);蛇纹石粘土(serpentineclay);伊利石;硅酸镁锂(laponite);滑石粉;或它们的任何组合。在一个实施方式中,柱撑粘土活化剂-载体可以包括膨润土或蒙脱石,注意,膨润土的主要成分是蒙脱石。
可离子交换的活化剂-载体如制备本技术催化剂组合物所使用的柱撑粘土可以结合其它无机载体物质,其它无机载体物质包括例如沸石、无机氧化物、磷酸化无机氧化物(phosphated inorganic oxides)等。在实施方式中,可以被用在本方面的典型的载体物质包括例如二氧化硅、二氧化硅-氧化铝、氧化铝、二氧化钛、氧化锆、氧化镁、氧化硼、氟化氧化铝、硅酸化氧化铝(silated alumina)、氧化钍、磷铝酸盐、磷酸铝、铝酸锌、磷酸化二氧化硅(phosphated silica)、磷酸化氧化铝、二氧化硅-二氧化钛、共沉淀二氧化硅/二氧化钛、氟化/硅酸化氧化铝以及它们的任何组合或混合物。相对于用于制备本技术催化剂组合物的可离子交换活化剂-载体,柄型-茂金属化合物的量基于活化剂-载体成分的重量(而非基于最终的茂金属-粘土混合物),可以为大约0.1wt%至大约15wt%柄型-茂金属络合物或大约1wt%至大约10wt%柄型-茂金属。
可以使柄型-茂金属和粘土活化剂-载体的混合物接触且混合足以使柄型-茂金属与活化剂-载体之间充分相互接触的任何时间长度。在不加热粘土与茂金属络合物的混合物的情况下,可以实现茂金属成分在粘土上的充分沉积。例如,柄型-茂金属化合物和粘土物质可以从大约室温至大约200°F的温度范围被简单地混合,以实现柄型-茂金属在粘土活化剂-载体上的沉积。可选地,柄型-茂金属化合物和粘土物质可以从大约100°F至大约180°F混合,以实现柄型-茂金属在粘土活化剂-载体上的沉积。
本技术包括包含酸性活化剂-载体的催化剂组合物,所述酸性活化剂-载体可以包括层状矿物质。术语“层状矿物质(layered mineral)”在本文中用于描述如下物质,例如,粘土矿物质、柱撑粘土、经离子交换的粘土、脱层型粘土、成凝胶状进入另一种氧化物基质中的脱层型粘土、用其它物质混合或稀释的层状矿物质及,或它们的任何组合。当酸性活化剂-载体包括层状矿物质时,它可以任选地用如本文所呈现的那些吸电子阴离子处理,虽然层状矿物质一般可以不用吸电子阴离子处理。例如,粘土矿物质可以被用作活化剂-载体。
粘土矿物质一般包括细结晶的片状分层矿物质大组,它们在自然界中发现于细粒沉淀物、沉积岩等中,并且它们构成一类具有片状结构和非常高表面积的水合硅酸盐和硅铝酸盐矿物质。该术语也可用于描述具有层状硅酸盐(phyllosilicate)结构的水合硅酸镁。可以被用在本技术中的粘土矿物质的实例包括例如:水铝石英;绿土,包括双八面体(Al)和三八面体(Mg)绿土及其衍生物如蒙脱石(膨润土)、绿脱石、锂蒙脱石或硅酸镁锂;多水高岭土;蛭石;云母;氟化云母;绿泥石;混合层粘土;纤维状粘土,例如海泡石和绿坡缕石(蒙德土有效成分);蛇纹石粘土;伊利石;硅酸镁锂;滑石粉;或它们的任何组合。很多常见的粘土矿物质属于高岭石、蒙脱石或伊利石组别的粘土。
当层状矿物质被用作活化剂-载体或茂金属活化剂时,在它们用作活化剂之前,该层状矿物质可以被煅烧。典型的煅烧温度可以在大约100℃至大约700℃、大约150℃至大约500℃或大约200℃至大约400℃的范围。
4.有机铝氧烷活化剂/助催化剂
本技术可以包括用有机铝氧烷化合物作为活化剂和/或助催化剂的催化剂组合物。催化剂组合物可以不需要酸性活化剂-载体例如化学处理的固体氧化物削弱金属和X3或X4配体之间的键,因为有机铝氧烷可以完成这个功能,或者可以用更活泼的种类替代X3或X4配体。催化剂组合物也可以不需要有机铝化合物。因此,本文提出的任何柄型-茂金属化合物可以与本文提出的任何铝氧烷或本文提出的任何铝氧烷组合进行组合,以形成本技术的催化剂组合物。此外,本文提出的任何柄型-茂金属化合物可以与任何铝氧烷或铝氧烷组合以及任选的活化剂载体——例如,诸如层状矿物质、可离子交换的活化剂-载体、有机硼化合物或有机硼酸盐化合物——进行组合,以形成本技术的催化剂组合物。
铝氧烷可以被称为聚(烃基氧化铝)(poly(hydrocarbyl aluminumoxides))或有机铝氧烷。其它催化剂成分可以与铝氧烷在饱和的烃类化合物溶剂中接触,虽然可以使用对活化步骤的反应物、中间体和产物基本惰性的任何溶剂。以此种方式形成的催化剂组合物可以通过任何方法来收集,所述方法包括但不限于过滤,或者催化剂组合物可以不经分离而被引入聚合反应器中。
本技术的铝氧烷化合物可以是低聚铝化合物,其中所述铝氧烷化合物可以包括线型结构、环状或笼形结构,或者所有这三种结构的混合物。具有下式的环状铝氧烷化合物可以被包括在本技术内:
Figure GPA00001073158600271
其中
R可以是具有1至10个碳原子的直链或支链烷基,和n可以是3至大约10的整数。显示在此的(AlRO)n部分也组成线型铝氧烷中的重复单元。因此,具有下式的线型铝氧烷也被本技术包括:
Figure GPA00001073158600272
其中
R可以是具有1至10个碳原子的直链或支链烷基,和n可以是1至大约50的整数。
此外,有用的铝氧烷也可具有式Rt 5m+αRb m-αAl4mO3m的笼形结构,其中m可以是3或4,和α=nAl(3)-nO(2)+nO(4)。在该结构中,nAl(3)是三配位铝原子的数目,nO(2)是二配位氧原子的数目,nO(4)是4配位氧原子的数目。Rt代表末端烷基和Rb代表桥连烷基基团,其任何一个可以具有1至10个碳原子。
因此,铝氧烷可以一般由式诸如(R-Al-O)n、R(R-Al-O)nAlR2等表示,其中R基团一般为直链或支链C1-C6烷基例如甲基、乙基、丙基、丁基、戊基或己基,和n代表1至大约50的整数。本技术的铝氧烷化合物可以包括例如甲基铝氧烷、乙基铝氧烷、正丙基铝氧烷、异丙基铝氧烷、正丁基铝氧烷、叔丁基铝氧烷、仲丁基铝氧烷、异丁基铝氧烷、1-戊基铝氧烷、2-戊基铝氧烷、3-戊基铝氧烷、异戊基铝氧烷、新戊基铝氧烷或它们的组合物。
尽管具有不同类型的R基团的有机铝氧烷被本技术包括,但甲基铝氧烷(MAO)、乙基铝氧烷或异丁基铝氧烷也可以被用作本技术的组合物中的助催化剂。这些铝氧烷可以分别从三甲基铝、三乙基铝或三异丁基铝制备,并且可以分别被称为聚(甲基氧化铝)(poly(methylaluminum oxide))、聚(乙基氧化铝)(poly(ethyl aluminum oxide)和聚(异丁基氧化铝)(poly(isobutyl aluminum oxide))。和三烷基铝结合使用铝氧烷也在本技术的范围内,例如在美国专利4,794,096中公开,其通过参考整体并入本文。
本技术包括在铝氧烷式(R-Al-O)n和R(R-Al-O)nAlR2中的n的多个值。在示例性铝氧烷中,n可以至少为大约3。然而,取决于有机铝氧烷可被如何制备、贮存和使用,在铝氧烷的单个样品中,n的值可以是可变的,并且有机铝氧烷的这类组合被包括在本技术的方法和组合物中。
在包括任选的铝氧烷的本技术的实施方式中,铝氧烷中的铝与组合物中的茂金属的摩尔比可以为大约1∶10至大约100,000∶1或大约5∶1至大约15,000∶1。加入聚合反应区中的任选的铝氧烷的数量可以是在大约0.01mg/L至大约1000mg/L、大约0.1mg/L至大约100mg/L或大约1mg/L至大约50mg/L范围内的量。
通过可得到的各种方法可以制备有机铝氧烷。有机铝氧烷制备的实例在美国专利第3,242,099和4,808,561中公开,它们中每一篇通过参考整体并入本文。铝氧烷可如何被制备的一个实例如下。水可以溶解在惰性有机溶剂中,然后与烷基铝化合物例如AlR3反应而形成期望的有机铝氧烷化合物。尽管不意欲束缚于该说明,但据认为,此种合成方法可以提供线型和环状(R-Al-O)n铝氧烷种类的混合物,这两种铝氧烷都被本技术包括。可选地,通过使烷基铝化合物例如AlR3与水合盐例如水合硫酸铜在惰性有机溶剂中反应,可以制备有机铝氧烷。
5.有机硼和有机硼酸盐活化剂/助催化剂
本技术也包含使用有机硼或有机硼酸盐化合物作为活化剂和/或助催化剂的催化剂组合物。本文提出的任何柄型茂金属化合物可以与下列物质组合:本文提出的任何有机硼或有机硼酸盐助催化剂;或本文提出的有机硼或有机硼酸盐助催化剂的任何组合。当茂金属化合物已经不包含这类配体例如有机铝化合物时,该组合物可以包括提供茂金属可活化配体如烷基或氢负离子配体的成分。此外,本文提出的任何柄型-茂金属化合物可以与以下组合:任何有机硼或有机硼酸盐助催化剂;有机铝化合物;任选地,铝氧烷;和任选地,活化剂-载体,以形成本技术的催化剂组合物。
术语“有机硼”化合物可被用作指中性硼化合物、硼酸盐或它们的组合。例如,在各种实施方式中的有机硼化合物可以是氟有机硼化合物、氟有机硼酸盐化合物或它们的组合。可以应用任何的氟有机硼或氟有机硼酸盐化合物。术语氟有机硼具有其通常的意义,指的是形式为BY3的中性化合物。术语氟有机硼酸盐化合物也具有其通常的意义,指的是形式为[阳离子]+[BY4]-的氟有机硼化合物的单阴离子盐,其中Y代表氟化有机基团。为方便起见,氟有机硼和氟有机硼酸盐化合物可以被总称为有机硼化合物,或者根据上下文需要被称为任一个名称。
可以被用作本技术中的助催化剂的氟有机硼酸盐化合物包括例如氟化芳基硼酸盐(fuorinated aryl borates),例如N,N-二甲基苯胺四(五氟苯基)硼酸盐(N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate)、三苯基碳鎓四(五氟苯基)硼酸盐(triphenylcarbenium tetrakis(pentafluorophenyl)borate)、四(五氟苯基)硼酸锂(lithium tetrakis(pentafluorophenyl)borate)、N,N-二甲基苯胺四[3,5-双(三氟甲基)苯基]硼酸盐(N,N-dimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)、三苯基碳鎓四[3,5-双(三氟甲基)苯基]硼酸盐(triphenylcarbenium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)等,包括它们的混合物。可以被用作本技术中的助催化剂的氟有机硼化合物的实例包括例如三(五氟苯基)硼(tris(pentafluorophenyl)boron)、三[3,5-双(三氟甲基)苯基]硼(tris[3,5-bis(trifluoromethyl)phenyl]boron)等,包括它们的混合物。
尽管不期望束缚于下面的理论,氟有机硼酸盐和氟有机硼化合物及相关化合物的这些实例被认为当与有机金属化合物结合时形成了弱配位(weakly-coordinating)阴离子,如在美国专利5,919,983中公开,其通过参考整体被包括在本文。
一般而言,任何数量的有机硼化合物可以被用在本技术中。在一些实施方式中,组合物中的有机硼化合物与茂金属化合物的摩尔比可以是大约0.1∶1至大约10∶1,或者每摩尔茂金属化合物中为大约0.5摩尔至大约10摩尔硼化合物。在实施方式中,用作茂金属的助催化剂的氟有机硼或氟有机硼酸盐化合物的量可以在每摩尔茂金属化合物中为大约0.8摩尔至大约5摩尔硼化合物的范围。
6.电离化离子化合物活化剂/助催化剂
本技术的实施方式可以包括如本文提出的催化剂组合物,除了其它成分之外,其包括任选的电离化离子化合物作为活化剂和/或助催化剂。这些电离化离子化合物的实例在美国专利5,576,259和5,807,938中公开,其通过参考整体并入本文。
