CN101842481A - 对柠檬酸盐稳定的中性金属蛋白酶的用途和生产 - Google Patents

对柠檬酸盐稳定的中性金属蛋白酶的用途和生产 Download PDF

Info

Publication number
CN101842481A
CN101842481A CN200880114393A CN200880114393A CN101842481A CN 101842481 A CN101842481 A CN 101842481A CN 200880114393 A CN200880114393 A CN 200880114393A CN 200880114393 A CN200880114393 A CN 200880114393A CN 101842481 A CN101842481 A CN 101842481A
Authority
CN
China
Prior art keywords
composition
sequence
neutral metal
enzyme
npre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880114393A
Other languages
English (en)
Other versions
CN101842481B (zh
Inventor
R·W·J·奥姆斯
A·刘
A·肖
L·华莱士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Ltd
Danisco USA Inc
Original Assignee
Danisco USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danisco USA Inc filed Critical Danisco USA Inc
Publication of CN101842481A publication Critical patent/CN101842481A/zh
Application granted granted Critical
Publication of CN101842481B publication Critical patent/CN101842481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38618Protease or amylase in liquid compositions only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

本发明提供了包含至少一种中性金属蛋白酶的方法和组合物,其中所述的中性金属蛋白酶在金属螯合剂的存在下具有改良的稳定性。在一些实施方案中,该中性金属蛋白酶可用于清洁以及包含柠檬酸盐的其它应用。在一些特别优选的实施方案中,本发明提供了包含变体中性金属蛋白酶的方法和组合物,其中所述的变体中性金属蛋白酶为经改造的以对柠檬酸盐诱导的自溶具有抗性。

