CN101842486A - 生物膜的免疫治疗 - Google Patents

生物膜的免疫治疗 Download PDF

Info

Publication number
CN101842486A
CN101842486A CN200880104633A CN200880104633A CN101842486A CN 101842486 A CN101842486 A CN 101842486A CN 200880104633 A CN200880104633 A CN 200880104633A CN 200880104633 A CN200880104633 A CN 200880104633A CN 101842486 A CN101842486 A CN 101842486A
Authority
CN
China
Prior art keywords
polypeptide
composition
porphyromonas gingivalis
peptide
albumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880104633A
Other languages
English (en)
Inventor
斯图尔特·杰弗里·达斯弗
埃里克·查尔斯·雷诺兹
保罗·大卫·维斯
洪振盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oral Health Australia Pty Ltd
Original Assignee
Oral Health Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007903787A external-priority patent/AU2007903787A0/en
Application filed by Oral Health Australia Pty Ltd filed Critical Oral Health Australia Pty Ltd
Publication of CN101842486A publication Critical patent/CN101842486A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/0208Specific bacteria not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供用于在个体中产生对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包含有效地产生免疫应答的量的至少一种多肽,该多肽的氨基酸序列与对应于选自以下登录号的多肽中之一的至少50个氨基酸或者抗原或免疫原性部分基本相同:AAQ65462、AAQ65742、AAQ66991、AAQ65561、AAQ66831、AAQ66797、AAQ66469、AAQ66587、AAQ66654、AAQ66977、AAQ65797、AAQ65867、AAQ65868、AAQ65416、AAQ65449、AAQ66051、AAQ66377、AAQ66444、AAQ66538、AAQ67117以及AAQ67118。本发明还提供预防或治疗个体的牙龈卟啉单胞菌感染的方法,该方法包括向个体施用本发明的组合物。