电离化离子化合物是可以起增强催化剂组合物活性作用的离子化合物。尽管不意欲束缚于理论,据认为,所述电离化离子化合物可以能够与茂金属化合物反应并且将茂金属转化为阳离子茂金属化合物。同样,尽管不意欲束缚于理论,据认为,该电离化离子化合物通过完全或部分地从茂金属提取阴离子配体,可以起着电离化合物的作用,所述阴离子配体可能是非η5-链二烯基配体,例如X3或X4。然而,电离化离子化合物是活化剂,无论其是否:电离茂金属;以形成离子对的方式夺取X3或X4配体;削弱茂金属中的金属-(X3)或金属-(X4)键;简单地与X3或X4配体配位;或者依照可以发生活化的任何其它机理。此外,电离化离子化合物不必仅活化茂金属。与含有不包括任何电离化离子化合物的催化剂组合物的催化剂组合物相比,电离化离子化合物的活化功能总体上在增强催化剂组合物的活性上可以是明显的。
电离化离子化合物的实例可以包括例如以下化合物:三(正丁基)铵四(对甲苯基)硼酸盐、三(正丁基)铵四(间甲苯基)硼酸盐、三(正丁基)铵四(2,4-二甲基苯基)硼酸盐、三(正丁基)铵四(3,5-二甲基苯基)硼酸盐、三(正丁基)铵四[3,5-双(三氟甲基)苯基]硼酸盐、三(正丁基)铵四(五氟苯基)硼酸盐、N,N-二甲基苯胺四(对甲苯基)硼酸盐、N,N-二甲基苯胺四(间甲苯基)硼酸盐、N,N-二甲基苯胺四(2,4-二甲基苯基)硼酸盐、N,N-二甲基苯胺四(3,5-二甲基苯基)硼酸盐、N,N-二甲基苯胺四[3,5-双(三氟甲基)苯基]硼酸盐、N,N-二甲基苯胺四(五氟苯基)硼酸盐、三苯基碳鎓四(对甲苯基)硼酸盐、三苯基碳鎓四(间甲苯基)硼酸盐、三苯基碳鎓四(2,4-二甲基苯基)硼酸盐、三苯基碳鎓四(3,5-二甲基苯基)硼酸盐、三苯基碳鎓四[3,5-双(三氟甲基)苯基]硼酸盐、三苯基碳鎓四(五氟苯基)硼酸盐、
Figure GPA00001073158600311
鎓四(对甲苯基)硼酸盐、
Figure GPA00001073158600312
鎓四(间甲苯基)硼酸盐、
Figure GPA00001073158600313
鎓四(2,4-二甲基苯基)硼酸盐、
Figure GPA00001073158600314
鎓四(3,5-二甲基苯基)硼酸盐、
Figure GPA00001073158600315
鎓四[3,5-双(三氟甲基)苯基]硼酸盐、
Figure GPA00001073158600316
鎓四(五氟苯基)硼酸盐、四(五氟苯基)硼酸锂、四(苯基)硼酸锂、四(对甲苯基)硼酸锂、四(间甲苯基)硼酸锂、四(2,4-二甲基苯基)硼酸锂、四(3,5-二甲基苯基)硼酸锂、四氟硼酸锂、四(五氟苯基)硼酸钠、四(苯基)硼酸钠、四(对甲苯基)硼酸钠、四(间甲苯基)硼酸钠、四(2,4-二甲基苯基)硼酸钠、四(3,5-二甲基苯基)硼酸钠、四氟硼酸钠、四(五氟苯基)硼酸钾、四(苯基)硼酸钾、四(对甲苯基)硼酸钾、四(间甲苯基)硼酸钾、四(2,4-二甲基苯基)硼酸钾、四(3,5-二甲基苯基)硼酸钾、四氟硼酸钾、三苯基碳鎓四(对甲苯基)铝酸盐、三苯基碳鎓四(间甲苯基)铝酸盐、三苯基碳鎓四(2,4-二甲基苯基)铝酸盐、三苯基碳鎓四(3,5-二甲基苯基)铝酸盐、三苯基碳鎓四(五氟苯基)铝酸盐、鎓四(对甲苯基)铝酸盐、
Figure GPA00001073158600318
鎓四(间甲苯基)铝酸盐、
Figure GPA00001073158600319
鎓四(2,4-二甲基苯基)铝酸盐、
Figure GPA000010731586003110
鎓四(3,5-二甲基苯基)铝酸盐、
Figure GPA000010731586003111
鎓四(五氟苯基)铝酸盐、四(五氟苯基)铝酸锂、四(苯基)铝酸锂、四(对甲苯基)铝酸锂、四(间甲苯基)铝酸锂、四(2,4-二甲基苯基)铝酸锂、四(3,5-二甲基苯基)铝酸锂、四氟铝酸锂、四(五氟苯基)铝酸钠、四(苯基)铝酸钠、四(对甲苯基)铝酸钠、四(间甲苯基)铝酸钠、四(2,4-二甲基苯基)铝酸钠、四(3,5-二甲基苯基)铝酸钠、四氟铝酸钠、四(五氟苯基)铝酸钾、四(苯基)铝酸钾、四(对甲苯基)铝酸钾、四(间甲苯基)铝酸钾、四(2,4-二甲基苯基)铝酸钾、四(3,5-二甲基苯基)铝酸钾、四氟铝酸钾、三苯基碳鎓三(2,2′,2″-九氟联苯)氟铝酸盐、四(1,1,1,3,3,3-六氟异丙醇合)铝酸银(silvertetrakis(1,1,1,3,3,3-hexafluoroisopropanolato)aluminate)或四(全氟-叔丁氧基)铝酸银(silver tetrakis(perfluoro-t-butoxy)aluminate),或它们的任何组合。
D.催化剂组合物的非限制性实例
本技术的示例性催化剂组合物可以包括以下描述的组合物。在实施方式中,例如,催化剂组合物可以包括柄型-茂金属、有机铝化合物和活化剂-载体,或者催化剂组合物可以包括柄型-茂金属、有机铝化合物和活化剂-载体的接触产物。柄型-茂金属可以包括具有以下通式的化合物:
Figure GPA00001073158600321
在该式中,M1可以是锆或铪,以及X’和X”可以独立为氟、氯、溴或碘。E可以是碳或硅,以及n可以是1到3的整数,1和3包括在内。R3A和R3B可以独立地是烃基基团或三烃基甲硅烷基基团,其中的任何一个具有多达20个碳原子,或可以是氢。下标‘m’可以是可以为0到10范围的整数,0和10包括在内。R4A和R4B可以独立地为可具有多达12个碳原子的烃基基团;或可以是氢。键‘a’可以是单键或双键。有机铝化合物可以是例如三甲基铝、三乙基铝、三丙基铝、三丁基铝、三异丁基铝、三己基铝、三异己基铝、三辛基铝、二乙基乙醇铝(diethylaluminum ethoxide)、氢化二异丁基铝(disiobutylaluminumhydride)、氯化二乙基铝(diethylaluminum chloride)、或它们的任何组合。在该实施方式中,活化剂-载体可以是用吸电子阴离子处理的固体氧化物,其中固体氧化物可以是例如二氧化硅、氧化铝、二氧化硅-氧化铝、磷铝酸盐、磷酸铝、铝酸锌、杂多钨酸盐、二氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、它们的混合氧化物、或它们的任何组合。吸电子阴离子可以是例如氟根、氯根、溴根、碘根、磷酸根、三氟甲磺酸根、硫酸氢根、硫酸根、氟硼酸根、氟硫酸根、三氟乙酸根、磷酸根、氟磷酸根、氟锆酸根、氟硅酸根、氟钛酸根、高锰酸根、取代的或未取代的链烷磺酸根、取代或未取代的芳烃磺酸根、取代或未取代的烷基硫酸根或它们的任何组合。
在以上描述的实施方式中,柄型-茂金属可以为具有以下通式的化合物:
在该式中,M1可以是锆或铪,以及X’和X”可以独立为为氟、氯、溴、或碘。E可以是碳或硅,以及‘n’可以是1到3的整数,1和3包括在内。R3A和R3B可以独立地为氢、甲基、乙基、丙基、烯丙基、苄基、丁基、戊基、己基或三甲基甲硅烷基,以及‘m’可以是1到6的整数,1和6包括在内。R4A和R4B可以独立为具有多达6个碳原子的烃基基团或氢。键‘a’可以是单键或双键。
在以上描述的实施方式中,柄型-茂金属可以是具有以下通式的化合物:
在该式中,M1可以是锆或铪,以及X’和X”可以独立地为氟、氯、溴或碘。E可以为碳或硅,以及‘n’可以是1或2。R3A和R3B可以独立地为氢或甲基,以及‘m’可以是1或2。R4A和R4B可以独立地为氢或叔丁基。键‘a’可以是单键或双键。
在以上描述的实施方式中,本技术的柄型-茂金属可以是具有下式的化合物:
Figure GPA00001073158600341
在该式中,M1可以是锆或铪,以及X’和X”可以独立地为氢、BH4、甲基、苯基、苄基、新戊基、三甲基甲硅烷基甲基、CH2CMe2Ph;CH2SiMe2Ph;CH2CMe2CH2Ph;或CH2SiMeCH2Ph。E可以是碳或硅,以及n可以是1到3的整数,1和3包括在内。R3A和R3B可以独立地为烃基基团或三烃基甲硅烷基基团——其中的任何一个具有多达20个碳原子——或氢;和n可以是0到10的整数,0和10包括在内。R4A和R4B可以独立地为具有多达12个碳原子的烃基基团或氢。键‘a’可以是单键或双键。在以上描述的实施方式的其它形式中,柄型-茂金属可以包括如在图1中显示的化合物(I-1)或(I-2),或它们的任何组合。
在其它实施方式中,催化剂组合物可以包括柄型-茂金属、有机铝化合物和活化剂-载体,或者催化剂组合物可以包括柄型-茂金属、有机铝化合物和活化剂-载体的接触产物。在该实施方式中,柄型-茂金属可以包括如在图1中显示的化合物(I-1)或(I-2),或它们的任何组合。有机铝化合物可以包括三乙基铝、三正丁基铝、三异丁基铝、或它们的任何组合。活化剂-载体可以包括硫酸化的固体氧化物。
在还其它的实施方式中,催化剂组合物可以包括柄型-茂金属、有机铝化合物和活化剂-载体,或者催化剂组合物可以包括柄型-茂金属、有机铝化合物和活化剂-载体的接触产物。在这些实施方式中,柄型-茂金属可以包括如在图1中显示的(I-1)或(I-2),或它们的任何组合。有机铝化合物可以包括三乙基铝、三正丁基铝、三异丁基铝、或它们的任何组合。活化剂-载体可以包括硫酸化的氧化铝。
在还其它的实施方式中,催化剂组合物可以包括预接触的柄型-茂金属、预接触的有机铝化合物、预接触的烯烃和后接触的活化剂-载体,或者催化剂组合物可以包括预接触的柄型-茂金属、预接触的有机铝化合物、预接触的烯烃和后接触的活化剂-载体的接触产物,其中柄型-茂金属、有机铝化合物、烯烃和活化剂-载体中的每一个可以为如本文所提出的。
本技术进一步的实施方式提供催化剂组合物,其包括下述物质的接触产物:紧密桥连柄型-茂金属化合物,其含有连接到两个η5-环戊二烯基型配体的环状桥连部分;和试剂,其能够起着将茂金属转换为活性催化剂的作用,且其可以不同于本文提出的固体氧化物活化剂-载体和有机铝化合物的组合。因此,在一个实施方式中,通过激活茂金属——其可以包括使茂金属化合物转变为其阳离子形式——以及通过在茂金属转变为能够引发烯烃聚合的阳离子之前、之后或期间,向其提供烃基配体(例如,烷基化),可以形成活性催化剂组合物。可以使茂金属转变成为活性催化剂的试剂可以包括:当该茂金属化合物还不包括可活化的配体时,提供这种配体例如烷基到茂金属的成分;和活化剂成分,如本文提供的。在一些情况下,用一种成分如有机铝氧烷可以实现两种功能。在其它情况下,可以通过两种单独的成分提供这两种功能,例如可以将可活化的烷基配体提供给茂金属的有机铝化合物,和可以提供活化剂功能的另一种成分。
柄型-茂金属化合物的活化剂和/或烷基化剂可以是有机铝氧烷,例如,诸如,甲基铝氧烷或异丁基铝氧烷。可选地,活化剂可以是能够从茂金属夺取阴离子配体的路易斯酸性有机硼化合物,例如,诸如,如三(五氟苯基)硼(tris(pentafluorophenyl)boron)或三苯基碳鎓四(五氟苯基)硼酸盐(triphenylcarbenium tetrakis(pentafluorophenyl)borate),其可以与烷基化剂如有机铝化合物联合使用。
此外,如本文提出的二烷基化紧密-桥连的柄型-茂金属化合物可以与布朗斯台德酸性硼酸盐活化剂如三(正丁基)铵四(对甲苯基)硼酸盐或N,N-二甲基苯胺四(五氟苯基)硼酸盐反应,以除去一个烷基配体而形成烷基化的茂金属阳离子。可选地,二烷基化的紧密-桥连柄型-茂金属化合物可以与路易斯酸硼酸盐活化剂如三苯基碳鎓四(五氟苯基)硼酸盐反应,以除去一个烷基配体而形成烷基化的茂金属阳离子。因此,尽管不意欲被理论所束缚,据认为,活性催化剂可以包括烷基化的茂金属阳离子,并且任意数量的可选反应可被用于产生这样的催化剂。
本技术可以包括催化剂组合物,其包含紧密桥连柄型-茂金属——其包括能够引发烯烃聚合的烃基配体——和固体氧化物活化剂-载体的接触产物,而不需要添加有机铝化合物。柄型-茂金属化合物可以包括连接到η5-环戊二烯基型配体和能够引发烯烃聚合的烃基配体之一的侧链烷基。有机铝化合物对于烷基化这种类型“预烷基化的”柄型-茂金属可能不是必需的,因为它已经包括了能够引发烯烃聚合的烃基配体。
E.烯烃单体
在本技术中,各种不饱和的反应物在利用催化剂组合物和方法的聚合方法中可以是有用的。这些反应物包括烯烃化合物,其每分子具有大约2至大约30个碳原子,并且具有烯烃双键。本技术包括使用单一烯烃例如乙烯或丙烯的均聚反应方法,以及用两种或多种不同的烯烃化合物的共聚合反应。例如,在乙烯的共聚合反应中,共聚物可以包括主要量的乙烯(>50摩尔百分比)和次要量的共聚单体(<50摩尔百分比)。可以与乙烯共聚合的共聚单体在它们的分子链中可以具有3至大约20个碳原子。