Description

对柠檬酸盐稳定的中性金属蛋白酶的用途和生产
相关申请
本申请要求2007年10月31日提交的名称为“对柠檬酸盐稳定的中性金属蛋白酶的用途和生产”的美国临时专利申请系列号60/984,046的优先权权益。
发明领域
本发明提供了包含至少一种中性金属蛋白酶的方法和组合物,其中所述的中性金属蛋白酶在金属螯合剂的存在下具有改良的稳定性。在一些实施方案中,该中性金属蛋白酶可用于清洁以及包含柠檬酸盐的其它应用。在一些特别优选的实施方案中,本发明提供了包含变体中性金属蛋白酶的方法和组合物,其中所述的变体中性金属蛋白酶已被改造以对柠檬酸盐诱导的自溶解具有抗性。
发明背景
芽孢杆菌属(Bacillus)的成员是革兰氏阳性细菌,其分泌许多工业上有用的酶,所述酶可通过发酵而大量廉价地产生。分泌的芽孢杆菌酶的实例是枯草杆菌蛋白酶丝氨酸蛋白酶、含锌的中性蛋白酶、α-淀粉酶以及纤维素酶。芽孢杆菌蛋白酶广泛应用于纺织品、洗衣店和家用工业中(Galante,Current Organic Chemistry,7:1399-1422,2003;以及Showell,Handbookof Detergents,Part D:Formulation,Hubbard(编辑),NY:Taylor andFrancis Group,2006)。从被洗的东西中高效移除颜色和染色需要蛋白酶。然而,清洁和洗涤剂的液体制备物通常含有增效助剂、表面活性剂和金属螯合剂,其对大多数蛋白酶具有去稳定效果。
一般而言,变性剂诱导金属蛋白酶通过自溶快速地降解。因此,已经研究了蛋白酶自溶的分子机制作为产生稳定的金属蛋白酶的途径(Eijsink等,J Biotechnol,113:105-120,2004)。对自溶途径的理解是很复杂的,因为(i)蛋白酶局部降解变性蛋白形态的高效率,以及(ii)因为多种未折叠形态很可能存在并遍布于蛋白质分子,导致多种和平行的自溶途径。已报道了嗜热菌蛋白酶样金属蛋白酶自溶的分子机制(Eijsink等,Nat Struct Biol,2:374-379,1995;van den Burg等,Biotechnol Appl Bioeng,30:35-40,1999;以及Vriend,J Comput Aided Mol Des,7:367-396,1993)。
然而,在本领域仍然需要阐明其它工业有关的金属蛋白酶的自溶机制。具体而言,仍然需要了解柠檬酸盐诱导的解淀粉芽胞杆菌(Bacillusamyloliquefaciens)中性金属蛋白酶(NprE)的自溶作用,其可用于设计在钙螯合剂的存在下具有改良的稳定性的NprE变体。这在解淀粉芽胞杆菌NprE的情况下尤为重要,因为该酶的结构和功能依赖于钙,使其更易受到诸如柠檬酸盐的钙清除剂的影响。
发明概述
本发明提供了包含至少一种中性金属蛋白酶的方法和组合物,其中所述的中性金属蛋白酶在金属螯合剂的存在下具有改良的稳定性。在一些实施方案中,该中性金属蛋白酶可用于清洁以及包含柠檬酸盐的其它应用。在一些特别优选的实施方案中,本发明提供了包含变体中性金属蛋白酶的方法和组合物,其中所述的变体中性金属蛋白酶已被改造以对柠檬酸盐诱导的自溶解具有抗性。
本发明提供了分离的中性金属蛋白酶变体,其对柠檬酸盐诱导的自溶作用具有改良的抗性。在一些优选的实施方案中,该中性金属蛋白酶变体是具有以下氨基酸序列的芽孢杆菌中性金属蛋白酶变体,所述序列在选自等价于SEQ ID NO:3所示氨基酸序列的位置129、130、138、190和220中的3个、4个或5个处包含替换。在一些优选的实施方案中,所述替换包含选自S129I/F130L/D220P、M138L/V190I/D220P和S129I/F130L/M138L/V190I/D220P的多重突变。在优选的实施方案中,该芽孢杆菌是解淀粉芽胞杆菌。在一些实施方案中,该中性金属蛋白酶与包含SEQ ID NO:3所示氨基酸序列的中性金属蛋白酶具有至少约45%、至少约50%、至少约53%、至少约55%、至少约57%、至少约60%、至少约63%、至少约65%、至少约67%、至少约70%、至少约73%、至少约75%、至少约77%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%或至少约99%的氨基酸同一性。本发明还提供了编码本文所述中性金属蛋白酶变体的分离的核酸,以及包含该核酸的表达载体。此外,本发明还提供了包含该表达载体的宿主细胞。在另一实施方案中,本发明提供了从所述包含该表达载体的宿主细胞中获得的中性金属蛋白酶变体。
此外,本发明提供了分离的解淀粉芽胞杆菌中性金属蛋白酶变体,其对柠檬酸盐诱导的自溶作用具有改良的抗性。在一些优选的实施方案中,该中性金属蛋白酶变体具有在选自等价于SEQ ID NO:3所示氨基酸序列的位置129、130、138、190和220中的3个、4个或5个位置处包含替换的氨基酸序列。还提供了包含SEQ ID NO:3所示氨基酸序列的多重突变的分离的解淀粉芽胞杆菌中性金属蛋白酶变体,其中所述多重突变选自S129I/F130L/D220P、M138L/V190I/D220P和S129I/F130L/M138L/V190I/D220P。在一些优选的实施方案中,该分离的解淀粉芽胞杆菌中性金属蛋白酶变体包含SEQ ID NO:18(S129I/F130L/D220P)、SEQ ID NO:19(M138L/V190I/D220P)或SEQ IDNO:20(S129I/F130L/M138L/V190I/D220P)所示的氨基酸序列。本发明还提供了编码本文所述中性金属蛋白酶变体的分离的核酸,以及包含该核酸的表达载体。此外,本发明还提供了包含该表达载体的宿主细胞。在另一实施方案中,本发明提供了从所述包含该表达载体的宿主细胞中获得的中性金属蛋白酶变体。
此外,本发明提供了产生具有中性金属蛋白酶活性的酶的方法,包括:用包含编码中性金属蛋白酶变体的核酸的表达载体转化宿主细胞;以及在适于产生该中性金属蛋白酶的条件下培养该经转化的宿主细胞。本发明的一些实施方案还包括收获所产生的中性金属蛋白酶的步骤。在优选的实施方案中,宿主细胞是芽孢杆菌属物种,而在尤其优选的实施方案中,芽孢杆菌属物种是枯草芽孢杆菌(B.subtilis)。
本发明还提供了包含分离的中性金属蛋白酶变体的组合物,其中所述的变体具有对柠檬酸盐诱导的自溶作用的经改良的抗性。在一些实施方案中,该组合物还包含至少一种钙离子和/或至少一种锌离子。在其它的实施方案中,该组合物还包含柠檬酸盐。在一些优选的实施方案中,该组合物是清洁组合物(例如,洗涤剂)。在一些特别优选的实施方案中,该组合物还包含至少一种选自蛋白酶、淀粉酶、脂肪酶、甘露聚糖酶(mannanase)、果胶酶、角质酶(cutinase)、氧化还原酶、半纤维素酶和纤维素酶的的附加酶或酶衍生物。在本发明的一些实施方案中,该组合物包含:至少约0.0001重量百分数的中性金属蛋白酶变体,或约0.001至约0.5重量百分数的中性金属蛋白酶变体。本发明的一些组合物还包含至少一种附属组分。在一些尤其优选的实施方案中,该组合物还包含足量的pH调节剂以给该组合物提供约3至约5的净pH,该组合物基本上没有在约pH 3至约pH 5的pH水解的物质。在一些实施方案中,在约pH 3至约pH 5的pH水解的物质包含至少一种表面活性剂。在一些优选的实施方案中,该表面活性剂是包含环氧乙烷部分的烷基硫酸钠表面活性剂。在一些实施方案中,该组合物是液体。
此外,本发明还提供了包含分离的中性金属蛋白酶变体的动物饲料组合物,其中所述变体对柠檬酸盐诱导的自溶作用具有经改良的抗性。在其它实施方案中,还提供了包含分离的中性金属蛋白酶变体的织物加工组合物,其中所述变体对柠檬酸盐诱导的自溶作用具有经改良的抗性。在其它实施方案中,还提供了包含分离的中性金属蛋白酶变体的皮革加工组合物,其中所述变体对柠檬酸盐诱导的自溶作用具有经改良的抗性。
此外,本发明还提供了清洁方法,包括使表面和/或包含织物(例如,材料)的物品与包含分离的中性金属蛋白酶变体的清洁组合物接触的步骤,其中所述变体对柠檬酸盐诱导的自溶作用具有经改良的抗性。在一些实施方案中,该方法还包括在使该表面或材料与清洁组合物接触后漂洗该表面和/或织物的步骤。
附图简述
图1显示了柠檬酸盐诱导的解淀粉芽胞杆菌中性蛋白酶(NprE)的自溶作用。图A提供了在0.1M Tris-HCl(pH 8.4)中作为柠檬酸盐浓度(0-250mM)和钙浓度(0-10mM)的函数显示0.4mg/ml蛋白酶失活的图。应用琥珀酰化-酪蛋白/TNBSA测量剩余的活性,并且将剩余的活性与在10mM氯化钙的存在下测量的活性进行比较。图B描述了10%SDS-PAGE分析,其说明了柠檬酸盐诱导的蛋白酶的自溶模式。在含有0-100mM柠檬酸盐的5mM HEPES(pH 8.0)中使约0.4mg/ml蛋白质在冰上温育100分钟。在凝胶上样之前,用0.1N HCl失活蛋白酶以停止自溶。泳道1表示在不存在柠檬酸的情况下温育的对照,泳道2-7含有在增加的柠檬酸盐的存在下的蛋白质,以及泳道8含有分子量标记。
图2提供了解淀粉芽胞杆菌中性蛋白酶(NprE)自溶片段的氨基酸序列:片段1(SEQ ID NO:13)、片段2(SEQ ID NO:14)、片段3(SEQ IDNO:15)、片段4(SEQ ID NO:16)以及片段5(SEQ ID NO:17)。自溶片段N端用粗体着重显示。编号对应于NprE成熟形式的位置。
图3提供了通过针对柠檬酸盐敏感性筛选在NprE中3个位置上所有可能的氨基酸替换而获得的活性数据的代表图。图A提供了来自位置M138活性筛选的数据。图B提供了来自位置D220活性筛选的数据。图C提供了来自位置V190活性筛选的数据。在25mM HEPES(pH 8.0)中在存在或不存在50mM柠檬酸盐的情况下在25℃筛选60分钟。Y轴是任意的并且表示相对于野生型蛋白质的增加。
图4提供了作为柠檬酸浓度和温育时间的函数显示中性蛋白酶变体活性的图。图A阐释了野生型蛋白酶(●)、V190I(○)、M138L
Figure GPA00001126135000051
D220P(△)、M138L-D220P(■)和S129I-F130L-M138L-V190I-D220P(◆)在室温60分钟后测量的活性的柠檬酸盐浓度依赖性。图B描述了10%SDS-PAGE分析,其显示了柠檬酸盐对野生型NprE和变体S129I-F130L-M138L-V190I-D220P的作用。在4℃使约0.4mg/ml蛋白与增加的柠檬酸盐浓度温育100分钟。泳道1-4作为柠檬酸盐(0-75mM)的函数阐述野生型的自溶模式,以及泳道6-10显示了完整(未自溶)的S129I-F130L-M138L-V190I-D220P。泳道5表示标准分子量标记。
图5提供了显示野生型和变体蛋白酶热稳定性的图。图A提供了在130mM柠檬酸盐的存在下0.4mg/ml蛋白酶变体S129I、D220E、V190I-D220P、S129I-F130L-D220P和S129I-F130L-M138L-V190I-D220P的量热图。应用Auto-Cap VP-DSC(MicroCal,Northampton,MA,USA)以200℃/hr的扫描率从20-90℃收集数据。针对缓冲液基线校准所有显示的数据。缓冲液是5mM HEPES,pH 8.0。
图B提供了许多单、二重和三重蛋白酶变体的柱状图,其显示了在130mM柠檬酸盐(pH 8.0)的存在下热熔点(Tm)的增量升高。
图6提供了列出野生型NprE及其变体的活性和热稳定性的表。
图7提供了本发明示范性的对柠檬酸盐稳定的NprE变体的氨基酸序列。图A提供了S129I-F130L-D220P NprE变体的氨基酸序列(SEQ IDNO:18)。图B提供了M138L-V190I-D220P NprE变体的氨基酸序列(SEQID NO:19)。图C提供了S129I-F130L-M138L-V190I-D220P NprE变体的氨基酸序列(SEQ ID NO:19)。
图8提供了Kcat/Km对pH的图,阐明了野生型NprE和五重NprE变体(S129I-F130L-M138L-V190I-D220P)都在pH 6.5对AGLA底物具有最佳活性。
图9提供了剩余NprE活性对pH的图,阐明了钙的添加在低和高pH稳定了野生型NprE和五重NprE变体(S129I-F130L-M138L-V190I-D220P)。
发明的一般描述
本发明提供了包含至少一种中性金属蛋白酶的方法和组合物,其中所述的中性金属蛋白酶在金属螯合剂的存在下具有改良的稳定性。在一些实施方案中,该中性金属蛋白酶可用于清洁以及包含柠檬酸盐的其它应用。在一些特别优选的实施方案中,本发明提供了包含变体中性金属蛋白酶的方法和组合物,其中所述的变体中性金属蛋白酶已被改造以对柠檬酸盐诱导的自溶解具有抗性。
除非另有指明,本发明的实践涉及分子生物学、微生物学、以及重组DNA领域通常所用的常规技术,它们在本领域技术范围内。此类技术是本领域技术人员已知的,它们被描述于大量的教材和参考文献中(见,例如Sambrook等,“Molecular Cloning:A Laboratory Manual”,第二版(Cold SpringHarbor),1989和Ausubel等,“Current Protocols inMolecularBiology”,1987)。本文中(包括上文和下文中)提到的所有专利、专利申请、文章和出版物都通过引用明确并入本文。
除非在本文中另外定义,本文中使用的所有技术和科学术语具有本发明所属领域技术人员通常理解的含义。例如,Singleton和Sainsbury,Dictionary of Microbiology and Molecular Biology,第二版,John Wiley andSons,NY(1994);以及Hale和Marham,The Harper Collins Dictionary ofBiology,Harper Perennial,NY(1991)为本领域技术人员提供了许多本文所用的术语的一般解释。虽然与本文中描述的方法和材料相似或等同的任何方法和材料都可以用于本文中所描述的本发明的实践,但本文中描述了优选的方法和材料。因此,通过作为一个整体参考该说明书更详细的描述了以下即将定义的术语。
同样,如本文中所使用的,除非上下文明确另外指出,单数术语“一个”、“一种”和“该”包括对复数的提及。数值范围包括界定该范围的数字。除非另外指出,分别地,核酸以5’至3’方向从左至右书写;氨基酸序列以从氨基至羧基的方向从左至右书写。应当理解,本发明不局限于描述的特定的方法、方案和试剂,因为取决于本领域技术人员使用它们的背景,它们可发生变化。
此外,本文中提供的标题不是本发明多个方面或实施方案的限制,其中所述的方面或实施方案可以通过参考作为一个整体的本说明书获得。因此,下文马上定义的术语通过参考作为一个整体的本说明书进行更充分地描述。然而,为了促进理解本发明,下文定义了众多术语。
定义
除非在本文中另外定义,本文中使用的所有技术和科学术语具有本发明所属领域技术人员通常理解的含义。虽然与本文中描述的方法和材料相似或等同的任何方法和材料都可以用于本文中所描述的本发明的实践,但本文中描述了优选的方法和材料。因此,通过作为一个整体参考该说明书更详细的描述了以下即将定义的术语。同样,如本文中所使用的,除非上下文明确另外指出,单数术语“一个”、“一种”和“该”包括对复数的提及。除非另外指出,分别地,核酸以5’至3’方向从左至右书写;氨基酸序列以从氨基至羧基的方向从左至右书写。应当理解,本发明不局限于描述的特定的方法、方案和试剂,因为取决于本领域技术人员使用它们的背景,它们可发生变化。
在本说明书通篇范围内给出的每个最大数字界限意图包括每个较小的数字界限,如同在本文中明确地写出此类较小的数字界限。在本说明书通篇范围内给出的每个最小数字界限将包括每个较高的数字界限,如同在本文中明确地写出此类较高的数字界限。在本说明书通篇范围内给出的每个数字范围将包括落入这种较宽泛数字范围内的每个较窄的数字范围,如同在本文中明确地写出此类较窄的数字范围。
在相关部分引用的所有文件通过参考并入本文;对于任何文件的引用不应当被理解为承认其为本发明的现有技术。
如本文中所用,术语“蛋白酶”和“蛋白酶解活性”指这样的蛋白质或肽,其显示水解肽或具有肽键的底物的能力。存在用于测量蛋白酶解活性的众多熟知方法(见例如Kalisz,″Microbial Proteinases,″在:Fiechter(编辑),Advances in Biochemical Engineering/Biotechnology,1988)。例如,蛋白酶解活性可以通过比较测定法确定,其中所述比较测定法分析相应蛋白酶水解商品底物的能力。在这种分析蛋白酶或蛋白酶解活性中有用的示例性底物包括但不限于二-甲基酪蛋白(Sigma C-9801)、牛胶原蛋白(SigmaC-9879)、牛弹性蛋白(Sigma E-1625)和牛角蛋白(ICN Biomedical 902111)。使用这些底物的比色测定法是本领域中熟知的(见例如WO 99/34011和美国专利号6,376,450,两篇均再此引入作为参考)。pNA测定法(见例如DelMar等人,Anal Biochem,99:316-320,1979)也发现用于确定梯度洗脱期间所收集级分的有效酶浓度。这种测定法测量酶水解可溶性合成底物琥珀酰-丙氨酸-丙氨酸-脯氨酸-苯丙氨酸-对硝基苯胺(sAAPF-pNA)时释放对硝基苯胺的速率。从水解反应产生黄颜色的速率在分光光度计上于410nm处测量并且与有效酶浓度成正比。此外,在280nm处的吸光度量值可以用来确定总蛋白浓度。有效酶/总蛋白比产生了该酶纯度。
如本文所使用的,术语“NprE蛋白酶”和“NprE”指本文描述的中性金属蛋白酶。在一些优选的实施方案中,NprE蛋白酶是在本文中命名为纯化的
Figure GPA00001126135000091
中性或PMN的蛋白酶,其来自解淀粉芽胞杆菌。因此,在一些实施方案中,术语“PMN蛋白酶”指衍生自解淀粉芽胞杆菌的具有与SEQ ID NO:3所提供的基本上同一的氨基酸序列的天然存在的成熟蛋白酶。在备选的实施方案中,本发明提供了NprE蛋白酶的部分。
术语“芽孢杆菌蛋白酶同源物”指与衍生自解淀粉芽胞杆菌的成熟蛋白酶具有基本上同一的氨基酸序列的天然存在蛋白酶,或编码此类天然存在蛋白酶的多核苷酸序列,并且所述蛋白酶保留由此类核酸编码的中性金属蛋白酶的功能特征。
如本文中所用,使用术语“NprE变体”和“NprE蛋白酶变体”指这样的蛋白酶,所述蛋白酶与野生型NprE相似、尤其在其功能上相似,但在其氨基酸序列中具有使它们在序列上不同于野生型蛋白酶的突变。
如本文中使用的,“芽孢杆菌属物种”指所有在“芽孢杆菌”属中的物种,其是革兰氏阳性细菌,并被归类为杆菌(Bacilli)纲Bacillales目芽孢杆菌(Bacillaceae)科的成员。“芽孢杆菌”属包括本领域技术人员已知的“芽孢杆菌”属中的所有种,其包括但不限于,枯草芽孢杆菌(B.subtilis)、地衣芽孢杆菌(B.licheniformis)、迟缓芽孢杆菌(B.lentus)、短芽孢杆菌(B.brevis)、嗜热脂肪杆菌(B.stearothermophilus)、嗜碱芽孢杆菌(B.alkalophilus)、解淀粉芽孢杆菌、克劳氏芽孢杆菌(B.clausii)、耐盐芽孢杆菌(B.halodurans)、巨大芽孢杆菌(B.megaterium)、凝固芽孢杆菌(B.coagulans)、环状芽孢杆菌(B.circulans)、灿烂芽孢杆菌(B.lautus)和苏云金芽孢杆菌(B.thuringiensis)。应当认识到,芽孢杆菌属还将继续经历分类重构。因此,该属包括已经被重新分类的物种,这包括但不限于嗜热脂肪杆菌等生物,其现在被称为“Geobacillus stearothermophilus”。存在氧时产生抗性内生孢子被认为是芽孢杆菌属的界定特征,尽管该特征也适用于新近命名的脂环酸芽孢杆菌属(Alicyclobacillus)、双芽孢杆菌属(Amphibacillus)、硫胺素芽孢杆菌属(Aneurinibacillus)、厌氧芽孢杆菌属(Anoxybacillus)、短芽孢杆菌属(Brevibacillus)、Filobacillus、薄壁芽孢杆菌属(Gracilibacillus)、喜盐芽孢杆菌(Halobacillus)、类芽孢杆菌属(Paenibacillus)、需盐芽孢杆菌属(Salibacillus)、耐热芽孢杆菌属(Thermobacillus)、解脲芽孢杆菌属(Ureibacillus)和枝芽孢杆菌属(Virgibacillus)。
相关的(和衍生的)蛋白质包含“变体蛋白质”。在一些优选的实施方案中,变体蛋白质与亲本蛋白质之间以及变体蛋白质彼此之间有少量氨基酸残基不同。不同的氨基酸残基数目可以是一个或多个,优选1、2、3、4、5、10、15、20、30、40、50或更多个氨基酸残基。在一些优选的实施方案中,变体之间不同的氨基酸数目是1至10。在一些特别优选的实施方案中,相关蛋白质并且尤其是变体蛋白质包含至少35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%或99%的氨基酸序列同一性。此外,本文所使用的相关蛋白质或变体蛋白质是指在重要区域数目上与另一相关蛋白质或亲本蛋白质不同的蛋白质。例如,在一些实施方案中,变体蛋白质具有1、2、3、4、5或10个与亲本蛋白质不同的相应的重要区域。
本领域已知数种方法适于产生本发明的酶的变体,包括但不限于位点饱和诱变、扫描诱变、插入诱变、随机诱变、定点诱变和定向进化以及多种其它重组方法。
通过任何合适的方法或“测试”来表征野生型和突变蛋白质,并且优选基于评估感兴趣的特性。例如,在本发明的一些实施方案中确定pH和/或温度、以及洗涤剂和/或氧化稳定性。实际上,预期在一个或多个这些特征(pH、温度、蛋白酶解稳定性、洗涤剂稳定性和/或氧化稳定性)中具有各种稳定性程度的酶将是有用的。
本文中可相互交换使用的术语“多核苷酸”和“核酸”指任何长度的核苷酸的聚合形式,无论是核糖核苷酸或脱氧核糖核苷酸。这些术语包括但不限于单链、双链或三链的DNA、基因组DNA、cDNA、RNA、DNA-RNA杂合体或包含嘌呤和嘧啶碱基,或其他天然的、化学的、生物化学修饰的、非天然或衍生的核苷酸碱基的聚合物。以下是多核苷酸的非限制性例子:基因、基因片段、染色体片段、EST、外显子、内含子、mRNA、tRNA、rRNA、核酶、cDNA、重组多核苷酸、支化多核苷酸、质粒、载体、任意序列的分离DNA、任意序列的分离RNA、核酸探针和引物。在一些实施方案中,多核苷酸包含修饰的核苷酸(诸如甲基化核苷酸)和核苷酸类似物、尿嘧啶、其他糖和连接基团诸如氟代核糖(fluororibose)与硫代酯(thioate)和核苷酸分支(nucleotide branche)。在备选实施方案中,核苷酸的序列被非核苷酸组分间断。
如本文中所用,术语“DNA构建体”和“转化DNA”可互换地用来指用于将序列导入宿主细胞或生物中所用的DNA。该DNA可以在体外通过PCR或本领域技术人员已知的任意其他合适技术产生。在特别优选的实施方案中,DNA构建体包含目的序列(例如作为引入的序列)。在一些实施方案中,该序列与额外元件诸如调控元件(例如启动子等)有效连接。该DNA构建体还可以包含选择标记。它还可以包含在侧翼分布有同源性盒的引入的序列。在其他实施方案中,转化DNA包含添加至末端的其他非同源序列(例如填充序列或侧翼序列)。在一些实施方案中,引入的序列的末端闭合,从而该转化DNA形成闭合环。所述转化序列可以是野生型、突变或修饰的。在一些实施方案中,该DNA构建体包含与宿主细胞染色体同源的序列。在其他实施方案中,该DNA构建体包含非同源序列。一旦该DNA构建体在体外装配起来,则它可以用来:1)插入异源序列至宿主细胞的预期靶序列中;和/或2)诱变宿主细胞染色体的区域(即用异源序列替换内源序列),3)缺失靶基因;和/或导入复制型质粒至宿主中。
如本文中所用,术语“表达盒”和“表达载体”指重组或合成产生的核酸构建体,其具有允许特定核酸在靶细胞中转录的一系列特定核酸元件。该重组表达盒可以掺入质粒、染色体、线粒体DNA、质体DNA、病毒或核酸片段。一般地,表达载体的重组表达盒部分包括待转录的核酸序列和启动子,以及其他序列。在优选的实施方案中,表达载体具有掺入和在宿主细胞中表达异源DNA片段的能力。众多原核和真核表达载体是市售的。对合适表达载体的选择在本领域技术人员的知识范围内。术语“表达盒”在本文中与“DNA构建体”以及它们的语法等同物可互换地使用。对合适表达载体的选择在本领域技术人员的知识范围内。
如本文中所用,术语“载体”指设计以将核酸导入至一个或多个细胞类型中的多核苷酸构建体。载体包括克隆载体、表达载体、穿梭载体、质粒、盒等。在一些实施方案中,所述多核苷酸构建体包含编码蛋白酶(例如前体或成熟蛋白酶)的DNA序列,其中所述DNA序列与能够实现该DNA在合适宿主中表达的合适前导序列(例如分泌序列等)有效连接。
如本文中所用,术语“质粒”指用作克隆载体并且在一些真核生物或原核生物中形成染色体外自我复制性遗传元件或整合至宿主染色体中的环状双链(ds)DNA构建体。
如本文在导入核酸序列至细胞中的上下文中所用,术语“导入”指适合转移核酸序列至细胞中的任意方法。此类导入方法包括但不限于原生质体融合、转染、转化、接合和转导(见例如Ferrari等人,“Genetics”在Hardwood等人(编辑),Bacillus,Plenum Publishing CorD.,第57-72页,1989中)。
如本文中所用,术语“转化的”和“稳定转化的”指具有整合至其基因组中或作为维持至少两个世代的游离型质粒的非天然(异源)多核苷酸序列的细胞。
如本文中所用,术语“编码选择标记的核苷酸序列”指这样的核苷酸序列,它能够在宿主细胞中表达并且其中该选择标记的表达赋予含有所表达基因的细胞在相应选择剂存在下或缺少必需养分时生长的能力。
如本文中所用,术语“选择标记”和“选择性标记”指允许易于选择含有所述载体的那些宿主的能够在宿主细胞中表达的核酸(例如基因)。此类选择标记的实例包括但不限于抗微生物剂。因而,术语“选择标记”指这样的基因,它们提供了宿主细胞已经摄取外来目的DNA或某种其他反应已经发生的指示。一般,选择标记是这样的基因,它们赋予宿主细胞抗微生物抗性或代谢优势以使得含有外源DNA的细胞区别于转化期间没有接受任何外源序列的细胞。“原住选择标记”是位于待转化的微生物的染色体上的选择标记。原住选择标记编码与转化DNA构建体上的选择标记不同的基因。选择标记是本领域技术人员熟知的。如上文所述,标记优选地是抗微生物抗性标记(例如ampR;phleoR;specR;kanR;eryR;tetR;cmpR和neoR(见例如Guerot-Fleury,Gene,167:335-337,1995;Palmeros等人,Gene247:255-264,2000和Trieu-Cuot等人,Gene,23:331-341,1983)。根据本发明有用的其他标记包括但不限于营养缺陷型标记诸如色氨酸;和检测标记,诸如β-半乳糖苷酶。
如本文中所用,术语“启动子”指发挥指导下游基因转录的作用的核酸序列。在优选的实施方案中,启动子适于其中表达靶基因的宿主细胞。该启动子,连同其他转录性和翻译性调节核酸序列(又称作“调控序列”)对于表达给定基因是必需的。通常,该转录性和翻译性调节序列包括但不限于启动子序列、核糖体结合位点、转录起始和终止序列、翻译起始和终止序列和增强子或激活子序列。
当一种核酸与另一个核酸序列处于功能性关系中时,它是“有效连接的”。例如,如果表达为参与多肽分泌的前蛋白,则编码分泌性前导序列(即信号肽)的DNA与编码多肽的DNA有效连接;如果启动子或增强子影响序列的转录,则启动子或增强子与编码序列有效连接;或者,如果核糖体结合位点的放置促进翻译,则核糖体结合位点与编码序列有效连接。通常,“有效连接”意指连接的DNA序列是连续的,并且在分泌性前导序列的情况下,是连续且符合可读相的(in reading phase)。然而,增强子不必是连续的。连接通过在便利的限制性位点处连接而完成。如果此类位点不存在,则根据常规实践使用合成性寡核苷酸衔接头或接头。
如本文中所用,术语“基因”是指这样的多核苷酸(例如,DNA区段),该多核苷酸编码多肽并包括在编码区之前和之后的区域,也包括在各个编码区段(外显子)之间的间插序列(内含子)。
如本文中所用,“同源基因”指来自不同但通常相关物种的基因对,它们相互对应并且是彼此同一或极为相似的。该术语包括因物种形成(即新物种发展)而分离的基因(例如直向同源基因),以及因遗传复制而分离的基因(例如旁系同源基因)。
如本文中所用,“直向同源物”和“直向同源基因”指不同物种中因物种形成而已经从共同先祖基因(即同源基因)进化的基因。一般地,直向同源物在进化期间仍保留相同的功能。直向同源物的鉴定用于新测序基因组中可靠地预测基因功能。
如本文中所用,“旁系同源物”和“旁系同源基因”指因基因组内部复制而相关的基因。尽管直向同源物在进化期间自始至终保留相同的功能,然而旁系同源物演化出新功能,即便一些功能往往与初始功能相关。旁系同源基因的例子包括,但不限于编码胰蛋白酶、糜蛋白酶、弹性蛋白酶和凝血酶的基因,其中所述酶均为丝氨酸蛋白酶并在相同物种中共同存在。
如本文中所用,“同源性”指序列相似性或同一性,优选同一性。使用本领域已知的标准技术(见例如Smith和Waterman,Adv.Appl.Math.,2:482,1981;Needleman和Wunsch,J.Mol.Biol.,48:443,1970;Pearson和Lipman,Proc.Natl.Acad.Sci.USA,85:2444,1988;程序诸如WisconsinGenetics软件包Genetics Computer Group,Madison,WI中的GAP、BESTFIT、FASTA和TFASTA以及Devereux等人,Nucl.Acid Res.,12:387-395,1984]确定这种同源性。
如本文中所用,“类似序列”是这样一种序列,其中所述基因的功能基本上与基于解淀粉芽胞杆菌NprE蛋白酶的基因相同。另外,类似基因包括与解淀粉芽胞杆菌NprE蛋白酶的序列至少约45%、约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%、约95%、约97%、约98%、约99%或约100%的序列同一性。在额外的实施方案中,超过一种上述属性适用于该序列。类似序列通过已知的序列比对方法确定。常见使用的比对方法是BLAST,尽管如上文及下文所示,存在用于比对序列的其他方法。
一个有用算法的实例是PILEUP。使用累进配对比对法,PILEUP从一组相关序列产生多重序列比对结果。它也可以绘制显示聚类关系的进化树,其中所述聚类关系用来产生该比对结果。PILEUP使用Feng和Doolittle累进比对方法(Feng和Doolittle,J.Mol.Evol.,35:351-360,1987)的简化形式。该方法类似于Higgins和Sharp描述的方法(Higgins和Sharp,CABIOS5:151-153,1989)。有用的PILEUP参数包括缺省空位权重3.00、缺省空位长度权重0.10和加权末端空位。