Description

生物膜的免疫治疗
发明领域
本发明涉及用于预防或改变诸如那些含有牙龈卟啉单胞菌(Porphyromonas gingivalis)的生物膜的细菌生物膜的形成和/或发展的组合物与方法。特别是,本发明涉及使用或抑制在生物膜生长期间或在血红素限制下受到调控的多肽来调节生物膜的形成和/或发展。本发明涉及对可以用作抗菌疫苗或免疫治疗/免疫预防基础的多肽的鉴定。
发明背景
许多细菌治疗针对浮游状态的细菌。然而,细菌病理学包括生物膜状态的细菌。例如,牙龈卟啉单胞菌被认为是慢性牙周疾病的主要病因(causative agent)。对在牙齿表面作为多种微生物细菌生物膜的一部分而生长的牙龈卟啉单胞菌的异常调节的宿主免疫应答,导致了与该疾病有关的组织损伤。细菌生物膜在自然界中普遍存在,并且定义为互相粘附和/或粘附至表面或界面的基质围绕(matrix-enclosed)的细菌群落(1)。这些作为成熟的生物膜粘附至表面并在表面上生长的固定细菌细胞能够幸免于包括存在抗微生物剂、剪切力以及营养缺乏在内的不利环境。
疾病控制与预防中心(Centers for Disease Control and Prevention)估计65%的人细菌感染与生物膜有关。生物膜通常通过保护细菌免受免疫系统、降低抗生素效力并将浮游细胞分散至远处以促使再感染,使慢性感染的治疗复杂化(2、3)。牙菌斑是细菌生物膜的典型实例,其中高多样性的物种形成在牙齿表面生长的异源多微生物生物膜。牙齿的表面是独特的微生物生境,因为牙齿表面是人体中唯一的坚硬、永久、不脱落的表面。与上皮细胞的脱落限制了生物膜的发展的粘膜表面相反,这使得坚固的细菌生物膜在漫长的时间内累积。因此,发生在浮游与生物膜状态之间的牙龈卟啉单胞菌蛋白质组的变化,对我们理解慢性牙周疾病的发展是重要的。
牙龈卟啉单胞菌分为两个大的菌株组,包括W50和W83在内的菌株被描述为在动物模型中是侵入性的,而包括381和ATCC 33277在内的菌株则被描述为非侵入性的(4、5)。Griffen等人(6)发现,W83/W50样菌株比包括381样菌株在内的其他牙龈卟啉单胞菌菌株与人牙周疾病更相关,而Cutler等人(7)证明,牙龈卟啉单胞菌的侵入性菌株比非侵入性菌株对吞噬作用更具抵抗力。测序的牙龈卟啉单胞菌W83菌株与模式菌株ATCC 33277的比较表明,菌株33277缺乏7%的基因或者是高度趋异的(divergent),这表明菌株之间存在明显的不同(8)。有趣地是,与容易形成生物膜的菌株33277相比,牙龈卟啉单胞菌菌株W50在大部分条件下仅形成不好的生物膜(9)。由于这个原因,对牙龈卟啉单胞菌W50形成生物膜只进行了相对很少的研究。
利用基于凝胶染色强度计算蛋白比率的2D凝胶电泳方法,进行了定量蛋白质组学研究,以测定诸如绿脓假单胞菌(Pseudomonasaeruginosa)、大肠杆菌(Escherichia coli)以及变形链球菌(Streptococcusmutans)的人细菌病原体,从浮游至生物膜状态的蛋白质组的变化(10-12)。替代方案是利用稳定同位素标记技术,例如ICAT、iTRAQ或具有MS定量的重水(H2 18O)(13)。H2 18O标记的基础是,在蛋白质水解期间,已证明诸如胰蛋白酶的内肽酶将两个18O原子并入所得的肽的C-末端(14、15)。除了用于测定相对蛋白丰度以外(16-19),蛋白质组学中的18O标记还用于鉴定蛋白C-末端、鉴定酶促移除聚糖后的N-连接的糖基化、简化MS/MS的数据解释以及最近用于证实磷酸化位点(20-23)。用于测量相对蛋白丰度的16O/18O蛋白水解标记方法包括将一个样品在H2 16O中消化,并将另一样品在H2 18O中消化。然后在通过LC MS/MS进行分析前,将该消化物合并。可以通过测量MS模式中肽离子对(ion pair)的相对信号强度,定量从LC柱中洗脱的肽。将两个18O并入胰蛋白酶消化的肽的C-末端,导致+4m/z的质量漂移(mass shift),从而允许鉴定同位素对。
由于蛋白质组的复杂性,初步分级(prefractionation)步骤对于增加肽和蛋白质鉴定的数目是有利的。大部分初步分级步骤包括溶液中(in-solution)消化后肽水平上的2D LC方法(24、25)。然而,由于在蛋白溶液的初始脱水步骤期间潜在的样品损失,也成功地进行了蛋白水平上的SDS PAGE初步分级和其后的凝胶消化中的16O/18O标记(26-29)。16O/18O蛋白水解标记是高度特异性并且多用途的方法,但是只进行了很少的大规模验证研究(30)。Qian等人(18)进行了极好的验证研究,他们标记了1∶1的比率的两个相似等份的血清蛋白,并且从891个肽中获得了1.02±0.23的平均比率。Lane等人(26)最近的研究还证明,使用反向标记策略测定对照与细胞色素P450诱导剂处理的移植了人肿瘤的小鼠之间17个细胞色素P450蛋白相对丰度的16O/18O方法的可行性。
发明概述
通过参照样品系统示例说明了本发明,其中以连续培养的方式使牙龈卟啉单胞菌W50生长,并且在恒化器容器的垂直表面上,随延长的时间段发展了成熟的生物膜。最终的生物膜与疾病发展条件下所见的生物膜类似,因而允许生物膜细胞与浮游细胞之间的直接比较。在牙龈卟啉单胞菌细胞外膜(cell envelope)组分的SDS-PAGE初步分级后,进行使用反向标记策略的16O/18O蛋白水解标记,然后与离线LCMALDI TOF-MS/MS耦合以进行鉴定与定量。在所鉴定的116种蛋白中,在两个独立的连续培养研究中一致地发现了81种。发现具有多种功能的47种蛋白的丰度在生物膜细胞中一致地增加或减少,这为生物膜控制策略提供了潜在的靶标。在这47种蛋白中,本发明人选择了认为是治疗和/或预防牙龈卟啉单胞菌感染的特别有用的靶标的24种蛋白。
因此,在第一方面,本发明涉及调节生物膜形成的多肽。在一种形式中,生物膜中的微生物是细菌。在一种形式中,细菌来自卟啉单胞菌属(Porphyromonas)。在一实施方案中,细菌是牙龈卟啉单胞菌并且多肽的氨基酸序列选自与表4所列的登录号对应的序列。本发明扩展至与该序列相同至少80%的序列,优选与该序列相同85%、90%、95%、96%、97%、98%或99%。
本发明还包括与登录号AAQ65742(版本:0.1)对应的多肽以及与该多肽相同至少80%、85%、90%、95%、96%、97%、98%或99%的多肽。
优选地,多肽与对应于表4所列的登录号的任一序列的氨基酸序列相同至少96%、97%、98%、99%或100%。
本发明的一方面涉及用于在个体中产生针对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包括有效量的本发明的第一方面的至少一种多肽或其抗原或免疫原性部分。该组合物可以任选地包括佐剂以及制药学上可接受的载体。因此,该组合物可以含有这种多肽的抗原部分,而不是全长多肽。通常,该部分与对应于表4所列的序列的多肽至少10个、更通常20或50个氨基酸基本相同,并且产生免疫应答。在一优选的形式中,所述组合物是疫苗。
本发明还提供在个体中产生对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包含有效地产生免疫应答的量的多肽的至少一个抗原或免疫原部分,该多肽对应于选自以下的登录号:AAQ65462、AAQ65742、AAQ66991、AAQ65561、AAQ66831、AAQ66797、AAQ66469、AAQ66587、AAQ66654、AAQ66977、AAQ65797、AAQ65867、AAQ65868、AAQ65416、AAQ65449、AAQ66051、AAQ66377、AAQ66444、AAQ66538、AAQ67117以及AAQ67118。
在另一实施方案中,提供了用于在个体中产生针对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包括有效量的至少一种多肽,该多肽对应于选自以下的登录号:AAQ65462、AAQ66991、AAQ65561以及AAQ66831。
在另一实施方案中,提供了用于在个体中产生针对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包含有效量的对应于登录号AAQ65742的多肽。
在另一实施方案中,提供了用于在个体中产生对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包含有效地产生免疫应答的量的至少一种多肽,该多肽的氨基酸序列与牙龈卟啉单胞菌所表达的多肽的至少50个氨基酸基本相同,并且该多肽被CELLO程序预测为是细胞外的。
在另一实施方案中,提供了用于在个体中产生对牙龈卟啉单胞菌的免疫应答的组合物,该组合物包含有效地产生免疫应答的量的至少一种多肽,该多肽的氨基酸序列经选择,与在小鼠或兔子中导致免疫应答的多肽的至少50个氨基酸基本相同。
在一实施方案中,提供了包含氨基酸序列的分离的抗原多肽,该氨基酸序列包含至少50、60、70、80、90或100个与对应于表4所列的登录号的一个序列的连续氨基酸序列基本相同的氨基酸。该多肽可以是纯化的或重组的。
在另一实施方案中,提供了用于治疗牙周疾病的组合物,该组合物包含有效量的本发明的第一方面的至少一种多肽作为活性成分。
在另一实施方案中,提供了用于治疗牙龈卟啉单胞菌感染的组合物,该组合物包含有效量的本发明的第一方面的至少一种多肽作为活性成分。
本发明的另一方面涉及预防或治疗个体的牙周疾病的方法,该方法包括向该个体施用如上文所述的本发明的组合物。
本发明的另一方面涉及预防或治疗个体的牙龈卟啉单胞菌感染的方法,该方法包括向该个体施用如上文所述的本发明的组合物。
在本发明的另一方面,提供了本发明的多肽在制备用于治疗牙龈卟啉单胞菌感染的药物中的用途。
在本发明的另一方面,提供了本发明的多肽在制备用于治疗牙周疾病的药物中的用途。
本发明还扩展抗本发明的第一方面的多肽的抗体。优选地,该抗体特异性地针对一种对应于表4所列的登录号的多肽。可以利用如上文所述产生免疫应答的组合物,产生该抗体。
在一实施方案中,提供了抗多肽的抗体,其中该多肽对应于选自以下的登录号:AAQ65462、AAQ66991、AAQ65561以及AAQ66831。
在一实施方案中,提供了抗多肽的抗体,其中该多肽对应于登录号AAQ65742。
本发明的另一方面涉及用于预防或治疗牙周疾病的组合物,该组合物包含本发明第一方面的牙龈卟啉单胞菌多肽的拮抗剂或拮抗剂的组合以及制药学上可接受的载体,其中该拮抗剂抑制牙龈卟啉单胞菌感染。该拮抗剂可以是抗体。本发明还包括拮抗剂或拮抗剂的组合在制备用于预防或治疗牙周疾病的药物中的用途。
在本发明的另一方面,提供了干扰RNA分子,该分子在每条链中包含至少19个碱基对的双链区,其中双链区中的一条链与编码调节如上文所述的生物膜的多肽的多核苷酸区基本上互补。在一实施方案中,所述链的一条与编码表4所列序列的多肽转录物的多核苷酸的区域互补。
附图简述
图1:特定BSA比率的16O/18O定量。以与实验方法中报道的生物膜样品和浮游样品相同的方式,进行已知量的BSA的定量,来验证方法。简而言之,将预测定量的BSA加入NuPAGE凝胶的相邻泳道中,然后将切割大小相等的条带,从而进行正常或反向蛋白水解标记、纳米HPLC(nanoHPLC)以及MALDI TOF-MS/MS。(A)BSA胰蛋白酶肽的MS光谱,已知16O∶18O标记比率1∶1(i)、2∶1(ii)、1∶5(iii)和10∶1(iv)的RHPEYAVSVLLR,这显示了16O和18O标记的肽的特有的双峰同位素外膜(S0、S2和S4是同位素峰的测量强度)(B)已知的BSA比率的SDS PAGE凝胶,用于定量方法。
图2:来自牙龈卟啉单胞菌样品的典型的正向和反向MS和MS/MS光谱。(i,ii)质谱的放大部分,其显示属于PG2082的正常和反向标记的肽GNLQALVGR的[M+H]+母前体离子,并且以1∶1的比例显示典型的4Da质量差异,(iii,iv)质谱,其显示属于PG0232的正常和反向标记的肽YNANNVDLNR的[M+H]+母前体离子,并且以2∶1的比率显示典型的4Da质量差异,(v,vi)重标记的(+2 18O)YNANNVDLNR和未标记的YNANNVDLNR肽的MS/MS光谱,其特征为所有Y离子的4Da漂移。
图3:正常/反向标记的技术重复的相关性。两个生物学重复的正常(Bio18,Plank16)与反向(Plank18,Bio16)标记的肽丰度比率的转化成Log10的散点图比较。已倒转了反向标记的肽的丰度比率,用于直接比较。(A)生物学重复1(B)生物学重复2
图4:生物学重复的蛋白丰度的分布和相关性。(A)在两个生物学重复中都鉴定的81种可定量的蛋白的标准化平均倍数变化,表现出高斯样(Gaussian-like)分布。还将每种蛋白的丰度比率标准化至0(R-1),并且将小于1的比率倒转并计算为(1-(1/R))(18)。通过渐增的比率(生物膜/浮游)将来自每个生物学重复的所有81种可定量的蛋白分类并相等地分成含有相等数目的蛋白的6组(A-F)。组C和D表示未被明显调控的蛋白(小于3SD从1.0)。(B)基于排名的蛋白的分布。插页:用于测定两个生物学重复之间的相似性的排名表。将蛋白降序排列,当两个生物学重复都落在相同的组时,1具有最高的相似性,并且6具有最低的相似性。
图5:基于在一个或两个生物学重复中的鉴定以及所鉴定的特异性肽段的数目,本研究中所鉴定的116种蛋白的细目分类。从两个生物学重复中都鉴定的蛋白(81)示于表2中。图例表示每种蛋白的所鉴定的特异性肽段的数目。
发明详述
本发明提供治疗个体的牙周疾病的方法,包括预防性治疗。牙周疾病的范围从简单的牙龈炎症到对支持牙齿的软组织和骨头导致严重损伤的严重疾病。牙周疾病包括龈炎和牙周炎。口腔细菌在龈边缘的的积累导致称为“龈炎”的牙龈炎症。在龈炎中,牙龈变成红色、肿胀并容易出血。如果不进行治疗,龈炎能够恶化成“牙周炎”(其表示“牙齿周围的炎症”)。在牙周炎中,牙龈脱离牙齿并形成被感染的“袋”。牙周炎具有特定的细菌病原学,并且牙龈卟啉单胞菌被认为是主要的发病原因。当牙菌斑在龈线下扩散并生长时,身体的免疫系统与细菌进行斗争。如果不进行治疗,骨头、牙龈和支持牙齿的结缔组织将遭到破坏。牙齿可能逐渐地变松并不得不被移除。
利用蛋白质组策略,本发明人鉴定并定量了生物膜和浮游状态之间的116种牙龈卟啉单胞菌细胞外膜蛋白的丰度变化,并且通过多种肽采样(peptide hits)鉴定了大部分蛋白。本发明人证明了大量位于细胞表面的C-末端结构域家族蛋白的表达增强,该蛋白包括RgpA、HagA、CPG70以及PG99。表现出明显的丰度变化的其他蛋白包括转运相关蛋白(HmuY和IhtB)、代谢酶(FrdA和FrdB)、免疫原性蛋白以及许多功能仍然未知的蛋白。
本领域的技术人员应当完全理解的是,可以改变已经鉴定为在生物膜与浮游状态之间具有丰度变化的多肽的氨基酸序列。这些改变可以是氨基酸残基的缺失、插入或取代。改变的多肽可以是天然存在的(即,从天然来源纯化的或分离的)或者合成的(例如,通过对编码DNA的定点诱变)。意图是与序列表中所列的序列具有至少85%同一性,优选至少90%、95%、96%、97%、98%或99%的同一性的此类改变的多肽,在本发明的范围内。抗这些改变的多肽的抗体还将结合具有一个与表4所列的登录号有关的序列的多肽。
尽管本领域的技术人员完全理解保守性取代的概念,为了清楚起见,保守性取代是下文所列的那些取代。
Gly、Ala、Val、Ile、Leu、Met;
Asp、Glu、Ser;
Asn、Gln;
Ser、Thr;
Lys、Arg、His;
Phe、Tyr、Trp、His;以及
Pro、Nα-碱性氨基酸。
除非另外指明,否则本发明的实施将使用化学、分子生物学、微生物学、重组DNA以及免疫学的对本领域技术人员公知的常规技术。在整个下述来源的文献中描述并解释了这些技术,例如J.Perbal,A PracticalGuide to Molecular Cloning(分子克隆实践指南),John Wiley and Sons(1984)、J.Sambrook et Molecular Cloning:A Laboratory Manual(分子克隆:实验室手册),Cold Spring Harbour Laboratory Press(1989)、T.A.Brown(editor),Essential Molecular Biology:A Practical Approach(基础分子生物学:实用方法),Volumes 1 and 2,IRL Press(1991)、D.M.Glover and B.D.Hames(editors),DNA Cloning:A Practical Approach(DNA克隆:实用方法),Volumes 1-4,IRL Press(1995 and 1996)以及F.M.Ausubel et al.(Editors),Current Protocols in Molecular Biology(分子生物学最新方法),Greene Pub.Associates and Wiley-Interscience(1988,包括直至目前的所有更新)。通过引用将这些原文的公开在此并入。
本文所用的“分离的多肽”指的是从与其一起天然存在的其他蛋白质、脂类以及核酸中分离的多肽,或者该多肽或肽是可以用合成方法合成的。优选地,还从诸如抗体或凝胶基质,如用于纯化该多肽的聚丙烯酰胺的物质中分离该多肽。优选地,该多肽组成纯化制剂干重的至少10%、20%、50%、70%以及80%。优选地,该制剂含有足以允许蛋白测序的量的多肽(即,至少1mg、10mg或100mg)。
可以通过诸如柱层析(利用诸如离子交换基质、疏水基质等的与蛋白产品相互作用的各种基质)、使用蛋白的特异性抗体或与蛋白结合的其他配体的亲和层析的标准技术来纯化本文所述的分离的多肽。
术语“肽、蛋白以及多肽”在本文中互换地使用。本发明的多肽可以包括重组多肽,包括融合多肽在内。制备融合多肽的方法对本领域的技术人员是公知的。
本文所用的“抗原性多肽”是诸如多肽、其类似物或片段的部分,其能够以足够高的亲和力结合特异性抗体,从而形成可检测的抗原抗体复合物。优选地,该抗原性多肽包含能够在宿主动物中引起体液和/或细胞免疫应答的免疫原性组分。
在比较多肽序列时,“基本上相同”表示长度的95%或更高是相同的,或者任意10个连续的氨基酸是相同的。
本文所用的“连续的氨基酸序列”指的是连续的一段氨基酸。
“重组多肽”是通过涉及使用重组DNA技术的方法制备的多肽。
“预防”牙周疾病的含有是表示抑制疾病状况的发展,但是不必是永久和完全地预防该疾病。
在测定两个氨基酸序列是否落在指定的百分比限制内时,本领域的技术人员应当清楚需要构建序列的并行比较或多重比对。在此类比较或比对中,取决于进行比对所用的算法,在定位不相同的残基时将出现差异。在本文的语境中,两个或更多个氨基酸序列之间百分比同一性或相似性的含义,应当认为是分别指使用本领域技术人员已知的任何标准算法所测定的所述序列之间的相同或相似残基的数目。例如,氨基酸序列的同一性或相似性可以利用Computer Genetics Group,Inc.,University Research Park,Madison,Wisconsin,United States of America(Devereaux et al.,1984)的GAP程序来计算和/或利用该公司的PILEUP程序来比对。GAP程序使用Needleman和Wunsch(1970)的算法来使相同/相似的残基的数目最大化,并使比对中的序列缺口的数目和长度最小化。可选地或另外,当比较多于两个氨基酸序列时,使用Thompson等人(1994)的Clustal W程序。
本发明还提供了用于在个体中产生对牙龈卟啉单胞菌的免疫应答的疫苗组合物,该组合物包括免疫原性有效量的本发明第一方面的至少一种多肽和制药学上可接受的载体。
本发明的疫苗组合物优选包含抗原多肽,该抗原多肽包含能够用于赋予抗牙龈卟啉单胞菌的保护性应答的至少一种抗原。用本发明的方法治疗的个体可以选自但不限于人、绵羊、家畜(cattle)、马、牛、猪、家禽、犬以及猫。优选地,个体是人。当在宿主中发展了抗特异性抗原多肽的细胞和/或抗体介导的应答时,在个体中即实现了针对牙龈卟啉单胞菌的免疫应答,而不论该应答是否是完全保护的。
优选地,向个体施用疫苗组合物以诱导对牙龈卟啉单胞菌的免疫力,从而预防、抑制或降低牙周疾病的严重性。还可以向个体施用该疫苗组合物以治疗牙周疾病,其中该牙周疾病是由,或者至少部分是由牙龈卟啉单胞菌因起的。本文所用的术语“有效量”表示足以引起抗牙龈卟啉单胞菌的免疫应答的剂量。这将根据个体和牙龈卟啉单胞菌的感染水平而变化,并最终由主治的科学家、医师或兽医决定。
本发明的组合物包含合适的制药学上可接受的载体,例如适合向人或动物个体施用的稀释剂和/或佐剂。产生免疫应答的组合物优选包含通过鼻喷雾口服递送,或通过注射产生抗牙龈卟啉单胞菌的特异性免疫应答的合适佐剂。本发明的组合物还可以基于编码本发明的抗原多肽的重组核酸序列,其中将该核酸序列并入合适的载体并在含有该载体的合适的转化宿主中(例如,大肠杆菌(E.coli)、枯草芽胞杆菌(Bacillus subtilis)、酿酒酵母(Saccharomyces cerevisiae)、COS细胞、CHO细胞以及Hela细胞)表达。可以使用如本文所示的重组DNA方法制备,或者由本发明所述的氨基酸序列化学合成该组合物。另外,根据本发明,抗原多肽可以用于产生牙龈卟啉单胞菌抗血清,该抗血清用于抗牙周疾病和牙龈卟啉单胞菌所导致的感染的被动免疫。