可以用作为本技术中的单体或共聚单体的烯烃包括无环、环状、多环、末端(α)、中间、直链、支链、取代的、未取代的、官能化的和非官能化的烯烃。例如,可以用本技术的催化剂聚合的化合物包括丙烯、1-丁烯、2-丁烯、3-甲基-1-丁烯、异丁烯、1-戊烯、2-戊烯、3-甲基-1-戊烯、4-甲基-1-戊烯、1-己烯、2-己烯、3-己烯、3-乙基-1-己烯、1-庚烯、2-庚烯、3-庚烯、四种正辛烯(the four normal octenes)、四种正壬烯(the four normal nonenes)、五种正癸烯(the five normal decenes)或它们的任何组合。此外,包括例如环戊烯、环己烯、降冰片烯、降冰片二烯等的环状和双环烯烃也可以被聚合,如上所述。
引入反应器区中以生产共聚物的共聚单体的量基于单体和共聚单体的总重,可以为大约0.001至大约99重量百分比的共聚单体,一般为大约0.01至大约50重量百分比。在其它实施方式中,引入反应器区中的共聚单体的量可以为大约0.01至大约10重量百分比的共聚单体或大约0.1至大约5重量百分比的共聚单体。可选地,可以使用足以提供上述重量浓度的所产生的共聚物的量。
尽管不意欲束缚于理论,但据认为,如果使用支化、取代的或官能化烯烃作为反应物,位阻可以阻止和/或减慢聚合过程。然而,如果烯烃的支化和/或环状部分(一个或多个)在一定程度上被从碳碳双键中移开,预期它们不会与更邻近的取代基一样阻碍反应。
在示例性实施方式中,本技术的催化剂组合物的反应物可以是乙烯,因此聚合可以是均聚反应或者与不同的无环、环状、末端、中间、直链、支链、取代的或未取代的烯烃的共聚反应。另外,本技术的催化剂组合物可以被用在二烯属化合物的聚合中,所述二烯属化合物包括化合物例如,诸如1,3-丁二烯、异戊二烯、1,4-戊二烯和1,5-己二烯。
II.催化剂组合物的制备
本发明包括催化剂组合物和方法,该方法包括使如本文所提出的紧密-桥连的柄型-茂金属化合物、活化剂和任选的有机铝化合物接触。本文提出的方法包括使每一种成分接触的任何系列的接触步骤,包括使成分或成分混合物接触的任何顺序。虽然不意图是限定性的,接触步骤的实例可以使用处理的固体氧化物活化剂-载体和有机铝助催化剂进行示范。这些步骤可以包括任何数目的预接触和后接触步骤,并且可以进一步包括在任意这些步骤中使用烯烃单体作为接触成分。制备本技术的催化剂组合物的方法的实例在以下讨论。
A.预接触催化剂组合物和烯烃
与可以没有预接触步骤而制备的相同催化剂组合物相比,使催化剂组合物、或催化剂组合物的成分与烯烃单体预接触,然后将催化剂组合物加到反应器中,可以增加聚合物的产率。本技术的增强活性催化剂组合物可以用于α-烯烃单体例如乙烯的均聚反应或α-烯烃和共聚单体的共聚反应。然而,在本技术的催化剂组合物中预接触步骤不是必需的。
在本技术的一些实施方式中,柄型-茂金属可以与烯烃单体——虽然不必是待聚合的烯烃单体——和有机铝助催化剂预接触第一段时间。随后该预接触混合物可以与固体氧化物活化剂-载体接触。例如,柄型-茂金属、烯烃单体和有机铝助催化剂之间接触的第一段时间——预接触时间——可以在大约1分钟至大约24小时、大约0.1至大约1小时或大约10分钟至大约30分钟的时间范围。
一旦柄型-茂金属化合物、烯烃单体和有机铝助催化剂的预接触混合物与固体氧化物活化剂接触,该组合物(其还包括固体氧化物活化剂)可以被称为后接触混合物。可以使所述后接触混合物保持接触第二段时间,即后接触时间(postcontact time),之后使其用在聚合过程中。这可以以类似于预接触催化剂组合物的方式提供活性的增加。在固体氧化物活化剂-载体与预接触混合物之间的后接触时间可以在大约1分钟至大约24小时、大约0.1小时至大约1小时或大约10分钟至大约30分钟的时间范围内。
在聚合反应正在进行时,可以使各种催化剂成分(例如柄型-茂金属、活化剂-载体、有机铝助催化剂和任选的不饱和烃)在聚合反应器中同时接触。可选地,可以使这些催化剂成分的任何两种或多种在它们进入反应区之前在容器中或管中预接触。该预接触步骤可以是连续过程,其中预接触产物可以被连续进料到反应器中,或者其可以是分步或分批过程,其中一批预接触产物可以被加入以制备催化剂组合物。该预接触步骤可以在数秒至多达几天或更长范围内的时间期间内进行。例如,连续预接触步骤可以持续大约1秒至大约1小时、大约10秒至大约45分钟或者大约1分钟至大约30分钟。
B.多个预接触步骤
可选地,预接触过程可以以多步骤,而非单个步骤进行,其中多个混合物得以制备,每一个包括不同组的催化剂成分。例如,可以使至少两种催化剂成分接触而形成第一混合物,之后使该第一混合物与另外一种催化剂成分接触而形成第二混合物,等等。
可以在单个容器或多个容器中进行多次预接触步骤。此外,可以连续(顺序地)、同时或以它们的组合进行多次预接触步骤。例如,可以在第一容器中形成两种催化剂成分的第一混合物,可以在所述第一容器或第二容器中形成包含所述第一混合物加上一种另外的催化剂成分的第二混合物,所述第二容器可以放置在所述第一容器的下游。
一种或多种催化剂成分可以被分离并用在不同的预接触处理中。例如,部分催化剂成分可以被送入第一预接触容器中用于与另一种催化剂成分预接触,同时同一催化剂成分的剩余部分可以被送入第二预接触容器中用于与另一种催化剂成分预接触,或者可以被直接送入反应器中,或者它们的组合。可以在任何合适的设备,例如槽、搅拌混合槽、各种静态混合装置、管、烧瓶、任何类型的容器或其任何组合中进行预接触。例如,本技术的催化剂组合物可以如此制备:使1-己烯、三异丁基铝或三正丁基铝和柄型-茂金属接触至少大约30分钟,之后使该预接触混合物与硫酸化氧化铝活化剂-载体接触至少大约10分钟至多达1小时而形成活性催化剂。
可以在足以允许预接触混合物和固体氧化物活化剂-载体进行吸附、浸渍或相互作用的温度和时间下加热后接触混合物,以使预接触混合物的部分成分被固定、吸附或沉积在其上。例如,可以在大约0°F至大约150°F之间或大约40°F至大约95°F之间加热后接触混合物。对于本技术,预接触步骤和后接触步骤都可以都不是必要的。
C.催化剂组合物的组分比例
在本技术的实施方式中,柄型-茂金属化合物与有机铝化合物的摩尔比可以从大约1∶1至大约1∶10,000(例如,大约1∶2、1∶5、1∶20、1∶50、1∶200、1∶500、1∶2000、1∶5000、1∶8000等)、从大约1∶1至大约1∶1,000或从大约1∶1至大约1∶100。这些摩尔比反映了在组合的预接触混合物和后接触混合物中柄型-茂金属化合物与有机铝化合物总量的比例。
当应用预接触步骤时,在预接触混合物中烯烃单体与柄型-茂金属化合物的摩尔比可以从大约1∶10至大约100,000∶1(例如,1∶10、1∶5、1∶1、5∶1、5000∶1、10,000∶1、50,000∶1等)、或从大约10∶1至大约1,000∶1。固体氧化物活化剂与有机铝化合物的重量比可以在大约1∶5至大约1,000∶1、大约1∶3至大约100∶1或大约1∶1至大约50∶1的范围中。柄型-茂金属与固体氧化物活化剂-载体的重量比可以为大约1∶1至大约1∶1,000,000(例如,1∶2、1∶10、1∶5,000、1∶100,000等)、大约1∶10至大约1∶100,000或大约1∶20至大约1∶1000。
D.制备催化剂组合物方法的实例
本技术的实施方式可以包括生产催化剂组合物的方法。例如,一种这样的方法可以包括使柄型-茂金属、烯烃和有机铝化合物接触第一段时间,以形成预接触混合物,其包括预接触的柄型-茂金属、预接触的有机铝化合物和预接触的烯烃。随后可以使该预接触混合物与活化剂-载体以及任选的另外的有机铝化合物接触第二段时间,以形成后接触混合物,其包括后接触的柄型-茂金属、后接触的有机铝化合物、后接触的烯烃和后接触的活化剂-载体。在实施方式中,柄型-茂金属可包括具有下式的化合物:
(X1)(X2)(X3)(X4)M1
其中M1可以是钛、锆或铪。X1可以是取代的环戊二烯基、取代的茚基或取代的芴基。X2可以是取代的环戊二烯基或取代的芴基。
X1和X2上的一个取代基是具有式E(Cyc)的桥连基团,其中E可以是碳原子、硅原子、锗原子或锡原子,以及E与X1和X2结合,其中Cyc可以是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构。在X2上的一个取代基可以是具有多达12个碳原子的取代或未取代的烷基或链烯基基团。
X3和X4可以独立为:F、Cl、Br或I;具有多达20个碳原子的烃基基团、H或BH4;烃基氧基团、烃基氨基基团、或三烃基甲硅烷基基团,其任何一个具有多达20个碳原子;或OBRA 2或SO3RA,其中RA可以是烷基基团或芳基基团,其任何一个具有多达12个碳原子。
在取代的环戊二烯基、取代的茚基、取代的芴基或取代的烷基基团上的任何额外的取代基可以独立为:脂族基、芳族基、环状基团、脂族基和环状基团的组合、氧基团、硫基团、氮基团、磷基团、砷基团、碳基团、硅基团或硼基团,它们中的任何一个具有1至20个碳原子;卤根;或氢。
E.催化剂组合物的活性
本技术的催化剂的催化剂活性可以大于或等于大约1000克聚乙烯/克化学处理的固体氧化物/小时(缩写为gP/(gCTSO·hr))、大于或等于大约3000gP/(gCTSO·hr)、大于或等于大约6000gP/(gCTSO·hr)或大于或等于大约9000gP/(gCTSO·hr)。该活性可以在淤浆聚合条件下,使用异丁烷作为稀释剂,用大约80℃至100℃的聚合温度以及大约340psig至大约550psig的乙烯压力进行测量。在进行这些测量时,反应器应当基本没有任何壁垢(wall scale)、涂覆层或其它形式的污垢的迹象。
III.催化剂组合物在聚合过程中的应用
使用各种类型的聚合反应器,本技术的催化剂拟用于任何烯烃聚合方法。如本文使用的,“聚合反应器”包括能够聚合烯烃单体而产生均聚物或共聚物的任何聚合反应器。这类均聚物和共聚物被称为树脂或聚合物。各种类型的反应器包括那些可被称为间歇、淤浆、气相、溶液、高压、管状或高压釜反应器的反应器。气相反应器可以包括流化床反应器或分级卧式反应器(staged horizontal reactors)。淤浆反应器可以包括立式回路(vertical loops)或卧式回路(horizontal loops)。高压反应器可包括高压釜反应器或管状反应器。反应器类型可包括分批或连续方法。连续方法可使用间歇或连续产物卸载。方法也可包括未反应的单体、未反应的共聚单体和/或稀释剂的部分或完全直接再循环。
本技术的聚合反应器体系可以包括一系统一种类型的反应器或包括相同或不同类型的多个反应器。在多个反应器中聚合物的生产可以包括在至少两个独立的聚合反应器中的几个阶段,所述至少两个独立的聚合反应器通过转移设备相互连接,这使得将由第一聚合反应器产生的聚合物转移至第二反应器是可能的。在一个反应器中的期望聚合条件可以不同于其它反应器的操作条件。可选地,在多反应器中的聚合可以包括聚合物从一个反应器手动转移至随后的反应器,以进行连续的聚合。多个反应器体系可以包括任何组合,其包括但不限于多个回路反应器、多个气相反应器、回路和气相反应器的组合、多个高压反应器或高压反应器与回路和/或气相反应器的组合。多个反应器可平行或串联操作。
A.回路淤浆聚合方法
在本技术的实施方式中,聚合反应器体系可以包括回路淤浆反应器。此类反应器可以包括立式或卧式回路。单体、稀释剂、催化剂和任选的任何共聚单体可以被连续送入回路反应器中,在那里发生聚合。一般而言,连续的方法可包括将单体、催化剂和稀释剂连续引入聚合反应器,以及从该反应器中连续除去含有聚合物颗粒和稀释剂的悬浮液。反应器流出物可以被闪蒸,以从包含稀释剂、单体和/或共聚单体的液体中去除固体聚合物。各种技术可被用于该分离步骤,其包括但不限于可包括任何加热和压力减少组合的闪蒸;通过旋风分离器或旋液分离器中的旋风作用(cyclonic action)分离;或者通过离心分离。