有用算法的另一个实例是由Altschul等人(Altschul等人,J.Mol.Biol.,215:403-410,1990和Karlin等人,Proc.Natl.Acad.Sci.,USA,90:5873-5787,1993)描述的BLAST算法。一个特别有用的BLAST程序是WU-BLAST-2程序(见,Altschul等人,Meth.Enzymol.,266:460-480,1996)。WU-BLAST-2使用数个搜索参数,其中大部分设置为缺省值。设置具有以下值的可调节参数:重叠覆盖区=1,重叠分数=0.125,字阈值(T)=11。HSP S和HSP S2参数是动态值并且根据具体序列的组成和具体数据库的组成,由程序自身建立,其中目的序列针对所述具体数据库进行检索。然而,可以调节所述值以提高灵敏度。A%氨基酸序列同一性值由匹配的相同残基数除以比对区域中“较长”序列的残基总数确定。“较长”序列是比对区域中具有最多实际残基的序列(忽略由WU-Blast-2导入以使得比对评分最大化的空位)。
因而,“核酸序列同一性百分数(%)”定义为候选序列中与起始序列(即目的序列)的核苷酸残基相同的核苷酸残基百分数。一个优选的方法使用设置成缺省参数的WU-BLAST-2的BLASTN模块,重叠覆盖区和重叠分数分别设置成1和0.125。
如本文中所用,术语“杂交”指核酸的一条链通过碱基配对作用与互补链结合的过程,如本领域已知的那样。
如果两个序列在中至高严格杂交和洗涤条件下彼此特异地杂交,则将一个核酸序列视为与一个参考核酸序列“可选择性杂交”。杂交条件基于核酸结合复合体或探针的解链温度(Tm)。例如,“最大严格性”一般在约Tm-5℃(比探针的Tm低5℃)上出现;“高严格性”在低于该Tm约5-10℃上出现;“中等严格性”在低于探针Tm的10-20℃上出现并且“低严格性”在低于该Tm约20-25℃上出现。在功能上,最大严格性条件可以用来鉴定与杂交探针具有严格同一性或近乎严格同一性的序列;而中等或低严格杂交可以用来鉴定或检测多核苷酸序列同源物。
中等至高严格杂交是本领域熟知的。高严格性条件的实例包括在约42℃于50%甲酰胺,5×SSC,5×Denhardt’s溶液,0.5%SDS和100μg/ml变性载体DNA中杂交,随后在室温于2X SSC和0.5%SDS中洗涤2次并且在42℃于0.1×SSC和0.5%SDS中额外洗涤2次。中等严格条件的例子包括在37℃于包含20%甲酰胺、5×SSC(150mM NaCl、15mM柠檬酸三钠)、50mM磷酸钠(pH 7.6)、5×Denhardt’s溶液、10%硫酸葡聚糖和20mg/ml变性剪切鲑精DNA的溶液中过夜温育,随后在约37-50℃于1×SSC中洗涤滤膜。本领域技术人员知道如何按照需要调节温度、离子强度等以适应诸如探针长度等的因素。
如本文中所用,“重组体”包括对细胞或载体的称谓,其中所述的细胞或载体已经通过导入异源核酸序列被修饰或所述细胞从如此修饰的细胞衍生。因而,例如重组细胞表达在该细胞的天然(非重组)形式中不以相同形式存在的基因或因人有意干预而异常表达、不足表达或根本不表达的天然基因。“重组”、“进行重组”和生成“重组的”核酸一般是两个或多个核酸片段的装配,其中所述装配产生嵌合基因。
在一个优选的实施方案中,使用在至少一个密码子中的位点饱和诱变法产生突变DNA序列。在另一个优选的实施方案中,对2个或多个密码子进行位点饱和诱变。在其他实施方案中,突变DNA序列与野生型序列具有超过约50%、超过约55%、超过约60%、超过约65%、超过约70%、超过约75%、超过约80%、超过约85%、超过约90%、超过约于95%或超过约98%的同源性。在备选实施方案中,使用任意的已知诱变方法例如,诸如辐射、亚硝基胍等,在体内产生突变DNA。随后分离期望的DNA序列并用于本文提供的方法中。
如本文中所用,术语“靶序列”指宿主细胞中编码这样序列的DNA序列,其中期望在所述序列处将引入的序列插入宿主细胞基因组。在一些实施方案中,靶序列编码有功能的野生型基因或操纵子,而在其他实施方案中,靶序列编码有功能的突变基因或操纵子,或无功能的基因或操纵子。
如本文中所用,“侧翼序列”指位于所讨论序列上游或下游的任意序列(例如,对于基因A-B-C,基因B在侧翼具有A和C基因序列)。在一个优选的实施方案中,该引入的序列在每一侧具有同源盒。在另一实施方案中,该引入的序列和同源盒包含在每一侧具有填充序列的单元。在一些实施方案中,侧翼序列仅在单侧(3’或5’)存在,但是在优选的实施方案中,它在侧翼相接的序列的每一侧存在。在一些实施方案中,侧翼序列仅在单侧(3’或5’)存在,而在优选的实施方案中,它在侧翼相接的序列的每一侧存在。
如本文中所用,术语“填充序列”指在同源盒侧翼的任意额外DNA(一般是载体序列)。然而,该术语包括任意非同源的DNA序列。不受任何理论限制,填充序列为细胞提供了非关键靶以启动DNA摄取。
如本文中所用,术语“扩增”和“基因扩增”指这样的过程,其中凭借该过程不成比例地复制特异的DNA序列,从而使得扩增的基因以比起初基因组中拷贝数更高的拷贝数存在。在一些实施方案中,通过在药物(例如可抑制酶的抑制物)存在下生长而选择细胞(这导致编码在该药物存在下生长所需的基因产物的内源性基因扩增),或通过扩增编码这种基因产物的外源(即输入)序列或这两种方式选择细胞。
“扩增”是涉及模板特异性的核酸复制的具体情形。它与非特异性模板复制(即具有模板依赖性但不依赖于特异性模板的复制)形成对比。模板特异性这里区别于复制忠实性(即正确多核苷酸序列的合成)和核苷酸(核糖或脱氧核糖)特异性。模板特异性往往以术语“靶”特异性描述。靶序列是在寻求将其与其他核酸相区分开的意义上的“靶”。已经设计扩增技术主要用于这种区分过程。
如本文中所用,术语“共扩增”指将可扩增标记连同其他基因序列(即包含一个或多个不可选择性基因,诸如表达载体中所包含的那些基因)导入单个细胞并且施加适宜的选择压力,从而使得该细胞扩增该可扩增标记和其它不可选择性基因序列。这个可扩增标记可以与其它基因序列物理地连接,或备选地,可将一个含有可扩增标记以及另一个含有非选择标记的两个独立DNA片段导入相同的细胞。
如本文中所用,术语“可扩增标记”、“可扩增基因”和“扩增载体”指在适宜生长条件下允许该基因扩增的基因或编码基因的载体。
“模板特异性”在大多数扩增技术中通过酶的选择实现。扩增酶是在使用这些酶的条件下仅会处理异质性核酸混合物中特定核酸序列的酶。例如在Qβ复制酶的情况下,MDV-I RNA是该复制酶的特异性模板(见例如Kacian等人,Proc.Natl.Acad.Sci.USA 69:3038,1972)并且其他核酸不被这种扩增酶复制。类似地,在T7RNA聚合酶的情况下,这种扩增酶具有对其自身启动子的严格特异性(见Chamberlin等人,Nature 228:227,1970)。在T4DNA连接酶的情况下,该酶不会连接其中寡核苷酸或多核苷酸底物与模板之间在连接接合处存在错配的两个寡核苷酸或多核苷酸(见Wu和Wallace,Genomics 4:560,1989)。最后,由于Taq和Pfu聚合酶在高温下发挥作用的能力,发现它们针对由引物结合并且因而限定的序列表现高度特异性;所述高温产生促进引物与靶序列杂交而不与非靶序列杂交的热动力条件。
如本文中所用,术语“可扩增的核酸”指可以由任意扩增方法扩增的核酸。考虑了“可扩增的核酸”通常包含“样品模板”。
如本文中所用,术语“样品模板”指源自样品的核酸,其中对所述样品分析“靶”(下文定义的)的存在。相反,“背景模板”用来指代样品模板之外的核酸,它可能存在或可能不存在于样品中。背景模板最经常地是偶然存在的。它可以是夹带的结果,或它可以因试图从样品中纯化去除的核酸杂质的存在所致。例如,来自待检测生物之外的生物的核酸可以作为背景存在于试样中。
如本文中所用,术语“引物”指这样的寡核苷酸,无论天然存在(如在纯化的限制性消化产物中)或合成地产生,其中当将所述寡核苷酸置于诱导互补于一条核酸链的引物延伸产物合成的条件(即存在核苷酸和诱导剂(诸如DNA聚合酶)和在适宜的温度和pH上)下时,其能够充当合成的起始点。为了扩增中的最大效率,引物优选地是单链的,但可以备选地为双链。若为双链,首先处理该引物以在使用其制备延伸产物前分开其链。优选地,该引物是寡脱氧核糖核苷酸。引物必须足够长以在诱导剂存在下引发延伸产物合成。引物的确切长度将取决于众多因素,这包括温度、引物来源和所用的方法。
如本文中所用,术语“探针”指能够与另一种目的寡核苷酸杂交的寡核苷酸(即核苷酸序列),无论它是天然存在的(如在纯化的限制性消化产物中)或合成地、重组地或由PCR扩增产生。探针可以是单链的或双链的。探针用于检测、鉴定和分离特定的基因序列。考虑了在本发明中使用的任意探针将以任何“报告分子”标记,从而使得其可在任意检测系统中检测,所述检测系统包括,但不限于酶(例如ELISA以及基于酶的组织化学测定法)、荧光、放射性和化学发光系统。不意图将本发明限于任何具体检测系统或标记物。
如本文中所用,当谈及聚合酶链反应时,术语“靶”指由用于聚合酶链反应的引物限定的核酸区域。因而,试图将“靶”与其他核酸序列区别开。“区段”定义为靶序列内部的核酸区域。
如本文中所用,术语“聚合酶链反应”(“PCR”)指美国专利号4,683,195、4,683,202和4,965,188(其在此引入作为参考)的方法,所述方法包括用于在不进行克隆或纯化的情况下提高基因组DNA混合物中靶序列区段的浓度的方法。这一用于扩增靶序列的方法由以下步骤组成:将大量过量的两种寡核苷酸引物引入到含有期望靶序列的DNA混合物中,随后在DNA聚合酶的存在下进行精确的热循环顺序。两个引物与双链靶序列中它们各自的链互补。为实现扩增,变性该混合物并然后使引物退火至靶分子中它们的互补链。退火后,应用聚合酶延伸引物,从而形成新的互补链对。可以多次重复变性、引物退火和聚合酶延伸的步骤(即,变性、退火和延伸组成一个“循环”;可以有许多个“循环”),以获得期望靶序列的高浓度扩增区段。期望靶序列扩增区段的长度由引物相对于彼此之间的相对位置决定,并且因此这一长度是可控制的参数。由于该过程的重复方面,将该方法称为“聚合酶链式反应”(此后称为“PCR”)。因为期望扩增的靶序列区段在该混合物中变成优势序列(就浓度而言),所以称它们是“PCR扩增”的。
如本文中所用,术语“扩增试剂”指除引物、核酸模板和扩增酶之外的为扩增所需的那些试剂(脱氧核糖核苷酸三磷酸、缓冲液等)。一般,将扩增试剂连同其他反应组分置于并纳入反应容器(试管、微孔等)中。
采用PCR,有可能将基因组DNA中单拷贝的特异性靶序列扩增至通过几种不同方法(例如与标记探针杂交;掺入生物素化引物,随后进行抗生物素蛋白-酶缀合物检测;掺入32P-标记的脱氧核苷酸三磷酸诸如dCTP或dATP至扩增的区段)可检测的水平。除基因组DNA之外,还可以用适宜的成套引物分子扩增任意的寡核苷酸或多核苷酸序列。特别地,由PCR过程自身产生的扩增区段本身是后继PCR扩增的高效模板。
如本文中所用,术语“PCR产物”、“PCR片段”和“扩增产物”指两轮或多轮变性、退火和延伸的PCR步骤结束后所得的化合物混合物。这些术语包括其中已经扩增一个或多个序列的一个或多个区段的情况。
如本文中所用,术语“RT-PCR”指RNA序列的复制和扩增。在这个方法中,逆转录偶联于PCR,最经常地使用其中使用热稳定性聚合酶的单一酶方法,如美国专利号5,322,770中所述,所述专利在此引入本文作为参考。在RT-PCR中,RNA模板因聚合酶的逆转录酶活性转换成cDNA,并随后使用聚合酶的聚合活性(即如同其他PCR方法中那样)进行扩增。
如本文中所用,术语“限制性核酸内切酶”和“限制性酶”指细菌酶,其每一个都在特定核苷酸序列处或其附近切割双链DNA。
“限制性位点”指由给定的限制性核酸内切酶识别和切割的核苷酸序列,并且其往往是用于插入DNA片段的位点。在本发明的某些实施方案中,将限制性位点改造入选择标记中和改造入DNA构建体的5’和3’末端。
如本文中所用,术语“染色体整合”指引入的序列籍此导入宿主细胞染色体的过程。转化DNA的同源区域与染色体的同源区域整列。随后,同源盒之间的序列在双交换中由引入的序列替换(即同源重组)。在本发明的一些实施方案中,DNA构建体的失活性染色体区段的同源部分与芽孢杆菌染色体的固有染色体区域的侧翼同源区整列。随后,所述固有染色体区域在双交换中由该DNA构建体缺失(即同源重组)。
“同源重组”意指两个DNA分子或配对染色体之间在同一或几乎同一的核苷酸序列位点处交换DNA片段。在一个优选的实施方案中,染色体整合是同源重组。
如本文中所用的“同源序列”意指为比较而最佳比对时,与另一个核酸或多肽序列具有约100%、约99%、约98%、约97%、约96%、约95%、约94%、约93%、约92%、约91%、约90%、约88%、约85%、约80%、约75%或约70%序列同一性的核酸或多肽序列。在一些实施方案中,同源序列具有约85%至约100%的序列同一性,而在其他实施方案中,存在约90%至约100%的序列同一性,并且在更优选的实施方案中,存在约95%至约100%的序列同一性。
如本文中所用,“氨基酸”指肽或蛋白质序列或其部分。术语“蛋白质”、“肽”和“多肽”可互换地使用。
如本文中所用,术语“异源蛋白”指不天然存在于宿主细胞中的蛋白质或多肽。异源蛋白的实例包括酶,诸如水解酶,包括蛋白酶。在一些实施方案中,编码蛋白质的基因是天然存在的基因,而在其他实施方案中,使用突变基因和/或合成基因。
如本文中所用,“同源蛋白”指细胞中本来或天然存在的蛋白质或多肽。在优选的实施方案中,所述细胞是革兰氏阳性细胞,而在特别优选的实施方案中,该细胞是芽孢杆菌属宿主细胞。在备选的实施方案中,同源蛋白是由其他生物产生的天然蛋白,所述其他生物包括但不限于大肠杆菌、链霉菌属(Streptomyces)、木霉属(Trichoderma)和曲霉属(Aspergillus)生物。本发明包括凭借重组DNA技术产生同源蛋白的宿主细胞。
如本文中所用,“操纵子区”包含作为单一转录单元从共同启动子转录并因而经历共调节作用的一组连续基因。在一些实施方案中,操纵子包括调节基因。在最优选的实施方案中,使用这样的操纵子,其中该操纵子高度表达,如由RNA水平所测量的那样,但具有未知或不需要的功能。
如本文中所用、“抗微生物区域”是含有编码抗微生物蛋白的至少一个基因的区域。
如果某多核苷酸在其天然状态下或由本领域技术人员已知的方法操作时,可以被转录和/或翻译以产生RNA、多肽或其片段,则称该多核苷酸“编码”RNA或多肽。还称此类核酸的反义链编码了该序列。
如本领域已知,DNA可以被RNA聚合酶转录以产生RNA,但是RNA可以被逆转录酶逆转录以产生DNA。因而DNA可以编码RNA并且反之亦然。
术语“调节区段”或“调节序列”或“表达调控序列”指DNA的多核苷酸序列,其中所述多核苷酸序列与编码多肽链的氨基酸序列的DNA的多核苷酸序列有效连接以实现所编码氨基酸序列的表达。调节序列可以抑制、阻遏或促进有效连接的编码氨基酸的多核苷酸序列表达。
“宿主株”或“宿主细胞”指对于包含本发明DNA的表达载体适合的宿主。
如果一种酶在所述细胞中以比相应野生型细胞中表达此酶的水平更高的水平表达,则该酶在宿主细胞中“过量表达”。
术语“蛋白质”和“多肽”在本文可互换地使用。在本公开内容中通篇使用如按照IUPAC-IUB生物化学命名联合委员会(JCBN)定义的氨基酸3字母代码。也应当理解,由于遗传密码子的简并性,多肽可以由多于一个核苷酸序列编码。
“前序列(prosequence)”是在信号序列与成熟蛋白酶之间对于该蛋白酶分泌为必需的氨基酸序列。该前序列的切割会产生成熟的活性蛋白酶。
术语“信号序列”或“信号肽”指参与成熟或前体形式的蛋白质分泌的任意核苷酸序列和/或氨基酸序列。信号序列的这个定义是一个功能性定义,意指包括由该蛋白质基因的N端部分编码的、参与实现蛋白质分泌的全部那些氨基酸序列。它们通常但并非普遍地与蛋白质的N端部分或与前体蛋白的N端部分结合。信号序列可以是内源或外源的。信号序列可以是通常与该蛋白质(例如蛋白酶)连接的信号序列,或可以来自编码另一种分泌性蛋白的基因。一个示例性外源信号序列包含来自枯草芽孢杆菌枯草杆菌蛋白酶信号序列的头7个氨基酸残基,所述的氨基酸残基与来自缓慢芽孢杆菌(ATCC 21536)的枯草杆菌蛋白酶的信号序列的剩余部分融合。
术语“杂合信号序列”指其中部分序列从表达宿主获得的与待表达基因的信号序列融合的信号序列。在一些实施方案中,使用合成性序列。
术语“成熟”形式的蛋白质或肽指该蛋白质或肽的最终功能性形式,例如,成熟形式的本发明NprE蛋白酶至少包括SEQ ID NO:3的氨基酸序列。
术语“前体”形式的蛋白质或肽指这样的成熟形式蛋白质,其具有与该蛋白质的氨基端或羧基端有效连接的前序列。该前体也可以具有与该前序列的氨基端有效连接的“信号”序列。该前体还可以具有参与翻译后活性的额外多核苷酸(例如从中被切除以留下成熟形式蛋白质或肽的多核苷酸)。
“天然存在的酶”指具有与在自然界中发现的氨基酸序列同一的未修饰氨基酸序列的酶。天然存在的酶包括天然酶,即天然表达的或在特定微生物中发现的那些酶。
术语“从......衍生”和“从......获得”不仅指由所讨论生物的菌株产生或可产生蛋白酶,还指由分离自此菌株的DNA序列编码和在含有此DNA序列的宿主生物中产生的蛋白酶。另外,该术语指由合成来源和/或cDNA来源的DNA序列编码并且具有所讨论蛋白酶的鉴别特征的蛋白酶。例如,“从芽孢杆菌属物种衍生的蛋白酶”指那些具有蛋白水解活性的、由芽孢杆菌属物种天然产生的酶,以及还指类似于由芽孢杆菌属物种来源产生的那些、但通过应用基因工程技术由转化有编码所述中性金属蛋白酶的核酸的非解淀粉芽胞杆菌生物产生的中性金属蛋白酶。
“衍生物”在该定义的范围内通常仍使在野生型、天然或亲代形式中观察到的特征性蛋白酶解活性保留至这样的程度,即该衍生物用于与野生型、天然或亲代形式相似的目的。中性金属蛋白酶的功能性衍生物包括具有本发明中性金属蛋白酶一般特征的天然存在的、合成或重组产生的肽或肽片段。
术语“功能性衍生物”指具有编码中性金属蛋白酶的核酸的功能特征的核酸的衍生物。编码本发明中性金属蛋白酶的核酸的功能性衍生物包括天然存在的、合成或重组产生的核酸或片段,并且编码本发明的中性金属蛋白酶特征。基于本领域已知的遗传密码子简并性,编码本发明中性金属蛋白酶的野生型核酸包括天然存在的等位基因和同源物。
在两个核酸序列或多肽序列的上下文中的术语“同一的”指这两个序列中为了最大对应性而比对时是相同的残基,其中所述最大对应性如使用以下序列比较或分析算法之一测量的那样。
术语“最佳比对”指产生最高同一性百分数评分的比对。
“序列同一性百分数”、“氨基酸序列同一性百分数”、“基因序列同一性百分数”和/或“核酸/多核苷酸序列同一性百分数”就两个氨基酸序列、多核苷酸序列和/或基因序列(如适宜的话)而言,指当最佳比对所述序列时这两个序列中相同的残基的百分数。因而,“80%氨基酸序列同一性”意指这两个最佳比对的多肽序列中的80%氨基酸是同一的。
短语“基本上同一的”在两个核酸或多肽的上下文中因而指这样的多核苷酸或多肽,其中当使用程序或算法(例如BLAST、ALIGN、CLUSTAL),使用标准参数,与参考序列相比时,所述多核苷酸或多肽包含至少约70%序列同一性、优选至少约75%、优选至少约80%、优选至少约85%、优选至少约90%、优选至少约95%、优选至少约97%、优选至少约98%并且优选至少约99%序列同一性。两个多肽基本上同一的一个指示是第一多肽与第二多肽发生免疫学交叉反应。一般地,因保守性氨基酸替换而不同的多肽是免疫学交叉反应的。因此,例如,当两个肽仅因保守性替换而不同时,一个多肽与第二多肽基本上同一。两个核酸序列基本上同一的另一个指示是这两个分子在严格条件(例如在中等至高严格性范围内)下相互杂交。
术语“分离的”或“纯化的”指从其初始环境(例如天然环境,如果它是天然存在的话)中取出的物质。例如,当该物质在特定组合物中以高于或低于天然存在生物或野生型生物中的浓度存在或与从天然存在生物或野生型生物表达时通常不存在的组分联合存在时,称该物质是“纯化”的。例如,在活的动物中存在的天然存在多核苷酸或多肽不是分离的,然而与该天然系统中一些或全部共存物质分开的该相同多核苷酸或多肽是分离的。此类多核苷酸可以是载体的一部分和/或此类多核苷酸或多肽可以是组合物的一部分,并且仍是分离的,因为这种载体或组合物不是其天然环境的一部分。在优选的实施方案中,例如如果核酸或蛋白质在电泳凝胶或印迹中产生基本上一条带,则称它是纯化的。
当谈及DNA序列使用时,术语“分离的”指这样的DNA序列,其中所述DNA序列已经从天然遗传环境中移除并且因而不含有其他外部或不想要的编码序列,并且处于适合在基因工程蛋白质生产系统中使用的形式。此类分离的分子是与其天然环境分开的那些分子并且包括cDNA和基因组克隆。本发明的分离的DNA分子不含有通常与之连接的其他基因,但可以包含天然存在的5’和3’非翻译区,诸如启动子和终止子。鉴定相关的区域对本领域普通技术人员将是显而易见的(见例如Dynan和Tijan,Nature316:774-78,1985)。术语“分离的DNA序列”备选地称作“克隆的DNA序列”。
当谈及蛋白质使用时,术语“分离的”指在其天然环境之外的条件下存在的蛋白质。在一个优选的形式中,分离的蛋白质基本上不含其他蛋白质,尤其其他同源蛋白。分离的蛋白质具有超过约10%的纯度、优选超过约20%的纯度并且甚至更优选超过约30%的纯度,如SDS-PAGE所确定的那样。本发明的其他方面包括高度纯化形式(即超过约40%纯度、超过约60%纯度、超过约80%纯度、超过约90%纯度、超过约95%纯度、超过约97%纯度并且甚至超过约99%纯度)的蛋白质,如SDS-PAGE所确定的那样。
可应用以下盒式诱变法以帮助构建本发明的酶变体,尽管也可以使用其它方法。首先,如本文所述,获得编码该酶的天然存在的基因并且全部或部分测序。然后,扫描该序列以获得这样的位置,即在该位置上期望制造所编码的酶的一个或多个氨基酸的突变(缺失、插入或替换)。评估这一位置两侧的序列中限制性位点的存在,用于用寡核苷酸库替换该基因的短区段,其中当表达所述寡核苷酸库时,其将编码变体突变。此类限制性位点优选是该蛋白基因中独特的位点,以易于置换该基因区段。然而,不在该酶基因中过度冗余的任何常规限制性位点都可以使用,只要由限制性消化产生的基因片段可以以适当的顺序再组装。如果在离所选择的位点方便的距离之内(10至15个核苷酸)的位置上不存在限制性位点的话,通过在该基因中替换碱基产生此类位点,其中以如下所述方式进行所述替换,即所示方式使得最终的构建体中既没有改变阅读框,也没有改变其编码的氨基酸。根据本领域公知的方法,通过M13引物延伸完成基因突变,以将其序列改变为与期望的序列一致。通过遗传密码子的简并性、基因的限制性酶图谱以及大量不同的限制性酶按常规地完成定位合适的侧翼区段以及评估所需改变的任务,以得到两个适当的限制性序列。注意到如果可利用合适的侧翼限制性位点的话,仅需与不含有位点的侧翼区段相关地应用上述方法。
一旦克隆了天然存在的DNA和/或合成的DNA,则用相关的限制性酶消化待突变位置侧翼的限制性位点,并将复数个末端互补的寡核苷酸盒与该基因连接。这一方法简化了诱变,因为可以合成所有的这些寡核苷酸以具有相同的限制性位点,并且不需要合成的接头以产生限制性位点。
如本文所用,“相应于”指在蛋白质或多肽中所列举出的位置上的残基,或与在蛋白质或多肽中所列举出的残基类似、同源或等价的残基。
如本文所用,“相应区域”一般指沿着蛋白质或亲本蛋白质相关的类似位置。
如本文中所用,术语“组合诱变法”指其中产生起始序列的变体文库的方法。在这些文库中,所述变体含有选自预定义突变集合的一个或几个突变。此外,所述方法提供了导入随机突变的手段,其中所述随机突变不是预定义突变集合的成员。在一些实施方案中,所述方法包括在2000年10月26日提交的美国专利申请号09/699,250(其在此引入作为参考)中描述的那些方法。在备选的实施方案中,组合诱变方法包括市售试剂盒(例如
Figure GPA00001126135000271
Multisite,Stratagene,San Diego,CA)。
如本文中所用,术语“突变体文库”指绝大部分基因组相同但包括一个或多个基因的不同同源物的细胞群体。此类文库可以用来例如鉴定具有改良性状的基因或操纵子。
如本文中所用,术语“起始基因”和“亲本基因”指编码目的蛋白的目的基因,其中所述的目的蛋白待使用本发明进行改良和/或改变。
如本文中所用,术语“多重序列比对”和“MSA”指使用算法(例如Clustal W)进行比对的一个起始基因的多个同源物的序列。
如本文中所用,术语“共有序列”和“规范序列”指具体目的蛋白质或目的序列的全部变体与之进行比较的原型氨基酸序列。该术语也指显示目的DNA序列中最经常存在的核苷酸的序列。对于基因的每个位置,共有序列给出在MSA中该位置内最多见的氨基酸。
如本文中所用,术语“共有突变”指起始基因序列和共有序列中的差异。共有突变通过比较起始基因的序列和从MSA获得的共有序列进行鉴定。在一些实施方案中,将共有突变导入起始基因,从而使得起始基因变得与共有序列更相似。共有突变也包括将起始基因中的氨基酸改变成下述氨基酸的氨基酸变化,其中所述氨基酸相对于起始基因中该氨基酸的频率更频繁地在该位置处出现于MSA中。因而,术语共有突变包含用比MSA中氨基酸更丰富的氨基酸替换起始基因中氨基酸的全部单一氨基酸改变。
术语“修饰的序列”和“修饰的基因”在本文中可互换地用来指包括天然存在的核酸序列中的缺失、插入或间断的序列。在一些优选的实施方案中,修饰序列的表达产物是截短的蛋白质(例如如果所述修饰是序列缺失或间断的话)。在一些特别优选的实施方案中,这种截短的蛋白质仍保留生物学活性。在备选的实施方案中,修饰序列的表达产物是延长的蛋白质(例如,包含向核酸序列中插入的修饰)。在一些实施方案中,插入产生截短的蛋白质(例如当该插入导致终止密码子形成时)。因而,插入可以产生截短的蛋白质或延长的蛋白质作为表达产物。
如本文中所用,术语“突变序列”和“突变基因”可互换地使用并且指具有在宿主细胞的野生型序列中出现的在至少一个密码子中的改变的序列。该突变序列的表达产物是相对于野生型具有已改变氨基酸序列的蛋白质。该表达产物可以具有改变的功能性能力(例如增强的酶活性)。
“诱变引物”或“诱变寡核苷酸”(在本文中可互换地使用)意图指对应于模板序列的一部分并能够与之杂交的寡核苷酸组合物。就诱变引物而言,该引物不会精确地匹配模板核酸,该引物中的一个错配或多个错配用于导入期望的突变至核酸文库中。如本文中所用,“非诱变引物”或“非诱变寡核苷酸”指与模板核酸精确匹配的寡核苷酸组合物。在本发明的一个实施方案中,仅使用诱变引物。在本发明的另一个优选实施方案中,如此设计引物从而使得其中已经包括诱变引物的至少一个区域,也存在包含于寡核苷酸混合物中的非诱变引物。通过添加诱变引物和与所述诱变引物至少之一相对应的非诱变引物的混合物,有可能产生其中提供了多种组合突变模式的结果核酸文库。例如,如果期望突变核酸文库的一些成员仍在某些位置处保留其亲代序列而其他成员在此类位点处突变,则所述非诱变引物提供了在该核酸文库内部针对给定残基获得特定水平非突变成员的能力。本发明的方法使用一般具有10-50个碱基长度、更优选约15-45个碱基长度的诱变和非诱变寡核苷酸。然而,可能需要使用比10碱基更短或比50碱基更长的引物以获得期望的诱变结果。就相应的诱变和非诱变引物而言,不需要相应的寡核苷酸具有相同的长度,但仅需要在对应于待添加突变的区域中存在重叠。
可以以根据本发明的预定比率添加引物。例如,如果期望所得文库在相同或不同位点处具有显著水平的某种特定突变和较少量的不同突变,则通过调整添加的引物数量,有可能产生期望的偏态文库。备选地,通过添加更少或更多数量的非诱变引物,有可能调节突变核酸文库中产生相应突变的频率。
术语“野生型序列”或“野生型基因”在本文中可互换地用来指宿主细胞中本来或天然存在的序列。在一些实施方案中,野生型序列指作为蛋白质工程项目起点的目的序列。该野生型序列可以编码同源或异源蛋白。同源蛋白是宿主细胞在无干预下产生的蛋白质。异源蛋白是宿主细胞本不会产生但因干预而产生的蛋白质。
术语“氧化稳定的”指在本发明的蛋白酶解、水解、清洁或其他过程期间占优势的条件下,例如当暴露于或与漂白剂或氧化剂接触时,经过给定时间段后仍保留特定量酶活性的本发明蛋白酶。在一些实施方案中,与漂白剂或氧化剂接触后经过给定时间段,例如至少1分钟、3分钟、5分钟、8分钟、12分钟、16分钟、20分钟等之后,所述蛋白酶仍保留至少约50%、约60%、约70%、约75%、约80%、约85%、约90%、约92%、约95%、约96%、约97%、约98%或约99%的蛋白酶解活性。
术语“螯合剂稳定的”指在本发明的蛋白酶解、水解、清洁或其他过程期间占优势的条件下,例如当暴露于或与螯合剂接触时,经过给定时间段后仍保留特定量酶活性的本发明蛋白酶。在一些实施方案中,与螯合剂接触后经过给定时间段,例如至少10分钟、20分钟、40分钟、60分钟、100分钟等之后,所述蛋白酶仍保留至少约50%、约60%、约70%、约75%、约80%、约85%、约90%、约92%、约95%、约96%、约97%、约98%或约99%的蛋白酶解活性。
术语“热稳定的”和“热稳定性”指在暴露于确定的温度后,在本发明的蛋白酶解、水解、清洁或其他过程期间占优势的条件下,例如当暴露于改变的温度时,经过给定时间段后仍保留特定量酶活性的本发明蛋白酶。改变的温度包括提高或降低的温度。在一些实施方案中,在暴露于改变的温度后经过给定时间段,例如至少60分钟、120分钟、180分钟、240分钟、300分钟等之后,所述蛋白酶仍保留至少约50%、约60%、约70%、约75%、约80%、约85%、约90%、约92%、约95%、约96%、约97%、约98%或约99%蛋白酶解活性。
如本文所用,术语“化学稳定性”是指蛋白质(例如,酶)针对对其活性有不利影响的化学物质的稳定性。在一些实施方案中,此类化学物质包括但不限于过氧化氢、高酸、阴离子去污剂、阳离子去污剂、非离子去污剂、螯合试剂等。然而,不打算将本发明限于任何具体的化学稳定性水平,也不限于化学稳定性的范围。具体地,术语“去污剂稳定的”和“LAS稳定的”是指在本发明的蛋白酶解、水解、清洁或其他过程期间占优势的条件下,暴露于去污剂组合物给定时间段后仍保留特定量酶活性的本发明蛋白酶。在一些实施方案中,在暴露于去污剂经过给定时间段,例如至少60分钟、120分钟、180分钟、240分钟、300分钟等之后,所述蛋白酶仍保留至少约50%、约60%、约70%、约75%、约80%、约85%、约90%、约92%、约95%、约96%、约97%、约98%或约99%蛋白酶解活性。
术语“增强的稳定性”在氧化作用、螯合剂、热和/或pH稳定的蛋白酶的上下文中指随时间流逝,与其它中性金属蛋白酶和/或野生型酶相比保留的更高的蛋白酶解活性。
术语“削减的稳定性”在氧化作用、螯合剂、热和/或pH稳定的蛋白酶的上下文中指随时间流逝,与其它中性金属蛋白酶和/或野生型酶相比保留的更低的蛋白酶解活性。
如本文中所用,除非另外指出,术语“清洁组合物”包括颗粒形式或粉末形式的通用或“重役(heavy-duty)”洗涤剂,尤其是清洁洗涤剂;液体剂、凝胶剂或糊剂形式的通用洗涤剂,尤其所谓重役液体型洗涤剂;液体精细-织物洗涤剂;盘碟手洗洗涤剂或轻垢盘碟洗涤剂,尤其那些泡沫丰富类型的盘碟洗涤剂;盘碟机洗洗涤剂,包括居家和机构用途的多种片状、颗粒、液体和漂洗辅助型盘碟机洗洗涤剂;液体清洁与消毒剂,包括抗菌性洗手液型、清洁棒、漱口液、口腔清洁剂、轿车或毛毯香波、浴室清洁剂;发用香波和洗发剂;沐浴凝胶和泡沫浴清洁剂和金属清洁剂;以及清洁助剂,诸如漂白添加剂和“粘污渍剂(stain-stick)”、预处理类型添加剂。