本领域技术人员已知的各种佐剂,通常与疫苗制剂和用于产生免疫应答的制剂联合使用。使用比单独施用疫苗抗原更少量的疫苗抗原或更少的剂量,佐剂通过调节免疫应答帮助获得更持久和更高水平的免疫力。佐剂的实例包括弗氏不完全佐剂(IFA)、佐剂65(含有花生油、二缩甘露醇单油酸酯和单硬脂酸铝)、油乳剂、Ribi佐剂、普卢龙尼克多元醇类(pluronic polyols)、聚胺、阿夫立定(Avridine)、Quil A、皂角苷、MPL、QS-21以及诸如铝盐的矿物凝胶。其他实例包括水包油乳剂,如SAF-1、SAF-O、MF59、Seppic ISA720,以及其他微粒佐剂,如ISCOM和ISCOM基质。佐剂的其他实例的广泛但详尽的名录列于Cox and Couiter 1992中[In:Wong WK(ed.)Animals parasite control utilising technology(动物寄生虫控制所用的技术).Bocca Raton;CRC press et al.,1992;49-112]。除了佐剂以外,疫苗可以包含常规的制药学上可接受的载体、赋形剂、填充剂、缓冲剂或视情况而定的稀释剂。可以预防性地施用一剂或多剂含有佐剂的组合物,以预防牙周疾病,或者治疗性地治疗已经存在的牙周疾病。
在另一优选的组合物中,将制剂与粘膜佐剂组合,并经由口服或鼻途径施用。粘膜佐剂的实例是霍乱毒素和不耐热大肠杆菌毒素、这些毒素的非毒性B亚基、毒性降低的这些毒素的遗传突变体。可以用于口服或经鼻递送抗原多肽的其他方法包括,通过微胶囊化将该多肽并入生物可降解的聚合物颗粒(例如,丙烯酸酯或聚酯),以促进从胃肠道或鼻腔的吸收微球体并保护蛋白不被降解。脂质体、ISCOM、水凝胶是其他潜在方法的实例,可以通过并入用于将抗原多肽递送至粘膜免疫系统的诸如LTB、CTB或凝集素(甘露聚糖、壳多糖和壳聚糖)的寻靶分子(targetingmolecules)来进一步增强该方法。除了组合物和粘膜佐剂或递送系统以外,组合物可以包含常规的制药学上可接受的载体、赋形剂、填充剂、包衣、分散介质、抗菌和抗真菌剂、缓冲剂或的稀释剂,视情况而定。
这个实施方案的另一个模式提供了用于防御牙龈卟啉单胞菌导致的感染的重组病毒活疫苗、重组细菌疫苗、重组减毒细菌疫苗或者失活的重组病毒疫苗。牛痘病毒是本领域中感染病毒的最著名的实例,该病毒经改造表达衍生于其他有机体的疫苗抗原。用减毒或另外处理从而自身不会导致疾病的重组牛痘活病毒免疫宿主。重组病毒在宿主内随后的复制为免疫系统的持续刺激提供了诸如抗原多肽的疫苗抗原,从而提供了长效的免疫力。在这个语境及下文中,“疫苗”不限于产生保护性应答的组合物,而是包括产生任何免疫应答的组合物。
其他的活疫苗载体包括:腺病毒、巨细胞病毒以及优选的痘病毒,例如,牛痘(Paoletti和Panicali,第4,603,112号美国专利)和减毒沙门氏菌(Salmonella)菌株(Stocker等人,第5,210,035号、第4,837,151号和第4,735,801号美国专利以及Curtis et al.,1988,Vaccine 6:155-160)。活疫苗是特别有利的,因为它们持续地刺激免疫系统,这基本上能够赋予长效的免疫力。当免疫应答是防御随后的牙龈卟啉单胞菌感染时,活疫苗自身可以用于抗牙龈卟啉单胞菌的保护性疫苗。特别是,活疫苗能够基于为口腔共生习居者的细菌。这种细菌可以用带有重组失活多肽的载体来转化,然后将该细菌用于在口腔中特别是在口腔粘膜上建群。一旦在口腔粘膜上建群,重组蛋白的表达将刺激粘膜相关淋巴组织产生中和抗体。例如,利用分子生物学技术,可以将编码多肽的基因在允许表达表位但是不对牛痘病毒载体的生长或复制有不利影响的位点插入牛痘病毒基因组DNA。所得的重组病毒能够用作疫苗制剂中的免疫原。除了失活重组病毒以外,在用作免疫原前,可以用相同的方法构建失活的重组病毒疫苗制剂,而基本上不会影响表达的免疫原的免疫原性,例如,通过本领域公知的化学方法。
作为主动免疫的替代方案,免疫可以是被动的,即包括施用含有抗本发明的多肽的抗体的纯化免疫球蛋白的免疫。
可以将本发明的方法和组合物中所用的抗原多肽与合适的赋形剂组合,所述赋形剂,例如乳化剂、表面活性剂、稳定剂、染料、渗透增强剂、抗氧化剂、水、盐溶液、醇、聚乙二醇、明胶、乳糖、硬脂酸镁以及硅酸。优选将抗原多肽配制成无菌水溶液。本发明的疫苗组合物可以用于补充目前对牙周疾病的治疗。
本发明还提供了预防或治疗个体的牙周疾病的方法,该方法包括向个体施用本发明的疫苗组合物。还提供了抗本发明的第一方面的多肽的抗体。优选地,该抗体特异性地针对本发明的多肽。
在本说明书中,术语“抗体”采用最广泛的含义,并具体地包括单克隆抗体、多克隆抗体、多特异性抗体(例如,双特异性抗体)、嵌合抗体、双抗体、三抗体以及抗体片段。本发明的抗体优选能够特异性地结合上文所述的抗原多肽,而不与其他多肽的抗原交叉反应。
本文所用的术语“特异性地结合”旨在表示通过抗体的免疫球蛋白可变区结合抗原,并且解离常数(Kd)为1μM或更低,这可通过利用诸如BIAcoreTM表面等离子体共振系统和BIAcoreTM动力学评估软件(例如,版本2.1)的表面等离子体共振分析测量。地,特异性结合相互作用的亲和或解离常数(Kd)优选为约500nM-约50pM,更优选约500nM或更低,更优选约300nM或更低,并且优选至少约300nM-约50pM、约200nM-约50pM,并且更优选至少约100nM-约50pM、约75nM-约50pM、约10nM-约50pM。
已经证实,全长抗体的片段能够行使抗体的抗原结合功能。抗体的结合片段的实例包括(I)Fab片段,由VL、VH、CL和CH1结构域组成的单价片段;(ii)F(ab’)2片段,包含通过铰链区的二硫键连接的两个Fab片段的二价片段;(iii)由VH和CH1结构域组成的Fd片段;(iv)由抗体单臂的VL和VH结构域组成的Fv片段;(v)由VH结构域或VL结构域组成的dAb片段;以及(vi)分离的互补决定区(CDR)。而且,尽管Fv片段的两个结构域即VL和VH由分离的基因编码,但是可以利用重组方法,通过使它们成为一个蛋白链的合成连接子将它们联合,其中VL和VH区配对形成单价分子(称为单链Fv(scFv))。也包括了其他形式的单链抗体,例如双抗体或三抗体。双抗体是二价的、双特异性抗体,其中VH和VL结构域表达于一个多肽链上,但是使用了过短而不能让相同链上的两个结构域之间配对的连接子,从而迫使该结构域与另一链上的互补结构域配对,从而产生两个抗原结合位点。
本领域已知的各种方法还可以用于制备可以结合本发明的抗原多肽的单克隆抗体、多克隆抗体以及各种重组和合成的抗体。另外,本领域的技术人员应当熟悉能够用于增强免疫应答的各种佐剂,根据宿主的种类,该佐剂包括但不限于弗氏佐剂(完全和不完全)、诸如氢氧化铝的矿物凝胶、诸如溶血卵磷脂、普卢龙尼克多元醇类的表面活性物质、聚阴离子、肽、油乳剂、二硝基酚以及诸如卡介苗(Bacillus Calmette-Guerin)(BCG)和短小棒状杆菌(Corynebacterium parvum)的潜在有用的人类佐剂。抗体和抗体片段可以通过标准技术(例如,组织培养或者使用发酵罐的无血清培养)来大量制备,以及使用诸如蛋白A(例如,用于鼠Mab)、蛋白G(例如,用于大鼠Mab)或MEP HYPERCEL(例如,用于IgM和IgG Mab)的亲和柱纯化。
对于人治疗应用而言,重组的人或人源化形式的单克隆抗体是优选的实施方案。可以根据文献中的方法制备人源化的抗体(例如,Jones et al.1986,Nature 321:522-25;Reichman et al.1988 Nature 332:323-27;et al.1988,Science 1534-36)。最近描述的用于制备人源化的单克隆抗体的“geneconversion mutagenesis(基因转化诱变)”策略也可以用于制备人源化的抗体(Carter et al.1992 Proc.Natl.Acad.Sci.U.S.A.89:4285-89)。可选地,用于产生重链区和轻链区的随机组合的重组噬菌体文库的技术也可以用于制备重组抗体(例如,Huse et al.1989 Science 246:1275-81)。
如本文所用的,术语“拮抗剂”指的是抑制目的多肽的生物活性的核酸、肽、抗体、配体或其他化学实体。本领域的技术人员应当熟悉检测和选择特定蛋白的合适拮抗剂的技术,这种技术包括结合测定。
本发明的抗体和拮抗剂有许多应用,例如,它们能够用作口腔护理产品中(牙膏和口腔清洗剂)的抗微生物的防腐剂,用于控制牙菌斑和抑制与龋齿和牙周疾病有关的病原体。本发明的抗体和拮抗剂还可以用于药物制剂中(例如,局部和全身抗感染药物)。
本发明还提供了靶向编码本发明的第一方面的多肽的mRNA分子的干扰RNA分子。因此,本发明的第七方面提供了干扰RNA分子,该分子包含每条链中至少19个碱基对的双链区,其中双链区中的一条链与编码本发明的第一方面的多肽的mRNA分子的区域互补。
所谓的RNA干扰或RNAi是已知的,并且Hannon(2002)Nature 418:244-251和McManus & Sharp(2002)Nature Reviews:Genetics 3(10):737-747提供了关于RNAi的其他信息它们的公开在此处通过引用并入。
本发明还包括增强siRNA的稳定性并支持其体内用途的siRNA的化学修饰(参见,例如,Shen et al.(2006)Gene Therapy 13:225-234)。这些修饰可以包括位于正义链寡核苷酸的5’和3’末端的反向无碱基部分以及反义链3’末端的最后两个核苷酸之间的一个硫代磷酸酯连接。
优选的是,干扰RNA的双链区在双链区的每条链中包含至少20、优选至少25、最优选至少30个碱基对。本发明还提供了治疗个体的牙周疾病的方法,该方法包括向个体施用至少一种本发明的干扰RNA分子。
还可以将本发明的组合物并入锭剂或口香糖或其他产品中,例如,通过搅拌加入加热的香糖胶基(gum base)或涂覆香糖胶基的外层,其实例是节路顿胶(jelutong)、橡胶胶乳、聚乙酸乙烯酯树脂等,期望地与常规的增塑剂或软化剂、糖或诸如葡萄糖、山梨醇等其他增甜剂一起并入。
在另一方面,本发明提供了成套试剂盒,其包括(a)多肽抑制剂的组合物,和(b)制药学上可接受的载体。期望的是,该整试剂盒还包括它们在需要这种治疗的患者中使用它们抑制生物膜形成的说明书。
旨在口服使用的组合物可以根据本领域中制备药物组合物的任何已知方法来制备,并且此类组合物可以含有选自甜味剂、调味剂、着色剂以及防腐剂的一种或多种试剂,以提供制药学上精美和可口的制剂。片剂含有与非毒性的制药学上可接受的适合制备片剂的赋形剂混合的活性成分。这些赋形剂可以是,例如,诸如碳酸钙、碳酸钠、乳糖、磷酸钙或磷酸钠的惰性稀释剂;诸如玉米淀粉或褐藻酸的成粒剂或崩解剂;诸如淀粉、明胶或金合欢的结合剂,以及诸如硬脂酸镁、硬脂酸或滑石的润滑剂。片剂可以是未包衣的,或者可以通过已知的技术将它们包衣以延迟在胃肠道的分解和吸收,从而提供长时间段的持续作用。例如,可以使用诸如单硬脂酸甘油酯或二硬脂酸甘油酯的延时材料。
口服使用的制剂还可以表现为硬明胶胶囊,其中将活性成分与诸如碳酸钙、磷酸钙或高岭土(kaolin)的惰性固体稀释剂混合,或者表现为软明胶胶囊,其中将活性成分与诸如花生油、液体石蜡或橄榄油的水或油介质混合。
在整个本说明书中,词语“包含(comprise)”或者诸如“包含(compises)”或“包含(comprising)”的变体应当理解为表示包括所宣称的元素、整数或步骤,或者元素、整数或步骤的集合,但是并不排除任何其他元素、整数或步骤,或者元素、整数或步骤的集合。
本说明书中所述的全部公开在此处通过引用并入。本说明书所包含的文件、行为、材料、装置、文章等的任何讨论,仅用于为本发明提供语境。并不认为是承认,任何或者所有这些内容形成了部分现有技术的基础,或者是与本发明有关的技术领域的常识,尽管在本申请的每项权利要求的优先日期前,其存在于澳大利亚或其他地方。
本领域的技术人员应当理解,在未偏离所广泛描述的本发明的精神或范围的情况下,可以对本发明进行许多变化和/或修饰,如具体的实施方案所示。因此,本实施方案在各个方面都认为是示例性的而非限制性的。本发明特别包括本说明书中所述的特征的所有组合。
为了更清楚地了解本发明的特征,现在参照下文的实施例,描述本发明的优选形式。
用于生物膜与浮游研究的牙龈卟啉单胞菌的生长和收获
利用C-30型BioFlo恒化器(New Brunswick Scientific),使牙龈卟啉单胞菌W50(ATCC 53978)以连续培养的方式生长,工作体积为400mL。向培养容器和培养基储蓄器(medium reservoir)两者中连续地通入10%CO2和90%N2。生长温度为37℃,并且将脑心浸液生长培养基(brain heartinfusion growth,Oxoid)保持在pH7.5。在所有的生长中,将氧化还原电势保持在-300mV。稀释速率为0.1h-1,从而获得的平均每代时间(MGT)为6.9h。添加无菌半胱氨酸-HCl(0.5g/L)和氯化血红素(5mg/L)。接种后约10天,培养物达到稳定态,并将培养物保持另外的30天,直至在容器的垂直表面形成了生物膜厚层。
在冰上或在4℃下进行所有的细菌细胞操作。收获时,将浮游细胞倒入干净的容器中,并用PGA缓冲液(10.0mM NaH2PO4、10.0mM KCl、2.0mM柠檬酸、1.25mM MgCl2、20.0mM CaCl2、25.0mM ZnCl2、50.0mMMnCl2、5.0mM CuCl2、10.0mM CoCl2、5.0mM H3BO3、0.1mM Na2MoO4、10mM半胱氨酸-HCl,并在37℃下,用5M NaOH将pH调整至7.5,37℃)将生物膜温和地洗涤两次,然后将生物膜收获至50mL的离心管中。
然后用PGA缓冲液将浮游细胞和生物膜细胞洗涤三次(7000g),并用洗涤缓冲液(50mM Tris-HCl、150mM NaCl、5mM MgCl2、pH 8.0、蛋白酶抑制剂抑制剂(Sigma))将两个样品再悬浮至终体积为30mL,并在138Mpa下,3次通过弗氏压碎器(French Press Pressure Cell,SLM1AMINCO)将两个样品裂解。将裂解的细胞在2000g下离心30min以除去任何未破碎的细胞。将上清液在100000g下进一步离心1h以将裂解的细胞分离成可溶和不溶(细胞外膜)的组分。在100000g下,用洗涤缓冲液将细胞外膜组分再洗涤3次,每次20min,以除去任何可溶的污染物。然后,将所有样品冻存于-80℃。
用于血红素限制和过量研究的牙龈卟啉单胞菌的生长和收获
利用Bioflo 110发酵罐/生物反应器(New Brunswick Scientific),使牙龈卟啉单胞菌W50以连续培养的方式生长,工作体积为400mL。生长培养基是37g/L的脑心浸液培养基(Oxoid),并补充了5mg/mL的无菌过滤的盐酸半胱氨酸、5.0μg/mL的氯化血红素(血红素过量)或者0.1μg/mL的氯化血红素(血红素限制)。通过向培养容器接种在相同的培养基(血红素过量)中生长的牙龈卟啉单胞菌的24h分批培养物(100mL)开始生长。分批培养生长24小时后,打开培养基储蓄器泵并将培养基流速调整至稀释速率为0.1h-1(平均每代时间(MGT)为6.9h)。将容器的温度保持在37℃并将pH保持在7.4±0.1。向培养物中连续地通入95%N2中的5%的CO2。在稳定态生长中收获细胞,并用洗涤缓冲液(50mM Tris-HCl pH 8.0、150mM NaCl、5mM MgCl2),在5000g下,将细胞洗涤三次,达30min,并在138Mpa下,使细胞三次通过弗氏压碎器(SLM,AMINCO)将细胞分解。然后将裂解的细胞在2000g下离心30min以除去未破碎的细胞,然后在100000g下超离心,从而获得可溶(上清液)组分和膜组分。在冰上进行所有的分级。
18O蛋白水解标记的生物膜和浮游细胞外膜组分的制备和分析
首先将细胞外膜组分再悬浮于1mL冰冷的含有2%SDS的洗涤缓冲液中,然后进行超声处理和漩涡以促进细胞团(pellet)的再悬浮。再悬浮的最终步骤包括使用29号胰岛素针(29-gauge-insulin needle)帮助破碎微粒。然后将该混合物在40000g下离心以除去不溶颗粒,并根据生产商的说明书使用BCA试剂(Pierce)测定上清液中蛋白的浓度。
然后在-20℃下,使用5体积冰冷的丙酮沉淀再悬浮的样品,过夜,这进一步帮助失活任何蛋白水解活性。丙酮沉淀后,用pH 8.0的25mMTris和1%SDS将两个样品再悬浮至终浓度为3mg/mL,并用间歇的超声处理、漩涡搅拌以及使用29号胰岛素针进行辅助。然后进行第二BCA蛋白测定以使最终蛋白的量标准化。
根据生产商的方法,使用MOP运行缓冲液(NuPAGE,Invitrogen),进行NuPAGE凝胶上的凝胶电泳,除了在向使用MOP作为运行缓冲液的10孔10%NuPAGE凝胶加样前,将样品在99℃下煮沸5min。将生物膜样品和浮游样品(各30μg)加样至凝胶中相邻的泳道。然后在126V(恒定)、4℃的条件下进行SDS-PAGE,至染料前沿距离凝胶的底部约1cm。对于生物学重复,所用的凝胶是使用MOP作为运行缓冲液的4-12%NUPAGE梯度凝胶,以获得相似但不确切(exact)的分离模式,从而克服分离成两个组分的蛋白条带的潜在变化。在考马斯亮蓝(Coomassiebrilliant blue)G-250(31)中过夜染色,然后在超纯水中过夜脱色。
使用定制的模板(stencil)将两个凝胶泳道分成10个相同大小的凝胶条带,并且将每个部分切成约1mm3的方块。在50mM NH4HCO3/ACN(1∶1)的溶液中脱色三次。脱色后,将该凝胶方块用100%ACN脱水,然后在56℃下,用含于ABC缓冲液(50mM NH4HCO3)中的10mM二硫苏糖醇的溶液进行再水合/还原,达30min。在室温下避光添加55mM碘乙酰胺的ABC缓冲液的溶液达60min前,除去过量的溶液。烷化反应后,将凝胶方块在ABC缓冲液中洗涤3次,然后在100%ACN中将该凝胶方块脱水两次,达10min。使用真空离心蒸发浓缩器(speedvac)将该凝胶方块在离心下进一步干燥90min。在37℃下,在每个凝胶部分60μl的溶液中,消化20h,该溶液含有在H2 16O或H2 18O(H2 18O,纯度大于97%,Marshall Isotopes)中制备的2μg测序等级(sequence grade)的修饰的胰蛋白酶(Promega)和1/2强度的ABC缓冲液。消化后,使用50%ACN/0.1%TFA在它们各自的水(H2 16O/H2 18O)中的溶液以及0.1%TFA,在超声处理的辅助下,将肽从凝胶中提取两次,每次5min。将合并的提取物在99℃下煮沸5min以失活胰蛋白酶,然后冷冻干燥48h。
在使用纳米HPLC和MALDI TOF-MS/MS分析进行分析前,将冷冻干燥的肽再悬浮于5%ACN/0.1%TFA在它们各自的水(H2 16O/H2 18O)中的溶液中。然后,利用高级μL取样模式下的FAMOS自动加样器,将肽溶液(20μl)加样至Ultimate纳米LC系统(Nano LC system,LC Packings)。首先,以200μL/min的流速,将样品加样至捕获柱(300μm内径×5mm)达5min。使用反向柱(LC Packings,C18 PepMap100,75μm i.d.×15cm,3μm,以300nL/min的流速实现分离,用0-5min(0%)、5-10min(0-16%)、10-90min(16-80%)、90-100min(80-0%)的ACN梯度,在0.1%甲酸中洗脱。
使用Proteineer Fc自动装置(Bruker Daltonics),以30s的时间间隔,将洗脱液直接点样至预点样的anchorchip平板(Bruker Daltonics)上。点样前,将每个点样位置用0.2μL的超纯水预点样,以降低与基质结晶过程期间的乙腈的浓度。在使用MALDI-TOF/TOF(LIFT II升级的Ultraflex,Bruker Daltonics)进行自动分析前,将平板用10mM磷酸铵和0.1%TFA洗涤并空气干燥。首先使用25kV的加速电压,在测量800Da至3500Da的反射方式(reflectron mode)下,进行消化物的MS分析。从8套30个激光发射产生所有MS光谱,并且每套需要包括S/N大于6的信噪比、大于3000的分辨率。对4个样品的每个组,使用预点样的内部标准品的[M+H]+离子(血管紧张素II、血管紧张素I、神经降压素、肾素底物和ACTH_Clip),对设备进行外部校准。使用Flexcontrol和WarpLC软件(Bruker Daltonics),在完全自动的模式下,进行MALDI-TOF/TOF的LIFT模式。在TOF1阶段,将所有离子加速至8kV,随后在LIFT室中提升至19kV,从累加的550个连续激光发射中产生MS/MS光谱。
使用WarpLC软件(第1.0版)和LC MALDI SILE(Stable IsotopeLabelling Experiment)作业流程,选择母前体(parent precursors)。只选择了通过4Da所分离的每个重或轻对(heavy or light pair)的最丰富的峰,这提供了大于50的S/N。通过小于6次LC MALDI分级所分离的化合物被认为是相同的,因此只选择1次。
使用Flexanalysis 2.4 Build 11(Bruker Daltonics)和Apex峰寻找算法生成峰列表,并且S/N大于6。使用0.2m/z的宽度,用Savitzky Golay算法,使MS扫描平滑,并且使用平坦度为0.8的Median算法实现基线扣除。
对于针对从基因组研究所(The Institute for Genomic Research)(TIGR)的网页(www.tigr.org)获得的牙龈卟啉单胞菌数据库所查询的MS/MS数据,使用MASCOT搜寻引擎(MASCOT第2.1.02版,Matrix Science),实现蛋白鉴定。MASCOT搜寻参数是:电荷状态1+,以胰蛋白酶作为蛋白酶,允许一个未切割(missed cleavage),并且MS的公差为250ppm,MS/MS峰的公差为0.8m/z。固定修饰设定为半胱氨酸的脲基甲基,并且可变修饰为C-末端18O标记的赖氨酸和精氨酸残基。