回路淤浆聚合方法(也被称为颗粒状方法(particle form process)),被公开在例如美国专利3,248,179、4,501,885、5,565,175、5,575,979、6,239,235、6,262,191和6,833,415中,这些专利的每一篇通过参考整体并入本文。
可以用在淤浆聚合中的稀释剂包括例如被聚合的单体和在反应条件下为液体的烃类。适合的稀释剂的实例可包括例如烃类如丙烷、环己烷、异丁烷、正丁烷、正戊烷、异戊烷、新戊烷和正己烷。一些回路聚合反应可以在可不使用稀释剂或单体(例如丙烯)充当稀释剂的本体条件(bulk condition)下发生。一个实例是如在美国专利号5,455,314中公开的丙烯单体聚合,其通过参考整体并入本文。
B.气相聚合方法
此外,聚合反应器可包括气相反应器。此类系统可在催化剂存在下,在聚合条件下使用连续地循环通过流化床的连续的再循环流——该循环流含有一种或多种单体。该再循环流可以从流化床中收回,并且再循环返回到反应器中。同时,聚合物产物可以从反应器中取出,而新的或者新鲜的单体可以被加入以置换被聚合的单体。此类气相反应器可以包括烯烃的多步气相聚合的过程,其中烯烃在至少两个独立的气相聚合区中以气相被聚合,同时将在第一聚合区中所形成的含催化剂的聚合物加到第二聚合区中。一种类型的气相反应器被公开在美国专利第5,352,749、4588,790和5,436,304中,这些专利的每一篇通过参考整体并入本文。
根据本技术的又另一方面,高压聚合反应器可包括管状反应器或高压釜反应器。管状反应器可以具有几个区,新鲜的单体、引发剂或催化剂被加入到那里。单体可被携带在惰性气流中,并在反应器的一个区被引入。引发剂、催化剂和/或催化剂成分可以被携带在气流中,并在反应器的另一个区被引入。气流可以被混合以进行聚合。可以适当地利用热和压力,以获得最佳的聚合反应条件。
C.溶液聚合方法
根据本技术的又另一方面,聚合反应器可以包括溶液聚合反应器,其中通过合适的搅拌或其它方法,单体可以与催化剂组合物接触。可以使用包括惰性有机稀释剂或过量单体的载体。如果需要的话,在存在或缺乏液体物质的情况下,可以使单体以气相与催化反应产物接触。聚合区可以被保持在将导致聚合物的溶液在反应介质中形成的温度和压力下。可以使用搅拌,以获得更好的温度控制,并且在整个聚合区维持均匀的聚合混合物。合适的方法可被用于驱散聚合的放热。
D.反应器支持系统
适合本技术的聚合反应器可以进一步包括原料进料系统、催化剂或催化剂成分的进料系统、和/或聚合物回收系统的任何组合。本技术的适合的反应器体系还可以包括用于原料纯化、催化剂贮存和制备、挤出(extrusion)、反应器冷却、聚合物回收、分级(fractionation)、再循环、贮存、输出(load out)、实验室分析和过程控制的系统。
E.聚合条件
针对聚合效力和提供树脂性能可以被控制的条件包括温度、压力和各种反应物的浓度。聚合温度可影响催化剂产率、聚合物分子量和分子量分布。根据吉布斯自由能方程,适当的聚合温度可以是在解聚温度之下的任何温度。典型地,例如,这包括从大约60℃至大约280℃,或从大约70℃至大约110℃,这取决于聚合反应器的类型。
根据反应器和聚合类型,适合的压力也将改变。回路反应器中液相聚合的压力典型在1000psig以下。气相聚合的压力通常在大约200-500psig。在管状或高压釜反应器中的高压聚合通常在大约20,000到75,000psig下运行。聚合反应器也可在通常更高温度和压力下发生的超临界区域操作。压力/温度图的临界点之上(超临界相)的操作可提供优点。
各种反应物的浓度可被控制以产生具有特定物理和机械性能的树脂。通过树脂和形成该产物的方法形成的提议的最终应用的产物决定期望的树脂性质。机械性能包括拉伸、弯曲、撞击、蠕变(creep)、应力松弛和硬度测试。物理性能包括密度、分子量、分子量分布、熔化温度、玻璃化转变温度、结晶熔化温度、密度、立体有规性、龟裂增长、长链支化和流变测量。
单体、共聚单体、氢、助催化剂、改性剂和电子供体的浓度在产生这些树脂特性中可能是重要的。共聚单体可以被用来控制产物密度。氢可以被用来控制产物分子量。助催化剂可被用来烷基化、清除毒物和控制分子量。改性剂可被用来控制产物性能,电子供体影响立体有规性。另外,毒物的浓度必须被最小化,因为它们影响反应和产物性能。
F.由聚合物制备的最终产品
来自反应器系统的聚合物或树脂碎屑(fluff)可以具有加入的添加剂和改性剂,以在制造期间提供更好的加工性能和终产品中的期望性能。添加剂包括表面改性剂如增滑剂、防结块剂(antiblocks)、粘合剂;抗氧化剂如主抗氧化剂和二次抗氧化剂;颜料;加工助剂(processingaids)如石蜡/油和含氟弹性体;和特殊添加剂如阻燃剂、抗静电剂、清除剂、吸收剂、气味增强剂(odor enhancer)和降解剂。在添加剂加入后,聚合物或树脂碎屑可以被挤出和形成为分发到客户并形成为最终产品的小球。
为了由小球形成最终产品或部件,小球一般进行进一步地加工,例如吹塑、注塑、旋转模塑、吹膜、流延薄膜、挤出(例如,板材挤塑、管形和波纹挤出(pipe and corrugated extrusion)、贴胶/层压挤出(coating/lamination extrusion)等)、等等。吹塑是用于产生空的塑料部件的方法。该方法一般使用吹塑设备,例如往复式螺杆机(reciprocatingscrew machines)、储料缸式机头机(accumulator head machines)等等。吹塑方法可以被调节以满足客户的需要,并制造从以上提到的塑料奶瓶延伸到汽车油罐的产品。类似地,在注塑中,可以模塑宽范围应用的产品和部件,其包括容器、食品和化学品包装、玩具、汽车、机箱、盖和密封件,这里只列举了少数。
也可以使用型材挤塑方法。聚乙烯管道,例如可以从聚乙烯小球树脂中挤出,并且由于其化学耐性、相对容易安装、耐用性和成本优势等可以在各种应用中使用。实际上,塑料聚乙烯管道已经实现自来水总管道(water mains)、气体分布、雨水和生活污水管、室内排水、电工套管(electrical conduits)、能源和通讯管道(power and communicationsducts)、冷却水管道、井筒套管的重大应用,这里列举少数应用。特别是,高密度聚乙烯(HDPE)——其一般组成管道用塑料的最大容量聚烯烃组——可以是坚韧、耐磨和挠性的(即使在低于冰点的温度)。此外,HDPE管道可以在小直径的管子和直径多达8英尺中的管道使用。一般而言,聚乙烯小球(树脂)可以被提供用于压力管道市场例如天然气分送以及用于非压力管道市场例如导线管和起波纹的管道。
旋转模塑是高温、低压的方法,用于通过施加热到双轴向旋转的塑模而形成空心部件。在该方法中可广泛可应用的聚乙烯小球树脂是当被熔融时在没有压力情况下流到一起而形成没有气泡部件的那些树脂。树脂,例如通过本技术的催化剂组合物生产的那些,可以提供这些流动特征以及宽的加工窗口。此外,适合于旋转模塑的这些聚乙烯树脂可以显示期望的低温冲击强度、良好的承载性能和良好的紫外线(UV)稳定性。因此,旋转模制的聚烯烃树脂的应用包括农用罐、工业化学罐、饮用水贮存罐、工业废弃物容器、娱乐设备、航海用具,以及其它更多。
板材挤塑是由各种树脂制造平的塑料板材的技术。相对薄规格板材一般热成形为包装应用例如饮料杯、熟食容器、产品托盘(producetrays)、婴儿擦拭布容器(baby wipe containers)和人造黄油桶(margarinetubs)。聚烯烃的板材挤塑的其它市场包括利用相对比较厚的板材用于工业和娱乐应用的那些,例如货车垫(truck bed liners)、货盘、汽车垫料(automotive dunnage)、操场设备和船。挤出板材的第三个用途例如是在土工膜(geomembranes)中,其中平板材聚乙烯材料可以被结合成用于开采应用和市政废弃物处理的大的容器系统。
吹膜方法是用于聚乙烯的相对不同的转化系统。美国测试和材料学会(The American Society for Testing and Materials(ASTM))定义厚度小于0.254毫米(10密耳)的为膜。然而,吹膜方法可以产生厚度为0.5毫米(20密耳)和更厚的材料。此外,吹塑与单层和/或多层共挤出技术相结合奠定了数种应用的基础。吹塑产品的有利性质可以包括透明度、强度、撕裂度、光学性能和韧性,这里只列举少数。应用可以包括食品和零售包装、工业包装和非包装应用例如农用薄膜、卫生薄膜等等。
凭借快速的淬火和实质单向的定位能力,流延薄膜方法可以与吹膜方法不同。这些特征使得流延薄膜机(cast film line)例如在较高生产率的运转,同时产生有利的光学。食品和零售包装中的应用利用了这些优点。最后,聚烯烃小球也可以被提供用于挤压贴胶和层压工业。
最后,由聚烯烃(例如聚乙烯)小球形成的产品和部件可以被进一步地加工和组合用于分送和销售到消费者。例如,聚乙烯奶瓶可以装满牛奶分送到消费者,或者油罐可以被装配成为分送和销售到消费者的汽车。
IV.使用本技术的催化剂制备的聚合物实例
不意欲是限定性的,使用本技术的催化剂组合物生产的乙烯聚合物可以可具有如下特征:相比当使用没有连接两个η5-环戊二烯基型配体的环状桥连部分的紧密桥连柄型-茂金属催化剂时可观察到的共聚单体掺入量,其共聚单体掺入量更高。这可以通过在表1中显示的聚合试验说明。
表1:示例性聚合试验
Figure GPA00001073158600461
Figure GPA00001073158600471
*所有聚合使用以下进行:80℃;维持反应器中340psi乙烯压力;100mg硫酸化氧化铝;和0.5mmol TnBA
表1中的试验1、2、6、7、11和12显示使用根据本技术的示例性催化剂制备的聚合物可以得到的结果。使用的具体茂金属结构I-1和I-2在图1中显示,其对应于在表1中标记“茂金属”的列中给出的识别。相比之下,表1中的试验3-5、8-10和13-15显示由不具有连接η5-环戊二烯基型配体的环状桥连部分的催化剂制备的聚合物可以得到的比较结果。用于这些试验的茂金属结构在图2中显示为C-1、C-1和C-3。
共聚单体掺入量
本技术的催化剂组合物相比不具有连接两个η5-环戊二烯基型配体的环状桥连部分的柄型-茂金属催化剂体系可以具有更好的共聚单体掺入量。这可以通过表1中的试验1和2与试验3、4和5的比较显示。
在试验1-5中,10克的1-己烯加到反应器中作为共聚单体。掺入最终聚合物中的共聚单体的量在表1中显示为1-己烯的mol%和wt%。在所有情况下,掺入使用示例性催化剂制备的聚合物的1-己烯的量——在试验1和2中显示——比比较的柄型-茂金属的要高——在试验3-5中显示。
在试验6-10中显示进一步的比较。在这些试验中,20克的1-己烯共聚单体加到反应器中。如通过试验6和7显示,本技术的示例性催化剂的共聚单体掺入量相对于在试验8-10中显示的比较茂金属也提高。
通过试验11-15显示另一个比较。在这些试验中,30克的1-己烯共聚单体加到反应器中。再次,本技术的示例性聚合物显示的共聚单体掺入量比在试验13-15中列举的比较茂金属要高。因此,在所有水平的共聚单体测试中,本技术的示例性催化剂组合物在掺入共聚单体方面更有效。
V.步骤
A.孔径测定
Quantachrome Autosorb-6 Nitrogen Pore Size Distribution Instrument被用于测定比表面积(“表面积”)和比孔容(“孔体积”)。该仪器从纽约Syosset的Quantachrome Corporation获得。
B.通过C-13NMR测量共聚单体掺入量
在Varian Inova-500分光计上,使用经典的13C NMR光谱技术,由测量共聚物中丁基支链含量得到己烯掺入量,如先前描述[参见,Randall,J.C.,Hsieh,E.T.,NMR and Macromolecules;Sequence,Dynamic,and Domain Structure,ACS Symposium Series 247,J.C.Randall,Ed.,American Chemical Society,Washington D.C.,1984]。在135℃,在1∶6的1,4-二氯苯-d4(DCB-d4)和1,2,4-三氯苯(TCB)的混合物中以10wt%制备样品。在125℃,使用90°脉冲宽度、10秒脉冲延迟和全核欧沃豪斯效应得到光谱。使用Waltz-16脉冲序列实现去偶。