除非另外说明,全部组分或组合物水平指均就该组分或组合物的有效水平而言,并且不包括杂质,例如可能存在于市售来源中的残余溶剂或副产物。
酶组分重量基于总活性蛋白质。全部百分数和比率由重量计算,除非另外说明。基于总组成计算所有百分数和比率,除非另外说明。
术语“清洁活性”指由所述蛋白酶在本发明的蛋白酶解、水解、清洁或其他过程期间占优势的条件下实现的清洁性能。在一些实施方案中,清洁性能通过应用涉及酶敏感性污渍例如草、血液、乳或卵蛋白的多种测定法确定,如在所述污渍经历标准洗涤条件作用后,通过多种色谱、分光光度或其他定量方法学所确定的那样。示例性测定法包括,但不限于WO99/34011和美国专利号6,605,458(两个均在此引入作为参考)中描述的那些测定法以及实施例中所包括的那些方法。
术语蛋白酶的“清洁有效量”指本文中前述的蛋白酶量,所述的蛋白酶量在特定清洁组合物中实现期望的酶活性水平。此类有效量由本领域技术人员轻易地确定并且基于许多因素,诸如所用的具体蛋白酶、清洁用途、该清洁组合物的具体组成和是否需要液态或干态(例如颗粒状、棒状)组合物等。
如本文中所用的术语“清洁辅助物质”意指为所期望的清洁组合物的特定类型或产品形式(例如液体剂、颗粒剂、粉剂、棒剂、糊剂、喷撒剂、片剂、凝胶剂或泡沫剂组合物)所选择的任何液体、固体或气态物质,所述物质也优选地与该组合物中使用的蛋白酶相容。在一些实施方案中,颗粒剂组合物是“密实”形式,而在其他实施方案中,液体剂组合物是“浓缩”形式。
如本文中所用,“低洗涤剂浓度”系统包括其中小于约800ppm洗涤剂组分存在于洗涤水中的洗涤剂。一般认为日本洗涤剂是低洗涤剂浓度系统,因为它们通常具有存在于洗涤水中的大约667ppm洗涤剂组分。
如本文中所用,“中等洗涤剂浓度”系统包括其中约800ppm至约2000ppm洗涤剂组分存在于洗涤水中的洗涤剂。通常认为北美洗涤剂是中等洗涤剂浓度系统,因为它们通常具有存在于洗涤水中的大约975ppm洗涤剂组分。巴西洗涤剂一般具有存在于洗涤水中的大约1500ppm洗涤剂组分。
如本文中所用,“高洗涤剂浓度”系统包括大于约2000ppm洗涤剂组分存在于洗涤水中的洗涤剂。通常认为欧洲洗涤剂是高洗涤剂浓度系统,因为它们通常具有洗涤水中大约3000-8000ppm的洗涤剂组分。
如本文中所用,“织物清洁组合物”包括手工和机器衣物洗涤剂组合物,其包括衣物添加组合物和适用于浸泡和/或预处理污渍织物(例如衣物、亚麻布和其他纺织材料)的组合物。
如本文中所用,“非织物清洁组合物”包括非纺织物(即织物)表面清洁组合物,其包括但不限于洗涤餐具的洗涤剂组合物、口腔清洁组合物、义齿清洁组合物和个人清洁组合物。
本文中清洁组合物的“密实”形式最好由密度反映,并且就组合物而言,由无机填充盐的量反映。无机填充盐是粉末形式的洗涤剂组合物常规成分。在常规洗涤剂组合物中,填充盐以相当大的量存在,一般占总组合物重量的17-35%。相反,在密实组合物中,填充盐以不超过总组合物15%的量存在。在一些实施方案中,填充盐以不超过组合物重量10%、更优选5%的量存在。在一些实施方案中,无机填充盐选自硫酸碱金属盐和碱土金属盐以及氯化碱金属盐和碱土金属盐。优选的填充盐是硫酸钠。
发明详述
中性金属内肽酶(即,中性金属蛋白酶)(EC 3.4.24.4)属于绝对需要锌离子用于催化活性的蛋白酶类。这些酶在中性pH及在30至40kDa大小范围内具最佳活性。中性金属蛋白酶结合2至4个钙离子,所述钙离子有助于该蛋白的结构稳定性。在金属蛋白酶活性部位结合的金属离子是关键特点,其允许水分子的活化。该水分子随后作为亲核试剂起作用并且切割肽键的羰基。
中性锌结合金属蛋白酶家族包括细菌酶嗜热菌蛋白酶、和类嗜热菌蛋白酶(“TLPs”),以及羧肽酶A(消化酶),以及催化参与组织重建和降解的反应的基质金属蛋白酶。就稳定性和功能而言,这些蛋白酶中仅有的最佳表征的是嗜热菌蛋白酶及其变体(TLP)。实际上,许多研究集中于工程化枯草芽孢杆菌(Bacillus subtilis)中性金属蛋白酶,以增加这些酶的热稳定性(例如,参见Vriend等,在Tweel等(编辑)的Stability and Stabilization of Enzymes一书中,Elsevier,pp.93-99[1993])。
大多数努力集中于通过改变可阻止局部解折叠过程的结构决定因素(通过分子建模确定)来增加蛋白酶的稳定性,所述的局部解折叠过程将导致蛋白质的自溶以及在高温下导致该中性蛋白酶变性。(例如,参见van denBurg等,在Hopsu-Havu等,(编辑),Proteolysis in Cell Functions Manipulating the Autolvtic Pathway of a Bacillus Protease.Biomedical andHealth Research,卷13,IOS Press[1997]p.576.)。
本文中提供了用于改造具有改良特性的中性金属蛋白酶的组合物和方法。如本文所述,已报道钙离子能够帮助阻止其它蛋白酶(诸如嗜热菌蛋白酶)自溶。已通过添加钙稳定了嗜热脂肪芽孢杆菌(B.stearothermophilus)中性蛋白酶对抗自溶和蛋白酶解降解(参见Dürrschmidt等,FEBS J.,272:1523-1534[2005])。
实际上,本发明提供了适于改造不依赖钙来维持其结构稳定性的中性金属蛋白酶的组合物和方法。在一些实施方案中,改造防止了特定二级结构元件中的局部解折叠,其可能可防止蛋白水解。
天然和经改造的蛋白酶(诸如枯草杆菌蛋白酶)通常在枯草芽孢杆菌中表达,并且数种所述蛋白酶已应用于洗涤剂组合物中,用于移除蛋白质污渍。其它例如已用于烘烤业(例如,来自热溶蛋白芽孢杆菌(Bacillusthermoproteolyticus)的嗜热菌蛋白酶,例如参见Galante和Formantici,Curr.Organic Chem.,7,1399-1422[2003])。一般地,丝氨酸蛋白酶已更广泛地应用于洗涤剂中,至少部分是因为这些蛋白酶相对容易稳定。
实际上,由于许多原因,金属蛋白酶更少用于工业,尤其是更少用于洗涤剂工业。这些酶涉及更复杂的蛋白质系统,因为这些酶的稳定和功能分别绝对地需要钙离子和锌离子。此外,洗涤剂溶液以及用于洗衣过程的水往往含有通常干扰该酶与所述离子结合、或螯合这些离子的组分,导致蛋白酶蛋白水解功能的降低或丧失以及使蛋白酶不稳定。
如在本发明的开发期间所确定的那样,NprE在柠檬酸盐的存在下的自溶模式可通过等式表示:
其中N是天然形式,I表示部分折叠的中间体,以及AP是自溶的蛋白酶。对于NprE而言,柠檬酸盐最可能通过移除钙离子使蛋白结构不稳定,所述钙离子的移除产生部分解折叠的中间体(I)状态,使得环和表面残基易于自溶。自溶蛋白片段的产生将是快速的并且是高序的。在这些区域中或邻近这些区域的稳定化替换产生不那么易于自溶的NprE变体。变体的模式与野生型的模式最可能类似,但是自溶蛋白(AP)的产生实质性地减缓了。在柠檬酸盐存在或不存在下的热解折叠是强调表示活性和完整变体在柠檬酸盐的情况下具有折叠结构的关键。这一数据表明对柠檬酸盐稳定的替换最可能增加了钙-胁迫的蛋白质的稳定性,因为所发现的突变中没有一个直接参与钙结合。因此,如本文所述,可通过改进钙胁迫的蛋白质的稳定性间接地矫正NprE由于丧失钙导致的柠檬酸盐诱导的不稳定性。
具体地,应用活性测定法和SDS-PAGE所研究的野生型解淀粉芽胞杆菌NprE蛋白酶的对柠檬酸盐诱导的失活和自溶是迅速且不可逆的。通过Edman降解鉴定的初始自溶位点的N端位于环区并且在分子的表面。单位点饱和诱变和随后的组合诱变产生了示范性的对柠檬酸盐稳定的蛋白质,其在S129、F130、M138、V190和D220具有5个氨基酸替换,所述位点分布在环和表面位点区域。当在室温温育过夜时,S129I-F130L-M138L-V190I-D220P分子在100mM柠檬酸盐的存在下完全有活性且结构完整。在柠檬酸盐存在下对单和多重组合变体的热熔点的热测定显示出加成性,并且表观ΔTm是+10℃。认为这一稳定效果是由于产生了不会经历不可逆失活及自溶过程的稳定的天然状态。由于工业洗涤剂通常含有柠檬酸盐,本发明为在生产和开发含有NprE变体的工业洗涤剂中的应用提供了极其有益的机会。
本发明清洁制剂和洗涤制剂的详细描述
除非另外说明,本文提供的所有组分或组合物水平指均就该组分或组合物的有效水平而言,并且不包括杂质,例如可能存在于市售来源中的残余溶剂或副产物。酶组分重量基于总活性蛋白质。全部百分数和比率由重量计算,除非另外说明。基于总组成计算所有百分数和比率,除非另外说明。
在示范性的洗涤剂组合物中,将酶水平表达为纯酶占总组合物的重量,并且除非另外明确说明,按照占总组合物的重量表达洗涤剂成分。
包含中性金属蛋白酶的清洁组合物
本发明的中性金属蛋白酶可用于配制各种洗涤组合物。本发明的清洁组合物可有利地用于例如,洗衣店应用、硬表面清洁、自动碟洗应用、以及化妆品应用,诸如假牙、牙齿、头发和皮肤。然而,由于本发明的酶在较低温度的溶液中升高的效果以及较高的颜色安全特征,本发明的酶理想地适于洗衣店应用,诸如漂白织物。此外,本发明的酶还可用于颗粒和液体组合物中。
本发明的酶还可用于清洁添加产品。当期望附加的漂白效果时,包括至少一种本发明的酶的清洁添加产品理想地适于包括在洗涤过程中。此类情况包括但不限于低温溶液清洁应用。该添加产品以其最简单的形式可以是本发明提供的一种或多种中性金属蛋白酶。在一些实施方案中,以剂量形式包装该添加物用于添加至清洁程序中,其中应用了过氧化物源并且期望增加的漂白效果。在一些实施方案中,所述的单剂量形式包含:丸剂、片剂、软胶囊或其它单剂量形式(包括预计量的粉末和/或液体)。在一些实施方案中,包括填充剂和/或载体材料,以增加此类组合物的体积。合适的填充剂或载体材料包括但不限于:各种硫酸盐、碳酸盐和硅酸盐以及滑石粉、粘土等。在一些实施方案中,用于液体组合物的填充剂和/或载体材料包括水和/或低分子量伯醇或仲醇,包括多元醇和二醇。此类醇的实例包括但不限于:甲醇、乙醇、丙醇和异丙醇。在一些实施方案中,组合物包含约5%至约90%的此类材料。在其它的实施方案中,应用酸性填充剂以降低组合物的pH。在一些备选的实施方案中,所述清洁添加物包括至少一种如下所描述的活化的过氧化物(peroxygen)源和/或如下面更详细描述的辅助剂组分。
本发明的清洁组合物和清洁添加物需要有效量的本发明提供的中性金属蛋白酶。在一些实施方案中,通过添加一种或多种本发明提供的中性金属蛋白酶达到酶的所需水平。一般地,本发明的清洁组合物包含至少0.0001重量百分数、约0.0001-约1重量百分数、约0.001-约0.5重量百分数、或甚至约0.01-约0.1重量百分数的至少一种本发明提供的中性金属蛋白酶。
在一些优选的实施方案中,一般地如此配制本文提供的清洁组合物,使得在水性清洁操作中使用时,洗涤水具有约5.0至约11.5的pH,或在备选的实施方案中,甚至是约6.0至约10.5。在一些优选的实施方案中,一般地配制液体产品制剂以具有约3.0至约9.0的净pH,而在一些备选的实施方案中,该制剂具有约3至约5的净pH。在一些优选的实施方案中,一般地配制颗粒洗衣店产品以具有约8至约11的pH。将pH控制在推荐使用水平的技术包括应用缓冲剂、碱和酸等,并且是本领域公知的。
在一些特别优选的实施方案中,当至少一种中性金属蛋白酶应用于颗粒组合物或液体中时,该中性金属蛋白酶以包封的颗粒的形式以在储存期间保护其不与该颗粒组合物中的其它组分接触。此外,包封还提供了在清洁过程期间控制中性金属蛋白酶利用率的方式,并且可以增强中性金属蛋白酶的功效。预期本发明的包封的中性金属蛋白酶可用于各种环境。还预期可应用本领域已知的任何合适的包封材料和方法包封该中性金属蛋白酶。
在一些优选的实施方案中,包封材料一般地至少包封一部分中性金属蛋白酶催化剂。在一些实施方案中,包封材料是水可溶的和/或水可分散的。在一些额外的实施方案中,包封材料具有0℃或更高的玻璃化转变温度(Tg)(更多有关玻璃化转变温度的信息例如参见,WO 97/11151,尤其是从第6页25行至第7页第2行)。
在一些实施方案中,包封材料选自:碳水化合物、天然或合成树胶、几丁质和脱乙酰壳多糖、纤维素和纤维素衍生物、硅酸盐、磷酸盐、硼酸盐、聚乙烯醇、聚乙二醇、石蜡和它们的组合物。在包封材料是碳水化合物的一些实施方案中,其选自:单糖、寡糖、多糖和它们的组合。在一些优选的实施方案中,包封材料是淀粉(对于一些示范性的合适淀粉的描述例如参见EP 0922499、US 4,977,252、US 5,354,559和US 5,935,826)。
在其它实施方案中,包封材料包含制备自塑料的微球体(例如,热塑料、丙烯腈、甲基丙烯腈、聚丙烯腈、聚甲基丙烯腈和它们的混合物;可用的商业可获得的微球体包括但不限于:[Casco Products,Stockholm,Sweden]、PM 6545、PM 6550、PM 7220、PM 7228、
Figure GPA00001126135000372
Figure GPA00001126135000373
[PQ Corp.,Valley Forge,PA]、
Figure GPA00001126135000374
Figure GPA00001126135000375
[Potters Industries,Inc.,Carlstadt,NJ andValley Forge,PA])。
制备和应用本申请人的清洁组合物的方法
在一些优选的实施方案中,可通过配制者选择的任意方法将本发明的组合物配制为任何合适的形式,(对于一些非限制性实例,例如参见U.S.5,879,584、U.S.5,691,297、U.S.5,574,005、U.S.5,569,645、U.S.5,565,422、U.S.5,516,448、U.S.5,489,392和U.S.5,486,303)。在一些期望低pH清洁组合物的实施方案中,通过添加诸如HCl的酸性材料调节此类组合物的pH。
辅助材料
尽管对本发明的目的不重要,但在一些实施方案中,本文描述的辅助剂的非限制性列表适用于本发明的清洁组合物中。实际上,在一些实施方案中,将辅助剂整合到本发明的清洁组合物中。在一些实施方案中,辅助材料协助和/或增强清洁功效、处理待清洁的底物、和/或修饰清洁组合物的美观(例如,香料、着色剂、染料等)。应当理解,将此类辅助剂添加至本发明的中性金属蛋白酶中。这些额外组分的确切性质、其掺入水平取决于组合物的物理形式和待应用其的清洁操作性质。合适的辅助材料包括但不限于:表面活性剂、增效助剂、螯合剂、染料转移抑制剂、沉淀助剂、分散剂、额外的酶、和酶稳定剂、催化材料、漂白活化剂、漂白增效剂、过氧化氢、过氧化氢源、预先形成的过酸、聚合分散剂、粘土移除/抗再沉积剂、光亮剂、抑泡剂、染料、芳香剂、结构伸缩剂、织物柔软剂、载体、水溶增溶剂、加工助剂和/或颜料。除了本文明确提供的那些之外,其它的辅助材料是本领域公知的(例如参见,美国专利号5,576,282、6,306,812B1和6,326,348B1)。在一些实施方案中,前述的辅助剂成分构成了本发明清洁组合物的平衡。
表面活性剂-在一些实施方案中,本发明的清洁组合物包含至少一种表面活性剂或表面活性剂系统,其中所述的表面活性剂选自:非离子表面活性剂、阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂、两性离子表面活性剂、半极性非离子表面活性剂、和它们的混合物。在一些低pH清洁组合物实施方案(例如,具有约3至约5的净pH的组合物)中,该组合物一般不含有烷基乙氧基化的硫酸盐,因为据信这一类表面活性剂可被该组合物的酸性组分水解。
在一些实施方案中,表面活性剂以清洁组合物重量的约0.1%至约60%重量的水平存在,而在备选的实施方案中,该水平是约1%至约50%,在其它实施方案中,该水平是约5%至约40%。
增效助剂-在一些实施方案中,本发明的清洁组合物包含一种或多种洗涤剂增效助剂或增效助剂系统。在一些掺入至少一种增效助剂的实施方案中,该清洁组合物包含清洁组合物重量的至少约1%、约3%至约60%,或者甚至约5%至约40%的增效助剂。
增效助剂包括但不限于:多磷酸的碱金属盐、铵盐和烷醇铵盐、碱金属硅酸盐、碱土金属和碱金属碳酸盐、铝硅酸盐增效助剂聚羧酸酯化合物、醚羟基聚羧酸酯、马来酐和乙烯或乙烯基甲醚的共聚物、1,3,5-三羟基苯-2,4,6-三磺酸、和羧甲氧琥珀酸,聚乙酸的各种碱金属盐、铵盐和取代的铵盐,诸如乙二胺四乙酸和氨三乙酸、和聚羧酸酯,诸如苯六甲酸、琥珀酸、柠檬酸、氧联二琥珀酸、聚苹果酸、苯1,3,5-三羧酸、羧甲氧基琥珀酸及其可溶盐。实际上,预期任意适合的增效助剂都可应用在本发明不同的实施方案中。
螯合剂-在一些实施方案中,本发明的清洁组合物含有至少一种螯合剂。适当的螯合剂包括但不限于:铜、铁和/或锰螯合剂、和它们的混合物。在应用了至少一种螯合剂的实施方案中,本发明的清洁组合物包含目标清洁组合物的约0.1%至约15%或甚至约3.0%至约10%重量的螯合剂。
沉淀助剂-在一些实施方案中,本发明的清洁组合物含有至少一种沉淀助剂。合适的沉淀助剂包括但不限于:聚乙二醇、聚丙二醇、聚羧酸酯、土壤释放聚合物诸如聚对苯二甲酸、粘土诸如高岭石、蒙脱石、活性白土、伊利石、斑脱土、埃洛石、和它们的混合物。
染料转移抑制剂-在一些实施方案中,本发明的清洁组合物包括一种或多种染料转移抑制剂。合适的聚合染料转移抑制剂包括但不限于:聚乙烯吡咯烷酮聚合物、聚胺N-氧化物聚合物、N-乙烯吡咯烷酮和N-乙烯咪唑的共聚物、聚乙烯噁唑烷酮和聚乙烯咪唑或其混合物。
在其中应用了至少一种染料转移抑制剂的实施方案中,本发明的清洁组合物包含该清洁剂组合物的约0.0001%至约10%、约0.01%至约5%、或甚至约0.1%至约3%重量的染料转移抑制剂。
分散剂-在一些实施方案中,本发明的清洁组合物含有至少一种分散剂。合适的水溶性有机材料包括但不限于:同-或共-聚合酸或它们的盐,其中多聚羧酸包含至少两个被不超过两个碳原子彼此隔开的羧基。
-在一些实施方案中,本发明的清洁组合物包含一种或多种洗涤剂酶,其提供清洁功效和/或织物护理益处。合适的酶的实例包括但不限于:半纤维素酶、过氧化物酶、蛋白酶、纤维素酶、木聚糖酶、脂肪酶、磷脂酶、酯酶、角质酶、果胶酶、角蛋白酶、还原酶、氧化酶、酚氧化酶、脂氧合酶、木质酶、支链淀粉酶、单宁分解酶、戊聚糖酶、malanases、β-葡聚糖酶、阿拉伯糖苷酶、透明质酸酶、软骨素酶、漆酶和淀粉酶,或其混合物。在一些实施方案中,应用酶的组合(即“鸡尾酒”混合物),其包含与淀粉酶联合应用通常可应用的酶,例如蛋白酶、脂肪酶、角质酶和/或纤维素酶。
酶稳定剂-在本发明的一些实施方案中,稳定本发明的洗涤剂制剂中使用的酶。预期各种酶稳定技术均可用于本发明。例如,在一些实施方案中,通过在提供此类离子给酶的已完成的组合物中存在的锌(II)、钙(II)和/或镁(II)离子的水溶性源稳定本文应用的酶,以及其它金属离子(例如,钡(II)、钪(II)、铁(II)、锰(II)、铝(III)、锡(II)、钴(II)、铜(II)、镍(II)和氧钒(IV))。
催化金属复合物-在一些实施方案中,本发明的清洁组合物含有一种或多种催化金属复合物。在一些实施方案中,应用含有金属的漂白催化剂。在一些优选的实施方案中,所述金属漂白催化剂包含这样的催化系统,所述催化系统包含确定漂白催化活性的过渡金属阳离子(例如,铜、铁、钛、钌、钨、钼或锰阳离子)、几乎不具有或不具有漂白催化活性的辅助金属阳离子(例如,锌或铝阳离子)以及具有用于催化和辅助金属阳离子的明确的稳定常数的隔离物,尤其是乙二胺四乙酸、乙二胺四(亚甲基膦酸)和其可水溶盐(例如参见U.S.4,430,243)。
在一些实施方案中,通过锰化合物的方式催化本发明的清洁组合物。此类化合物和使用水平是本领域公知的(例如参见U.S.5,576,282)。
在其它的实施方案中,在本发明的清洁组合物中使用钴漂白催化剂。各种钴漂白催化剂是本领域公知的(例如参见U.S.5,597,936和U.S.5,595,967)。通过已知方法能很容易地制备此类钴催化剂(例如参见:U.S.5,597,936和U.S.5,595,967)。
在其它实施方案中,本发明的清洁组合物包括大的多环刚性配体(“MRL”)的过渡金属复合物。作为实用物质,并且不以限制性的方式,在一些实施方案中,调节本发明提供的组合物和清洁过程以在水性洗涤介质中提供约至少一亿分之一份的活性MRL物质,并且在一些优选的实施方案中,在洗涤水溶液中提供约0.005ppm至约25ppm、更优选约0.05ppm至约10ppm、以及最优选约0.1ppm至约5ppm的MRL。
在瞬时过渡金属漂白催化剂中优选的过渡金属包括但不限于:锰、铁和铬。优选的MRL还包括但不限于桥联的特殊极端刚性配体(例如,5,12-二乙基-1,5,8,12-四氮杂二环[6.6.2]十六烷)。通过已知方法可很容易地制备合适的过渡金属MRL(例如,参见WO 00/32601和U.S.6,225,464)。
制备和应用清洁组合物的方法
可通过配制者选择的任意合适的方法将本发明的清洁组合物配制为任何合适的形式,(例如,参见U.S.5,879,584、U.S.5,691,297、U.S.5,574,005、U.S.5,569,645、U.S.5,565,422、U.S.5,516,448、U.S.5,489,392、U.S.5,486,303、U.S.4,515,705、U.S.4,537,706、U.S.4,515,707、U.S.4,550,862、U.S.4,561,998、U.S.4,597,898、U.S.4,968,451、U.S.5,565,145、U.S.5,929,022、U.S.6,294,514和U.S.6,376,445,对于一些非限制性实施例每一个均在此引入作为参考)。
使用方法
在优选的实施方案中,本发明的清洁组合物可用于清洁表面和/或织物。在一些实施方案中,所述表面和/或织物的至少一部分与本发明至少一个实施方案的清洁组合物(以净形式或稀释于洗涤溶液中)接触,并且然后任选地洗涤和/或漂洗该表面和/或织物。为本发明的目的,“洗涤”包括但不限于:擦洗和机械搅拌。在一些实施方案中,织物包含能够在普通消费者使用条件下洗涤的任何织物。在优选的实施方案中,以在溶液中约500ppm至约15,000ppm的浓度使用本发明的清洁组合物。在其中洗涤溶剂是水的一些实施方案中,水温一般为约5℃至约90℃。在一些用于织物清洁的实施方案中,水与织物的质量比一般为约1∶1至约30∶1。
实验
提供了以下实施例旨在展示和进一步说明本发明的某些优选实施方案和方面,并且不应解释为限制本发明的范围。
在随后的实验公开内容中,使用以下缩写:℃(摄氏度);rpm(转/分钟);H2O(水);HCl(盐酸);aa和AA(氨基酸);bp(碱基);kb(千碱基);kD(千道尔顿);gm(克);μg和ug(微克);mg(毫克);ng(纳克);μl和ul(微升);ml(毫升);mm(毫升);nm(纳米);μm和um(微米);M(摩尔);mM(毫摩尔);μM和uM(微摩尔);U(单位);V(伏特);MW(分子量);sec(秒);min(分钟);hr(小时);MgCl2(氯化镁);NaCl(氯化钠);OD28O(在280nm的光密度);OD40S(在405nm的光密度);OD600(在600nm的光密度);PAGE(聚丙烯酰胺凝胶电泳);EtOH(乙醇);PBS(磷酸盐缓冲盐水[150mM NaCl,10mM磷酸钠缓冲液,pH 7.2]);LAS(十二烷基磺酸钠);SDS(十二烷基硫酸钠);Tris(三(羟甲基)氨基甲烷);TAED(N,N,N’N’-四乙酰乙二胺);BES(聚醚砜(polyethersulfone));MES(一水合2-吗啉乙磺酸;分子量195.24;Sigma#M-3671);CaCl2(无水氯化钙;分子量110.99;Sigma#C-4901);DMF(N,N-二甲基甲酰胺,分子量73.09,d=0.95);Abz-AGLA-Nba(2-氨基苯甲酰-L-丙氨酰甘氨酰-L-亮氨酰-L-丙氨酰-4-硝基苄酰胺,分子量583.65;Bachem#H-6675,VWR目录号#100040-598);SBG 1%(具葡萄糖的超级肉汤;6g大豆胨[Difco]、3g酵母提取物、6gNaCl、6g葡萄糖);在使用本领域已知的方法消毒前,用NaOH调节pH至7.1;w/v(重量比体积);v/v(体积比体积);Npr和npr(中性金属蛋白酶);
Figure GPA00001126135000421
(SEQUEST数据库搜索程序,华盛顿大学);MS(质谱);BMI(血液、乳、墨汁);SRI(污渍去除指数);Npr和npr(中性金属蛋白酶基因);NprE和nprE(解淀粉芽孢杆菌中性金属蛋白酶);PMN(纯化的
Figure GPA00001126135000422
金属蛋白酶);以及Quint(S129I-F130L-M138L-V190I-D220P五重NprE变体)。
应用以下缩写用于公司,其中在示范性实施例中提及了所述公司的产品或服务:TIGR(基因组研究所,Rockville,MD);AATCC(美国纺织化学师与印染师协会);Amersham(Amersham Life Science,Inc.ArlingtonHeights,IL);Corning(Corning International,Corning,NY);ICN(ICNPharmaceuticals,Inc.,Costa Mesa,CA);Pierce(Pierce Biotechnology,Rockford,IL);Equest(Equest,Warwick International Group,Inc.,Flintshire,UK);EMPA(Eidgenossische Material Prufungs und VersuchAnstalt,St.Gallen,瑞士);CFT(试验材料中心,Vlaardingen,荷兰);Amicon(Amicon,Inc.,Beverly,MA);ATCC(美国典型培养物保藏中心,Manassas,VA);Becton Dickinson(Becton Dickinson Labware,LincolnPark,NJ);Perkin-Elmer(Perkin-Elmer,Wellesley,MA);Rainin(RaininInstrument,LLC,Woburn,MA);Eppendorf(德国汉堡Eppendorf AG);Waters(Waters,Inc.,Milford,MA);Geneart(德国雷根斯堡GeneartGmbH);Perseptive Biosystems(Perseptive Biosystems,Ramsey,MN);Molecular Probes(Molecular Probes,Eugene,OR);BioRad(BioRad,Richmond,CA);Clontech(CLONTECH实验室,Palo Alto,CA);Cargill(Cargill,Inc.,Minneapolis,MN);Difco(Difco实验室,Detroit,MI);GIBCOBRL或Gibco BRL(Life Technologies,Inc.,Gaithersburg,MD);NewBrunswick(New Brunswick Scientific Company,Inc.,Edison,NJ);Thermoelectron(Thermoelectron Corp.,Waltham,MA);BMG(德国奥芬堡BMG Labtech,GmbH,);Greiner(Greiner Bio-One,Kremsmuenster,奥地利);Novagen(Novagen,Inc.,Madison,WI);Novex(Novex,San Diego,CA);Finnzymes(Finnzymes OY,芬兰);Qiagen(Qiagen,Inc.,Valencia,CA);Invitrogen(Invitrogen Corp.,Carlsbad,CA);Sigma(Sigma ChemicalCo.,St.Louis,MO);DuPont Instruments(Asheville,NY);Global MedicalInstrumentation或GMI(Global Medical Instrumentation;Ramsey,MN);MJ Research(MJ Research,Waltham,MA);Infors(Infors AG,Bottmingen,瑞士);Stratagene(Stratagene Cloning Systems,La Jolla,CA);Roche(Hoffmann La Roche,Inc.,Nutley,NJ);Agilent(AgilentTechnologies,Palo Alto,CA);S-Matrix(S-Matrix Corp.,Eureka,CA);USTesting(United States Testing Co.,Hoboken,NY);West Coast AnalyticalServices(West Coast Analytical Services,Inc.,Santa Fe Springs,CA);离子束分析实验室(萨里大学离子束中心离子束分析实验室(Guildford,UK);TOM(Terg-o-Meter);BaChem(BaChem AG,Bubendorf,瑞士);Molecular Devices(Molecular Devices,Inc.,Sunnyvale,CA);Corning(Corning International,Corning,NY);MicroCal(Microcal,Inc.,Northhampton,MA);Chemical Computing(Chemical Computing Corp.,Montreal,加拿大);NCBI(美国国家生物技术信息中心);ArgoBioanalytica(Argo Bioanalytica.Inc,New Jersey);Vydac(Grace Vydac,Hesperia,CA);Minolta(Konica Minolta,Ramsey,NJ);和Zeiss(CarlZeiss,Inc.,Thornwood,NY)。
本发明提供并用到了以下序列:
SEQ ID NO:1(NprE)