使用前述的反向数据库策略(32)测定忽略单个肽鉴定的假阳性所要求的最小肽MASCOT得分。简而言之,数据库由正常方向的每个预测的牙龈卟啉单胞菌蛋白的序列以及反向序列的相同蛋白(3880个序列)组成。然后用所有MS/MS数据集搜寻组合的数据库,以测定获得0%的假阳性的最低Mascot得分。假阳性被定义为与反向序列的阳性匹配(粗体、红色并且高于肽阈值得分)。单个采样肽(hits peptide)的假阳性速率经测定为0.5%,并且Mascot肽离子得分大于阈值,且小于25。当Mascot肽离子得分大于30时,与反向数据库没有匹配。根据Mascot评分算法,为了增加单个采样肽鉴定的置信度,我们使用了大于50的最小Mascot肽离子得分,其获得了比使用30的得分时低两个数量级的错误鉴定的概率。
使用下述标准评价匹配的肽i)具有对应于小于0.05的p值的基于概率的得分的至少2个特异性肽段被认为是鉴定为阳性的(要求粗体红色匹配)其中得分是-log×10log(P)P为观察到的匹配是随机事件的概率(33),ii)当在特定蛋白的鉴定中只使用了一个特异性肽段时(重或者轻标记的肽的鉴定被认为是一个),MASCOT肽离子得分必须大于50,或者在4个独立的实验(2个生物学重复和2个技术重复)的超过一个的实验中鉴定了该肽。
由于一个或两个18O原子混合地并入肽、18O同位素的天然丰度的贡献以及H2 18O纯度(a=0.97),使用下述公式以数学方式修正肽的比率R:R=(I1+I2)/I0    (1)
根据下述公式计算I0、I1和I2(27)
I 1 = a S 2 - [ a J 2 - 2 ( 1 - a ) J 4 ] S 0 - 2 ( 1 - a ) S 4 a 2 - ( 2 - a - a 2 ) J 2 + 2 ( 1 - a ) 2 J 4 - - - ( 2 )
I0=S0-(1-a)I1    (3)
I 2 = 1 a 2 ( S 4 - J 4 I 0 - J 2 I 1 )
其中S0、S2和S4分别为没有18O标记的肽的单同位素峰的测量强度,高于单同位素峰2Da的峰,和高于单同位素峰4Da的峰(图1A)。J0、J2和J4是肽的同位素外膜的相应的理论相对强度,由MS-Isotope(http://prospector.ucsf.edu)计算。然而,当第二同位素峰(S1和S5)比第一同位素峰(S0和S4)更强时,将该比率简单地计算为S1除以S5。这是真实的,特别是对于大于2000m/z的大肽而言,其中16O标记的肽的第五同位素峰对S4峰的贡献变得显著。通过作为实验S4的百分比的实验S2和理论S2(J2)之间的差别,计算混合并入的16O18O。
通过求相同蛋白的所有鉴定的肽的平均数来测定蛋白的丰度比率,甚至当在多于一个凝胶部分中鉴定了相同的蛋白时也是如此。将来自每个“正常”重复的数据与来自其各自“反向”重复的反比组合,从而获得每个生物学重复中每种蛋白的平均比率和标准误差。然后以与以前报道的类似的方式(34、35)进行两个生物学重复的标准化。简而言之,将每个生物学重复的平均比率乘以系数,从而使该比率的几何平均数等于1。
ICAT标记的血红素限制和过量的细胞的制备和分析
蛋白标记和分离基于使用可切割的ICAT试剂(Applied Biosystems)的geLC-MS/MS方法(Li et al.,2003)。PCT/AU2007/000890采用了另一种蛋白质组方法,在此将其通过引用并入。首先用TCA(16%)将蛋白沉淀,然后用6M尿素、5mM EDTA、0.05%SDS和50mM pH 8.3的Tris-HCl将蛋白溶解。使用BCA蛋白试剂来测定蛋白浓度,并将该浓度调整至1mg/ml。在37℃下,使用2μl 50mM三(2-羧乙基)膦盐酸盐将来自每个生长条件的100μg的蛋白单独还原1h。然后,用ICAT试剂将来自血红素限制生长条件的还原的蛋白烷基化,并用ICAT试剂将来自血红素过量生长条件的蛋白烷基化。然后将两个样品合并,并在预制的Novex10% NUPAGE凝胶(Invitrogen)上进行SDS-PAGE。将该凝胶用SimplyBlueTM SafeStain(Invitrogen)染色5min,之后用水脱色。然后从凝胶的顶部至染料的前端将该凝胶泳道切成20份。
将切下的部分进一步切成1mm3的方块,在凝胶内过夜消化并按照上文的方法提取两次。将合并的上清液在减压下干燥至约50μL,然后在按照生产商的说明书(Applied Biosystems)加样于亲和柱上前,将该上清液与500μL亲和加样缓冲液混合。将洗脱的肽干燥,并在37℃下用纯化的TFA切割生物素标签2h,然后在减压下干燥。将干燥的样品悬浮于35μL含于0.1%TFA的5%乙腈中。
利用与ultiMate纳米LC系统(LC Packings-Dionex)偶联的EsquireHCT离子阱质谱仪进行MS。利用LC Packings反相柱(C18 PepMap100,75μm i.d.×15cm,3μm,
Figure GPA00001035520800221
实现分离,并利用下述乙腈梯度在0.1%甲酸中洗脱:0-5min(0%)、5-10min(0%-10%)、10-100min(10%-50%)、100-120min(50%-80%)、120-130min(80%-100%)。
将LC的输出直接通过界面连接至纳米喷雾离子源。在m/z范围为300-1500与离子电荷控制为100000的条件下,进行MS采集,并且最大积累时间为100ms。当使用GPF时,使用三个另外的m/z范围(300-800、700-1200和1100-1500)选择前体离子,并重复进行每个m/z范围以增加所鉴定的肽的数目。从100-3000m/z的质量范围内获得MS/MS采集,对高达10个的前体进行MS/MS采集以用于初始的完整蛋白质组分析,并且对3个前体进行MS/MS采集以用于最大强度的多电荷离子的ICAT分析,并且主动排除时间(active exclusion time)为2min。
使用利用Apex峰寻找算法的DataAnalysis 3.2(Bruker Daltonics)产生峰列表,该算法的化合物检测阈值为10000,信噪比阈值为5。为输出数据设定+2和+3的整体电荷限制。对于针对从基因组研究所(TIGR)的网页(www.tigr.org)获得的牙龈卟啉单胞菌数据库所查询MS/MS数据,利用MASCOT搜寻引擎(MASCOT 2.1.02,Matrix Science),实现蛋白的鉴定。利用下述标准进一步评价匹配的肽:i)具有对应于最大0.05的p值的基于概率的Mowse得分的肽被认为是阳性鉴定的,其中得分是-log×10log(P),P为观察到的匹配是随机事件的概率,ii)当在特定的蛋白鉴定中只使用了一种肽,并且MASCOT得分小于30时,进行该光谱的人工验证。为了增加ICAT标记的蛋白,特别是那些具有单个肽采集的蛋白的鉴定中的置信度,进行了下述另外的过滤:i)ICAT对的重和轻肽必须表现出如从它们的提取离子层析中所鉴定的接近的洗脱峰ii)对于具有单个特异性肽段的蛋白,该肽必须被鉴定多于一次(例如,在不同的SDS-PAGE分级中,或在轻和重ICAT这两种形式中)iii)如果单个肽不满足(ii)的标准,则MASCOT得分必须大于等于25,期望值小于等于0.01,并且MS/MS光谱必须表现出连续系列的“b”或“y”型离子,并且考虑了强离子。假阳性的确定如上文所述。
同位素重13C比轻12C ICAT标记的肽的比率利用DataAnalysis(Bruker Daltonics)的脚本来测定,并基于单个MS光谱中的单同位素峰强度(信号强度和峰面积)来人工核实,进行人工核实。用于定量的母离子的最小离子数目为2000,尽管超过96%的重和轻前体离子都大于10000。在分辨率很差的光谱情况下,由母离子的重新构建的提取离子层析(extracted ion chromatograms,EIC)的面积来测定比率。计算源自单个母蛋白(partent protein)的多个肽的平均值,利用α=0.05的Grubb检验(Grubb’stest)移除无关项。
牙龈卟啉单胞菌蛋白的细胞定位利用CELLO(http://cello.life.nctu.edu.tw(36))来预测。细胞外、外膜、内膜和胞质的预测被认为来自外膜组分。
在无细胞培养上清液(未接种的、血红素过量和血红素限制)中的短链脂肪酸的浓度,通过基于Richardson等人的衍生法(37)的毛细管气相层析来测定。
两个生物学重复之间的相关系数(r)利用来自Microsoft Excel的Pearson相关系数函数来评价。方差的系数(CV)通过用肽丰度比率除以平均值的标准偏差来计算,并且表示为百分数。
用于转录物组学分析(transcriptomic analysis)的核酸的提取
从直接收获自恒化器的5ml牙龈卟啉单胞菌细胞的样品中提取RNA。向每个样品中添加0.2体积的RNA稳定剂(含于纯乙醇的5%v/v的苯酚溶液)。通过离心(9000g,5min,25℃)使细胞成团,立即在液氮中将细胞团冷冻,并保存于-70℃,用于后续处理。将冷冻的细胞每1×1010个细胞悬浮于1ml的TRIzol试剂(Invitrogen)中,然后利用Lysing MatrixB玻璃珠(MP Biomedicals)和Precellys 24匀浆器(Berlin Technologies,France)将该细胞分解。按照TRIzol的生产商(Invitrogen)的方法,除了在RNA沉淀阶段添加了乙醇(终浓度为35%)而不是异丙醇以外,通过离心除去玻璃珠,并将RNA组分纯化,然后将样品转移至IIIustra RNAspinMini RNA分离试剂盒(GE Healthcare)的旋转离心柱中(spin-column)中。按照生产商的说明书纯化来自上文结合步骤的RNA,包括柱上(on-column)的DNA酶处理以移除残留的DNA。利用Experion自动电泳工作站(Bio-Rad)来测定RNA的完整性。
利用Dneasy血液和组织试剂盒(Qiagen),按照生产商的说明书,从以连续培养的方式生长的牙龈卟啉单胞菌细胞中提取基因组DNA。
微阵列设计、杂交和分析
微阵列芯片(microarray slide)由Australian Genome Research Facility印制,并由1977个定制设计的、用于牙龈卟啉单胞菌W83基因组的预测的蛋白编码区的60mer(单元单体)寡核苷酸探针组成,该编码区包括Los Alamos National Laboratory Oralgen项目所预测的其他蛋白编码区在内。包括了微阵列样品库(Microarray Sample Pool,MSP)对照探针,以辅助依赖于强度的标准化。将所有探针(full complement of probes)印制至涂覆了Corning UltraGAPS的芯片上,每个微阵列芯片印制3次。
利用用Cy3标记的血红素过量或血红素限制的样品将芯片杂交,该样品与用Cy5标记的通用基因组DNA参考(GE Lifesciences)组合。利用Superscript plus间接cDNA标记系统(Invitrogen),用5μg随机六聚体(Invitrogen)引发cDNA合成反应,由10μg总RNA合成cDNA。利用Amersham CyDye标记后反应染料包(post-labelling reactive dye pack)(GELifesciences)将cDNA用Cy3标记,并利用Invitrogen标记系统的纯化模块将cDNA纯化。利用BioPrime Plus Array CGH间接基因组标记系统(Invitrogen),以类似的方法,由400ng DNA合成Cy5-dUTP标记的基因组cDNA。
杂交前,在42℃下,将微阵列芯片浸入封闭溶液(35%甲酰胺、1%BSA、0.1%SDS、5×SSPE[1×SSPE是150mM NaCl、10mM NaH2PO4、1mM EDTA])达1h。封闭后,在H2O中,然后在99%乙醇中将芯片短暂地洗涤,然后通过离心干燥。将标记的cDNA再悬浮于在95℃下变性5min的55μL的杂交缓冲液中(35%甲酰胺、5×SSPE、0.1%SDS、0.1mgmL-1鲑鱼精子DNA),然后将cDNA应用于芯片并用LifterSlips(ErieScientific)覆盖。在42℃下将杂交进行16h。杂交后,将芯片在0.1%SDS加2×SSC[1×SSC是150mM NaCl、15mM柠檬酸钠](42℃下达5min,在室温下进行所有另外的洗涤)、0.1%SDS加0.1×SSC(10min)、0.1×SSC(洗涤4次,每次1min)中连续洗涤,然后快速地浸入0.01×SSC,然后浸入99%乙醇中,并利用离心干燥该芯片。
利用GenePix 4000B微阵列扫描仪扫描芯片,并利用GenePix Pro 6.0软件(Molecular Devices)分析图像。对于表示3个生物学重复的每次处理(血红素限制或血红素过量),使用3个芯片。
利用GenePix Pro 6.0软件(Molecular Devices)进行图像分析,并在进一步的分析中使用“变形(morph)”背景值作为背景估计。为了鉴定差异表达的基因,使用LIMMA软件包,截止值(cut off)为P<0.005。在阵列中,通过经由MSP对照斑点拟合整体黄土曲线(global loess curve),并将该曲线应用于所有其他的斑点,进行标准化。利用Benjamini Hochberg方法控制假发现率,以修正多重测试。
基因预测基于来自基因组研究所(TIGR,www.tiqr.org)的牙龈卟啉单胞菌W83基因组注释。由微生物在线(Microbesonline)网页(http://microbesonline.org)进行操纵子预测。
利用DNA微阵列分析所测定的牙龈卟啉单胞菌对血红素限制的应答
在与蛋白质组分析所用相同的生长条件下,对血红素限制生长对牙龈卟啉单胞菌整体基因表达的影响进行DNA微阵列分析。来自3个生物学重复的数据的分析鉴定了总共160个基因,所述基因表现出血红素过量和血红素限制之间的统计学显著差异调控,并且大部分这些基因在血红素限制的条件下表现出表达水平的增加,只有8个基因被下调了。预测许多上调的基因位于操纵子中,并且其中的大部分表现出转录物水平上的类似变化(表3和5)。转录物组数据和蛋白质组数据之间有广泛的一致性,并且两组数据之间有显著的相关性,其中观察到了对血红素限制的差异调控[Spearman相关性0.6364,p小于0.05]。然而,对于经蛋白质组分析表现出丰度差异的某些蛋白而言,相应基因的转录物组分析没有检测到mRNA丰度的任何统计学显著差异。微阵列分析仅旨在鉴定编码如蛋白质组分析所测定的丰度变化很大的蛋白的那些基因(表3和5)。当发现来自相同基因的蛋白和转录物被血红素限制明显地调控时,大部分蛋白和转录物表现出相同的调控方向。两个基因产物是例外,即CTD家族推断的细胞表面蛋白酶PG0026和菌毛蛋白(FimA)PG2132。这些蛋白的丰度在血红素限制条件下的蛋白质组分析中下降,但是经转录物组分析预测被上调。这两种蛋白都位于细胞表面,并且很有可能,它们从细胞表面释放或者翻译后修饰,这能够将它们从在蛋白质组分析中被鉴定为上调中排除。
除了在下文更详细地讨论的基因产物以外,某些目的基因的转录明显地被上调了,其包括PG1874与PG1875这两个基因的推断操纵子的基因,其中一个编码溶血素A;8个连锁的基因PG1634-PG1641,其中PG1638编码推断的硫氧还蛋白以及编码锰转运蛋白FeoB2的PG1043。编码黄素氧还蛋白的PG1858是上调最高的基因,上调了15.29倍。在152个明显上调的基因中,约55个基因没有预测的功能。
连续培养与生物膜的形成
将牙龈卟啉单胞菌W50以连续培养的方式培养超过40天的时间段,在该过程中,培养物的细胞密度在开始的十天后保持不变,并且生物学重复1和2的OD650分别为2.69±0.21和2.80±0.52。这相当于约3mg细胞干重/mL的细胞密度。在这个时间段内,在发酵罐的垂直玻璃壁上发展了牙龈卟啉单胞菌细胞的生物膜。这种生物膜收获时的厚度为约2mm。
使用BSA对16O/18O定量方法的验证
为了确定16O/18O定量方法的精确度和可重复性,将已知量的BSA加样至相邻的凝胶泳道,以获得1∶1、1∶2、1∶5和10∶1的比率(图1B)。在H2 16O或H2 18O的存在下,将条带进行凝胶内胰蛋白酶消化(in-gel trypticdigestion)、混合,然后通过LC MALDI-MS/MS进行分析。所有4个比率的单个BSA胰蛋白酶消化肽段的一套典型光谱表现出两个18O原子优选并入,通过BSA比率为10∶1的+4Da峰的优势以及通过1∶1的光谱中几乎对称的双峰,非常清楚地观察到了这种情况,这既简化了定量也简化了鉴定(图1A)。基于1∶1的标记(附表),单个18O原子的平均并入估计小于7%。对于1∶1(3次)、2∶1(和1∶2)、1∶5和10∶1的比率,所有鉴定的BSA肽的计算平均比率为0.98±0.12、2.22±0.26、4.90±0.75和10.74±2.04,这分别表示好的动态范围、±2%-11%的高精确度以及11.75%-18.95%的低CV范围(表1)。1∶1的混合物(进行三次)的可重复的精确度暗示标记偏差很低。还通过只利用在两个实验中都得以鉴定的肽,比较比率为2∶1的正常和反向标记的BSA,证实了这一点。正常比率测定为2.11±0.33,而反向测定为2.30±0.20(表1)。
生物膜样品和浮游样品的定量分析的实验设计
本研究的设计包括使用两个独立连续培养的两个生物学重复,每个重复分成从容器的壁上获得的生物膜样品和从容器的液体内容物获得的浮游样品。每个生物学重复进行了两个技术重复,尽管我们已经确定用BSA无明显标记偏差,但是我们选择使用反向标记策略,因为缺乏对复杂生物样品进行的16O/18O标记验证研究(30)。因此,总共有4个实验,每个实验由源自2×10个凝胶片段的10个LC-MALDI MS/MS运行(run)组成。
图2示出来自生物膜/浮游样品的两个正常和反向标记的肽的典型MS和MS/MS光谱,这表明了典型的反向标记方式。和用BSA数据一样,可以看出,有高水平的双18O并入,对于所有的肽,平均混合并入经计算小于15%,这证实16O/18O蛋白水解标记方法对复杂样品也是有效的(数据未显示)。还通过+2Da种类的相对很少的Mascot采样进一步肯定了双重标记的肽的优势。重标记的肽的MS/MS光谱还揭示了Y离子中预期的+4Da偏移(图2)。
浮游和成熟的生物膜牙龈卟啉单胞菌细胞的细胞外膜的蛋白质组
基于实验方法章节所述的选择标准,我们已经鉴定并测定了来自1582种肽的116种蛋白的相对丰度。在这些鉴定的蛋白中,73.3%的蛋白是通过多于2种特异性肽段鉴定的,12.9%的蛋白来自1种特异性肽段但是在两个生物学重复中都得到鉴定,13.8%的蛋白仅通过1种特异性肽段鉴定,Mascot肽离子得分大于50(图5)。CELLO(36)预测77.6%的这些蛋白来自细胞外膜,从而证明了这种细胞外膜富集方法的效率。通过TIGR(www.tigr.org)和ORALGEN口腔病原体序列数据库(www.oralgen.lanl.gov)的生物信息学分类,预测了大比例的鉴定的蛋白参与转运,具有蛋白水解活性或者细胞代谢功能。有趣的是,55%的所有鉴定的蛋白的功能是未知的。
为了比较生物学数据的技术重复,将每对正常和反向标记的实验的转换成Log10的蛋白丰度比率互相作图(图3)。这些点的线性回归表明,每一对是高度相关的,并且生物学重复1和2的R2值分别为0.92和0.82。每个线性拟合的斜率也和期望值1接近,生物学重复1和2的斜率为0.97和0.93,这分别表明技术重复之间没有标记偏差(图3)。计算来自技术重复的蛋白丰度比率的平均值,以获得每个生物学重复的单个比率。
在比较两个生物学重复的平均数据前,将每个生物学重复的蛋白丰度比率标准化,以获得1.0的平均比率。来自两个生物学重复的标准化的蛋白丰度的作图,表现出紧密的以0为中心的高斯样(Gaussian-like)分布(图4A),这与其他人所述的情况类似(40、41)。两个生物学重复之间有显著的正相关性(Pearson相关系数r=0.701,p<0.0001),这表明能够将生物膜/浮游培养物的生长和样品的所有下游过程再现至令人满意的水平。为了确定哪些蛋白在两个生物学重复中都被一致地调控,构建了简单的排名表,其中根据蛋白的丰度比率,将它们分成6组(A-F),然后根据基于组的相关性,将它们排名为1-6,并且当来自两个生物学重复的蛋白都落在相同的组时,排名为1的蛋白具有最高的相似性(图4B)。利用排名表,我们能够确定,在从两个重复中所鉴定的81种(42%)蛋白中,有34种蛋白排名第一,这明显地高于随机相关性的期望值17%(或1/6)。大部分剩余的蛋白排名第二,因此,总共70种蛋白(86.4%)被认为在两个实验中都被类似地调控(排名为1或2,表2)。
基于测量的2∶1BSA标记实验的标准偏差(±0.26)(表1),当蛋白丰度变化与1.0的不同为标准偏差大于3时(大于1.78或者小于0.56),认为蛋白丰度变化是生物学显著的(18、42)。利用这个标准,在两个重复中都鉴定的81种蛋白中,有47种蛋白的丰度明显地发生了变化(基于平均比率),并且其中42种蛋白排名为1或2(表2)。在排名为1和2的42种蛋白中,24种蛋白的丰度明显地增加了,而18种蛋白的丰度下降了。
表现出协调调控的代谢途径的酶