C.氟化二氧化硅-氧化铝活化剂-载体的制备
用于制备本实施例中的氟化二氧化硅-氧化铝酸性活化剂-载体的二氧化硅-氧化铝一般为Davison二氧化硅-氧化铝,从W.R.Grace以Grade MS13-110获得,其含有13%氧化铝,具有大约1.2cc/g的孔体积和大约400m2/g的表面积。该物质通过用含氟化氢铵的溶液浸渍为初期湿润而被氟化,所述溶液的量足以等于二氧化硅-氧化铝重量的10wt%。然后将该浸渍物质在真空烘箱中于100℃下干燥8小时。然后将如此氟化的二氧化硅-氧化铝样品进行煅烧。通过将大约10克氧化铝放置在底部装备有烧结石英圆盘的1.75英寸石英管中,进行煅烧。当二氧化硅被支撑在圆盘上时,干燥的空气以大约1.6至1.8标准立方英尺/小时的线速率向上吹过圆盘。在石英管周围的电炉被用于以大约400℃/小时的速率将管的温度增至大约500℃的最终温度。在该温度下,使二氧化硅-氧化铝在干燥空气中氟化大约三个小时。之后,收集二氧化硅-氧化铝并贮存在干燥氮气下,并且在未暴露于空气的情况下使用。
D.硫酸化氧化铝活化剂-载体的制备
通过其中用硫酸根或硫酸氢根源化学处理氧化铝的方法形成硫酸化氧化铝。这种硫酸根或硫酸根盐源可以包括例如硫酸、硫酸铵或硫酸氢铵。
在示例性步骤中,以W.R.Grace Alumina A销售的商业氧化铝通过用含大约15-20%(NH4)2SO4或H2SO4的水溶液浸渍而被硫酸化。将该硫酸化氧化铝在550℃在空气中(240℃/h缓升速率(ramp rate))煅烧,在该温度下具有3h保持期间(hold period)。之后,收集二氧化硅-氧化铝并贮存在干燥氮气下,并且在未暴露于空气的情况下使用。
E.示例性茂金属和聚合物的制备步骤
使用美国专利7,064,225中公开的步骤制备化合物F-3、L-3和C-1(示于图2中),美国专利7,064,225通过参考整体并入本文。化学结构在下面显示的其它富烯的制备步骤在以下小节中提出:1(F-1)、2(F-2)、3(F-4)和4(F-5)。
2-(丁烯-3-基)-6,6-五亚甲基五富烯  2-(丁烯-3-基)-6,6-四亚甲基五富烯
F-1                                F-2
6,6-(丁烯-3-基甲基)-富烯 2-(丁烯-3-基)-6,6-二苯基五富烯 2-(戊烯-4-基)-6,6-二苯基五富烯
F-3                       F-4                             F-5
在制备后,使用这些富烯制备化学结构在下面列出的配体,如在以下小节中提出:5(L-1)、6(L-2)、7(L-4)和8(L-5)。
Figure GPA00001073158600503
异构体混合物               异构体混合物
L-1                        L-2
Figure GPA00001073158600504
异构体混合物              异构体混合物             异构体混合物
L-3                       L-4                      L-5
使用配体L-1、L-2、L-4和L-5制备示例性茂金属的步骤在以下小节9(I-1)和10(I-2)中提出,以及制备比较茂金属的步骤在小节11(C-2)和12(C-3)中提出。小节13提出使用本技术的催化剂组合物制备聚合物的示例性步骤。
除非另外指明,试剂从Aldrich Chemical Company获得并且按收到状态使用。2,7-二叔丁基芴购自Degussa。格氏试剂CpMgCl(1M在THF中)购自Boulder Scientific Company。氯化锆(IV)购自Strem。从钾中蒸馏溶剂四氢呋喃THF,而无水乙醚、二氯甲烷、正戊烷和甲苯购自Fisher Scientific Company并被贮存在活化氧化铝上。所有溶剂被脱气并且贮存在氮下。报告的制备没有被优化。
1.2-(丁烯-3-基)-6,6-五亚甲基五富烯(F-1)的合成
在0℃,向溶解在甲醇(50mL)中的2-(丁烯-3-基)环戊二烯(0.127mol)加入环己酮(12g)、接着加入吡咯烷(17mL)。混合物在0℃保持另外30分钟,然后升温至室温和搅拌过夜。用冰和乙酸的混合物猝灭反应。用戊烷萃取混合物。用水洗涤有机层并且经无水硫酸钠干燥。在真空下除去溶剂,产生棕色的油。该粗产物用庚烷通过硅胶柱纯化。得到为黄色液体的期望产物(13g,54%收率)。
2.2-(丁烯-3-基)-6,6-四亚甲基五富烯(F-2)的合成
在0℃,向溶解在甲醇(25mL)中的2-(丁烯-3-基)环戊二烯(75mmol)加入环戊酮(7.6g)、接着加入吡咯烷(12.8mL)。混合物在0℃保持另外5分钟,然后升温至室温和搅拌过夜。用冰和乙酸的混合物猝灭反应。用戊烷萃取混合物。用水洗涤有机层并且经无水硫酸钠干燥。在真空下除去溶剂,产生棕色的油。该粗产物用庚烷通过硅胶柱纯化。得到为黄色液体的期望产物(7.9g,56.6%收率)。
3.2-(丁烯-3-基)-6,6-二苯基五富烯(F-4)的合成
在0℃,50分钟内向4-溴-1-丁烯(100g,97wt%,0.719mol)加入环戊二烯基氯化镁(800ml的1M溶液,在THF中,0.8摩尔)。在0℃,搅拌另外15分钟后,将所述混合物升至室温。搅拌过夜后,用冰水混合物猝灭反应。用戊烷萃取混合物。用水洗涤有机层并且经无水硫酸钠干燥。在室温真空下除去溶剂,产生棕色液体(94.2g,粗制的丁烯-3-基环戊二烯)。在-78℃,向溶解在THF(500毫升)中的粗制丁烯-3-基环戊二烯(94.2g)加入n-BuLi(70mL,10M,在己烷中,0.7mol)。使所述混合物升至室温并且搅拌过夜。在0℃,在35分钟内阴离子溶液被加入到溶解在THF(400ml)中的二苯酮(133.8g,0.735mol)中。将所述混合物升至室温并且搅拌过夜。用冰和10%HCl水溶液的混合物猝灭反应。用戊烷萃取混合物。用水洗涤有机层并且用无水硫酸钠干燥。在40℃真空下除去溶剂,产生暗红色粘性油。所述油被溶解在庚烷中并且通过硅胶过滤。通过用在庚烷中的5-10%CH2Cl2洗涤硅胶收集产物。除去溶剂产生为暗红色粘性油的期望产物(152g,基于4-溴-1-丁烯,74.4%收率)。
4.2-(戊烯-4-基)-6,6-二苯基五富烯(F-5)的合成
在0℃,1小时内向5-溴-1-戊烯(100g,95wt%,0.637mol)加入环戊二烯基氯化镁(700ml的1M溶液,在THF中,0.7摩尔)。在0℃,搅拌另外30分钟后,将所述混合物升至室温。搅拌过夜后,用冰水混合物猝灭反应。用戊烷萃取混合物。用水洗涤有机层并且经无水硫酸钠干燥。在室温真空下除去溶剂,产生黄棕色液体(98g,粗制的戊烯-4-基环戊二烯)。在-78℃,向溶解在THF(500毫升)中的粗制戊烯-4-基环戊二烯(89g,计算为0.579mol,理论数=(89/98)*0.637)加入n-BuLi(60mL,10M,在己烷中,0.6mol)。使所述混合物升至室温并且搅拌过夜。在0℃,在25分钟内阴离子溶液被加入到溶解在THF(500ml)中的二苯酮(110g,0.604mol)中。将所述混合物升至室温并且搅拌过夜。用冰和10%HCl水溶液的混合物猝灭反应。用戊烷萃取混合物。用水洗涤有机层并且用无水硫酸钠干燥。在40℃真空下除去溶剂,产生暗红色粘性油。所述油被溶解在庚烷中并且通过硅胶过滤。通过用在庚烷中的5-10% CH2Cl2洗涤硅胶收集产物。除去溶剂产生为暗红色粘性油的期望产物(145g,基于5-溴-1-戊烯,84%收率)。
5.1-(3-(丁烯-3-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9基)环己烷(L-1) 的合成
在0℃下,向溶解在Et2O(100mL)中的2,7-二-叔丁基芴(18g,65mmol)加入n-BuLi(6.8mL,10M,在己烷中,68mmol)。将混合物升至室温并搅拌过夜。在-78℃下、5分钟内,将阴离子溶液加入到溶解于Et2O(100mL)的2-(丁烯-3-基)-6,6-五亚甲基五富烯(F-1)(13g,65mmol)中。将混合物升至室温并搅拌4天。用饱和NH4Cl水溶液的混合物猝灭反应。用Et2O萃取混合物。有机层用水洗涤,并经无水硫酸钠干燥。在真空下除去溶剂,产生红棕色油。该粗产物用在庚烷中的5-10% CH2Cl2经过硅胶柱纯化。获得为粘性油的的期望产物的异构体混合物(24.1g,77.6%收率)。
6.1-(3-(丁烯-3-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9基)环戊烷(L-2) 的合成
在0℃下,向溶解在Et2O(100mL)中的2,7-二-叔丁基芴(11.8g,42.4mmol)加入n-BuLi(4.5mL,10M,在己烷中,45mmol)。将混合物升至室温并搅拌过夜。在-78℃下,将阴离子溶液加入到溶解于Et2O(20mL)的2-(丁烯-3-基)-6,6-四亚甲基五富烯(F-2)(7.9g,42.4mmol)中。将混合物升至室温并搅拌过夜。用饱和NH4Cl水溶液的混合物猝灭反应。用Et2O萃取混合物。有机层用水洗涤,并经无水硫酸钠干燥。在真空下除去溶剂,产生粘性油。该粗产物用庚烷经过硅胶柱纯化。获得为粘性油的的期望产物的异构体混合物(5.4g,27.7%收率)。
7.1-(3-(丁烯-3-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9-基)-1,1-二苯基 甲烷(L-4)的合成
在0℃下,向溶解在Et2O(500mL)中的2,7-二-叔丁基芴(91.7g,0.33mol)加入n-BuLi(35mL,10M,在己烷中,0.35mol)。将混合物升至室温并搅拌过夜。在0℃下、35分钟内,将阴离子溶液加入到溶解于Et2O(200mL)的2-(丁烯-3-基)-6,6-二苯基五富烯(104g,0.366mol)(F-4)中。在0℃搅拌另外30分钟后,将混合物升至室温并搅拌过夜。用冰和饱和10%HCl水溶液的混合物猝灭反应。用CH2Cl2萃取混合物。有机层用水洗涤,并经无水硫酸钠干燥。在真空下除去溶剂,产生浅棕色固体。该固体用庚烷洗涤和在真空下干燥。获得为白色固体的期望产物的异构体混合物(142g,76.5%收率)。
8.1-(3-(戊烯-4-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9-基)-1,1-二苯基 甲烷(L-5)的合成
在0℃下,向溶解在Et2O(700mL)中的2,7-二-叔丁基芴(125.1g,0.45mol)加入n-BuLi(47mL,10M,在己烷中,0.47mol)。将混合物升至室温并搅拌过夜。在-78℃下、10分钟内,将阴离子溶液加入到溶解于Et2O(300mL)的2-(戊烯-4-基)-6,6-二苯基五富烯(145g,0.487mol)(F-5)中。将混合物升至室温并搅拌过夜。用冰和饱和10% HCl水溶液的混合物猝灭反应。用Et2O萃取混合物。有机层用水洗涤,并经无水硫酸钠干燥。在真空下除去溶剂,产生浅棕色固体。该固体用庚烷洗涤和在真空下干燥。获得为白色固体的期望产物的异构体混合物(191.7g,74%收率)。
9.亚环己基(η 5 -(3-(丁烯-3-基)亚环戊二烯-1-基)(η 5 -2,7-二叔丁基亚芴 -9-基)二氯化锆(图1中的I-1)的合成