GTGGGTTTAGGTAAGAAATTGTCTGTTGCTGTCGCCGCTTCCTTTATGAGTTTAACCATCAGTCTGCCGGGTGTTCAGGCCGCTGAGAATCCTCAGCTTAAAGAAAACCTGACGA ATTTTGTACCGAAGCATTCTTTGGTGCAATCAGAATTGCCTTCTGTCAGTGACAAAGC TATCAAGCAATACTTGAAACAAAACGGCAAAGTCTTTAAAGGCAATCCTTCTGAAAG ATTGAAGCTGATTGACCAAACGACCGATGATCTCGGCTACAAGCACTTCCGTTATGT GCCTGTCGTAAACGGTGTGCCTGTGAAAGACTCTCAAGTCATTATTCACGTCGATAA ATCCAACAACGTCTATGCGATTAACGGTGAATTAAACAACGATGTTTCCGCCAAAAC GGCAAACAGCAAAAAATTATCTGCAAATCAGGCGCTGGATCATGCTTATAAAGCGAT CGGCAAATCACCTGAAGCCGTTTCTAACGGAACCGTTGCAAACAAAAACAAAGCCG AGCTGAAAGCAGCAGCCACAAAAGACGGCAAATACCGCCTCGCCTATGATGTAACC ATCCGCTACATCGAACCGGAACCTGCAAACTGGGAAGTAACCGTTGATGCGGAAAC AGGAAAAATCCTGAAAAAGCAAAACAAAGTGGAGCATGCCGCCACAACCGGAACAGGTACGACTCTTAAAGGAAAAACGGTCTCATTAAATATTTCTTCTGAAAGCGGCAAATATGTGCTGCGCGATCTTTCTAAACCTACCGGAACACAAATTATTACGTACGATCTGCAAAACCGCGAGTATAACCTGCCGGGCACACTCGTATCCAGCACCACAAACCAGTTTACAACTTCTTCTCAGCGCGCTGCCGTTGATGCGCATTACAACCTCGGCAAAGTGTATGATTATTTCTATCAGAAGTTTAATCGCAACAGCTACGACAATAAAGGCGGCAAGATCGTATCCTCCGTTCATTACGGCAGCAGATACAATAACGCAGCCTGGATCGGCGACCAAATGATTTACGGTGACGGCGACGGTTCATTCTTCTCACCTCTTTCCGGTTCAATGGACGTAACCGCTCATGAAATGACACATGGCGTTACACAGGAAACAGCCAACCTGAACTACGAAAATCAGCCGGGCGCTTTAAACGAATCCTTCTCTGATGTATTCGGGTACTTCAACGATACTGAGGACTGGGATATCGGTGAAGATATTACGGTCAGCCAGCCGGCTCTCCGCAGCTTATCCAATCCGACAAAATACGGACAGCCTGATAATTTCAAAAATTACAAAAACCTTCCGAACACTGATGCCGGCGACTACGGCGGCGTGCATACAAACAGCGGAATCCCGAACAAAGCCGCTTACAATACGATTACAAAAATCGGCGTGAACAAAGCGGAGCAGATTTACTATCGTGCTCTGACGGTATACCTCACTCCGTCATCAACTTTTAAAGATGCAAAAGCCGCTTTGATTCAATCTGCGCGGGACCTTTACGGCTCTCAAGATGCTGCAAGCGTAGAAGCTGCCTGGAATGCAGTCGGATTGTAA
SEQ ID NO:2(NprE前体)
MGLGKKLSVAVAASFMSLTISLPGVQAAENPQLKENLTNFVPKHSLVQSELPSVSDKAIK QYLKQNGKVFKGNPSERLKLIDQTTDDLGYKHFRYVPVVNGVPVKDSQVIIHVDKSNNV YAINGELNNDVSAKTANSKKLSANQALDHAYKAIGKSPEAVSNGTVANKNKAELKAAA TKDGKYRLAYDVTIRYIEPEPANWEVTVDAETGKILKKQNKVEHAATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSMDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITVSQPALRSLSNPTKYGQPDNFKNYKNLPNTDAGDYGGVHTNSGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
SEQ ID NO:3(NprE成熟体)
AATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSMDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITVSQPALRSLSNPTKYGQPDNFKNYKNLPNTDAGDYGGVHTNSGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
SEQ ID NO:4(NprE引物)
CTGCAGGAATTCAGATCTTAACATTTTTCCCCTATCATTTTTCCCG
SEQ ID NO:5(NprE引物)
GGATCCAAGCTTCCCGGGAAAAGACATATATGATCATGGTGAAGCC
SEQ ID NO:6(pUB-BglII-FW)
GTCAGTCAGATCTTCCTTCAGGTTATGACC
SEQ ID NO:7(pUB-BglII-RV)
GTCTCGAAGATCTGATTGCTTAACTGCTTC
SEQ ID NO:8(NprE)
AATTGTGTTL
SEQ ID NO:9(NprE)
DAGDYGGVHT
SEQ ID NO:10(NPrE)
AGDYGGVHTN
SEQ ID NO:11(NprE)
GDYGGVHTN
SEQ ID NO:12(NprE)
LSNPTKYGQP
SEQ ID NO:13(NprE片段1)
AATTGTGTTLTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNIVSSVHYGSRSLSNPTKYGQPDNFK
SEQ ID NO:14(NprE片段2)
DAGDYGGVHTAAYNTITKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
SEQ ID NO:15(NprE片段3)
AATTGTGTTLTVSLNISSESGKDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKNSYDNKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSMD
SEQ ID NO:16(NprE片段4)
AATTGTGTTLTVSLNISSESGKDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKNSYDNKIVSSVHYGSRMDV
SEQ ID NO:17(NprE片段5)
LSNPTKYGQPKNYKNLPNTDAGDYGGVHTNSGIPNKAEQIYYRALTVTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
SEQ ID NO:18(NprE S129I/F130L/D220P)
AATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGILFSPLSGSMDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITVSQPALRSLSNPTKYGQPDNFKNYKNLPNTPAGDYGGVHTNSGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
SEQ ID NO:19(NprE M138L/V190I/D220P)
AATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSLDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITISQPALRSLSNPTKYGQPDNFKNYKNLPNTPAGDYGGVHTNSGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
SEQ ID NO:20(NprE S129I/F130L/M138L/V190I/D220P)
AATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGILFSPLSGSLDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITISQPALRSLSNPTKYGQPDNFKNYKNLPNTPAGDYGGVHTN SGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL
实施例1
测定法
在下文描述的实施例中使用以下测定法。在实施例中指出对下文所提供方案的任意偏离。在这些实验中,使用分光光度计来测量反应结束后形成的产物的吸光度。使用反射计来测量样品的反射度。
A.蛋白质含量测定
1.在96孔微量滴定板(MTP)中测定蛋白质含量的BCA(bicinchoninic acid)测定法
在这些测定法中,使用BCA(Pierce)测定法在MTP规格上确定蛋白酶样品中的蛋白质浓度。在这个测定系统中,使用的化学品和试剂溶液是:BCA蛋白质测定试剂和Pierce稀释缓冲液(50mM MES,pH 6.5,2mMCaCl2,0.005%-80)。使用的设备是SpectraMAX(340型)MTP读数仪。MTP从Costar获得(9017型)。
在本试验中,将200μl BCA试剂移入每一孔,随后移入20μl稀释的蛋白质。彻底混合后,MTP在37℃温育30分钟。除去可能的气泡,并且在562nm处读取孔内溶液的光密度(OD)。为测定蛋白质浓度,从样品读数中扣除背景读数。对蛋白质标准品(纯化的蛋白酶)标出OD562值以产生标准曲线。从该标准曲线外推出样品的蛋白质浓度。
2.用于在96孔微量滴定板(MTP)中测定蛋白质含量的Bradford测定
在这些测定法中,使用Bradford染料试剂(Quick Start)测定法在MTP规格上确定蛋白酶样品中的蛋白质浓度。
在这个测定系统中,使用的化学品和试剂溶液是:快速启动Bradford染料试剂(BIO-RAD目录号500-0205)、稀释缓冲液(10mM NaCI,0.1mMCaCI2,0.005%
Figure GPA00001126135000481
-80)。使用的设备是Biomek FX Robot(Beckman)和SpectraMAX(340型)MTP读数仪。MTP来自Costar(9017型)。
在本试验中,将200μl Bradford染料试剂移入每一孔,随后移入15μl稀释缓冲液。最后,添加10μl滤过的培养肉汤至诸孔。彻底混合后,MTP在室温温育至少10分钟。吹去可能的气泡并且在595nm处读取孔的OD。为测定蛋白质浓度,从样品读数中扣除背景读数(即来自非温育孔的读数)。所得OD595值提供了样品中蛋白质含量的相对量值。
B.对于蛋白酶解活性的柠檬酸盐稳定性测定法
在mM柠檬酸盐存在下温育野生型NprE和变体后测量柠檬酸盐稳定性。应用DMC水解测定法确定起始和残余活性。在这个测定系统中,使用的化学品和试剂溶液是:
一水合柠檬酸          Merck 1.00244
Pipes(无酸)           Sigma P-1851
Tris(无酸)            Sigma T-1378
HEPES(Ultra>99.5%)  Sigma-H7523
Figure GPA00001126135000482
-80                       Sigma P-8074
二甲基酪蛋白(DMC)     Sigma C-9801
Tris缓冲液(无酸)      6.04g溶于1000ml水(=50mM)
HEPES缓冲液           11.9g溶1000ml水(=50mM)
柠檬酸盐缓冲液(无酸)  21.0g溶1000ml水(=100mM),
PIPES缓冲液(无酸):   3.32g溶于约960ml水,
DMC溶液           在55mM PIPES缓冲液中1%w/v,终pH=6.0
稀释缓冲液1       0.1mM CaCl2/25mM Tris;pH 8.2
稀释缓冲液2       0.1mM CaCl2/50mM柠檬酸盐/25mM Tris;
                  pH8.2
这些稀释缓冲液的浓度均以终浓度显示。初始浓度成比例地更高并且依赖于稀释比例。在备选的实验中,HEPES可用于替换Tris。所使用的仪器是Biomek FX Robot(Beckman)和温箱/摇床(Innova,4230型;NewBrunswick)。用4N HCI将PIPES缓冲液调节为pH 5.8(终浓度55mM)。用4N HCI将Tris缓冲液调节为pH 8.2(终浓度25mM)。用4N NaOH将50mM柠檬酸盐/25mM Tris缓冲液调节为pH 8.2。用4N NaOH将HEPES缓冲液调节为pH 8.2(终浓度25mM)。用4N NaOH将50mM柠檬酸盐/25mM HEPES缓冲液调节为pH 8.2。
蛋白质测定和测试方法
为在柠檬酸盐稳定性测定法中建立期望的稀释率,用TCA测定法确定每一板的野生型NprE对照的蛋白酶浓度。在这一方法中,将25μl滤过的培养肉汤添加到200μl 16.875%(w/v)TCA中。在室温温育10至15分钟后,确定405nm处的光散射/吸光度。应用以纯化的NprE构建的标准线确定蛋白质浓度。
应激条件
用稀释缓冲液2稀释滤过的培养肉汤。用带子覆盖MTP,振荡数秒并且置于25℃的温箱中60分钟,以200转/分钟振荡。温育后,从每一孔取得20μl混合物并转移至新MTP,所述MTP含有180μl 1%DMC预加热的底物溶液(在25℃预加热底物)。将MTP直接置于温箱/摇床中,并且在25℃温育30分钟,200转/分钟振荡。应用如下所述的二甲基酪蛋白水解测定法确定残余蛋白酶活性。
非应激条件
用稀释缓冲液1稀释滤过的培养肉汤。立即从每一孔取得20μl混合物并转移至新MTP,所述MTP含有180μl预加热的1%DMC底物溶液(在25℃预加热底物)。将MTP直接置于温箱/摇床中,并且在25℃温育30分钟,200转/分钟振荡。应用如下所述的二甲基酪蛋白水解测定法,用TNBS确定起始蛋白酶活性。
应用以下等式计算所有的残余活性值(用二甲基酪蛋白水解测定法确定)。
%残余活性=OD60分钟值*100/OD00分钟
C.二甲基酪蛋白水解测定法
在这一测定法系统中,应用了以下化学物质和试剂
二甲基酪蛋白(DMC)   Sigma C-9801
Figure GPA00001126135000501
-80                     Sigma P-8074
PIPES缓冲液(无酸)Sigma P-1851;15.1溶解于约960ml水中;用4N NaOH将pH调节至6.0,加入1ml 5%
Figure GPA00001126135000502
-80,并使体积升为1000ml。PIPES和
Figure GPA00001126135000503
-80的终浓度分别为50mM和0.005%。
间三硝苯基磺酸(TNBS)Sigma P-2297(5%水溶液)
试剂A 将45.4g Na2B4O7.10H2O(Merck 6308)和
      15ml 4N NaOH一起溶解至1000ml终体积
      (如果需要的话通过加热)
试剂B 将35.2g NaH2PO4.1H2O(Merck 6346)和0.6g Na2SO3
      (Merck 6657)一起溶解至1000ml的终体积。
方法
为制备底物,将4g二甲基酪蛋白溶解于400ml PIPES缓冲液中。将滤过的培养物上清液稀释于PIPES缓冲液中。然后,将10μl每一稀释的上清液添加到MTP孔中的200μl底物中。用带子覆盖MTP,振荡数秒并且置于25℃的温箱中30分钟,无需搅拌。在从该温箱中移除第一个板之前约15分钟,通过使每50ml试剂A混合1ml TNBS制备TNBS试剂。使MTP的每一孔装入60μl TNBS试剂A。振荡经温育的板数秒,然后将10μl转移至具有TNBS试剂A的MTP中。用带子覆盖该板,并在室温及500转/分钟在台式摇床(BMG Thermostar)中振荡20分钟。最后,往每一孔加入200μl试剂B,在摇床上混合1分钟,并应用MTP读数仪确定在405nm处的吸光度。
针对空白值(即,没有酶的底物)校正得到的吸光度值。得到的吸光度是水解活性的测量。通过将吸光度除以确定的蛋白质浓度计算样本的(任意的)比活性。
D.2-氨基苯甲酰-L-丙氨酰甘氨酰-L-亮氨酰-L-丙氨酰-4-硝基苄酰胺 蛋白酶测定法(Abz-AGLA-Nba)
下文所提供的方法提供了某种程度的技术细节,其中所述技术细节产生独立于时间和地点的可重复性蛋白酶测定数据。尽管该测定法可适应于给定的实验条件,然而必须使通过改良方法获得的任意数据与通过原始方法产生的结果相一致。中性金属蛋白酶切割2-氨基苯甲酰-L-丙氨酰甘氨酰-L-亮氨酰-L-丙氨酰-4-硝基苄酰胺(Abz-AGLA-Nba)的甘氨酸与亮氨酸之间的肽键。溶液中游离的2-氨基苯甲酰-L-丙氨酰甘氨酸(Abz-AG)在340nm处最大激发时在415nm处具有最大荧光发射。Abz-AG的荧光被完整Abz-AGLA-Nba分子中的硝基苄酰胺猝灭。
在这些实验中,通过荧光光谱(激发340/发射415)监测由蛋白酶切割Abz-AGLA-Nba引起的Abz-AG释放。Abz-AG的出现率是蛋白酶解活性的度量值。测定法在非底物限制性初始速度条件下进行。
对于可重复性测定结果,需要带温度控制的微量板混合器(例如Eppendorf Thermomixer)。在添加酶之前,测试溶液在微量板混合器中温育至期望的温度(例如25℃)。添加酶溶液至该混合器中的板,剧烈混合并迅速转移至板读数仪。
需要具有连续数据记录、线性回归分析和温度控制能力的荧光分光光度计(例如SpectraMax M5、Gemini EM、Molecular Devices)。读数仪总是维持在期望的温度(例如25℃)。设置该读数仪用于顶部读数荧光检测并且将激发设置到350nm并将发射设置到415nm,不使用截止滤光镜。将PMT设置成中等灵敏度并且每孔5个读数。打开自动校准,但仅在第一次读数前校准。该测定法测量3分钟,同时根据待监测的孔数,使读数间隔最小化。将读数仪设置成计算milli-RFU/分钟的速率(千个相对荧光单位/分钟)。用来计算速率的读数数目(Vmax点)设置成等同于2分钟的数目,如通过读数间隔确定的那样(例如每隔10秒的读数将使用12个点来计算速率)。最大RFU设置成50,000。
酶和底物贮存液的所有吸取均用正压可调节移液器(RaininMicroman)进行。缓冲液、测试液和酶工作溶液由单通道或多通道空气排量移液器(Rainin LTS)从试管、试剂储库或贮存微量板吸取。仅当使用少数孔时,连续移液器(Eppendorf)才用于转移测试溶液至微量板孔,以使试剂损失最小化。自动移液仪诸如Beckman FX或Cybio Cybi-well也用于从工作贮存微量板转移酶溶液至分析微量板以便立刻起始整个微量板。
试剂和溶液:
52.6mM MES/NaOH,2.6mM CaCl2,pH 6.5-MES缓冲液
将MES酸(10.28g)和292mg无水CaCl2溶解于大约900mL纯化水中。溶液用NaOH滴定至pH 6.5(在25℃或用温度调节pH探头)。调节过pH的缓冲液补足至1L总体积。最终溶液经过0.22μm无菌滤器过滤并保持在室温。
在DMF中的48mM Abz-AGLA-Nba-Abz-AGLA-Nba贮存液
将大约28mg Abz-AGLA-Nba置于一支小管内。使其溶解于DMF(体积根据聚结的Abz-AGLA-Nba变化)并且涡旋混合几分钟。该溶液在室温避光贮存。
50mM MES,2.5mM CaCl2,5%DMF,2.4mM Abz-AGLA-NbapH 6.5-测试溶液
1mL Abz-AGLA-Nba贮存液添加至19mL MES缓冲液中并涡旋混合。该溶液在室温避光贮存。
50mM MES,2.5mM CaCl2,pH 6.5-酶稀释缓冲液
通过添加5mL纯化水至95mL MES缓冲液产生这种缓冲液。
50mM MES,2.5mM CaCl2,,5%DMF,pH 6.5-底物稀释缓冲液5mL纯DMF添加至95mL MES缓冲液。该缓冲液用来确定动力学参数。
酶溶液
酶贮存溶液用酶稀释缓冲液稀释成大约1ppm(1μg/mL)浓度。将
Figure GPA00001126135000531
中性蛋白酶(野生型NprE)稀释至浓度低于6ppm(6μg/mL)。优选连续稀释物。溶液在室温稳定1小时,不过对于较长的贮存时间,在冰上保持所述溶液。
方法
首先,制备全部缓冲液、贮存液和工作溶液。除非另有说明,每种酶稀释液一式三份进行测试。当未完全占满时,酶工作溶液贮存微量板以自板左边开始的全部垂直列排列(以适应板读数仪)。类似地设置相应的测试板。微量板荧光分光光度计如前述设置。
首先,将200μL等份的测试溶液置于96孔微量板的孔内。该板在25℃于温控微量板混合器中避光温育10分钟。通过从贮存微量板转移10uL酶工作溶液至混合器中的测试微量板启动该测定法。最佳地,使用96孔移液吸头,或在一些实验中,使用8孔多通道移液器首先从最左边列转移。剧烈混合该溶液15秒(在Eppendorf Thermomixer中900转/分钟)。将测试微量板立即转移至微量板荧光分光光度计并且开始记录在350nm激发和415nm发射的荧光量值。荧光分光光度计软件计算每孔荧光增加对milli-RFU/分钟的线性回归的反应速率。在一些实验中,当第一板正在读数时,将第二块板置于微量板混合器用于温度平衡。
初始速率与产物浓度(即释放的2-氨基苯甲酰基荧光)成线性关系,直到0.3mM产物,这与具有大约22,000RFU背景荧光的始自2.3mMAbz-AGLA-Nba的溶液中的大约50,000RFU相对应。Abz-AGLA-Nba溶解于DMF中并且在制备当日使用。
实施例2
在枯草芽孢杆菌中的NprE蛋白酶产生
在该实施例中,描述了在枯草芽孢杆菌中产生NprE蛋白酶所开展的实验。特别地,提供了在将质粒pUBnprE转化至枯草芽孢杆菌中所使用的方法。转化如本领域已知那样(见,例如WO 02/14490和WO2007/044993,两个均在此引入作为参考)进行。下文提供的DNA序列(来自解淀粉芽孢杆菌的nprE前导序列、nprE pro和nprE成熟DNA序列)编码NprE前体蛋白。
GTGGGTTTAGGTAAGAAATTGTCTGTTGCTGTCGCCGCTTCCTTTATGAGTTTAACCATCAGTCTGCCGGGTGTTCAGGCCGCTGAGAATCCTCAGCTTAAAGAAAACCTGACGA ATTTTGTACCGAAGCATTCTTTGGTGCAATCAGAATTGCCTTCTGTCAGTGACAAAGC TATCAAGCAATACTTGAAACAAAACGGCAAAGTCTTTAAAGGCAATCCTTCTGAAAG ATTGAAGCTGATTGACCAAACGACCGATGATCTCGGCTACAAGCACTTCCGTTATGT GCCTGTCGTAAACGGTGTGCCTGTGAAAGACTCTCAAGTCATTATTCACGTCGATAA ATCCAACAACGTCTATGCGATTAACGGTGAATTAAACAACGATGTTTCCGCCAAAAC GGCAAACAGCAAAAAATTATCTGCAAATCAGGCGCTGGATCATGCTTATAAAGCGAT CGGCAAATCACCTGAAGCCGTTTCTAACGGAACCGTTGCAAACAAAAACAAAGCCG AGCTGAAAGCAGCAGCCACAAAAGACGGCAAATACCGCCTCGCCTATGATGTAACC ATCCGCTACATCGAACCGGAACCTGCAAACTGGGAAGTAACCGTTGATGCGGAAAC AGGAAAAATCCTGAAAAAGCAAAACAAAGTGGAGCATGCCGCCACAACCGGAACAGGTACGACTCTTAAAGGAAAAACGGTCTCATTAAATATTTCTTCTGAAAGCGGCAAATATGTGCTGCGCGATCTTTCTAAACCTACCGGAACACAAATTATTACGTACGATCTGCAAAACCGCGAGTATAACCTGCCGGGCACACTCGTATCCAGCACCACAAACCAGTTTACAACTTCTTCTCAGCGCGCTGCCGTTGATGCGCATTACAACCTCGGCAAAGTGTATGATTATTTCTATCAGAAGTTTAATCGCAACAGCTACGACAATAAAGGCGGCAAGATCGTATCCTCCGTTCATTACGGCAGCAGATACAATAACGCAGCCTGGATCGGCGACCAAATGATTTACGGTGACGGCGACGGTFCATTCTTCTCACCTCTTTCCGGTTCAATGGACGTAACCGCTCATGAAATGACACATGGCGTTACACAGGAAACAGCCAACCTGAACTACGAAAATCAGCCGGGCGCTTTAAACGAATCCTTCTCTGATGTATTCGGGTACTTCAACGATACTGAGGACTGGGATATCGGTGAAGATATTACGGTCAGCCAGCCGGCTCTCCGCAGCTTATCCAATCCGACAAAATACGGACAGCCTGATAATTTCAAAAATTACAAAAACCTTCCGAACACTGATGCCGGCGACTACGGCGGCGTGCATACAAACAGCGGAATCCCGAACAAAGCCGCTTACAATACGATTACAAAAATCGGCGTGAACAAAGCGGAGCAGATTTACTATCGTGCTCTGACGGTATACCTCACTCCGTCATCAACTTTTAAAGATGCAAAAGCCGCTTTGATTCAATCTGCGCGGGACCTTTACGGCTCTCAAGATGCTGCAAGCGTAGAAGCTGCCTGGAATGCAGTCGGATTGTAA(SEQ ID NO:1)
在以上序列中,粗体表示编码成熟NprE蛋白酶的DNA,标准字体表示前导序列(nprE前导序列),且下划线部分表示前序列(nprE pro)。下文提供的氨基酸序列(NprE前导序列、NprE pro和NprE成熟DNA序列)(SEQ ID NO:2)与全长NprE前体蛋白相对应。在这个序列中,下划线部分表示前序列并且粗体表示成熟NprE蛋白酶。
MGLGKKLSVAVAASFMSLTISLPGVQAAENPQLKENLTNFVPKHSLVQSELPSVSDKAIK QYLKQNGKVFKGNPSERLKLIDQTTDDLGYKHFRYVPVVNGVPVKDSQVIIHVDKSNNV YAINGELNNDVSAKTANSKKLSANQALDHAYKAIGKSPEAVSNGTVANKNKAELKAAA TKDGKYRLAYDVTIRYIEPEPANWEVTVDAETGKILKKQNKVEHAATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSMDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITVSQPALRSLSNPTKYGQPDNFKNYKNLPNTDAGDYGGVHTNSGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL(SEQ ID NO:2)
成熟NprE序列如SEQ ID NO:3所示。使用该序列作为制备本文所述变体文库的基础。
AATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTQIITYDLQNREYNLPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNSYDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSMDVTAHEMTHGVTQETANLNYENQPGALNESFSDVFGYFNDTEDWDIGEDITVSQPALRSLSNPTKYGQPDNFKNYKNLPNTDAGDYGGVHTNSGIPNKAAYNTITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAALIQSARDLYGSQDAASVEAAWNAVGL(SEQ ID NO:3)
使用两条特异性引物:Oligo AB1740:CTGCAGGAATTCAGATCTTAACATTTTTCCCCTATCATTTTTCCCG(SEQ ID NO:4)和OligoAB1741:GGATCCAAGCTTCCCGGGAAAAGACATATATGATCATGGTGAAGCC(SEQ ID NO:5),通过PCR从解淀粉芽孢杆菌染色体DNA扩增nprE基因而构建pUBnprE表达载体。
在热循环仪中用Phusion高保真DNA聚合酶(Finnzymes)进行PCR。PCR混合物含有10μl 5×缓冲液(Finnzymes Phusion)、1μl 10mM dNTPs、1.5μl DMSO、1μl每种引物、1μl Finnzymes Phusion DNA聚合酶、1μl染色体DNA溶液50ng/μl,34.5μl MilliQ水。使用以下PCR方案:
PCR方案:
1)98℃30秒;
2)98℃10秒;
3)55℃20秒;
4)72℃1分钟;
5)步骤2至4进行25个循环;和
6)72℃5分钟。
该PCR产生1.9kb DNA片段,该片段用BgIII和BclI DNA限制性酶消化。多拷贝芽孢杆菌载体pUB110(见例如Gryczan,J Bacteriol,134:318-329,1978)用BamHl消化。随后在pUB110xBamHI载体中连接PCR片段xBgIIIxBclI以形成pUBnprE表达载体。
将pUBnprE转化至枯草芽孢杆菌(ΔaprE,ΔnprE,oppA,ΔspoIIE,degUHy32,ΔamyE::(xylR,pxylA-comK)菌株。如WO 02/14490(其在此引入作为参考)描述进行枯草芽孢杆菌转化。在含有具20mg/L新霉素的25mlMBD培养基(基于MOPS的确定成分培养基)的摇瓶中使携带pUBnprE载体的枯草芽孢杆菌转化体进行选择性生长。基本上如本领域已知那样(见Neidhardt等人,J Bacteriol,119:736-747,1974)制备MBD培养基,但是基础培养基不含NH4Cl2、FeSO4和CaCl2,使用3mM K2HPO4并且该基础培养基补充有60mM脲、75g/L葡萄糖和1%大豆胨。另外,将该微营养物制备为1升中含有400mg FeSO4.7H2O、100mg MnSO4.H2O、100mgZnSO4.7H2O、50mg CuCl2.2H2O、100mg CoCl2.6H2O、100mgNaMoO4.2H2O、100mg Na2B4O7.10H2O、10ml 1M CaCl2和10ml 0.5M柠檬酸钠的100X贮存液。培养物在37℃于温箱/摇床(Infors)中孵育3日。该培养导致具有蛋白酶解活性的分泌性NprE蛋白酶的产生,如通过蛋白酶测定法证实的那样。使用NuPage Novex 10%Bis-Tris凝胶(Invitrogen,目录号NP0301BOX)进行凝胶分析。为制备分析用样品,2体积上清液与1体积1M HCl、1体积4×LDS样品缓冲液(Invitrogen,目录号NP0007)和1%PMSF(20mg/ml)混合。随后在70℃加热该样本10分钟。然后,将25μL每份样品连同10μL SeeBlue plus 2预染蛋白质标准品(Invitrogen,目录号LC5925)一起上样到凝胶上。结果清晰地证明本实施例中描述的nprE克隆策略适合在枯草芽孢杆菌中产生有活性的NprE。