在利用ICAT标记策略的血红素限制与血红素过量的研究中,鉴定了参与谷氨酸/天冬氨酸分解代谢的20种蛋白(表3)。在这些蛋白中,鉴定了催化直接参与将谷氨酸代谢成丁酸的8个步骤中6个步骤的酶,并发现这些酶在血红素限制的条件下增加了1.8-4倍(表3)。尽管利用ICAT没有检测到另外2种催化酶(PG0690,4-羟丁酸CoA-转移酶和PG1066,丁酸-乙酰乙酸CoA-转移酶),但是在与表3中所报道的那些蛋白相当的高离子强度下,发现它们存在于另外的定性研究中(未显示),并且属于表现为受到上调的操纵子。另一方面,血红素限制对天冬氨酸分解代谢途径酶的丰度的影响是混合的,并且在氧化降解途径中催化天冬氨酸分解成草酰乙酸的酶没有发生变化,且参与将丙酮酸转换成乙酸的酶增加了2-4.4倍。
经由天冬氨酸还原途径,共同催化富马酸转化成琥珀酸的两种含铁的富马酸还原酶即FrdA(PG1615)和FrdB(PG1614)的丰度,在血红素限制下培养的细胞中明显地降低了(表3)。在操纵子中编码的这两种蛋白(Baughn et al.,2003),响应血红素限制,表现出类似的丰度变化(FrdAL/E=0.35;FrdB L/E=0.25)。
有机酸终产物的分析
在生长于血红素限制下的牙龈卟啉单胞菌的已耗尽的培养基(spentculture medium)中,乙酸、丁酸和丙酸的量分别是13.09±1.82、7.77±0.40和0.71±0.05mmole/g细胞干重。在生长于血红素过量下的牙龈卟啉单胞菌的耗尽培养基中,乙酸、丁酸和丙酸的水平分别是6.00±0.36、6.51±0.04和0.66±0.07mmole/g细胞干重。
上文的结果表明了蛋白丰度的变化,该变化在浮游牙龈卟啉单胞菌粘附至固体表面并作为成熟的单物种生物膜的一部分生长时发生。这是第一个利用Gygi小组的geLC MS方法(46)或16O/18O蛋白水解标记方法测定蛋白丰度变化的细菌生物膜与浮游生长的对比研究,而到目前为止所公开的所有其他此类研究都利用了基于2D凝胶电泳的方法(10-12)。成功地利用了两个技术重复和两个生物学重复16O/18O反向标记方法定量和验证了蛋白丰度的变化。
牙龈卟啉单胞菌的连续培养
在本研究中,与分批培养的更常规的方法相反,以连续培养的方式培养牙龈卟啉单胞菌。由于诸如以下的批次之间的变化,分批培养向细菌分析中导入了大范围和程度的变量:接种体的大小和生存力、收获时细菌的准确生长阶段、培养基中可用营养物的水平以及培养基的氧化还原电势等。在连续培养中,使细菌在严格控制的条件下生长许多代,该条件包括生长速率、细胞密度、营养物浓度、温度、pH以及氧化还原电势(44、47、48)。以前的研究证明了在不同实验室的恒化器中连续培养的酿酒酵母(Saccharomyces cerevisiae)转录物组分析的高水平的再现性(49)。而且,在我们的研究中,生物膜细胞和浮游细胞这两者的生长都在单个发酵容器中进行,与分离培养相比,这减少了变异性。在86.4%已鉴定蛋白(排名1和2)的生物学重复之间,本研究中所观察到的牙龈卟啉单胞菌细胞外膜蛋白丰度的一致变化,表明连续培养系统和16O/18O蛋白水解标记策略适用于分析生物膜生长对牙龈卟啉单胞菌蛋白质组的影响。
18O标记的效率
由于SDS-PAGE方法提供的膜蛋白的高分辨率和可溶性,本研究所用的基本蛋白质组方法是geLC MS方法(46、50)。在与其他人所述的方法(26-29)类似的凝胶中消化方法期间,将本方法与单个18O标记反应组合。有效的标记应当将两个18O原子并入至每个肽的C-末端,并且应当抵抗与16O的反交换(back-exchange)。在我们用BSA的研究中发现情况就是如此,其中单个18O原子的并入水平据估计小于7%,并且发现各种BSA实验所获得的平均比率并未发现明显地偏好16O(表1),这表明与普通水的反交换不成为问题。对于生物学样品而言,也获得了类似的结果。有效的18O标记的关键步骤是需要完全除去天然H2 16O,然后使用“单消化(single-digestion)”方法,在胰蛋白酶消化前,将蛋白再溶解于H2 18O中。尽管许多研究使用了“双消化(double digestion)”方法(51、52),但是该单酶切消化方法具有获得更高18O标记效率的优势,而在双消化方法中,某些胰蛋白酶消化的肽在初始消化后,不能将它们任何C-末端16O原子交换为18O原子(53)。我们还使用了凝胶内消化方法,其中如任何标准的凝胶内消化方法一样,利用有机溶剂,在初始脱水步骤期间,将蛋白保持在凝胶基质中。完全除去任何痕量的天然H2 16O是在真空下,通过离心的冷冻干燥实现的,而蛋白仍然在凝胶基质中,以防止初始冷冻干燥步骤期间进一步吸附损失。在含有大量过量的胰蛋白酶的H2 18O中进行再水合和凝胶内消化,该胰蛋白酶也在H2 18O中被还原。在消化方法期间,并入了第一个18O原子后从凝胶中释放的胰蛋白酶消化的肽,可以进行过量的胰蛋白酶介导的第二个羰基氧交换过程。这应当促进第二个羰基氧的取代,因为释放的肽比蛋白具有更高的可溶性,从而获得更高水平的双重18O标记的胰蛋白酶消化的肽(图1和2;(54))。为了防止与普通水的反交换,通过煮沸使胰蛋白酶失活,这在以前就被证明是有效的(51、54)。另外,在加样至纳米LC前,只将干燥、失活的混合物再悬浮并立即混合,以便将自发的交换降至最低,尽管这种自发交换已经被证实为是低的(15、40)。
反向标记
在稳定的同位素标记和利用MS定量的情况下,在标记和离子化方法期间潜在地导入了误差。这些误差包括MALDI方法期间标记的潜在的不同亲和力,和重或轻标记的肽的可能的抑制效果(13、55)。常规技术重复包括重复相同的标记,能够导致对特定标记的未修正的偏差,或者由于污染峰而导致具体肽的随机误差的增加。我们的正常和反向标记的技术重复证明了高度的相关性,并且生物学重复1和2的散点图斜率分别为0.97(R2=0.92)和0.93(R2=0.82)(图3),这接近无标记偏差的预期比率1.0。这些斜率还表明,该方法对于蛋白评估、凝胶加样、凝胶切割和凝胶内消化而言是可再现的。偏差的缺乏表明,诸如微阵列实验中常用的染料交换或LOWESS数据标准化的标准化途径(35)可能是不必要的。然而,当考虑轻微污染肽对18O/16O比率的计算的影响以及需要验证变化极大的肽时,比本研究所用的细菌细胞外膜明显复杂的样品仍然要求反向标记验证。除了提供修正系统误差的评估和方法以外,反向标记设计还有助于使重和轻标记的肽这两者都易于鉴定,因为MS/MS采集方法只选择片段的每个重/轻对中最强的肽。通过这种方式,减少了错误分配的可能性。据我们所知,除了最近的17种细胞色素P450蛋白的定量(26、30)以外,这是在复杂生物样品中的第一个反向16O/18O标记的报道。
生物膜与浮游培养
我们已经证明了生物学重复之间强烈的正相关性(r=0.701,p<0.0001),这表明了生物膜形成和发展的再现性。通过观察到81种可定量的蛋白中的70种蛋白在两个生物学重复中都表现出类似的比率的这一发现,也观察到了这一情况(表2,排名1或2)。超过四分之三的本研究所鉴定的牙龈卟啉单胞菌蛋白是通过大于2个的特异性肽段鉴定的,这进一步增加了本标记方法的鉴定和定量的置信度。在从两个生物学重复都一致地鉴定的81种蛋白中,47种蛋白的丰度在从浮游至生物膜状态的转变中明显地变化了。检测到的蛋白质组,特别是细胞外膜中的蛋白质组的丰度百分比的变化,与对诸如绿脓假单胞菌的生物膜形成细菌的其他研究是一致的,其中超过50%的检测的蛋白质组在浮游和成熟生物膜生长期之间表现出明显的丰度变化(12)。我们还观察到牙龈卟啉单胞菌的细胞外膜蛋白质组中对作为生物膜生长的各种应答。还发现以前被证明对生物膜培养做出反应而丰度发生变化的许多蛋白在我们的研究中丰度也发生了变化。明显地发现某些蛋白的丰度变化高达5倍(表2),这表明了对生物膜培养做出反应的蛋白质组的主要变化。
C-末端结构域家族
最近证实牙龈卟啉单胞菌最近被证实具有新的蛋白家族,该家族具有高达34种位于细胞表面的外膜蛋白,除了具有大约80个残基的保守的C-末端结构域(CTD)以外,这些蛋白没有明显的序列相似性(31、56)。牙龈卟啉单胞菌CTD蛋白家族包括牙龈蛋白酶(gingipain)(RgpA[PG2024]、RgpB[PG0506]、Kgp[PG1844])、Lys-和Arg-特异性蛋白酶和粘附素,它们在细胞表面经分泌并和加工,在细胞表面形成非共价复合体,并且被认为是这种细菌主要的毒力性因子(57-61)。由于牙龈蛋白酶能够降解宿主结构和防御蛋白,并且缺乏功能性Kgp或RgpB的突变体不能在鼠牙周模型中导致牙槽骨损失,因而牙龈蛋白酶与疾病发病机理直接相关(62)。尽管这些CTD家族蛋白具有各种功能,CTD家族蛋白的已知和推断的功能主要地集中于粘附和蛋白水解活性上,并且CTD家族蛋白还包括CPG70羧肽酶(63)、PrtT巯基蛋白酶、HagA血细胞凝集素、格氏链球菌(S.gordonii)结合蛋白(PG0350,(64)),其是推断的血细胞凝集素、推断的巯基还原酶、推断的纤连蛋白结合蛋白、推断的Lys-特异性蛋白酶(PG0553)和推断的冯维勒布兰德(von Willebrand)因子结构域蛋白等。大部分这些蛋白可能在细菌的毒力中发挥重要作用,因为它们与细胞外蛋白水解活性、聚集、血红素/铁的捕获和储存、生物膜形成于保持、毒力以及对氧化应激的抵抗有关。CTD被认为在跨外膜的蛋白的分泌和其对细胞表面的附着中起作用,该作用可能经由糖基化(56、65、66)。在本工作中,我们能够定量9种在两个重复中都一致地被调控的CTD家族蛋白(表2),并且除了PG2216和PG1844(Kgp)以外,所有蛋白的丰度在生物膜状态期间都增加了。因此,这组蛋白中许多蛋白的丰度明显增加,表明它们在生物膜状态期间发挥重要的功能作用。
牙龈卟啉单胞菌的主要细胞表面蛋白酶RgpA、Kgp已知主动参与肽和血红素采集,特别是来自血红蛋白和细胞表面的血红素释放的肽和血红素采集(67、68)。在生物膜状态期间,RgpA的丰度平均增加了2.7倍。HagA的丰度在生物膜状态中也更高,HagA含有也在RgpA和Kgp中发现的粘附素结构域,这种结构域是血细胞凝集和牙龈卟啉单胞菌的血红蛋白结合的原因(69)。
相比之下,发现Kgp在牙龈卟啉单胞菌的生物膜细胞中的丰度明显更低。这能够是由于Kgp丰度的下降或者可能是由于生物膜培养期间,Kgp从牙龈卟啉单胞菌细胞表面的释放。Kgp对牙龈卟啉单胞菌在表面暴露的Lys残基处水解血红蛋白是重要的,这导致肽和血红素的释放和摄取(67、70)。Kgp的粘附结构域与血红蛋白结合有关,并且Genco等人(70)认为Kgp充当血红素载体(haemophore),其像铁载体一样,从细胞表面被释放以从环境中清除血红素。结合了血红素的Kgp然后被认为与HmuR,即TonB连接的外膜受体结合,据报道该外膜受体对血红蛋白和血红素这两者的利用都是必需的,并且将血红素递送至细胞(71)。有趣的是,在包含HmuR的操纵子中编码的蛋白HmuY在生物膜培养的细胞中也更丰富。hmu基因座含有6个基因(hmuYRSTUV),并且据报道属于编码参与类似于Iht和Htr系统的血红素采集途径的蛋白的多基因簇(72)。已证明HmuY对血红蛋白和血红素这两者的利用都是必需的,并且受铁的可利用性调控(72、73)。尽管在我们的研究中没有鉴定HmuR,但是hmuR和hmuY的操纵子特性以及其他证据表明,它们的表达受到类似的调控,并且它们一致地对血红素的利用起作用(71、74)。因此,Kgp丰度的减少和HmuY丰度的增加与其预计的作为生物膜生长中的血红素载体(hemophore)和血红素限制的作用是一致的(参见下文)。
已证明与牙龈蛋白酶加工有关的CTD家族蛋白酶即CPG70(PG0232)的丰度在生物膜培养中也一致地更高,这可能表明了在生物膜生长期间细胞表面蛋白的结构重塑中的作用(63、75)。CTD家族推断的硫氧还蛋白(PG0616)在生物膜状态中的丰度也明显地更高。PG0616被表征为HBP35,即具有共聚集(coaggregation)特性的血红素结合蛋白(76)。特别值得注意的是,免疫反应性的46kDa抗原即PG99的丰度在生物膜细胞中平均增加了5倍(表2)。这是在本研究中观察到的蛋白丰度的最高的增加,由于PG99既是免疫原性的又是CTD家族成员,因此其最有可能位于细胞表面,这种蛋白代表了生物膜破坏剂的良好潜在靶标。
转运蛋白
两种推断的依赖TonB的受体家族蛋白(PG1414和PG2008)和推断的血红素受体蛋白(PG1626)的丰度也表现出明显增加。这些蛋白的确切功能是未知的,然而,对NCBI COG数据库的COG搜索获得了对与P功能级别的主要参与Fe转运的外膜受体蛋白的采样(77)。有趣的是,我们还观察到细胞内铁储存蛋白铁蛋白(PG1286)丰度的增加。这些铁/血红素转运和储存蛋白丰度的一致增加可以是血红素/铁限制的标志,特别是在生物膜更深层中的血红素/铁限制,因为铁蛋白对牙龈卟啉单胞菌幸免于铁耗尽的条件是重要的(78)。
有可能,由于牙龈卟啉单胞菌的高蛋白水解活性、高血红蛋白和血红素结合与储存能力,血红蛋白和血红素都不会扩散远至生物膜中。也可能,经由FeoB1的亚铁离子的转运在位于生物膜更深层中的这种物种的铁代谢中发挥更重要作用,这还可以解释铁蛋白的增加,因为血红素作为铁的细胞表面储存的可能性不大(45、79)。生长于血红素限制的条件下的牙龈卟啉单胞菌表现出细胞内铁的增加,这表明PPIX是生长限制因子,并且亚铁离子经由FeoB1转运蛋白积累(45)。
IhtB(PG0669)和推断的依赖TonB的受体(PG0707)这两者的丰度都在生物膜状态中表现出减少(表2)。IhtB是血红素结合脂蛋白,认为还其作为外周外膜螯合酶起作用,该酶在牙龈卟啉单胞菌摄取铁之前,将铁从血红素中移除(80)。与许多其他蛋白的丰度的增加一致的、潜在地与血红素/Fe摄取有关的两种蛋白的生物膜状态期间丰度类似的减少表明,用于摄取的受体类型的转变,或者更可能地,所用基质中改变的转变。综合上文的观察,看起来在生物膜中生长的牙龈卟啉单胞菌可能是缺乏血红素的。因此,某些转运和结合蛋白更高的丰度表明,它们在生物膜状态期间是更关键的,因此可能是抗微生物药物的靶标。
与浮游状态相比,生物膜状态期间的糖酵解酶即3-磷酸甘油醛脱氢酶(GAPDH)的丰度更高,这与以前从单核细胞增多性李斯特菌(Listeriamonocytogenes)和绿脓假单胞菌获得的结果是一致的(12、106)。尽管GAPDH被分类为与糖酵解和糖异生有关的四聚NAD结合酶,但是许多报道认为这种蛋白是多功能的,并且当表达于革兰氏阳性菌的细胞表面时,其看起来与纤维蛋白溶酶、纤维蛋白溶酶原和转铁蛋白的结合有关(107、108)。有趣的是,已证实口腔链球菌(Streptococcus oralis)和牙龈卟啉单胞菌33277之间的共聚集,是由牙龈卟啉单胞菌菌毛和口腔链球菌(S.oralis)GAPDH之间的相互作用介导的(109)。然而,如果存在,GAPDH在牙龈卟啉单胞菌的底物结合中的确切作用还不得而知。
生物膜形成
与生物膜细胞相比,浮游细胞中通用应激蛋白(universal stress protein)(UspA)的丰度明显更高。发现各种细菌中Usp的产生受大量条件刺激,例如进入稳定期、某些营养物的缺乏、氧化剂或其他刺激物(110、111)。浮游期细胞丰度的增加与以下事实一致,即牙龈卟啉单胞菌已经进化成作为生物膜的一部分而生长,以及浮游期可能更有压力。牙龈卟啉单胞菌中UspA的表达被认为与生物膜形成有关,因为uspA的失活导致由浮游细胞形成的早期生物膜变薄(112)。在本研究中,生物膜已经建立并成熟,因此其看起来对UspA的需求不如自由漂浮的浮游细胞。
发现内化蛋白家族蛋白InlJ(PG0350)的同源物的丰度在生物膜状态期间更高。已经证实,PG0350对牙龈卟啉单胞菌33277的生物膜形成是重要的,因为基因的失活导致生物膜的形成减少(39)。生物膜中更高水平的PG0350表明,这种蛋白可能不仅是初始生物膜形成必需的,而且还是充当使牙龈卟啉单胞菌互相结合或与生物膜中的细胞外基质结合的粘附素。
功能未知的蛋白
本研究中鉴定的最大的组的蛋白是41种功能未知的蛋白,其包括在本研究中首次鉴定的4种蛋白(表2)。在41种鉴定的蛋白中,预测37种蛋白来自细胞外膜,并且在这一组中,17种蛋白在生物膜和浮游细胞之间表现出明显的变化。大部分这些蛋白与有确定的名字但是功能还不明确的GenBank蛋白具有同源性。特别令人感兴趣的是发现某些蛋白的丰度在生物膜状态中基本上一致地增加,所述蛋白即PG0181、PG0613、PG1304、PG2167和PG2168。
上文的结果表示应用于复杂混合物的16O/18O蛋白水解标记方法的大规模验证,并且首次用该方法比较细菌生物膜和浮游生长状态。发现多种具有各种功能的蛋白的丰度,在生物膜细胞中一致地增加或减少,这表明了细胞是如何适应生物膜条件的,并且还为生物膜控制策略提供了潜在的靶标。
表1:利用16O/18O蛋白水解标记预测定的BSA比率的定量
Figure GPA00001035520800381
a)对于1∶1的预期比率,仅将在所有三个独立实验中都被鉴定的肽包括于本表格中
b)对于2∶1和1∶2的预期比率,仅将在两个实验中都被鉴定的肽包括于本表格中
**n=55  ***n=24
Figure GPA00001035520800391
Figure GPA00001035520800401
Figure GPA00001035520800411
Figure GPA00001035520800421
Figure GPA00001035520800431
Figure GPA00001035520800461
Figure GPA00001035520800471
Figure GPA00001035520800481
参考文献
1.Costerton,J.W.,Lewandowski,Z.,Caldwell,D.E.,Korber,D.R.,andLappin-Scott,H.M.(1995)Annu.Rev.Microbiol.49,711-745
2.Cvitkovitch,D.G.,Li,Y.H.,and Ellen,R.P.(2003)J.Clin.Invest.112(11),1626-1632
3.Cochrane,D.M.,Brown,M.R.,Anwar,H.,Weller,P.H.,Lam,K.,andCosterton,J.W.(1988)J.Med.Microbiol.27(4),255-261
4.van Steenbergen,T.J.,Kastelein,P.,Touw,J.J.,and de Graaff,J.(1982)J.Periodontal Res.17(1),41-49
5.Neiders,M.E.,Chen,P.B.,Suido,H.,Reynolds,H.S.,Zambon,J.J.,Shlossman,M.,and Genco,R.J.(1989)J.Periodontal Res.24(3),192-198
6.Griffen,A.L.,Becker,M.R.,Lyons,S.R.,Moeschberger,M.L.,andLeys,E.J.(1998)J.Clin.Microbiol.36(11),3239-3242
7.Cutler,C.W.,Arnold,R.R.,and Schenkein,H.A.(1993)J.Immunol.151(12),7016-7029
8.Chen,T.,Hosogi,Y.,Nishikawa,K.,Abbey,K.,Fleischmann,R.D.,Walling,J.,and Duncan,M.J.(2004)J.Bacteriol.186(16),5473-5479
9.Davey,M.E.(2006)Periodontol.2000 42,27-35
10.Orme,R.,Douglas,C.W.,Rimmer,S.,and Webb,M.(2006)Proteomics6(15),4269-4277
11.Rathsam,C.,Eaton,R.E.,Simpson,C.L.,Browne,G.V.,Valova,V.A.,Harty,D.W.,and Jacques,N.A.(2005)J Proteome Res 4(6),2161-2173
12.Sauer,K.,Camper,A.K.,Ehrlich,G.D.,Costerton,J.W.,and Davies,D.G.(2002)J.Bacteriol.184(4),1140-1154
13.Ong,S.E.,and Mann,M.(2005)Nat.Chem.Biol.1(5),252-262
14.Bender,M.L.,and Kemp,K.C.(1957)J.Am.Chem.Soc 79,116
15.Schnolzer,M.,Jedrzejewski,P.,and Lehmann,W.D.(1996)Electrophoresis 17(5),945-953
16.Yao,X.,Freas,A.,Ramirez,J.,Demirev,P.A.,and Fenselau,C.(2001)Anal Chem 73(13),2836-2842
17.Blonder,J.,Hale,M.L.,Chan,K.C.,Yu,L.R.,Lucas,D.A.,Conrads,T.P.,Zhou,M.,Popoff,M.R.,Issaq,H.J.,Stiles,B.G.,and Veenstra,T.D.(2005)J.Proteome Res 4(2),523-531
18.Qian,W.J.,Monroe,M.E.,Liu,T.,Jacobs,J.M.,Anderson,G.A.,Shen,Y.,Moore,R.J.,Anderson,D.J.,Zhang,R.,Calvano,S.E.,Lowry,S.F.,Xiao,W.,Moldawer,L.L.,Davis,R.W.,Tompkins,R.G.,Camp,D.G.,2nd,and Smith,R.D.(2005)Mol.Cell Proteomics 4(5),700-709
19.Zang,L.,Palmer Toy,D.,Hancock,W.S.,Sgroi,D.C.,and Karger,B.L.(2004) J.Proteome Res.3(3),604-612