在0℃,向溶解在Et2O(150mL)中的1-(3-(丁烯-3-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9基)环己烷(L-1)(14.8g,31mmol)缓慢加入n-BuLi(6.8mL,10M,在己烷中,68mmol)。将混合物升温至室温,搅拌过夜,并随后在0℃、10分钟内通过导管将其加入到悬浮在戊烷(140mL)和Et2O(20mL)混合物中的ZrCl4(8.2g,35mmol)中。将混合物升温至室温,搅拌过夜,并抽空至干燥。残留物在戊烷(150mL)中搅拌并且离心。丢弃上清液。剩下的固体用戊烷(50mL)洗涤第二次,然后用二氯甲烷萃取并且离心。在真空下使所述溶液干燥,产生橙红色固体(7.8g,39.4%收率)。
10.亚环戊基(η 5 -(3-(丁烯-3-基)亚环戊二烯-1-基)(η 5 -2,7-二叔丁基亚 芴-9-基)二氯化锆(图1中的I-2)的合成
在0℃,向溶解在Et2O(60mL)中的1-(3-(丁烯-3-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9基)环戊烷(L-2)(5.4g,11.6mmol)缓慢加入n-BuLi(2.4mL,10M,在己烷中,24mmol)。将混合物升温至室温,搅拌过夜,并随后在0℃下通过导管将其加入到悬浮在戊烷(60mL)和Et2O(10mL)混合物中的ZrCl4(3g,12.9mmol)中。将混合物升温至室温,搅拌过夜,并抽空至干燥。残留物在戊烷(50mL)中搅拌并且离心。丢弃上清液。剩下的固体用戊烷(50mL)洗涤第二次,然后用二氯甲烷萃取并且离心。在真空下使所述溶液干燥,产生橙红色固体(4.3g,59.4%收率)。
11.二苯基亚甲基(η 5 -(3-(丁烯-3-基)亚环戊二烯-1-基)(η 5 -2,7-二叔丁 基亚芴-9-基)二氯化锆(图2中的C-2)的合成
在0℃,向悬浮在Et2O(400mL)中的1-(3-(丁烯-3-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9-基)-1,1-二苯基甲烷(40.5g,72.1mmol)(L-4)缓慢加入n-BuLi(15.2mL,10M,在己烷中,152mmol)。将混合物升温至室温,搅拌过夜,并随后在0℃、15分钟内通过导管将其加入到悬浮在戊烷(400mL)和Et2O(30mL)混合物中的ZrCl4(18.5g,79.4mmol)中。将混合物升温至室温,搅拌一天,并抽空至干燥。残留物在戊烷(300mL)中搅拌并且离心。丢弃上清液。剩下的固体用戊烷(100mL)洗涤第二次,然后用二氯甲烷萃取并且离心。在真空下使所述溶液干燥,产生橙红色固体(38.1g,73.3%收率)。
12.二苯基亚甲基(η 5 -(3-(戊烯-4-基)亚环戊二烯-1-基)(η 5 -2,7-二叔丁 基亚芴-9-基)二氯化锆(图2中的C-3)的合成
在0℃,向溶解在Et2O(300mL)中的1-(3-(戊烯-4-基)环戊二烯-1-基)-1-(2,7-二叔丁基芴-9-基)-1,1-二苯基甲烷(34.7g,60.2mmol)(L-5)缓慢加入n-BuLi(52mL,2.5M,在己烷中,130mmol)。将混合物升温至室温,搅拌过夜,并随后在0℃、30分钟内通过导管将其加入到悬浮在戊烷(250mL)和Et2O(20mL)混合物中的ZrCl4(14.7g,63.1mmol)中。将混合物升温至室温,搅拌1天,并抽空至干燥。残留物在戊烷(200mL)中搅拌并且离心。丢弃上清液。剩下的固体用戊烷(50mL)洗涤第二次,然后用二氯甲烷萃取并且离心。在真空下使所述溶液干燥,产生橙红色固体(33.5g,75.6%收率)。
13.实施例1-15的聚合步骤
在表1中的实施例1-15说明在1加仑(3.785升)不锈钢高压釜反应器中在不同的温度下进行的乙烯聚合试验,其使用2升异丁烷稀释剂和烷基铝助催化剂以及清洁剂。没有加入氢。茂金属溶液(2mg/ml)一般是通过将30mg茂金属溶解在15mL甲苯中制备的。典型的聚合步骤如下。烷基铝化合物、处理的固体氧化物和茂金属溶液一般地以该顺序通过进料口加入,同时排出异丁烷蒸汽。加入如在表1中显示的适量的共聚单体。关闭进料口并加入2升异丁烷。搅拌该反应器的内含物并且加热至期望的试验温度。乙烯在需要时被进料,以保持实现规定长度的聚合试验的规定压力。通过自动化加热和冷却系统,在整个实验中使反应器保持在期望的试验温度下。
在规定聚合时间之后,停止乙烯流,使反应器缓慢降压,并打开,回收粒状聚合物。在所有情况下,反应器是干净的,没有任何壁垢(wallscale)、涂覆层或其它形式污垢的迹象。然后移出聚合物并称重,给出以上表1中列出的结果。
虽然本发明可以容许各种修改和替换的形式,但是具体实施方式已经通过附图中实施例的方式显示并且在本文中进行了详细地描述。然而,应该理解的是本发明不意欲限制于提出的具体形式。相反地,本发明意欲涵盖落入由所附权利要求限定的本发明的精神和范围内的所有修改、等价物和替换物。

Claims (25)

1.催化剂组合物,其包括柄型-茂金属和活化剂的接触产物,其中:
所述柄型-茂金属包括具有下式的化合物:
(X1)(X2)(X3)(X4)M1,其中:
M1包括钛、锆或铪;
X1和X2独立地包括取代的环戊二烯基、取代的茚基或取代的芴基;
在X1和X2上的一个取代基包括具有式E(Cyc)的桥连基团,其中E是碳原子、硅原子、锗原子或锡原子,并且E与X1和X2结合,和其中Cyc是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构;
在X1或X2上的一个取代基包括取代的或未取代的烷基或链烯基基团;
X3和X4独立包括:F、Cl、Br或I;烃基、H或BH4;烃氧基基团、烃基氨基基团或三烃基甲硅烷基基团;OBRA 2或SO3RA,其中RA是烷基或芳基;和
所述活化剂包括:
活化剂-载体,其包括用吸电子阴离子处理的固体氧化物、层状矿物质、可离子交换的活化剂-载体或它们的任何组合;
有机铝氧烷化合物;
有机硼化合物或有机硼酸盐化合物;或
它们的任何组合。
2.根据权利要求1所述的催化剂组合物,其中在所述取代的环戊二烯基、取代的茚基、取代的芴基或取代的烷基上的任何另外的取代基独立为脂族基、芳族基、环状基团、脂族基和环状基团的组合、氧基团、硫基团、氮基团、磷基团、砷基团、碳基团、硅基团、硼基团、卤根或氢。
3.根据权利要求1所述的催化剂组合物,其中如果X3和X4都不是烃基、H或BH4,并且所述活化剂不包括有机铝氧烷化合物,那么所述催化剂组合物包括所述柄型-茂金属、所述活化剂和具有下式的有机铝化合物的接触产物:
Al(X5)n(X6)3-n,其中:
X5是烃基;
X6是卤根、氢负离子、烷氧基或芳氧基;和
n是1至3的数,1和3包括在内。
4.根据权利要求1所述的催化剂组合物,其中:
所述柄型-茂金属包括具有下式的化合物:
Figure FPA00001073158500021
其中:
M1是锆或铪;
X′和X′独立为F、Cl、Br或I;
E是C或Si;
n是1至3的整数,1和3包括在内;
R3A和R3B独立为烃基、三烃基甲硅烷基基团或氢;
键‘a’是单键或双键;
m是0至10的整数,0和10都包括在内;和
R4A和R4B独立为烃基或氢;和
所述活化剂是活化剂-载体,所述活化剂-载体包括用吸电子阴离子处理的固体氧化物,其中:
所述固体氧化物是二氧化硅、氧化铝、二氧化硅-氧化铝、磷铝酸盐、磷酸铝、铝酸锌、杂多钨酸盐、二氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、它们的混合氧化物或者它们的任何组合;和
所述吸电子阴离子是氟根、氯根、溴根、碘根、磷酸根、三氟甲磺酸根、硫酸氢根、硫酸根、氟硼酸根、氟硫酸根、三氟乙酸根、磷酸根、氟磷酸根、氟锆酸根、氟硅酸根、氟钛酸根、高锰酸根、取代的或未取代的链烷磺酸根、取代的或未取代的芳烃磺酸根、取代的或未取代的烷基硫酸根或它们的任何组合。
5.根据权利要求1所述的催化剂组合物,其中所述柄型-茂金属包括具有下式的化合物:
Figure FPA00001073158500031
其中:
M1是锆或铪;
X′和X″独立为F、Cl、Br或I;
E是C或Si;
n是1至3的整数,1和3包括在内;
键‘a’是单键或双键;
R3A和R3B独立为氢、甲基、乙基、丙基、烯丙基、苄基、丁基、戊基、己基或三甲基甲硅烷基;
m是1到6的整数,1和6包括在内;和
R4A和R4B独立为烃基或氢。
6.根据权利要求1所述的催化剂组合物,其中所述柄型-茂金属包括具有下式的化合物:
Figure FPA00001073158500032
其中
M1是锆或铪;
X′和X″独立为Cl、Br或I;
E是C或Si;
R3A和R3B独立为H或甲基;
n是1或2;
键‘a’是单键或双键;
n是1或2;和
R4A和R4B独立为氢或叔丁基。
7.根据权利要求1所述的催化剂组合物,其中所述柄型-茂金属是
Figure FPA00001073158500041
或它们的任何组合。
8.根据权利要求1所述的催化剂组合物,其中所述有机铝氧烷化合物包括:
具有下式的环状铝氧烷:
Figure FPA00001073158500042
其中R是直链或支链烷基,和n是3至大约10的整数;
具有下式的线型铝氧烷:
Figure FPA00001073158500043
其中R是直链或支链烷基,和n是1至大约50的整数;或
具有式Rt 5m+αRb m-αAl4mO3m的笼形铝氧烷,其中:
m是3或4;
α等于nAl(3)-nO(2)+nO(4),其中:
nAl(3)是三配位铝原子的数目;
nO(2)是二配位氧原子的数目;和
nO(4)是4配位氧原子的数目;
Rt代表直链或支链末端烷基;和
Rb代表直链或支链桥连烷基;或
它们的任何组合。
9.根据权利要求3所述的催化剂组合物,其中:
所述柄型-茂金属包括
Figure FPA00001073158500051
或它们的任何组合;
所述活化剂包括硫酸化固体氧化物;和
所述有机铝化合物包括三乙基铝、三正丁基铝、三异丁基铝或它们的任何组合。
10.根据权利要求3所述的催化剂组合物,其中:
所述柄型-茂金属包括
或它们的任何组合;
所述活化剂包括硫酸化氧化铝;和
所述有机铝化合物包括三乙基铝、三正丁基铝、三异丁基铝或它们的任何组合。
11.根据权利要求1所述的催化剂组合物,其中:
所述柄型-茂金属包括具有下式的化合物:
Figure FPA00001073158500061
其中:
M1是锆或铪;
X′和X″独立为H、BH4、甲基、苯基、苄基、新戊基、三甲基甲硅烷基甲基、CH2CMe2Ph;CH2SiMe2Ph;CH2CMe2CH2Ph;或CH2SiMe2CH2Ph;
E是C或Si;
n是1至3的整数,1和3包括在内;
R3A和R3B独立为烃基、三烃基甲硅烷基基团或氢;
键‘a’是单键或双键;
m是0到10的整数,0和10包括在内;和
R4A和R4B独立为烃基或氢;和
所述活化剂包括活化剂-载体,所述活化剂-载体包括用吸电子阴离子处理的固体氧化物,其中:
所述固体氧化物是二氧化硅、氧化铝、二氧化硅-氧化铝、磷铝酸盐、磷酸铝、铝酸锌、杂多钨酸盐、二氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、它们的混合氧化物或者它们的任何组合;
所述吸电子阴离子是氟根、氯根、溴根、碘根、磷酸根、三氟甲磺酸根、硫酸氢根、硫酸根、氟硼酸根、氟硫酸根、三氟乙酸根、磷酸根、氟磷酸根、氟锆酸根、氟硅酸根、氟钛酸根、高锰酸根、取代的或未取代的链烷磺酸根、取代的或未取代的芳烃磺酸根、取代的或未取代的烷基硫酸根或它们的任何组合。
12.聚合烯烃的方法,其包括:
使α-烯烃与催化剂组合物在聚合条件下接触以形成聚合物;
其中所述催化剂组合物包括柄型-茂金属和活化剂的接触产物,其中:
所述柄型-茂金属包括具有下式的化合物:
(X1)(X2)(X3)(X4)M1,其中:
M1包括钛、锆或铪;
X1和X2独立包括取代的环戊二烯基、取代的茚基或取代的芴基;
在X1和X2上的一个取代基包括具有式E(Cyc)的桥连基团,其中E是碳原子、硅原子、锗原子或锡原子,并且E与X1和X2结合,和其中Cyc是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构;