实施例3
位点评价文库(SEL)的产生
在本实施例中,描述了用于构建nprE SEL的方法。
nprE SEL的产生-方法I
含有上文所述nprE表达盒的pUBnprE载体充当模板DNA。该载体含有在位点评价文库构建中使用的独特的BglII限制性位点。简而言之,为构建nprE位点评价文库,进行3个PCR反应,包括在成熟nprE DNA序列中导入目的突变密码子的2个诱变PCR和用来融合这两个诱变PCR以构建pUBnprE表达载体的第三PCR,其中所述pUBnprE表达载体在成熟nprE序列中包括期望的突变密码子。
诱变的方法基于密码子特异的突变方法,其中使用包含专门设计的三联体DNA序列NNS(N=A、C、T或G;并且S=C或G)的长度25至45个核苷酸的正向和反向寡核苷酸引物进行在特定DNA三联体中一次产生全部可能的突变,其中所述NNS与待突变密码子的序列相对应,并且确保在这个特定nprE成熟密码子处随机掺入核苷酸。引物名称中列出的数字对应于特定nprE成熟密码子位置。包括评价的多重位点。示例性引物序列表在WO 2007/044993中描述,其在此引入作为参考。
用来构建位点评价文库的两条额外引物含有BglII限制性位点连同两侧有BglII限制性位点的一部分pUBnprE DNA序列。这些引物由Invitrogen生产(50nmole规格,脱盐):pUB-BglII-FWGTCAGTCAGATCTTCCTTCAGGTTATGACC(SEQ ID NO:6);和pUB-BglII-RV GTCTCGAAGATCTGATTGCTTAACTGCTTC(SEQ IDNO:7)。
每个SEL的构建始于使用pUB-BglII-FW引物和特异性nprE反向诱变引物的两个初级PCR扩增。对于第二PCR,使用pUB-BglII-RV引物和特异性nprE正向诱变引物(对于正向和反向诱变引物,nprE成熟密码子位置相同)。
所述突变在成熟nprE序列中的导入使用Phusion高保真DNA聚合酶(Finnzymes;目录号F-530L)进行。全部PCR根据随同该聚合酶提供的Finnzymes方案进行。对于初级PCR的PCR条件是:
对于初级PCR 1:
pUB-BglII-FW引物和特异性NPRE反向诱变引物-两者均1μL(10μM);
对于初级PCR 2:
pUB-BglII-RV引物和特异性NPRE正向诱变引物-两者均1μL(10μM);
以及
5×Phusion HF缓冲液  10μL
10mM dNTP混合物      1μL
Phusion DNA聚合酶    0.75μL(2单位/μL)
DMSO,100%          1μL
pUBnprE模板DNA       1μL(0.1-1ng/μL)
高压灭菌蒸馏水       直至50μL
PCR程序是:98℃30秒,30x(98℃10秒,55℃20秒,72℃1.5分钟)和72℃5分钟,在PTC-200Peltier热循环仪(MJ Research)中进行。所述PCR实验产生大约2至3kB的2个片段,其具有目的NprE成熟密码子周围约30个核苷酸碱基的重叠。在第三PCR反应中使用前述这两个片段以及正向和反向BglII引物来融合所述片段。该融合PCR反应在以下溶液中实施:
pUB-BglII-正向引物和pUB-BglII-反向引物-均1μL(10μM),以及
5×Phusion HF缓冲液   10μL
10mM dNTP混合物      1μL
Phusion DNA聚合酶    0.75μL(2单位/μL)
DMSO,100%          1μL
初级PCR 1反应混合物  1μL
初级PCR 2反应混合物  1μL
高压灭菌蒸馏水       直至50μL
PCR融合程序如下:98℃30秒,30x(98℃10秒,55℃20秒,72℃2:40分钟)和72℃5分钟,在PTC-200Peltier热循环仪(MJ Research)中进行。
扩增的线性6.5Kb片段使用Qiaquick PCR纯化试剂盒(Qiagen,目录号28106)进行纯化并用BgIII限制酶消化以在该融合片段的两侧产生粘性末端:
-35μL纯化的线性DNA片段
-4μL3缓冲液(Invitrogen)
-1μL BglII,10单位/ml(Invitrogen)
反应条件:1小时,30℃。
连接经BglII消化并使用Qiaquick PCR纯化试剂盒(Qiagen,目录号28106)纯化的片段产生了含有所期望突变的环状和多聚DNA:
-30μL纯化的BglII消化的DNA片段
-8μL T4DNA连接酶缓冲液(Invitrogen目录号46300-018)
-1μL T4DNA连接酶,1单位/μL(Invitrogen目录号15224-017)
反应条件:16-20小时,在16℃。
随后,将连接混合物转化到枯草芽孢杆菌(ΔaprE,ΔnprE,oppA,ΔspoIIE,degUHy32,ΔamyE::(xylR,pxylA-comK)菌株中。如WO02/14490(在此引入作为参考)描述的那样进行枯草芽孢杆菌转化。对于每个文库,挑取96个单克隆并在含新霉素和1.25g/L酵母提取物的MOPS培养基中培养用于序列分析(BaseClear)和筛选目的。每个文库包括最多19个nprE位点特异性变体。
通过在37℃在96孔MTP中的含20mg/L新霉素和1.25g/L酵母提取物的MBD培养基中培育枯草芽孢杆菌SEL转化体68小时,产生了所述变体。
nprE SEL的产生-方法II
还描述了产生nprE SEL的备选方法。这些方法适合产生其他目的酶的SEL。如上所述,含有nprE表达盒的pUBnprE载体充当用于产生nprESEL和NprE变体的模板DNA来源。这两种方法之间的主要不同在于本方法需要使用互补性定点诱变引物进行完整载体的扩增。
材料
含有pUBnprE载体的芽孢杆菌菌株
Qiagen Plasmid Midi Kit(Qiagen目录号12143)
即用型-Lyse溶菌酶(Epicentre目录号R 1802M)
dam甲基化酶试剂盒(New England Biolabs目录号M0222L)
Zymoclean凝胶DNA回收试剂盒(Zymo Research目录号D4001)
nprE定点诱变引物,100nmole规格,5’磷酸化的,PAGE纯化的(Integrated DNA Technologies)
Figure GPA00001126135000601
多位点定点诱变试剂盒(Stratagene目录号200514)
MJ Research PTC-200 Peltier热循环仪(Bio-Rad Laboratories)
1.2%琼脂糖E-凝胶(Invitrogen目录号G5018-01)
TempliPhi扩增试剂盒(GE Healthcare目录号25-6400-10)
枯草芽孢杆菌感受态细胞(ΔaprE,ΔnprE,oppA,ΔspoIIE,degUHy32,ΔamyE::(xylR,pxylA-comK)
方法:
为获得含有一个突变的pUBnprE质粒(通过如上文实施例3中和WO2007/044993中所述的nprE SEL筛选法鉴定的,所述专利申请在此引入本文作为参考),使用每种目的芽孢杆菌菌株的单克隆来接种5ml LB+10ppm新霉素试管(例如起子培养物)。该培养物在37℃培育,以225转/分钟振摇6小时。然后,100ml新鲜LB+10ppm新霉素用1ml起子培养物接种。该培养物在37℃培育过夜,以225转/分钟振摇。在这次孵育后,通过充分离心以提供细胞沉淀来收集细胞沉淀。该细胞沉淀重悬于10ml缓冲液P1(Qiagen Plasmid Midi试剂盒)中。随后,添加10μl即用型-Lyse溶菌酶至重悬的细胞沉淀并在37℃温育30分钟。使用造成细胞培养物容积增加的10ml缓冲液P2和P3继续进行QiagenPlasmid Midi试剂盒方案。从芽孢杆菌分离含有单一nprE突变的每种pUBnprE质粒后,测定每种质粒的浓度。所述质粒随后使用dam甲基化酶试剂盒(New England Biolabs)按照制造商的说明书进行dam甲基化,以甲基化每管大约2μg的每种pUBnprE质粒。使用Zymoclean凝胶DNA回收试剂盒来纯化和浓缩dam-甲基化的pUBnprE质粒。随后定量dam-甲基化pUBnprE质粒并将其稀释成每种质粒的50ng/μl工作浓度。分别为每个反应制备混合的定点诱变引物。例如,使用pUBnprE T14R质粒作为模板来源,混合的定点诱变引物管将含有10μl的nprE-S23R、10μl nprE-G24R、10μl nprE-N46K和10μl nprE-T54R(全部引物均为10μM)。使用QuikChange多位点定向诱变试剂盒(Stratagene)按照照制造商的说明书进行PCR反应(例如,1μl含有一个突变的dam甲基化pUBnprE质粒(50ng/μl)、2μl nprE定点诱变引物(10μM)、2.5μl 10×QuikChange Multi反应缓冲液、1μl dNTP混合物、1μl QuikChange Multi酶混合物(2.5U/μl)和17.5μl高压灭菌的蒸馏水以产生总计25μl反应混合物。使用以下条件扩增nprE变体文库:95℃,1分钟(仅第1循环),随后95℃1分钟,55℃1分钟,65℃13.5分钟并且重复循环29次。反应产物在4℃贮存过夜。随后,该反应混合物进行DpnI消化处理(由
Figure GPA00001126135000611
多位点定向诱变试剂盒供应)以使用制造商方案(即1.5μl DpnI限制性酶添加至每个管并在37℃温育3小时;2μl经DpnI消化的PCR反应物随后在1.2%E-凝胶上分析以确保PCR反应运行和亲代模板被降解)消化亲代pUB-nprE质粒。随后使用制造商方案(即对于约11μl总反应,1μl经DpnI处理的QuikChange多位点定向诱变PCR、5μl TempliPhi样品缓冲液、5μl TempliPhi反应缓冲液和0.2μl TempliPhi酶混合物;在30℃温育3小时;该TempliPhi反应通过添加200μl高压灭菌的蒸馏水进行稀释并短暂涡旋混合)进行TempliPhi滚环扩增来产生大量的DNA,以增加nprE多重变体文库的大小。随后,将1.5μl稀释的TempliPhi物质转化到枯草芽孢杆菌感受态细胞中,并且使用LA+10ppm新霉素+1.6%脱脂乳板选择nprE多重变体。挑取菌落并随后对其测序以鉴定不同的nprE变体文库组合。
集成的DNA技术(Integrated DNA Technologies)合成全部用于诱变的引物(100nmole规格,5’-磷酸化和PAGE纯化)。评价的位点包括:4、12、13、23、45、49、50、54、59、60、65、82、90、110、119、128、129、130、135、136、137、138、139、140、151、152、155、179、190、197、198、199、204、205、214、216、217、218、219、220、221、222、224、243、244、260、261、263、265、269、273、282、285、286、289、293、296、297和299。示范性的诱变引物描述于WO 2007/044993,其在此引入作为参考。
实施例4
变体蛋白酶的表达、发酵和纯化
本实施例描述了用来表达、发酵和纯化前述实施例的经转化枯草芽孢杆菌的蛋白酶的方法。
中性金属蛋白酶
重组枯草芽孢杆菌通过常规分批发酵法在营养培养基中培养。使用一个甘油小管的枯草芽孢杆菌培养物(含有解淀粉芽孢杆菌中性金属蛋白酶或其变体)来接种600ml含有200mg/L氯霉素的SBG 1%培养基。所述培养物在37℃培育36-48小时。所应用的备选方法包括在35℃在确定组分的培养基中培养重组枯草芽孢杆菌60小时。随后,如本领域已知,通过在12,000转/分钟离心回收培养液(
Figure GPA00001126135000621
离心机型号RC5B)。从培养液分离所述分泌性中性金属蛋白酶并使用具有BES(聚醚砜)10kDa截断值的Amicon过滤系统8400浓缩大约10倍。
浓缩的上清液在4℃对含有1mM CaCl2的pH 5.4的25mM MES缓冲液透析过夜。透析物随后加载到阳离子交换柱Poros HS20(总体积约83mL的Applied Biosystems柱;结合容量约4.5g蛋白质/mL柱;水)上。该柱用含有1mM CaCl2的pH 5.4的25mM MES缓冲液预先平衡。应用从25mM MES、pH 5.4、1mM CaCl2至50mM MES、pH 6.2、2mM CaCl2和100mM NaCl的pH和盐梯度洗脱结合的蛋白质。蛋白质洗脱在pH 5.8和6.0之间进行。将纯化的蛋白质浓缩并缓冲液交换至含有2mM CaCl2和40%丙二醇的pH5.8的25mM MES缓冲液中。通过测量蛋白酶解活性和通过10%(w/v)Novex SDS-PAGE(Invitrogen Corp.)评估制备物的纯度,并且发现纯度大于95%。
实施例5
鉴定NprE蛋白酶的柠檬酸盐诱导的自溶位点
在这一实施例中,描述了用于评估柠檬酸盐诱导的野生型和重组变体NprE自溶的方法。在这些实验中,应用柠檬酸纳(Sigma)诱导来自解淀粉芽胞杆菌的中性金属蛋白酶(在枯草芽胞杆菌中表达的天然和重组变体)的自溶作用。通过在(i)在25mM MES,pH 6.5中4℃,或(ii)5mM HEPES pH8.0中室温进行反应从而控制自溶过程。在这些实验中,通过使(a)在10mM柠檬酸盐中的温育时间(0-120分钟),或(b)历时100分钟的柠檬酸盐浓度(10-100mM)不同而优化0.4mg/ml NprE的自溶作用。在相似的条件下温育仅稀释于缓冲液(即,没有柠檬酸盐)的中性金属蛋白酶对照。应用合成肽(Abz-AGLA-Nba)测量剩余的蛋白酶活性,并相对于其本身无柠檬酸盐的对照进行计算。
如图1A所示,中性金属蛋白酶NprE在柠檬酸盐的存在下失活,其中所述的柠檬酸盐是弱的钙螯合剂。在100-250mM柠檬酸盐的存在下,以及在不存在钙的情况下,当在室温温育5分钟时,野生型中性金属蛋白酶的活性降低到少于30%。这一通过柠檬酸盐对蛋白酶的失活通过滴加氯化钙而克服。此外,在2mM氯化钙的存在下,野生型中性金属蛋白酶完全稳定并具酶活性。这一结果证实钙而非锌的减损是导致NprE在柠檬酸盐的存在下不稳定的原因。
在4℃进行的自溶反应通过添加等体积的1N HCl而终止。应用TCA沉淀样本,洗涤沉淀,并应用丙酮干燥。将得到的沉淀重悬于20μL缓冲液(pH 6.5)和4×LDS样本缓冲液(NuPage,Invitrogen)。通过10%(w/v)SDS-PAGE分开自溶片段并电印迹至PVDF膜。通过Edman降解(ArgoBioanalytica)测序前10个氨基酸残基,并显示于表5-1。应用胰蛋白酶凝胶内消化确定自溶片段的部分氨基酸序列,并应用LCQ-MS(Agilent)分析。凝胶内消化过程包括浸软含有蛋白质的凝胶块,移除考马斯蓝染色,随后在含有2M尿素的25mM NH4CO3中再水合凝胶块。加入胰蛋白酶至经再水合的凝胶块中,在37℃历时约6小时。消化后,应用乙腈和TCA提取肽。应用乙腈-水梯度在C4-疏水柱(Vydac)分离肽。应用
Figure GPA00001126135000641
数据库检索程序针对含有Genencor酶的数据库检索得到的肽图谱。将每一片段前10个氨基酸的氨基酸序列与已知的解淀粉芽胞杆菌NprE氨基酸序列进行比较。这使得能够鉴定N端的氨基酸序列,并因此鉴定NprE中的切割位点。
在4℃在增加浓度的柠檬酸盐的存在下研究柠檬酸盐对野生型中性蛋白酶的自溶作用,如图1B所示。在用10mM柠檬酸盐温育90分钟后,观察到除剩余完整NprE之外的两个初级自溶片段(泳道1)。完整NprE的分子量为约32kDa,而初级自溶片段为约24kDa及9kDa大小。柠檬酸盐增加至100mM浓度导致进一步的自溶以及产生其它的次级自溶片段(泳道4-7)。对增加的柠檬酸盐特异性地,24kDa的自溶片段进一步水解,产生3个更小的21kDa、15kDa及11kDa的片段。
通过Edman降解鉴定片段的N端(图2)。片段1、3和4都具有天然的N端序列,而片段2和5具有独特的N端。片段2是有争议的,N端的开始处是在或接近D220、A221和G222。基于15kDa片段的大小推导其C端,并且其在或接近位置L198。凝胶内胰蛋白酶消化和LCQ-MS证实了这些自溶片段的身份。基于NprE切割片段的N端和LCQ-MS分析,初级切割位点被鉴定为在氨基酸位置M138、L198、D220、A221和G222处。
Figure GPA00001126135000651
实施例6
对柠檬酸盐诱导的自溶具抗性的NprE变体的产生
这一实施例描述了筛选在钙螯合剂的存在下具有改善的稳定性的NprE变体。应用实施例3以及在WO 2007/044993(在此全文引入作为参考)中描述的基因构建体和测序方法针对初级切割位点M138、L198、D220、A221和G222,以及邻近这些位点和/或在酶表面的氨基酸进行诱变。制备了S129、F130、M138、V190和D220的位点评价文库,其中在该文库中由19种备选氨基酸残基之一分别地替换天然存在的氨基酸残基。同样,构建了二重(M138L-D220P;F130L-D220P、S129I-D220P、V190I-D220P、S129I-V190I、S129V-V190I、S129V-D220P)、三重(M138L-V190I-D220P、S129I-F130L-D220P)和五重(S129I-F130L-M138L-V190I-D220P)氨基酸替换变体。
在50mM柠檬酸钠的存在或不存在下筛选NprE SEL成员。所使用的缓冲液是含有0.1mM CaCl2的25mM HEPES,pH 8.0。应用琥珀酰化-酪蛋白/TNBSA方法(Pierce,Inc.Rockford,IL)或荧光标记的Abz-AGLA-Nba肽测定法(Vriend等,J Biol Chem,255:3482-3486,1980)测量蛋白酶活性。所应用的分光光度计是SpectraMax M2e(MolecularDevices),并且所有的测定法都是在介质蛋白酶结合的96孔板(CorningInternational)中进行的。在室温温育60分钟后对4个重复计算残余蛋白酶活性。相对于野生型NprE的观察结果归一化这些值。选择对柠檬酸盐显示出增加的稳定性(相对于野生型)的各个变体蛋白质,用于进一步分析特征。应用DMC/TNBSA端点测定法针对NprE SEL 138(自溶位点)、190(表面暴露位点)和220(自溶位点)的代表性柠檬酸盐筛选数据显示于表3。
类似地,通过针对合成的肽测量蛋白酶活性以及通过SDS-PAGE分析评估单(S129I/L、F130L、M138I/L、V190I、D220P/E)、二重(S129I-V190I、S129V V190I、M138L-D220P、S129I-D220P、F130L-D220P、V190I-D220P和S129V-D220P)、三重(S129I-F130L-D220P和M138L-V190I-D220P)以及五重(S129I-F130L-M138L-V190I-D220P)NprE变体的柠檬酸盐稳定性。柠檬酸盐筛选数据表明通过Leu替换M138、通过Pro或Glu替换D220、通过Ile或Leu替换S129、通过Leu替换F130以及通过Leu或Ile替换V190产生对柠檬酸盐诱导的自溶较不敏感的蛋白酶。
选择的中性蛋白酶变体对柠檬酸盐浓度依赖的稳定性显示于图4A。当在室温在100mM柠檬酸盐的存在下温育时,单氨基酸替换变体S129I/V、M1381/L和D220E/P产生比野生型蛋白高20-30%的剩余活性。在室温在100mM柠檬酸盐中温育60分钟后,V190I显示出最高的剩余活性(~60%)。这些突变的组合证实了加成性。最对柠檬酸盐稳定的变体是5个单个突变的组合,即S129I-F130L-M138L-V190I-D220P。这一五重变体S129I-F130L-M138L-V190I-D220P在100mM的柠檬酸盐中150分钟后保留其所有的活性,并且其改进的稳定性得到了不存在自溶片段的证实,如通过SDS-PAGE所观察到的那样。具体而言,将在增加浓度的柠檬酸盐的存在下野生型NprE的自溶模式特征(泳道1-4)与S129I-F130L-M138L-V190I-D220P不存在自溶(泳道6-10)相比较,如图4B所示。在100mM柠檬酸盐的存在下在室温温育60分钟后,野生型NprE和变体中性金属蛋白酶的剩余活性百分数显示于图6,清楚地表明了单个替换对自溶抗性的加成性。
实施例7
差异扫描量热法(DSC)
应用超灵敏高通量微热量计VP-Cap DSC(MicroCal,Inc.,Northampton,MA)测量过量热容曲线。需要约500μL 200-至-400ppm蛋白质。一般地,在20至100℃的温度范围内扫描400ppm NprE和变体金属蛋白酶(在存在和不存在130mM柠檬酸盐的情况下)。然后再扫描相同的样本,以检查该过程的可逆性。对于中性蛋白酶,热解折叠过程是不可逆的。所应用的缓冲液是5mM HEPES,pH 8.0。以25至200℃/小时的扫描率评估NprE热熔点的扫描率依赖数据。最终选择200℃/小时的扫描率以最小化可产生自聚集或自溶的任何人工现象。将DSC曲线的热中点(Tm)用作热稳定性的指标。440-ppm野生型中性蛋白酶展示69.2±0.5℃的热熔点(Tm)。野生型和NprE变体的热熔点显示于图6,其显示在不存在柠檬酸盐的情况下,突变对热熔点仅有极微的影响。
相反,突变体NprE在柠檬酸盐存在下的热解折叠显示出与野生型NprE很大的不同(图6)。在130mM柠檬酸盐(pH 8.0)的存在下,对野生型蛋白质没有获得热解折叠样式。这与其快速和完全的柠檬酸盐诱导的自溶和失活相一致。相比之下,所有对柠檬酸盐稳定的变体显示出热解折叠样式。野生型NprE和变体的热解折叠中点显示于图5B。在130mM柠檬酸盐的存在下,应用DSC表征的柠檬酸盐最不稳定的变体具有48℃的热熔点,以及最稳定的单变体具有52℃的热熔点(图6)。对柠檬酸盐稳定的替换显示出加成性,并且在S129I-F130L-M138L-V190I-D220P变体的蛋白酶骨架上5个点突变的组合具有59.2℃的Tm。因此,5个改进突变的组合导致Tm增加了10℃(图5和6)。汇总这些结果,表明在柠檬酸盐的存在下,对柠檬酸盐诱导的自溶的抗性和热稳定性之间存在联系。
实施例8
NprE的同源性建模
这一实施例描述了基于蜡样芽孢杆菌(B.cereus)NprE的已知结构,对解淀粉芽胞杆菌NprE的结构进行建模,其中解淀粉芽胞杆菌NprE与所述的蜡样芽孢杆菌NprE是45%同一的。此外,还应用微PIXES分析确认NprE的化学计量和锌及钙结合。应用这一模型鉴定NprE可能暴露于溶剂的氨基酸。
用于序列分析、比对和建模的结构的坐标从PDB中下载。解淀粉芽胞杆菌NprE的蛋白质序列在Swissprot No.P06832中找到,并且成熟形式的序列如SEQ ID NO:3所示。应用程序组MOE(Chemieal ComputingCorp Montreal,Canada)根据该程序提供的手册进行比对计算和手工再校正、分析和建模。选择Charmm27参数设置用于能量最小化计算。
来自蜡样芽孢杆菌(B.cereus)(1NPC)、热溶蛋白芽孢杆菌(B.thermoproteolyticus)(PDB ID 1KEI)、铜绿假单胞菌(P.aeruginosa)(1EZM)和金黄色葡萄球菌(S.aureus)(1BQB)的锌中性蛋白酶的结构是可获得的。这些结构中与解淀粉芽胞杆菌NprE的成熟蛋白酶结构域最密切同源的是蜡样芽孢杆菌NprE,其用作用于建模的模板结构。结构上对它们进行比对。序列比对的比较揭示了在解淀粉芽胞杆菌NprE序列和蜡样芽孢杆菌NprE序列之间的许多插入和缺失。对比对的检查揭示了在两者中很可能的错误,并且手工调整比对。与模板1NPC结构相比,解淀粉芽胞杆菌NprE在环上具有4个残基的缺失,其中预测两个Ca2+与蛋白质结合。这导致了对这一非常重要区域的建模的最初的困难。幸运地是,与解淀粉芽胞杆菌NprE具有相同的金属结合化学计量的金黄色葡萄球菌NprE在这一环中具有同一的缺失。这允许使用金黄色葡萄球菌NprE结构以引导在这一区域的手工重建,以更精确地建模Ca2+与该酶的结合。尽管试图能量最小化该模型,但对于锌和钙结合位点得到很差的结果。因此,在能量最小化过程中使金属离子以及它们的配体保持固定。没有将水分子添加到这一模型中。
解淀粉芽胞杆菌NprE同源性模型含有成熟酶的300个残基。最终模型的Ramachandron标绘图揭示了三个外露氨基酸。它们是S23、N61和S191。暴露于表面的残基的分析显示在表面的8个脂肪族或芳香族残基。它们是Y49、L55、1117、F130、V190、L216、V260和L282。这些残基在表面暴露环中,其中所述环通常是应用同源性建模方法最不精确建模的区域,并且可能表明该模型中最不可靠的区域。
解淀粉芽胞杆菌NprE酶的N端部分含有8个链混合的β片层,其围住了长螺旋约75%的表面。该酶C端部分主要由6个螺旋束和2个反向平行β-片层短链组成。发现该酶的活性部位在这两个亚结构域之间的界面上。底物结合裂口非常大并且是开放的,其与所观察到的内蛋白酶活性相一致。
在底物裂口的中间发现了催化中很重要的Zn2+离子。模型预测H143、H147和E167结合这一Zn2+离子,其具有四面体几何形状。在嗜热菌蛋白酶中,第四种配体是水,但是没有将水添加到解淀粉芽胞杆菌NprE同源性模型中。残基D139、D178、E180、D181、E186和D197形成了双钙位点。该模型的CA351与D139、D178、D181和E186的侧链、以及D183主链羰基复合。该模型的CA352与D178、E180、D181和E187的侧链复合。D178的侧链也与CA352接近,但是从该模型不清楚其是否与这一离子配位。
为测试解淀粉芽胞杆菌NprE的金属离子化学计量预测,进行微颗粒诱导的X光发射(微-PIXE)光谱学以经验地确定锌和钙含量。雇用University of Surrey Ion Bean Centre(Guildford,United Kingdom)进行PIXES分析。如表8-1所示,Zn2+的观察化学计量是1.02,以及Ca2+的是1.62。如果假设两个预测的Ca2+离子中的一个或两个是部分地占用,则该分析与预测的一致。Zn2+和Ca2+结合亲和力的确定显示Zn2+比Ca2+的结合更紧密10倍,这与在PIXE样本中观察到的Ca2+的轻微损失相一致。
Figure GPA00001126135000691
Figure GPA00001126135000701
实施例9
pH依赖的活性和稳定性评估
A.野生型NprE和变体NprE的pH依赖的活性:
应用MES一水合物、Trizma碱和醋酸钠(全来自Sigma)的组合制备不同的pH缓冲液。在缓冲液中各组分的终浓度是25mM醋酸盐、50mMMES和25mM Tris。应用氢氧化钠或氯化氢将该缓冲液的pH调节至9.40、8.69、8.36、7.70、7.45、6.52、6.00、5.45、4.78和4.27的最终pH值。将AGLA底物(American Peptide Company)溶解于DMF中,浓度是4.8mM。制备在每一缓冲液中不同浓度的AGLA底物,使得最终的AGLA浓度是0.096mM、0.048mM、0.024mM、0.012mM和0.006mM。
将200μl每一底物浓度的每一pH缓冲液加入到一个96孔板中,往每一孔加入10μl 0.94μg/ml纯化的NprE或变体,然后振荡该板15秒。在350nm的激发和415的发射处应用板读数器(Molecular dynamics)监测来自每一孔的荧光,每11秒读数一次,历时5分钟。记录每一曲线的Vmax(最大线性斜率)。Vmax对AGLA底物浓度的绘图产生Kcat/Km,基于曲线斜率和在底物中的最终酶浓度计算所述Kcat/Km。如图8所示,野生型NprE和五重NprE变体(S129I-F130L-M138L-V190I-D220P)均在pH 6.5具有对AGLA底物的最佳活性。
B.野生型NprE和变体NprE的pH依赖的稳定性
在不存在和存在2mM氯化钙的情况下测试野生型NprE和五重NprE变体(S129I-F130L-M138L-V190I-D220P=“Quint”)在不同pH值时的稳定性。应用与如上所述相同的不同pH值的缓冲液组,但还往每一缓冲液中加入0.005%Tween 80以避免蛋白质与96孔板结合。往一组缓冲液中加入2mM氯化钙。加入纯化的蛋白质,终浓度为10μg/ml。在96孔板中的总体积是200μl/孔。在室温(例如,23℃)温育该板3小时。应用AGLA测定法测量在不同pH时的每一蛋白质的活性。野生型NprE在pH 6.5最稳定,在低于或高于6.5的pH都观察到稳定性的下降。在pH 4.3,NprE丧失100%的活性。Quint在pH 5.5至pH 9.4的宽pH范围内非常稳定。尽管在低于4.7的pH时Quint的稳定性下降。然而,添加2mM的氯化钙在低pH和高pH时均稳定了NprE和Quint变体这两者。
在本说明书中提到的所有专利和申请指示本发明所属领域的普通技术人员的水平。所有专利和申请均在此引入作为参考,就如同具体地指出每一申请并且个别地表明引入作为参考的同样的程度。然而,对任何出版物的引用都不能理解为承认其是关于本发明的现有技术。
尽管描述了本发明的示范性实施方案,然而本领域技术人员显而易见地是,可以对公开的实施方案进行各种修饰,并且预期此类修饰在发明的范围之内。
本领域技术人员轻易地认识到本发明充分地适应于实施所述目的并且获得所提及以及其中固有的结果和优势。本文所述的组合物和方法是代表性的,并且不意图作为对本发明范围的限制。本领域技术人员轻易地知道可以对本文公开的本发明进行各种替换和修改而不脱离本发明的范围和精神。
本文中示范性描述的本发明可以在本文未具体公开的任意要素或诸要素、限制或诸限制不存在的情况下实施。已经使用的术语和表述作为描述性而非限制性术语使用,并且在使用此类术语和表述时不意图排除所示或所述特征或其部分的任意等同物,不而是承认在要求保护的本发明范围内可能存在多种修饰。因此,应当理解尽管本发明已经通过例证性的实施方案和任选特征具体地公开,但本领域技术人员可采取本文中公开的概念的修饰和变化形式,此类修饰和变化被认为落入所附权利要求界定的本发明的范围内。
本发明已在本文中进行了广泛和一般性地描述。属于一般性公开内容的每个更小种类和次级类属组也形成本发明的部分。这包括用限制条款或否定性限制条件对本发明的一般性描绘,其中所述的限制条款或否定性限制条件从所述类中排除任意主题物,无论所排除的材料是否在本文中具体提及。