20.Kuster,B.,and Mann,M.(1999)Anal.Chem.71(7),1431-1440
21.Takao,T.,Hori,H.,Okamoto,K.,Harada,A.,Kamachi,M.,andShimonishi,Y.(1991)Rapid Commun.Mass Spectrom.5(7),312-315
22.Shevchenko,A.,Chernushevich,I.,Ens,W.,Standing,K.G.,Thomson,B.,Wilm,M.,and Mann,M.(1997)Rapid Commun.Mass Spectrom.11(9),1015-1024
23.Gevaert,K.,Staes,A.,Van Damme,J.,De Groot,S.,Hugelier,K.,Demol,H.,Martens,L.,Goethals,M.,and Vandekerckhove,J.(2005)Proteomics 5(14),3589-3599
24.Chen,X.,Cushman,S.W.,Pannell,L.K.,and Hess,S.(2005)J.Proteome Res.4(2),570-577
25.Stockwin,L.H.,Blonder,J.,Bumke,M.A.,Lucas,D.A.,Chan,K.C.,Conrads,T.P.,Issaq,H.J.,Veenstra,T.D.,Newton,D.L.,and Rybak,S.M.(2006) J. Proteome Res.5(11),2996-3007
26.Lane,C.S.,Wang,Y.,Betts,R.,Griffiths,W.J.,and Patterson,L.H.(2007)Mol.Cell Proteomics
27.Korbel,S.,Schumann,M.,Bittorf,T.,and Krause,E.(2005)RapidComm.Mass Spectrom.19(16),2259-2271
28.Bantscheff,M.,Dumpelfeld,B.,and Kuster,B.(2004)Rapid Commun.Mass.Spectrom.18(8),869-876
29.Jia,J.Y.,Lamer,S.,Schumann,M.,Schmidt,M.R.,Krause,E.,andHaucke,V.(2006)Mol.Cell Proteomics 5(11),2060-2071
30.Miyagi,M.,and Rao,K.C.(2007)Mass Spectrom.Rev 26(1),121-136
31.Veith,P.D.,Talbo,G.H.,Slakeski,N.,Dashper,S.G.,Moore,C.,Paolini,R.A.,and Reynolds,E.C.(2002)Biochem.J.363(Pt 1),105-115
32.Qian,W.J.,Liu,T.,Monroe,M.E.,Strittmatter,E.F.,Jacobs,J.M.,Kangas,L.J.,Petritis,K.,Camp,D.G.,2nd,and Smith,R.D.(2005)J.Proteome Res 4(1),53-62
33.Perkins,D.N.,Pappin,D.J.,Creasy,D.M.,and Cottrell,J.S.(1999)Electrophoresis 20(18),3551-3567
34.Xia,Q.,Hendrickson,E.L.,Zhang,Y.,Wang,T.,Taub,F.,Moore,B.C.,Porat,I.,Whitman,W.B.,Hackett,M.,and Leigh,J.A.(2006)Mol.Cell Proteomics 5(5),868-881
35.Quackenbush,J.(2001)Nat.Rev.Genet.2(6),418-427
36.Yu,C.S.,Chen,Y.C.,Lu,C.H.,and Hwang,J.K.(2006)Proteins64(3),643-651
37.Richardson,A.J.,Calder,A.G.,and Stewart,C.S.(1989)Letters inApplied Microbiology 9,5-8
38.O′Toole,G.A.,and Kolter,R.(1998)Mol Microbiol 28(3),449-461
39.Capestany,C.A.,Kuboniwa,M.,Jung,I.Y.,Park,Y.,Tribble,G.D.,and Lamont,R.J.(2006)Infect.Immun.74(5),3002-3005
40.Lopez-Ferrer,D.,Ramos-Fernandez,A.,Martinez-Bartolome,S.,Garcia-Ruiz,P.,and Vazquez,J.(2006)Proteomics 6 Suppl 1,S4-S11
41.Staes,A.,Demol,H.,Van Damme,J.,Martens,L.,Vandekerckhove,J.,and Gevaert,K.(2004)J Proteome Res 3(4),786-791
42.Patwardhan,A.J.,Strittmatter,E.F.,Camp,D.G.,2nd,Smith,R.D.,and Pallavicini,M.G.(2006)Proteomics 6(9),2903-2915
43.Smalley,J.W.,Birss,A.J.,McKee,A.S.,and Marsh,P.D.(1993)JGen Microbiol 139(9),2145-2150
44.McKee,A.S.,McDermid,A.S.,Baskerville,A.,Dowsett,A.B.,Ellwood,D.C.,and Marsh,P.D.(1986)Infect.Immun.52(2),349-355
45.Dashper,S.G.,Butler,C.A.,Lissel,J.P.,Paolini,R.A.,Hoffmann,B.,Veith,P.D.,O′Brien-Simpson,N.M.,Snelgrove,S.L.,Tsiros,J.T.,andReynolds,E.C.(2005)J.Biol.Chem.280(30),28095-28102
46.Li,J.,Steen,H.,and Gygi,S.P.(2003)Mol.Cell Proteomics 2(11),1198-1204
47.Dashper,S.G.,Brownfield,L.,Slakeski,N.,Zilm,P.S.,Rogers,A.H.,and Reynolds,E.C.(2001)J.Bacteriol.183(14),4142-4148
48.Hoskisson,P.A.,and Hobbs,G.(2005)Microbiology 151(Pt 10),3153-3159
49.Piper,M.D.,Daran-Lapujade,P.,Bro,C.,Regenberg,B.,Knudsen,S.,Nielsen,J.,and Pronk,J.T.(2002)J.Biol.Chem.277(40),37001-37008
50.Siroy,A.,Cosette,P.,Seyer,D.,Lemaitre-Guillier,C.,Vallenet,D.,VanDorsselaer,A.,Boyer-Mariotte,S.,Jouenne,T.,and De,E.(2006)J.Proteome Res.5(12),3385-3398
51.Hood,B.L.,Lucas,D.A.,Kim,G.,Chan,K.C.,Blonder,J.,Issaq,H.J.,Veenstra,T.D.,Conrads,T.P.,Pollet,I.,and Karsan,A.(2005)J AmSoc Mass Spectrom 16(8),1221-1230
52.Yao,X.,Afonso,C.,and Fenselau,C.(2003)J Proteome Res 2(2),147-152
53.Eckel-Passow,J.E.,Oberg,A.L.,Therneau,T.M.,Mason,C.J.,Mahoney,D.W.,Johnson,K.L.,Olson,J.E.,and Bergen,H.R.,3rd.(2006)Bioinformatics 22(22),2739-2745
54.Storms,H.F.,van der Heijden,R.,Tjaden,U.R.,and van der Greef,J.(2006)Rapid Commun.Mass Spectrom.20(23),3491-3497
55.Zenobi,R.,and Knochenmuss,R.(1998)Mass Spectrom.Rev.17(5),337-366
56.Seers,C.A.,Slakeski,N.,Veith,P.D.,Nikolof,T.,Chen,Y.Y.,Dashper,S.G.,and Reynolds,E.C.(2006)J.Bacteriol.188(17),6376-6386
57.Curtis,M.A.,Kuramitsu,H.K.,Lantz,M.,Macrina,F.L.,Nakayama,K.,Potempa,J.,Reynolds,E.C.,and Aduse-Opoku,J.(1999)J.Periodontal Res.34(8),464-472
58.O′Brien-Simpson,N.M.,Paolini,R.A.,Hoffmann,B.,Slakeski,N.,Dashper,S.G.,and Reynolds,E.C.(2001)Infect.Immun.69(12),7527-7534
59.O′Brien-Simpson,N.M.,Veith,P.D.,Dashper,S.G.,and Reynolds,E.C.(2003)Curr.Protein Pept.Sci.4(6),409-426
60.Abe,N.,Kadowaki,T.,Okamoto,K.,Nakayama,K.,Ohishi,M.,andYamamoto,K.(1998)J.Biochem.(Tokyo)123(2),305-312
61.Potempa,J.,Pike,R.,and Travis,J.(1995)Infect.Immun.63(4),1176-1182
62.Pathirana,R.D.,O′Brien-Simpson,N.M.,Brammar,G.C.,Slakeski,N.,and Reynolds,E.C.(2007)Infect.Immun.75(3),1436-1442
63.Chen,Y.Y.,Cross,K.J.,Paolini,R.A.,Fielding,J.E.,Slakeski,N.,and Reynolds,E.C.(2002)J.Biol.Chem.277(26),23433-23440
64.Zhang,Y.,Wang,T.,Chen,W.,Yilmaz,O.,Park,Y.,Jung,I.Y.,Hackett,M.,and Lamont,R.J.(2005)Proteomics 5(1),198-211
65.Sato,K.,Sakai,E.,Veith,P.D.,Shoji,M.,Kikuchi,Y.,Yukitake,H.,Ohara,N.,Naito,M.,Okamoto,K.,Reynolds,E.C.,and Nakayama,K.(2005)J.Biol.Chem.280(10),8668-8677
66.Nguyen,K.A.,Travis,J.,and Potempa,J.(2007)J.Bacteriol.189(3),833-843
67.Dashper,S.G.,Cross,K.J.,Slakeski,N.,Lissel,P.,Aulakh,P.,Moore,C.,and Reynolds,E.C.(2004)Oral Microbiol.Immnunol.19(1),50-56
68.Lewis,J.P.,Dawson,J.A.,Hannis,J.C.,Muddiman,D.,and Macrina,F.L.(1999)J.Bacteriol.181(16),4905-4913
69.Shi,Y.,Ratnayake,D.B.,Okamoto,K.,Abe,N.,Yamamoto,K.,andNakayama,K.(1999)J.Biol.Chem.274(25),17955-17960
70.Sroka,A.,Sztukowska,M.,Potempa,J.,Travis,J.,and Genco,C.A.(2001)J.Bacteriol.183(19),5609-5616
71.Simpson,W.,Olczak,T.,and Genco,C.A.(2000)J Bacteriol 182(20),5737-5748
72.Lewis,J.P.,Plata,K.,Yu,F.,Rosato,A.,and Anaya,C.(2006)Microbiology 152(Pt 11),3367-3382
73.Olczak,T.,Siudeja,K.,and Olczak,M.(2006)Protein Expr.Purif.49(2),299-306
74.Olczak,T.,Simpson,W.,Liu,X.,and Genco,C.A.(2005)FEMSMicrobiol.Rev.29(1),119-144
75.Veith,P.D.,Chen,Y.Y.,and Reynolds,E.C.(2004)Infect.Immun.72(6),3655-3657
76.Shibata,Y.,Hiratsuka,K.,Hayakawa,M.,Shiroza,T.,Takiguchi,H.,Nagatsuka,Y.,and Abiko,Y.(2003)Biochem.Biophys.Res.Commun.300(2),351-356
77.Tatusov,R.L.,Fedorova,N.D.,Jackson,J.D.,Jacobs,A.R.,Kiryutin,B.,Koonin,E.V.,Krylov,D.M.,Mazumder,R.,Mekhedov,S.L.,Nikolskaya,A.N.,Rao,B.S.,Smirnov,S.,Sverdlov,A.V.,Vasudevan,S.,Wolf,Y.I.,Yin,J.J.,and Natale,D.A.(2003)BMC Bioinformatics4,41
78.Ratnayake,D.B.,Wai,S.N.,Shi,Y.,Amako,K.,Nakayama,H.,andNakayama,K.(2000)Microbiology 146 1119-1127
79.Smalley,J.W.,Birss,A.J.,McKee,A.S.,and Marsh,P.D.(1991)FEMS Microbiol.Lett.69(1),63-67
80.Dashper,S.G.,Hendtlass,A.,Slakeski,N.,Jackson,C.,Cross,K.J.,Brownfield,L.,Hamilton,R.,Barr,I.,and Reynolds,E.C.(2000)JBacteriol 182(22),6456-6462
81.Takahashi,N.,Sato,T.,and Yamada,T.(2000)J.Bacteriol.182(17),4704-4710
82.Takahashi,N.,and Sato,T.(2001)J Dent Res 80(5),1425-1429
83.Litwin,C.M.,and Calderwood,S.B.(1993)Clin Microbiol Rev 6(2),137-149
84.Gygi,S.P.,Rochon,Y.,Franza,B.R.,and Aebersold,R.(1999)Mol.Cell Biol.19(3),1720-1730
85.Baughn,A.D.,and Malamy,M.H.(2003)Microbiology 149(Pt 6),1551-1558
86.Macy,J.,Probst,I.,and Gottschalk,G.(1975)J Bacteriol 123(2),436-442
87.Baughn,A.D.,and Malamy,M.H.(2002)Proc Natl Acad Sci U S A99(7),4662-4667
88.Mayrand,D.,and McBride,B.C.(1980)Infect Immun 27(1),44-50
89.Smith,M.A.,Mendz,G.L.,Jorgensen,M.A.,and Hazell,S.L.(1999)Int J Biochem Cell Biol 31(9),961-975
90.Kroger,A.,Geisler,V.,Lemma,E.,Theis,F.,and Lenger,R.(1992)Archives of Microbiology 158(5),311-314
91.Shah,H.,and Williams,R.(1987)Current Microbiology 15,241-246
92.Klein,R.A.,Linstead,D.J.,and Wheeler,M.V.(1975)Parasitology71(1),93-107
93.Turrens,J.F.(1989)Biochem J 259(2),363-368
94.Mendz,G.L.,Hazell,S.L.,and Srinivasan,S.(1995)Arch BiochemBiophys 321(1),153-159
95.Mendz,G.L.,Meek,D.J.,and Hazell,S.L.(1998)J Membr Biol 165(1),65-76
96.Mileni,M.,MacMillan,F.,Tziatzios,C.,Zwicker,K.,Haas,A.H.,Mantele,W.,Simon,J.,and Lancaster,C.R.(2006) Biochem J 395(1),191-201
97.Nealson,K.,and D,S.(1994)Annual review of microbiology 48,311-343
98.Sellars,M.J.,Hall,S.J.,and Kelly,D.J.(2002)J Bacteriol 184(15),4187-4196
99.O′Toole,G.A.,Gibbs,K.A.,Hager,P.W.,Phibbs,P.V.,Jr.,and Kolter,R.(2000)J Bacteriol 182(2),425-431
100.Whiteley,M.,Bangera,M.G.,Bumgarner,R.E.,Parsek,M.R.,Teitzel,G.M.,Lory,S.,and Greenberg,E.P.(2001)Nature 413(6858),860-864
101.Romeo,T.,Gong,M.,Liu,M.Y.,and Brun-Zinkernagel,A.M.(1993)JBacteriol 175(15),4744-4755
102.Sabnis,N.A.,Yang,H.,and Romeo,T.(1995)J Biol Chem 270(49),29096-29104
103.Mercante,J.,Suzuki,K.,Cheng,X.,Babitzke,P.,and Romeo,T.(2006)J Biol Chem 281(42),31832-31842
104.Altier,C.,Suyemoto,M.,and Lawhon,S.D.(2000)Infect Immun 68(12),6790-6797
105.Lawhon,S.D.,Frye,J.G.,Suyemoto,M.,Porwollik,S.,McClelland,M.,and Altier,C.(2003)Mol Microbiol 48(6),1633-1645
106.Hefford,M.A.,D′Aoust,S.,Cyr,T.D.,Austin,J.W.,Sanders,G.,Kheradpir,E.,and Kalmokoff,M.L.(2005)Can.J.Microbiol.51(3),197-208
107.Pancholi,V.,and Fischetti,V.A.(1992)J.Exp.Med.176(2),415-426
108.Taylor,J.M.,and Heinrichs,D.E.(2002)Mol.Microbiol.43(6),1603-1614
109.Maeda,K.,Nagata,H.,Yamamoto,Y.,Tanaka,M.,Tanaka,J.,Minamino,N.,and Shizukuishi,S.(2004)Infect.Immun.72(3),1341-1348
110.Gustavsson,N.,Diez,A.,and Nystrom,T.(2002)Mol.Microbiol.43(1),107-117
111.Kvint,K.,Nachin,L.,Diez,A.,and Nystrom,T.(2003)Curr.Opin.Microbiol.6(2),140-145
112.Kuramitsu,H.K.,Chen,W.,and Ikegami,A.(2005)J.Periodontol.76(11 Suppl),2047-2051