在X1或X2上的一个取代基包括取代的或未取代的烷基或链烯基基团;
X3和X4独立包括:F、Cl、Br或I;烃基、H或BH4;烃氧基基团、烃基氨基基团或三烃基甲硅烷基基团;OBRA 2或SO3RA,其中RA是烷基或芳基;和
所述活化剂包括:
活化剂-载体,其包括用吸电子阴离子处理的固体氧化物、层状矿物质、可离子交换的活化剂-载体或它们的任何组合;
有机铝氧烷化合物;
有机硼化合物或有机硼酸盐化合物;或
它们的任何组合。
13.根据权利要求12所述的方法,其中如果X3和X4都不是烃基、H或BH4,并且所述活化剂不包括有机铝氧烷化合物,那么所述催化剂组合物包括所述柄型-茂金属、所述活化剂和具有下式的有机铝化合物的接触产物:
Al(X5)n(X6)3-n,其中:
X5是烃基;
X6是卤根、氢负离子、烷氧基或芳氧基;和
n是1至3的数,1和3包括在内。
14.根据权利要求12所述的方法,其中
所述柄型-茂金属包括具有下式的化合物:
Figure FPA00001073158500081
其中:
M1是锆或铪;
X′和X″独立为F、Cl、Br或I;
E是C或Si;
n是1至3的整数,1和3包括在内;
R3A和R3B独立为烃基、三烃基甲硅烷基基团或氢;
键‘a’是单键或双键;
m是0到10的整数,0和10包括在内;和
R4A和R4B独立为烃基或氢;和
所述活化剂包括活化剂-载体,所述活化剂-载体包括用吸电子阴离子处理的固体氧化物,其中:
所述固体氧化物是二氧化硅、氧化铝、二氧化硅-氧化铝、磷铝酸盐、磷酸铝、铝酸锌、杂多钨酸盐、二氧化钛、氧化锆、氧化镁、氧化硼、氧化锌、它们的混合氧化物或者它们的任何组合;
所述吸电子阴离子是氟根、氯根、溴根、碘根、磷酸根、三氟甲磺酸根、硫酸氢根、硫酸根、氟硼酸根、氟硫酸根、三氟乙酸根、磷酸根、氟磷酸根、氟锆酸根、氟硅酸根、氟钛酸根、高锰酸根、取代的或未取代的链烷磺酸根、取代的或未取代的芳烃磺酸根、取代的或未取代的烷基硫酸根或它们的任何组合。
15.根据权利要求12所述的方法,其中所述α-烯烃与所述催化剂组合物在反应器系统中接触,所述反应器系统包括间歇式反应器、淤浆反应器、气相反应器、溶液反应器、高压反应器、管状反应器、高压釜反应器或它们的任何组合。
16.根据权利要求15所述的方法,其中所述淤浆反应器包括回路淤浆反应器,并且其中所形成的聚合物从所述反应器中连续地移走。
17.根据权利要求12所述的方法,其中所述α-烯烃包括单体或单体和共聚单体。
18.根据权利要求17所述的方法,其中所述单体包括乙烯。
19.根据权利要求17所述的方法,其中所述共聚单体包括丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯或它们的任何组合。
20.制造包含聚烯烃的产品的方法,所述方法包括:
制造至少一部分包含聚烯烃的产品,其中所述聚烯烃通过包括以下的方法生产:
使α-烯烃与催化剂组合物在聚合条件下接触以形成聚合物;
其中所述催化剂组合物包括柄型-茂金属和活化剂的接触产物,其中:
所述柄型-茂金属包括具有下式的化合物:
(X1)(X2)(X3)(X4)M1,其中:
M1包括钛、锆或铪;
X1和X2独立地包括取代的环戊二烯基、取代的茚基或取代的芴基;
在X1和X2上的一个取代基包括具有式E(Cyc)的桥连基团,其中E是碳原子、硅原子、锗原子或锡原子,并且E与X1和X2结合,和其中Cyc是长度为4至6个碳原子的取代的或者未取代的碳链,其每端连接到E以形成环状结构;
在X1或X2上的一个取代基包括取代的或未取代的烷基或链烯基基团;
X3和X4独立包括:F、Cl、Br或I;烃基、H或BH4;烃氧基基团、烃基氨基基团或三烃基甲硅烷基基团;OBRA 2或SO3RA,其中RA是烷基或芳基;和
所述活化剂包括:
活化剂-载体,其包括用吸电子阴离子处理的固体氧化物、层状矿物质、可离子交换的活化剂-载体或它们的任何组合;
有机铝氧烷化合物;
有机硼化合物或有机硼酸盐化合物;或
它们的任何组合;和
使所述聚烯烃形成为最终产品。
21.根据权利要求20所述的方法,其中如果X3和X4都不是烃基、H或BH4,并且所述活化剂不包括有机铝氧烷化合物,那么所述催化剂组合物包括所述柄型-茂金属、所述活化剂和具有下式的有机铝化合物的接触产物:
Al(X5)n(X6)3-n,其中:
X5是烃基;
X6是卤根、氢负离子、烷氧基或芳氧基;和
n是1至3的数,1和3包括在内。
22.根据权利要求20所述的方法,其中形成包括挤出、吹塑、注射成型、板材挤塑、旋转模塑、热成型、薄膜吹塑、薄膜铸塑或型材挤塑中的至少一种。
23.根据权利要求20所述的方法,其中所述α-烯烃包括单体或单体和共聚单体,其中所述单体包括乙烯。
24.根据权利要求23所述的方法,其中所述共聚单体包括丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯或它们的任何组合。
25.具有以下通式的柄型-茂金属:
Figure FPA00001073158500111
CN2008801089867A 2007-09-28 2008-09-24 用于生产具有高共聚单体掺入量的聚合物的聚合催化剂 Active CN101883796B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/904,728 US7799721B2 (en) 2007-09-28 2007-09-28 Polymerization catalysts for producing polymers with high comonomer incorporation
US11/904,728 2007-09-28
PCT/US2008/011055 WO2009045300A2 (en) 2007-09-28 2008-09-24 Polymerization catalysts for producing polymers with high comonomer incorporation

Publications (2)

Publication Number Publication Date
CN101883796A true CN101883796A (zh) 2010-11-10
CN101883796B CN101883796B (zh) 2013-08-28

Family

ID=39970848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801089867A Active CN101883796B (zh) 2007-09-28 2008-09-24 用于生产具有高共聚单体掺入量的聚合物的聚合催化剂

Country Status (10)

Country Link
US (3) US7799721B2 (zh)
EP (1) EP2193151B1 (zh)
KR (1) KR101589315B1 (zh)
CN (1) CN101883796B (zh)
AR (1) AR068262A1 (zh)
BR (1) BRPI0817510B1 (zh)
CL (1) CL2008002847A1 (zh)
EG (1) EG25985A (zh)
ES (1) ES2730074T3 (zh)
WO (1) WO2009045300A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799721B2 (en) * 2007-09-28 2010-09-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation
SG10201403259SA (en) 2009-06-16 2014-10-30 Chevron Phillips Chemical Co Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
US8383754B2 (en) 2010-04-19 2013-02-26 Chevron Phillips Chemical Company Lp Catalyst compositions for producing high Mz/Mw polyolefins
US8797540B2 (en) 2010-09-08 2014-08-05 The Board Of Trustees Of The Leland Stanford Junior University Slow-light fiber Bragg grating sensor
US9018329B2 (en) 2011-09-02 2015-04-28 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9284391B2 (en) 2011-09-02 2016-03-15 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9102768B2 (en) 2013-08-14 2015-08-11 Chevron Phillips Chemical Company Lp Cyclobutylidene-bridged metallocenes and catalyst systems containing the same
US9970869B2 (en) * 2015-07-24 2018-05-15 Chevron Phillips Chemical Company Lp Use of turbidimeter for measurement of solid catalyst system component in a reactor feed
US9758600B1 (en) 2016-05-25 2017-09-12 Chevron Phillips Chemical Company Lp Bicyclic bridged metallocene compounds and polymers produced therefrom
US9758540B1 (en) 2016-05-25 2017-09-12 Chevron Phillips Chemical Company Lp Bicyclic bridged metallocene compounds and polymers produced therefrom
WO2019099587A2 (en) 2017-11-15 2019-05-23 Exxonmobil Chemical Patents Inc. Polymerization processes
US11015002B2 (en) 2017-11-15 2021-05-25 Exxonmobil Chemical Patents Inc. Polymerization processes
WO2019099589A1 (en) 2017-11-15 2019-05-23 Exxonmobil Chemical Patents Inc. Polymerization processes
WO2023235799A1 (en) 2022-06-02 2023-12-07 Chevron Phillips Chemical Company Lp High porosity fluorided silica-coated alumina activator-supports and uses thereof in metallocene-based catalyst systems for olefin polymerization

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US794096A (en) * 1904-03-14 1905-07-04 Ella M Gray Syringe.