Claims (30)

1.分离的中性金属蛋白酶变体,所述变体在金属螯合剂的存在下与野生型中性金属蛋白酶在所述金属螯合剂的存在下相比具有改良的抗性。
2.权利要求1的分离的中性金属蛋白酶变体,与野生型中性金属蛋白酶的抗性相比,其对柠檬酸盐诱导的自溶具有改良的抗性。
3.权利要求1的分离的中性金属蛋白酶变体,其中所述的变体是芽孢杆菌属(Bacillus)中性金属蛋白酶变体。
4.权利要求3的分离的芽孢杆菌属中性金属蛋白酶变体,其中所述的变体具有在选自等价于SEQ ID NO:3所示氨基酸序列的位置129、130、138、190和220中的3个、4个或5个位置处包含替换的氨基酸序列。
5.权利要求4的分离的芽孢杆菌属中性金属蛋白酶变体,其中所述的替换包含选自S129I/F130L/D220P、M138L/V190I/D220P和S129I/F130L/M138L/V190I/D220P的多重突变。
6.权利要求3的分离的芽孢杆菌属中性金属蛋白酶变体,其中所述的芽孢杆菌属是解淀粉芽胞杆菌(B.amyloliquefaciens)。
7.权利要求1的分离的中性金属蛋白酶变体,其中所述的分离的中性金属蛋白酶与包含SEQ ID NO:3所示氨基酸序列的中性金属蛋白酶具有至少约45%的氨基酸同一性。
8.编码权利要求1的中性金属蛋白酶变体的分离的核酸序列。
9.包含权利要求8的核酸序列的表达载体。
10.包含权利要求9的表达载体的宿主细胞。
11.权利要求1的分离的中性金属蛋白酶变体,其中所述的变体包含SEQ ID NO:18(S129I/F130L/D220P)、SEQ ID NO:19(M138L/V190I/D220P)和/或SEQ ID NO:20(S129I/F130L/M138L/V190I/D220P)所示的氨基酸序列。
12.包含权利要求1的分离的中性金属蛋白酶变体的组合物。
13.权利要求12的组合物,还包含至少一种钙离子和/或至少一种锌离子。
14.权利要求13的组合物,还包含柠檬酸盐。
15.权利要求12的组合物,其中所述的组合物是清洁组合物。
16.权利要求15的组合物,其中所述的组合物还包含至少一种选自蛋白酶、淀粉酶、脂肪酶、甘露聚糖酶、果胶酶、角质酶、氧化还原酶、半纤维素酶和纤维素酶的其它酶或酶衍生物。
17.权利要求12的组合物,其中所述组合物包含:至少约0.0001重量百分数的中性金属蛋白酶变体;或约0.001至约0.5重量百分数的中性金属蛋白酶变体。
18.权利要求12的组合物,还包含至少一种附属成分。
19.权利要求12的组合物,还包含足量的pH调节剂以给所述组合物提供约3至约5的净pH,所述组合物基本上没有在约pH 3至约pH 5的pH水解的物质。
20.权利要求19的组合物,还包含至少一种表面活性剂。
21.权利要求20的组合物,其中所述表面活性剂是包含环氧乙烷部分的烷基硫酸钠表面活性剂。
22.权利要求1的组合物,其中所述组合物是液体。
23.权利要求12的组合物,其中所述组合物是动物饲料。
24.权利要求12的组合物,其中所述组合物是织物加工组合物和/或皮革加工组合物。
25.清洁方法,包括使表面和/或包含织物的物品与权利要求15的清洁组合物接触的步骤。
26.权利要求25的清洁方法,还包括漂洗该表面和/或包含织物的物品的步骤。
27.产生中性金属蛋白酶变体的方法,包括:用包含编码所述中性金属蛋白酶变体的核酸的表达载体转化宿主细胞以产生转化的宿主细胞;在适于产生所述中性金属蛋白酶变体的条件下培养所述经转化的宿主细胞;和产生所述中性金属蛋白酶变体。
28.权利要求27的方法,还包括收获所述产生的中性金属蛋白酶变体的步骤。
29.权利要求27的方法,其中所述的宿主细胞是芽孢杆菌属物种。
30.权利要求29的方法,其中所述的芽孢杆菌属物种是枯草芽孢杆菌(B.subtilis)。
CN200880114393.1A 2007-10-31 2008-10-23 对柠檬酸盐稳定的中性金属蛋白酶的用途和生产 Active CN101842481B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US98404607P 2007-10-31 2007-10-31
US60/984,046 2007-10-31
PCT/US2008/080972 WO2009058661A1 (en) 2007-10-31 2008-10-23 Use and production of citrate-stable neutral metalloproteases

Publications (2)

Publication Number Publication Date
CN101842481A true CN101842481A (zh) 2010-09-22
CN101842481B CN101842481B (zh) 2016-05-11

Family

ID=40276163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880114393.1A Active CN101842481B (zh) 2007-10-31 2008-10-23 对柠檬酸盐稳定的中性金属蛋白酶的用途和生产

Country Status (11)

Country Link
US (4) US20110081454A1 (zh)
EP (1) EP2205731B1 (zh)
JP (1) JP5498951B2 (zh)
KR (1) KR20100075986A (zh)
CN (1) CN101842481B (zh)
BR (1) BRPI0818788A2 (zh)
CA (1) CA2703975C (zh)
DK (1) DK2205731T3 (zh)
MX (1) MX2010004372A (zh)
RU (1) RU2010121930A (zh)
WO (1) WO2009058661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476915A (zh) * 2011-02-16 2013-12-25 诺维信公司 包含金属蛋白酶的去污剂组合物

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2013009177A (es) * 2011-02-16 2013-08-29 Novozymes As Composiciones detergentes que comprenden metaloproteasas de m7 o m35.
JP6367930B2 (ja) * 2013-05-29 2018-08-01 ダニスコ・ユーエス・インク 新規メタロプロテアーゼ
DK3110833T3 (da) 2013-05-29 2020-04-06 Danisco Us Inc Hidtil ukendte metalloproteaser
WO2015066669A1 (en) 2013-11-04 2015-05-07 Danisco Us Inc. Proteases in corn processing
WO2015066667A1 (en) 2013-11-04 2015-05-07 Danisco Us Inc. Proteases in wheat processing
WO2015089447A1 (en) 2013-12-13 2015-06-18 Danisco Us Inc. Serine proteases of the bacillus gibsonii-clade
DK3080262T3 (da) 2013-12-13 2019-05-06 Danisco Us Inc Serinproteaser af bacillus-arter
AU2014366222B2 (en) 2013-12-16 2018-07-19 Nutrition & Biosciences USA 4, Inc. Use of poly alpha-1,3-glucan ethers as viscosity modifiers
EP3083705B1 (en) 2013-12-18 2020-09-30 DuPont Industrial Biosciences USA, LLC Cationic poly alpha-1,3-glucan ethers
US20150232785A1 (en) 2014-02-14 2015-08-20 E I Du Pont De Nemours And Company Polysaccharides for viscosity modification
CA2937830A1 (en) 2014-03-11 2015-09-17 E. I. Du Pont De Nemours And Company Oxidized poly alpha-1,3-glucan as detergent builder
WO2015143360A2 (en) 2014-03-21 2015-09-24 Danisco Us Inc. Serine proteases of bacillus species
EP3158043B1 (en) 2014-06-19 2021-03-10 Nutrition & Biosciences USA 4, Inc. Compositions containing one or more poly alpha-1,3-glucan ether compounds
US9714403B2 (en) 2014-06-19 2017-07-25 E I Du Pont De Nemours And Company Compositions containing one or more poly alpha-1,3-glucan ether compounds
DK3207129T3 (da) 2014-10-17 2020-02-24 Danisco Us Inc Serinproteaser af bacillus-arten
EP3212781B1 (en) 2014-10-27 2019-09-18 Danisco US Inc. Serine proteases
EP4403631A2 (en) 2014-10-27 2024-07-24 Danisco US Inc. Serine proteases
WO2016069552A1 (en) 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
EP3550017B1 (en) 2014-10-27 2021-07-14 Danisco US Inc. Serine proteases
US20180010074A1 (en) 2014-10-27 2018-01-11 Danisco Us Inc. Serine proteases of bacillus species
EP3034592A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034590A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034591A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Method of automatic dishwashing
EP3034588B1 (en) 2014-12-17 2019-04-24 The Procter and Gamble Company Detergent composition
EP3034589A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
EP3034597A1 (en) 2014-12-17 2016-06-22 The Procter and Gamble Company Detergent composition
EP3034596B2 (en) 2014-12-17 2021-11-10 The Procter & Gamble Company Detergent composition
JP6770519B2 (ja) 2014-12-23 2020-10-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 酵素により製造されるセルロース
EP3294884B1 (en) 2015-05-13 2021-01-27 Danisco US Inc. Aprl-clade protease variants and uses thereof
EP3098296A1 (en) 2015-05-29 2016-11-30 The Procter and Gamble Company Process for making a multi-compartment pouch
EP3098295A1 (en) 2015-05-29 2016-11-30 The Procter and Gamble Company Process for making a single or multi-compartment pouch
WO2016201069A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc Low-density enzyme-containing particles
WO2016201040A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc. Water-triggered enzyme suspension
WO2016201044A1 (en) 2015-06-09 2016-12-15 Danisco Us Inc Osmotic burst encapsulates
US11499146B2 (en) 2015-06-17 2022-11-15 Danisco Us Inc. Bacillus gibsonii-clade serine proteases
US20180320158A1 (en) 2015-11-05 2018-11-08 Danisco Us Inc. Paenibacillus and bacillus spp. mannanases
EP3371308B1 (en) 2015-11-05 2022-05-11 Danisco US Inc. Paenibacillus sp. mannanases
EP3374488B1 (en) 2015-11-13 2020-10-14 DuPont Industrial Biosciences USA, LLC Glucan fiber compositions for use in laundry care and fabric care
EP3374401B1 (en) 2015-11-13 2022-04-06 Nutrition & Biosciences USA 4, Inc. Glucan fiber compositions for use in laundry care and fabric care
WO2017083228A1 (en) 2015-11-13 2017-05-18 E. I. Du Pont De Nemours And Company Glucan fiber compositions for use in laundry care and fabric care
EP3181675B2 (en) 2015-12-17 2022-12-07 The Procter & Gamble Company Automatic dishwashing detergent composition
EP3181672A1 (en) 2015-12-17 2017-06-21 The Procter and Gamble Company Automatic dishwashing detergent composition
EP3181679A1 (en) 2015-12-17 2017-06-21 The Procter and Gamble Company Process for making an automatic dishwashing product
EP3181676B1 (en) 2015-12-17 2019-03-13 The Procter and Gamble Company Automatic dishwashing detergent composition
EP3181671B1 (en) 2015-12-17 2024-07-10 The Procter & Gamble Company Automatic dishwashing detergent composition
EP3181670B1 (en) 2015-12-17 2019-01-30 The Procter and Gamble Company Automatic dishwashing detergent composition
EP3181678A1 (en) 2015-12-17 2017-06-21 The Procter and Gamble Company Process for making a detergent powder
US20180362946A1 (en) 2015-12-18 2018-12-20 Danisco Us Inc. Polypeptides with endoglucanase activity and uses thereof
EP3184622A1 (en) 2015-12-22 2017-06-28 The Procter and Gamble Company Automatic dishwashing composition
JP2019518440A (ja) 2016-05-03 2019-07-04 ダニスコ・ユーエス・インク プロテアーゼ変異体およびその使用
US20190136218A1 (en) 2016-05-05 2019-05-09 Danisco Us Inc Protease variants and uses thereof
US11661567B2 (en) 2016-05-31 2023-05-30 Danisco Us Inc. Protease variants and uses thereof
EP3257930A1 (en) 2016-06-17 2017-12-20 The Procter and Gamble Company Cleaning pouch
EP3257931A1 (en) 2016-06-17 2017-12-20 The Procter and Gamble Company Detergent composition
EP3257929B1 (en) 2016-06-17 2022-03-09 The Procter & Gamble Company Automatic dishwashing detergent composition
WO2017219011A1 (en) 2016-06-17 2017-12-21 Danisco Us Inc Protease variants and uses thereof
EP3257923B1 (en) 2016-06-17 2020-04-08 The Procter and Gamble Company Automatic dishwashing detergent composition
EP3257928B1 (en) 2016-06-17 2019-12-11 The Procter and Gamble Company Automatic dishwashing detergent composition
WO2018085524A2 (en) 2016-11-07 2018-05-11 Danisco Us Inc Laundry detergent composition
WO2018118917A1 (en) 2016-12-21 2018-06-28 Danisco Us Inc. Protease variants and uses thereof
EP3559226B1 (en) 2016-12-21 2023-01-04 Danisco US Inc. Bacillus gibsonii-clade serine proteases
EP3339407A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339418A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339416A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339417A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339414A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339419A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339413A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339421A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339415A1 (en) 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition
EP3339422B1 (en) 2016-12-22 2020-10-21 The Procter & Gamble Company Laundry detergent composition
WO2018183662A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Delayed release enzyme formulations for bleach-containing detergents
US20210095268A1 (en) 2017-03-31 2021-04-01 Danisco Us Inc Alpha-amylase combinatorial variants
JP2020527339A (ja) 2017-06-30 2020-09-10 ダニスコ・ユーエス・インク 低凝集の酵素含有粒子
MX2020001606A (es) 2017-08-18 2020-08-03 Danisco Us Inc Variantes de alfa-amilasa.
US20200354708A1 (en) 2017-11-29 2020-11-12 Danisco Us Inc. Subtilisin variants having improved stability
US20210222148A1 (en) 2017-12-21 2021-07-22 Danisco Us Inc. Enzyme-containing, hot-melt granules comprising a thermotolerant desiccant
MX2020008302A (es) 2018-02-08 2020-10-14 Danisco Us Inc Partículas de matriz de cera térmicamente resistentes para encapsulación de enzimas.
WO2019245704A1 (en) 2018-06-19 2019-12-26 Danisco Us Inc Subtilisin variants
EP3799601A1 (en) 2018-06-19 2021-04-07 Danisco US Inc. Subtilisin variants
CN112805361A (zh) 2018-07-31 2021-05-14 丹尼斯科美国公司 具有降低广义酸的PKA的氨基酸取代的变体α-淀粉酶
WO2020047215A1 (en) 2018-08-30 2020-03-05 Danisco Us Inc Enzyme-containing granules
JP2022503923A (ja) 2018-09-27 2022-01-12 ダニスコ・ユーエス・インク 医療用器具を洗浄するための組成物
EP3864148A2 (en) 2018-10-12 2021-08-18 Danisco US Inc. Alpha-amylases with mutations that improve stability in the presence of chelants
US20230028935A1 (en) 2018-11-28 2023-01-26 Danisco Us Inc Subtilisin variants having improved stability
EP3976776A1 (en) 2019-05-24 2022-04-06 Danisco US Inc. Subtilisin variants and methods of use
WO2020247582A1 (en) 2019-06-06 2020-12-10 Danisco Us Inc Methods and compositions for cleaning
US20220403359A1 (en) 2019-10-24 2022-12-22 Danisco Us Inc Variant maltopentaose/maltohexaose-forming alpha-amylases
WO2022047149A1 (en) 2020-08-27 2022-03-03 Danisco Us Inc Enzymes and enzyme compositions for cleaning
CN116997642A (zh) 2021-01-29 2023-11-03 丹尼斯科美国公司 清洁组合物及其相关的方法
EP4363565A1 (en) 2021-06-30 2024-05-08 Danisco US Inc. Variant lipases and uses thereof
CN117916354A (zh) 2021-09-03 2024-04-19 丹尼斯科美国公司 用于清洁的衣物洗涤组合物
WO2023039270A2 (en) 2021-09-13 2023-03-16 Danisco Us Inc. Bioactive-containing granules
CA3241094A1 (en) 2021-12-16 2023-06-22 Jonathan LASSILA Variant maltopentaose/maltohexaose-forming alpha-amylases
WO2023114939A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023114936A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023114932A2 (en) 2021-12-16 2023-06-22 Danisco Us Inc. Subtilisin variants and methods of use
WO2023168234A1 (en) 2022-03-01 2023-09-07 Danisco Us Inc. Enzymes and enzyme compositions for cleaning
WO2023250301A1 (en) 2022-06-21 2023-12-28 Danisco Us Inc. Methods and compositions for cleaning comprising a polypeptide having thermolysin activity
WO2024050339A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Mannanase variants and methods of use
WO2024050346A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Detergent compositions and methods related thereto
WO2024050343A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Subtilisin variants and methods related thereto
WO2024102698A1 (en) 2022-11-09 2024-05-16 Danisco Us Inc. Subtilisin variants and methods of use
WO2024163584A1 (en) 2023-02-01 2024-08-08 Danisco Us Inc. Subtilisin variants and methods of use
WO2024186819A1 (en) 2023-03-06 2024-09-12 Danisco Us Inc. Subtilisin variants and methods of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ208612A (en) * 1983-06-24 1991-09-25 Genentech Inc Method of producing "procaryotic carbonyl hydrolases" containing predetermined, site specific mutations
US4771003A (en) * 1985-10-22 1988-09-13 Genex Corporation Heat stable alkaline proteases produced by a bacillus
US4822516A (en) * 1986-12-08 1989-04-18 Kao Corporation Detergent composition for clothing incorporating a cellulase
DK1117798T3 (da) * 1998-10-05 2007-04-10 Novozymes As Fungal transskriptionel aktivator egnet ved fremgangsmåder til produktion af polypeptider
US20080293610A1 (en) 2005-10-12 2008-11-27 Andrew Shaw Use and production of storage-stable neutral metalloprotease

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476915A (zh) * 2011-02-16 2013-12-25 诺维信公司 包含金属蛋白酶的去污剂组合物

Also Published As

Publication number Publication date
US20110081454A1 (en) 2011-04-07
US20200231908A1 (en) 2020-07-23
DK2205731T3 (da) 2013-03-11
CA2703975A1 (en) 2009-05-07
CN101842481B (zh) 2016-05-11
WO2009058661A1 (en) 2009-05-07
MX2010004372A (es) 2010-05-20
RU2010121930A (ru) 2011-12-10
KR20100075986A (ko) 2010-07-05
US20180094216A1 (en) 2018-04-05
JP2011502481A (ja) 2011-01-27
EP2205731A1 (en) 2010-07-14
CA2703975C (en) 2018-01-09
EP2205731B1 (en) 2012-12-05
US20140315775A1 (en) 2014-10-23
JP5498951B2 (ja) 2014-05-21
BRPI0818788A2 (pt) 2016-10-25

Similar Documents

Publication Publication Date Title
CN101842481A (zh) 对柠檬酸盐稳定的中性金属蛋白酶的用途和生产
CN101868538B (zh) 嗜热菌蛋白酶及其变体的生产和在液体洗涤剂中的用途
CN101784662B (zh) 用于改善蛋白质特性的方法
CN102209778B (zh) 包含丝氨酸蛋白酶变体的组合物和方法
CN101473036B (zh) 利用用于工程改造多种性质的位点评价文库对序列和活性关系进行系统评价
CN101874110A (zh) 中性金属蛋白酶在无丝氨酸蛋白酶背景中的用途和生产
CN102057043B (zh) 包含微生物蛋白酶变体的组合物和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20160418

Address after: American California

Applicant after: Danisco USA Inc.

Applicant after: Procter & Gamble Ltd.

Address before: American California

Applicant before: Danisco USA Inc.