Claims (11)

1.用于在个体中产生对牙龈卟啉单胞菌(P.gingivalis)的免疫应答的组合物,所述组合物包含有效地产生免疫应答的量的与选自下述登录号对应的多肽的至少一个抗原或免疫原性部分:AAQ65462、AAQ65742、AAQ66991、AAQ65561、AAQ66831、AAQ66797、AAQ66469、AAQ66587、AAQ66654、AAQ66977、AAQ65797、AAQ65867、AAQ65868、AAQ65416、AAQ65449、AAQ66051、AAQ66377、AAQ66444、AAQ66538、AAQ67117以及AAQ67118。
2.如权利要求1所述的组合物,其中所述部分的氨基酸序列与所述多肽之一的至少50个氨基酸基本相同。
3.如权利要求1或2所述的组合物,其中所述多肽对应于选自AAQ65462、AAQ66991、AAQ65561以及AAQ66831的登录号。
4.如权利要求1或2所述的组合物,其中所述多肽对应于登录号AAQ65742。
5.用于在个体中产生对牙龈卟啉单胞菌(P.gingivalis)的免疫应答的组合物,所述组合物包含有效地产生免疫应答的量的至少一种多肽,所述多肽的氨基酸序列与牙龈卟啉单胞菌(P.gingivalis)所表达的多肽的至少50个氨基酸基本相同,并且所述多肽经CELLO程序预测是细胞外的。
6.用于在个体中产生对牙龈卟啉单胞菌(P.gingivalis)的免疫应答的组合物,所述组合物包含有效地产生免疫应答的量的至少一种多肽,所述多肽的氨基酸序列经挑选与在小鼠或兔子中导致免疫应答的多肽的至少50个氨基酸基本相同。
7.预防、抑制或治疗个体的牙周疾病的方法,其包括向所述个体施用有效量的权利要求1-6中任一项所述的组合物。
8.预防或治疗个体的牙龈卟啉单胞菌(P.gingivalis)感染的方法,其包括向所述个体施用权利要求1-7中任一项所述的组合物。
9.具有氨基酸序列的多肽的抗原区的抗体,所述序列与对应于下述登录号的多肽之一的至少50个氨基酸基本相同:AAQ65462、AAQ65742、AAQ66991、AAQ65561、AAQ66831、AAQ66797、AAQ66469、AAQ66587、AAQ66654、AAQ66977、AAQ65797、AAQ65867、AAQ65868、AAQ65416、AAQ65449、AAQ66051、AAQ66377、AAQ66444、AAQ66538、AAQ67117以及AAQ67118。
10.如权利要求9所述的抗体,其中所述多肽对应于选自AAQ65462、AAQ66991、AAQ65561以及AAQ66831的登录号。
11.如权利要求9所述的抗体,其中所述多肽对应于登录号AAQ65742。
CN200880104633A 2007-07-12 2008-07-11 生物膜的免疫治疗 Pending CN101842486A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2007903787 2007-07-12
AU2007903787A AU2007903787A0 (en) 2007-07-12 Immunology treatment for biofilms
PCT/AU2008/001018 WO2009006700A1 (en) 2007-07-12 2008-07-11 Immunology treatment for biofilms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012101357337A Division CN102652831A (zh) 2007-07-12 2008-07-11 生物膜的免疫治疗

Publications (1)

Publication Number Publication Date
CN101842486A true CN101842486A (zh) 2010-09-22

Family

ID=40228121

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2012101357337A Pending CN102652831A (zh) 2007-07-12 2008-07-11 生物膜的免疫治疗
CN200880104633A Pending CN101842486A (zh) 2007-07-12 2008-07-11 生物膜的免疫治疗

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2012101357337A Pending CN102652831A (zh) 2007-07-12 2008-07-11 生物膜的免疫治疗

Country Status (10)

Country Link
US (2) US20100297179A1 (zh)
EP (2) EP2604692A1 (zh)
JP (2) JP2010532766A (zh)
KR (1) KR20100071964A (zh)
CN (2) CN102652831A (zh)
AU (1) AU2008274907B2 (zh)
CA (1) CA2693717A1 (zh)
NZ (3) NZ595378A (zh)
SG (1) SG182988A1 (zh)
WO (1) WO2009006700A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105418758A (zh) * 2015-12-03 2016-03-23 沈阳惠民生物技术有限公司 一种抗牙周病抗体的制备方法及其应用
CN113005069A (zh) * 2021-01-28 2021-06-22 广东海洋大学 一种减毒鰤鱼诺卡氏菌及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO652897A0 (en) 1997-04-30 1997-05-29 University Of Melbourne, The Synthetic peptide constructs for the diagnosis and treatment of periodontitis
US8129500B2 (en) 1997-12-10 2012-03-06 Csl Limited Porphyromonas gingivalis polypeptides and nucleotides
CA2652957A1 (en) 2006-06-27 2008-01-03 Oral Health Australia Pty Ltd. Porphyromonas gingivalis polypeptides useful in the prevention of periodontal disease
NZ595252A (en) * 2007-07-12 2013-11-29 Oral Health Australia Pty Ltd Biofilm treatment
CN107266582B (zh) 2008-08-29 2021-09-10 口腔健康澳洲私人有限公司 牙龈卟啉单胞菌感染的预防、治疗和诊断
RU2012107993A (ru) * 2009-08-02 2013-09-10 Санофи Пастер Лимитид Полипептиды porhyromonas gingivalis
US8140041B2 (en) * 2009-08-27 2012-03-20 Mediatek Inc. Tunable capacitive device with linearization technique employed therein
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837151A (en) * 1980-05-19 1989-06-06 The Board Of Trustees Of The Leland Stanford Junior University, Stanford University Live vaccines comprising two mutations and foreign antigen
US5210035A (en) 1980-05-19 1993-05-11 Board Of Trustees Of Leland Stanford Jr. University Non-reventing live vaccines
US4735801A (en) 1982-09-07 1988-04-05 Board Of Trustees Of Leland Stanford Jr. University Novel non-reverting salmonella live vaccines
US4603112A (en) * 1981-12-24 1986-07-29 Health Research, Incorporated Modified vaccinia virus
US5830710A (en) 1988-09-08 1998-11-03 University Of Florida Cloned porphyromonas gingivalis genes and probes for the detection of periodontal disease
WO1994027606A1 (en) 1993-05-28 1994-12-08 Unisearch Limited Method of treating helicobacter pylori infection
CN1126433A (zh) * 1993-06-28 1996-07-10 狮子株式会社 口腔用组合物
ATE242331T1 (de) 1993-09-10 2003-06-15 Univ Georgia Res Found Porphyromonas gingivalis arginin-spezifische proteinase kodierende sequenzen
US6017532A (en) * 1993-09-10 2000-01-25 University Of Georgia Research Foundation, Inc. Porphyromonas gingivalis arginine-specific proteinase
US5475097A (en) * 1993-10-21 1995-12-12 University Of Georgia Research Foundation, Inc. Lysine-specific Porphyromonas gingivalis proteinase
US5523390A (en) * 1993-09-10 1996-06-04 University Of Georgia Research Foundation, Inc. Porphyromonas gingivalis arginine-specific proteinase
JPH0797395A (ja) 1993-09-28 1995-04-11 Kyowa Medex Co Ltd ポルフイロモナス・ジンジバリス線毛蛋白質の配列を含有するペプチド類及びその用途
EP0753577B1 (en) 1994-03-29 2002-07-24 Kyowa Hakko Kogyo Co., Ltd. Cell-surface polypeptide gene
AUPN627595A0 (en) * 1995-10-30 1995-11-23 University Of Melbourne, The Diagnostics and treatments of periodontal disease
CA2249994A1 (en) * 1996-03-22 1997-09-25 University Of Georgia Research Foundation, Inc. Immunogenic compositions comprising porphyromonas gingivalis peptides and methods
AUPN901296A0 (en) * 1996-03-29 1996-04-26 University Of Melbourne, The Porphyromonas gingivalis antigens for the diagnosis and treatment of periodontitis
US7341727B1 (en) * 1996-05-03 2008-03-11 Emergent Product Development Gaithersburg Inc. M. catarrhalis outer membrane protein-106 polypeptide, methods of eliciting an immune response comprising same
AUPO652897A0 (en) * 1997-04-30 1997-05-29 University Of Melbourne, The Synthetic peptide constructs for the diagnosis and treatment of periodontitis
AUPP083997A0 (en) * 1997-12-10 1998-01-08 Csl Limited Porphyromonas gingivalis nucleotides
ATE534742T1 (de) * 1997-12-10 2011-12-15 Csl Ltd Polypeptide und nukleinsäuren von phorphorymonas gingivalis
US8129500B2 (en) * 1997-12-10 2012-03-06 Csl Limited Porphyromonas gingivalis polypeptides and nucleotides
US6444799B1 (en) * 1997-12-31 2002-09-03 Csl Limited P. gingivalis polynucleotides and uses thereof
AUPP893999A0 (en) * 1999-03-01 1999-03-25 Csl Limited Synthetic peptides containing protective epitopes for the treatment and prevention of periodontitis associated with porphyromonas gingivalis
US7090973B1 (en) * 1999-04-09 2006-08-15 Oscient Pharmaceuticals Corporation Nucleic acid sequences relating to Bacteroides fragilis for diagnostics and therapeutics
GB9913437D0 (en) 1999-06-09 1999-08-11 Medical Res Council Fusion proteins
AUPQ485999A0 (en) * 1999-12-24 2000-02-03 Csl Limited P. gingivalis antigenic composition
AUPQ718200A0 (en) * 2000-04-28 2000-05-25 Csl Limited Porphyromonas gingivalis recombinant proteins and truncations
US6576226B1 (en) * 2000-11-17 2003-06-10 Gary R. Jernberg Local delivery of agents for disruption and inhibition of bacterial biofilm for treatment of periodontal disease
US20030083287A1 (en) 2000-11-30 2003-05-01 Burgess Nicola A. ginS
GB2381449A (en) 2001-10-31 2003-05-07 Smithkline Beecham Plc Oral hygiene compositions comprising an electron acceptor
JP2003192616A (ja) 2001-12-27 2003-07-09 Univ Nihon 歯周病用dnaワクチン
JP2003286191A (ja) 2002-03-27 2003-10-07 Univ Nihon 歯周病用粘膜免疫ワクチン
WO2004083425A1 (ja) 2003-03-17 2004-09-30 Kirin Beer Kabushiki Kaisha 歯周病治療剤
WO2005019249A2 (en) * 2003-08-15 2005-03-03 University Of Florida Identification of porphyromonas gingivalis virulence polynucleotides for diagnosis, treatment, and monitoring of periodontal diseases
EP1721283B1 (en) * 2004-02-06 2022-11-30 Council of Scientific and Industrial Research Computational method for identifying adhesin and adhesin-like proteins of therapeutic potential
WO2006032104A1 (en) * 2004-09-23 2006-03-30 The University Of Melbourne Antigenic complex for the diagnosis and treatment of porphyromonas gingivalis infection
WO2008016385A2 (en) * 2006-01-20 2008-02-07 The University Of Washington Deacylase polypeptides, deacylase polynucleotides, and methods of use thereof
CA2652957A1 (en) * 2006-06-27 2008-01-03 Oral Health Australia Pty Ltd. Porphyromonas gingivalis polypeptides useful in the prevention of periodontal disease
WO2008124646A2 (en) 2007-04-06 2008-10-16 The Government Of The U.S.A, As Represented By The Secretary, Dept. Of Health And Human Services Use of amyloid proteins as vaccine scaffolds
NZ595252A (en) * 2007-07-12 2013-11-29 Oral Health Australia Pty Ltd Biofilm treatment
AU2010262763A1 (en) * 2009-06-19 2012-01-19 Oral Health Australia Pty Ltd Casein derived protease inhibitory peptides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105418758A (zh) * 2015-12-03 2016-03-23 沈阳惠民生物技术有限公司 一种抗牙周病抗体的制备方法及其应用
CN113005069A (zh) * 2021-01-28 2021-06-22 广东海洋大学 一种减毒鰤鱼诺卡氏菌及其制备方法和应用
CN113005069B (zh) * 2021-01-28 2023-09-26 广东海洋大学 一种减毒鰤鱼诺卡氏菌及其制备方法和应用

Also Published As

Publication number Publication date
AU2008274907A1 (en) 2009-01-15
SG182988A1 (en) 2012-08-30
EP2176413A1 (en) 2010-04-21
US8911745B2 (en) 2014-12-16
NZ595378A (en) 2013-04-26
CN102652831A (zh) 2012-09-05
NZ582438A (en) 2012-03-30
EP2176413A4 (en) 2012-08-01
CA2693717A1 (en) 2009-01-15
JP2014058541A (ja) 2014-04-03
NZ605037A (en) 2014-05-30
JP2010532766A (ja) 2010-10-14
AU2008274907B2 (en) 2014-11-13
EP2604692A1 (en) 2013-06-19
US20100297179A1 (en) 2010-11-25
US20130202641A1 (en) 2013-08-08
KR20100071964A (ko) 2010-06-29
WO2009006700A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
CN101842486A (zh) 生物膜的免疫治疗
CN101842097B (zh) 用于生物膜治疗的药物组合物
US8916166B2 (en) Porphyromonas gingivalis polypeptides useful in the prevention of periodontal disease
ES2895908T3 (es) Vacunas y componentes de vacunas para inhibición de células microbianas
Zainal-Abidin et al. Differential proteomic analysis of a polymicrobial biofilm
EP2547361B1 (en) Bacterial vaccine components from staphylococcus aureus and uses thereof
US20220280630A1 (en) Vaccine compositions and methods of selecting antigens
Sun et al. Pseudomonas fluorescens: iron-responsive proteins and their involvement in host infection
CN104602696A (zh) 多糖组合物及使用方法
RU2617399C2 (ru) Лечение или профилактика инфекции
US9139625B2 (en) Pathogenic bacteria
JP2015519305A (ja) ヒストフィルス・ソムニの外膜タンパク質とその方法
Cheng et al. Evaluation of the vaccine potential of a cytotoxic protease and a protective immunogen from a pathogenic Vibrio harveyi strain
Tikhomirova et al. Campylobacter jejuni virulence factors: update on emerging issues and trends
EP2982683A1 (en) Recombinant pasteurella multocida toxin and application thereof
AU2013203250B2 (en) Immunology treatment for biofilms
Sajid et al. Hemorrhagic Septicemia: Etiology, Pathogenesis and Vaccine Strategies
Hunter et al. Structural requirements for recognition of essential porphyrin by Porphyromonas gingivalis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100922