US3248179A (en) * 1962-02-26 1966-04-26 Phillips Petroleum Co Method and apparatus for the production of solid polymers of olefins
US3242099A (en) * 1964-03-27 1966-03-22 Union Carbide Corp Olefin polymerization catalysts
US4060480A (en) * 1971-09-03 1977-11-29 Chevron Research Company Hydrocarbon hydroconversion process employing hydroxy-aluminum stabilized catalysts supports
US4501885A (en) * 1981-10-14 1985-02-26 Phillips Petroleum Company Diluent and inert gas recovery from a polymerization process
US4588790A (en) * 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US4452910A (en) * 1982-06-15 1984-06-05 Standard Oil Company (Indiana) Chromium expanded smectite clay
US4808561A (en) * 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4939217A (en) * 1987-04-03 1990-07-03 Phillips Petroleum Company Process for producing polyolefins and polyolefin catalysts
US4794096A (en) * 1987-04-03 1988-12-27 Fina Technology, Inc. Hafnium metallocene catalyst for the polymerization of olefins
US4931417A (en) * 1987-11-09 1990-06-05 Chisso Corporation Transition-metal compound having a bis-substituted-cyclopentadienyl ligand of bridged structure
US5565175A (en) * 1990-10-01 1996-10-15 Phillips Petroleum Company Apparatus and method for producing ethylene polymer
US5369196A (en) * 1990-11-30 1994-11-29 Idemitsu Kosan Co., Ltd. Production process of olefin based polymers
JP3048653B2 (ja) * 1991-02-07 2000-06-05 三菱化学株式会社 α‐オレフィン重合体の製造
US5575979A (en) * 1991-03-04 1996-11-19 Phillips Petroleum Company Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator
US5466766A (en) * 1991-05-09 1995-11-14 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5347026A (en) * 1993-06-11 1994-09-13 Phillips Petroleum Company Fluorene compounds and methods for making
US5571880A (en) * 1991-05-09 1996-11-05 Phillips Petroleum Company Organometallic fluorenyl compounds and use thereof in an alpha-olefin polymerization process
US5627247A (en) * 1991-05-09 1997-05-06 Phillips Petroleum Company Organometallic fluorenyl compounds and use thereof in olefin polymerization
US5436305A (en) * 1991-05-09 1995-07-25 Phillips Petroleum Company Organometallic fluorenyl compounds, preparation, and use
US5399636A (en) * 1993-06-11 1995-03-21 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5401817A (en) * 1991-05-09 1995-03-28 Phillips Petroleum Company Olefin polymerization using silyl-bridged metallocenes
US5210352A (en) * 1991-05-09 1993-05-11 Phillips Petroleum Company Fluorene compounds
US5191132A (en) * 1991-05-09 1993-03-02 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5451649A (en) * 1991-05-09 1995-09-19 Phillips Petroleum Company Organometallic fluorenyl compounds, preparation, and use
US5631335A (en) * 1991-05-09 1997-05-20 Phillips Petroleum Company Process of polymerizing olefins using diphenylsilyl or dimethyl tin bridged 1-methyl fluorenyl metallocenes
CA2067525C (en) * 1991-05-09 1998-09-15 Helmut G. Alt Organometallic fluorenyl compounds, preparation and use
US5668230A (en) * 1991-07-23 1997-09-16 Phillips Petroleum Company Olefin polymerization
US5594078A (en) * 1991-07-23 1997-01-14 Phillips Petroleum Company Process for producing broad molecular weight polyolefin
AU650787B2 (en) * 1991-12-09 1994-06-30 Phillips Petroleum Company Process for preparing a pillared chain silicate clay
US5436304A (en) * 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5352749A (en) * 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
US5403620A (en) * 1992-10-13 1995-04-04 Regents Of The University Of California Catalysis in organometallic CVD of thin metal films
TW369545B (en) * 1993-02-12 1999-09-11 Hoechst Ag Process for preparing cycloolefin copolymers
US5401885A (en) * 1993-06-01 1995-03-28 Huls America, Inc. Method of preparing ortho esters and 1.1-dialkoxycycloalkanes
US5576259A (en) * 1993-10-14 1996-11-19 Tosoh Corporation Process for producing α-olefin polymer
US5496781A (en) * 1994-05-16 1996-03-05 Phillips Petroleum Company Metallocene catalyst systems, preparation, and use
US5498581A (en) * 1994-06-01 1996-03-12 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
US5541272A (en) * 1994-06-03 1996-07-30 Phillips Petroleum Company High activity ethylene selective metallocenes
US5420320A (en) * 1994-06-08 1995-05-30 Phillips Petroleum Company Method for preparing cyclopentadienyl-type ligands and metallocene compounds
US5455314A (en) * 1994-07-27 1995-10-03 Phillips Petroleum Company Method for controlling removal of polymerization reaction effluent
US5563284A (en) * 1994-09-09 1996-10-08 Phillips Petroleum Company Cyclopentadienyl-type ligands, metallocenes, catalyst systems, preparation, and use
EP0707016B1 (en) * 1994-10-13 1997-09-24 Japan Polyolefins Co., Ltd. Catalyst component for producing polyolefin, catalyst for producing polyolefin comprising the catalyst component, and process for producing polyolefin in the presence of the catalyst
EP0727443B1 (en) * 1995-02-20 2001-01-17 Tosoh Corporation Catalyst for olefin polymerization and process for producing olefin polymers
IT1275856B1 (it) * 1995-03-03 1997-10-24 Spherilene Srl Composti metallocenici bis-fluorenilici, procedimento per la loro preparazione e loro utilizzo in catalizzatori per la polimerizzazione
US5631203A (en) * 1995-05-04 1997-05-20 Phillips Petroleum Company Metallocene compounds and preparation thereof containing terminal alkynes
US5705578A (en) * 1995-05-04 1998-01-06 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
US5654454A (en) * 1995-05-30 1997-08-05 Phillips Petroleum Company Metallocene preparation and use
JPH11504674A (ja) * 1995-11-28 1999-04-27 株式会社エルジ化学 遷移金属触媒を用いたオレフィン系高分子の製造方法
EP0786466B1 (en) * 1996-01-25 2003-04-16 Tosoh Corporation Olefin polymerisation process which comprises a transition metal catalyst.
ES2147985T3 (es) * 1996-03-27 2000-10-01 Dow Chemical Co Activador de catalizador de la polimerizacion de olefinas altamente soluble.
US6114480A (en) * 1996-04-19 2000-09-05 Fina Technology, Inc. Process and catalyst for producing polyolefins having low molecular weight
US5705579A (en) * 1996-07-17 1998-01-06 Phillips Petroleum Company Olefin polymerization
US6239235B1 (en) * 1997-07-15 2001-05-29 Phillips Petroleum Company High solids slurry polymerization
KR100531628B1 (ko) * 1998-03-20 2005-11-29 엑손모빌 케미칼 패턴츠 인코포레이티드 연속적인 슬러리 중합반응의 휘발물질 제거
US6107230A (en) * 1998-05-18 2000-08-22 Phillips Petroleum Company Compositions that can produce polymers
US6300271B1 (en) * 1998-05-18 2001-10-09 Phillips Petroleum Company Compositions that can produce polymers
US6165929A (en) * 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6294494B1 (en) * 1998-12-18 2001-09-25 Phillips Petroleum Company Olefin polymerization processes and products thereof
US6495638B2 (en) * 1998-12-30 2002-12-17 Phillips Petroleum Company Process to produce polymers
US6469188B1 (en) * 1999-01-20 2002-10-22 California Institute Of Technology Catalyst system for the polymerization of alkenes to polyolefins
US6187880B1 (en) * 1999-02-16 2001-02-13 Phillips Petroleum Company Process for producing an olefin polymer using a metallocene
US6515086B1 (en) 1999-02-19 2003-02-04 Fina Research, S.A. Polyolefin production
US6262191B1 (en) * 1999-03-09 2001-07-17 Phillips Petroleum Company Diluent slip stream to give catalyst wetting agent
US6355594B1 (en) * 1999-09-27 2002-03-12 Phillips Petroleum Company Organometal catalyst compositions
US6376415B1 (en) * 1999-09-28 2002-04-23 Phillips Petroleum Company Organometal catalyst compositions
US6395666B1 (en) * 1999-09-29 2002-05-28 Phillips Petroleum Company Organometal catalyst compositions
EP1138687B1 (en) 1999-10-08 2007-04-11 Mitsui Chemicals, Inc. Metallocenes, their preparation, olefin polymerisation catalysts and a process for producing polyolefins
US6391816B1 (en) * 1999-10-27 2002-05-21 Phillips Petroleum Organometal compound catalyst
US6548441B1 (en) * 1999-10-27 2003-04-15 Phillips Petroleum Company Organometal catalyst compositions
US6613712B1 (en) * 1999-11-24 2003-09-02 Phillips Petroleum Company Organometal catalyst compositions with solid oxide supports treated with fluorine and boron
US6548442B1 (en) * 1999-12-03 2003-04-15 Phillips Petroleum Company Organometal compound catalyst
US6750302B1 (en) * 1999-12-16 2004-06-15 Phillips Petroleum Company Organometal catalyst compositions
CN1217733C (zh) * 1999-12-16 2005-09-07 菲利浦石油公司 有机金属化合物催化剂
US6524987B1 (en) * 1999-12-22 2003-02-25 Phillips Petroleum Company Organometal catalyst compositions
US7041617B2 (en) 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
US6632894B1 (en) * 1999-12-30 2003-10-14 Phillips Petroleum Company Organometal catalyst compositions
US20080281063A9 (en) * 1999-12-30 2008-11-13 Sukhadia Ashish M Ethylene polymers and copolymers with high optical opacity and methods of making the same
US6667274B1 (en) * 1999-12-30 2003-12-23 Phillips Petroleum Company Polymerization catalysts
JP2002206006A (ja) 2000-11-13 2002-07-26 Basell Technology Co Bv オレフィンポリマーの製造方法
KR100825952B1 (ko) * 2001-12-27 2008-04-29 주식회사 엘지이아이 세탁기의 도어조립체
US7651926B2 (en) * 2002-05-24 2010-01-26 Massachusetts Institute Of Technology Rapid patterning of nanostructures
US7501372B2 (en) * 2003-11-21 2009-03-10 Chevron Phillips Chemical Company Lp Catalyst compositions for producing polyolefins in the absence of cocatalysts
US7094857B2 (en) * 2004-03-10 2006-08-22 Chevron Phillips Chemical Company, L.P. Ethylene polymers and copolymers with high optical opacity
US7064225B2 (en) * 2004-06-25 2006-06-20 Chevron Phillips Chemical Company, L.P. Synthesis of ansa-metallocenes and their parent ligands in high yield
US7420097B2 (en) * 2004-06-25 2008-09-02 Chevron Phillips Chemical Company Lp Synthesis of 6-aryl-6-alkyl fulvenes, 6-aryl-6-alkenyl fulvenes, and related compounds
US7148298B2 (en) * 2004-06-25 2006-12-12 Chevron Phillips Chemical Company, L.P. Polymerization catalysts for producing polymers with low levels of long chain branching
US7294599B2 (en) * 2004-06-25 2007-11-13 Chevron Phillips Chemical Co. Acidic activator-supports and catalysts for olefin polymerization
US20060155082A1 (en) * 2005-01-10 2006-07-13 Mcdaniel Max P Process for producing polymers
US7026494B1 (en) * 2005-01-10 2006-04-11 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high melt index polymers without the use of hydrogen
US7473985B2 (en) * 2005-06-16 2009-01-06 International Business Machines Corporation Hybrid oriented substrates and crystal imprinting methods for forming such hybrid oriented substrates
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7517939B2 (en) * 2006-02-02 2009-04-14 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US7619047B2 (en) * 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US8119553B2 (en) 2007-09-28 2012-02-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with low melt elasticity
US7799721B2 (en) * 2007-09-28 2010-09-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation

Also Published As

Publication number Publication date
CL2008002847A1 (es) 2009-03-20
US8222174B2 (en) 2012-07-17
KR20100072224A (ko) 2010-06-30
CN101883796B (zh) 2013-08-28
US7799721B2 (en) 2010-09-21
US7956139B2 (en) 2011-06-07
BRPI0817510B1 (pt) 2021-02-09
BRPI0817510A2 (pt) 2020-08-18
EP2193151B1 (en) 2019-04-03
WO2009045300A2 (en) 2009-04-09
US20110201833A1 (en) 2011-08-18
US20100305284A1 (en) 2010-12-02
EG25985A (en) 2012-11-21
ES2730074T3 (es) 2019-11-08
US20090088537A1 (en) 2009-04-02
WO2009045300A3 (en) 2009-07-09
EP2193151A2 (en) 2010-06-09
AR068262A1 (es) 2009-11-11
KR101589315B1 (ko) 2016-02-01

Similar Documents

Publication Publication Date Title
CN101883796B (zh) 用于生产具有高共聚单体掺入量的聚合物的聚合催化剂
CN101389668B (zh) 用于双峰聚合物聚合的双茂金属催化剂
CN102015781A (zh) 用于生产具有低熔体弹性的聚合物的聚合催化剂
CN101400709B (zh) 用于生产具有低水平长链支化的聚合物的聚合催化剂
CN101910210B (zh) 纳米级连接的茂金属催化剂组合物及其聚合物产物
CN101910211B (zh) 纳米级连接的茂金属催化剂组合物及其聚合物产品
CN101432317B (zh) 用于产生具有低水平长链支化的聚合物的聚合催化剂
CN101628243B (zh) 单茂金属催化剂组合物及其聚合产物
CN101300075B (zh) 用于在单反应器中产生双峰聚合物的聚合催化剂和方法
CN102348725B (zh) 生产含有高分子量峰尾的聚合物的催化剂和方法
CN101935366B (zh) 用于降低熔体指数和增加聚合物生产率的双茂金属催化剂体系
CN1993389B (zh) 用于烯烃聚合的改善的酸性活化剂-载体和催化剂
CN103848931A (zh) 用于产生宽分子量分布聚合物的具有三种茂金属的催化剂系统
CN102875604A (zh) 纳米级连接的茂金属催化剂组合物及其聚合物产品
JP5405806B2 (ja) オレフィン重合用触媒およびそれを用いたエチレン系重合体の製造方法
CN102020729A (zh) 用于茂金属催化剂组合物的二氧化硅涂敷的氧化铝活化剂-载体
CN104004116A (zh) 双活化剂-载体催化剂系统
CN1989158A (zh) 生产具有低水平长链支化的聚合物的聚合催化剂
CN101935367A (zh) 用于控制聚合反应器中聚合物分子量和氢水平的氢清除催化剂的应用
CN103193913A (zh) 产生具有反共聚单体分布和低水平长链分支的较宽分子量分布聚合物的方法
CN101006105A (zh) 用于生产具有低水平长链支化的聚合物的聚合催化剂
CN101928303A (zh) 纳米级连接的异核茂金属催化剂组合物及其聚合产物
SK112495A3 (en) Method of manufacture of polyolefine with broad distribution of molecular mass by using of catalytic system
CN103732604A (zh) 包含具有大体积取代基的硅桥联茂金属的高活性催化剂组合物
CN102617759A (zh) 单茂金属化合物和催化剂组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant