CN101825762A - 成像光学系统 - Google Patents

成像光学系统 Download PDF

Info

Publication number
CN101825762A
CN101825762A CN201010148147A CN201010148147A CN101825762A CN 101825762 A CN101825762 A CN 101825762A CN 201010148147 A CN201010148147 A CN 201010148147A CN 201010148147 A CN201010148147 A CN 201010148147A CN 101825762 A CN101825762 A CN 101825762A
Authority
CN
China
Prior art keywords
lens
refractive index
variable refractive
optical system
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010148147A
Other languages
English (en)
Inventor
安德里斯·奥布雷斯基
弗里茨·施特雷勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003149293 external-priority patent/DE10349293B4/de
Application filed by Individual filed Critical Individual
Publication of CN101825762A publication Critical patent/CN101825762A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明涉及一种光学系统,其包括:具有可变屈光率的第一透镜;具有可变屈光率的第二透镜,其中,能够向具有可变屈光率的第一透镜和具有可变屈光率的第二透镜中的每一个指定公共光轴;以及控制器,所述控制器适于进行以下控制来提供所述成像光学系统的不同于零的可调总屈光率:对具有可变屈光率的第一透镜进行控制以增大由具有可变屈光率的第一透镜提供的屈光率,并对具有可变屈光率的第二透镜进行控制以减小由具有可变屈光率的第二透镜提供的屈光率;或者对具有可变屈光率的第一透镜进行控制以减小由具有可变屈光率的第一透镜提供的屈光率,并对具有可变屈光率的第二透镜进行控制以增大由具有可变屈光率的第二透镜提供的屈光率。

Description

成像光学系统
本申请根据专利法实施细则第42条提出,是国际申请日为2004年10月25日、国际申请号为PCT/EP2004/012042、国家申请号为200480031443.1、发明名称为“具有可调屈光率的成像光学系统和调节光学系统的屈光率的方法”的专利申请的分案申请。
技术领域
本发明涉及具有可调屈光率的成像光学系统。该成像光学系统是例如在相机、望远镜、显微镜或其他光学系统中具有广泛用途的光学系统。此外,本发明涉及一种用于调节尤其是可变焦成像光学系统的屈光率的方法。
此外,本发明涉及一种用于生成物体的放大立体图像的立体显微系统及其对应的立体显微方法。
背景技术
可变焦成像光学系统是其成像比或放大率可变的成像光学系统。
传统的可变焦成像光学系统包括三个透镜组件,其中一个固定地安装在支架中,其余两个可以沿该光学系统的光轴移位,以改变放大率。为了使这两个透镜组件相对于彼此并相对于所述固定布置的透镜组件正确地移位,需要相当复杂的机械。此外,透镜组件的必要的移位要求该光学系统具有相对大的最小总长度。
根据US 4,820,028,已知一种可变焦光学系统,其包括用于改变放大率的具有可变屈光率(optical power)的透镜,使得不需要使透镜沿光轴进行机械移位。该可变屈光率透镜形成了光学系统的一部分,该光学系统还包括多个固定屈光率透镜并使得可以在可变屈光率透镜的特定设置下对成像像差进行相对好的补偿。然而,如果改变可变屈光率透镜的屈光率以改变放大率,则会出现成像像差,这会产生扰动效应。
传统的立体显微系统包括用于生成立体图像的左手部分图像的左手立体光学系统,和用于生成立体图像的右手部分图像的右手部分立体光学系统。
例如US 6,081,372公开了一种所谓的“Grenough”型立体显微系统,其中左手部分立体光学系统和右手部分立体光学系统中的每一个都包括单独的物镜组件。这两个部分立体光学系统的主轴相对彼此按一定的角度定向,使得这两个主轴在所述两个物镜组件的物面上相交。在这种立体显微系统中,如果要改变物面与物镜组件之间的工作距离,则必须相应地改变所述两个主轴之间的夹角,在实践中这导致所需机构过于复杂。
DE 90 16 892 U1和US 5,701,196公开了立体显微系统,其中设置有物镜,该物镜用于将从该物镜的物面发出的物端光束丛变换成像端光束丛,并且其中在相应的像端光束丛处设置有左手部分立体光学系统和右手部分立体光学系统,并从其中分别提取左手部分光束丛和右手部分光束丛,以分别从其中生成立体图像的左手部分图像和右手部分图像。左手和右手部分立体光学系统的两个部分光束丛的主轴被彼此分开地固定定位,并且还彼此分开地穿过公共物镜。所述物镜提供了圆透镜的屈光率。该物镜包括至少一个正屈光率组件和一个负屈光率组件,可以改变这两个组件之间的距离,以改变在物镜与物镜的物面之间的工作距离。与根据US 6,081,372已知的立体显微系统相对照的是,不必改变所述两个部分立体光学系统的主轴之间的夹角以改变工作距离。
从改变工作距离的方面来说,已证实根据DE 90 16 892 U1和US5,701,196已知的立体显微系统在实践上是成功的,但是与具有固定工作距离的相当的立体显微镜(即,其中工作距离是不可改变的)相比,它们展现出不同的光学特性。例如,在根据DE 90 16 892 U1已知的立体显微系统中,将具有负屈光率的组件布置成比具有正屈光率的组件更靠近物面。因此,从物镜的物面观察,物镜的主面位于物镜的后方。因此,物镜的焦距比物镜与物面之间的工作距离要长。由于该长焦距(与工作距离相比),因此与具有固定焦距的对应物镜(其中焦距与工作距离相当)相比,该物镜展现出减小了的总放大率、立体感以及分辨率。
在根据US 5,701,196已知的立体显微系统中,将具有正屈光率的组件布置成比具有负屈光率的透镜组件更靠近物面。结果,物镜的主轴位于物镜与物面之间。因此,同样地,物镜的焦距比物面与物镜之间的工作距离要短。与具有固定焦距的对应物镜相比,这导致物场直径和景深减小,并且总长度、总体积以及重量增大。
发明内容
本发明的一个目的是提供一种可变焦成像光学系统,其中通过使用具有可变屈光率的透镜适当地实现了所要求的光学成像质量。
根据本发明的一个方面,提供了一种成像光学系统,所述成像光学系统包括:具有可变屈光率的第一透镜;具有可变屈光率的第二透镜,其中,能够向所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜中的每一个指定公共光轴;以及控制器,所述控制器适于进行以下控制来提供所述成像光学系统的不同于零的可调总屈光率:对所述具有可变屈光率的第一透镜进行控制以增大由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以减小由所述具有可变屈光率的第二透镜提供的屈光率;或者对所述具有可变屈光率的第一透镜进行控制以减小由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以增大由所述具有可变屈光率的第二透镜提供的屈光率。
根据本发明的另一个方面,提供了一种具有至少两个可变屈光率透镜的成像光学系统,所述至少两个可变屈光率透镜被设置成共同地提供可调总屈光率,其中,所述至少两个可变屈光率透镜各包括至少两种不同的介质,各所述介质具有至少一个挠性表面,其中通过改变所述至少一个挠性表面的形状来进行所述总屈光率的调节。
根据本发明的再一个方面,提供了一种成像光学系统,所述成像光学系统包括:具有可变屈光率的第一透镜;具有可变屈光率的第二透镜,其中,能够向所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜指定公共光轴;以及控制器,所述控制器适于:对所述具有可变屈光率的第一透镜进行控制以增大由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以减小由所述具有可变屈光率的第二透镜提供的屈光率;或者对所述具有可变屈光率的第一透镜进行控制以减小由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以增大由所述第二透镜提供的屈光率,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的透镜各具有至少一个界面,所述至少一个界面均关于各自的所述具有可变屈光率的第一透镜或所述具有可变屈光率的第二透镜的光轴对称。
附图说明
下面将参照附图对本发明的多个实施例进行更详细的描述,在附图中:
图1示出了用于本发明多个实施例的可变屈光率透镜的剖面;
图2是图1所示的可变屈光率透镜的详细的俯视平面图;
图3示出了用于本发明多个实施例的可变屈光率透镜的剖面;
图4示出了一种立体显微系统,作为可以包括根据本发明的可变焦成像光学系统的总光学系统的示例;
图5示出了只包括具有可变屈光率的两个透镜的可变焦成像光学系统的实施例;
图6示出了具有伽利略望远镜的结构的可变焦成像光学系统的又一实施例;
图7示出了具有伽利略望远镜的结构的可变焦成像光学系统的再一实施例;
图8示出了具有开普勒望远镜的结构的可变焦成像光学系统的还一实施例;
图9示出了具有显微镜物镜的形式的可变焦成像光学系统的还一实施例;
图10示出了具有可互换部分光学系统的可变焦成像光学系统的还一实施例;
图11示出了可变焦成像光学系统的还一实施例,其具有两个可变屈光率透镜以及这两个透镜之间的折叠光束路径;
图12示出了用于本发明多个实施例的可变屈光率透镜组的剖面;
图13示出了具有两个可变屈光率透镜组的伽利略型可变焦成像系统的实施例;
图14示出了具有两个可变屈光率透镜组的开普勒型可变焦成像光学系统的实施例;
图15示出了一种立体显微系统,其包括用于两个立体光束路径的具有可变焦距的公共物镜;
图15a到图15c是图15的立体显微系统在不同设置下的物镜的局部图;
图16a到图16c是图4的立体显微系统的具有可变放大率变焦系统的变型例的局部图;
图17a到图17c是图4的立体显微系统的具有用于补偿用户的不同视觉缺陷的目镜的另一变型例的局部图;
图18示出了图15所示的立体显微系统的另一变型例;
图19示出了一种立体显微系统的实施例,其具有用于两个立体光束路径和可变工作距离的分立物镜;以及
图20a到图20c示出了在不同设置下的变焦系统的还一实施例。
具体实施方式
下面将对根据本发明的包括多个可变屈光率透镜的成像光学系统的多个实施例进行更详细的描述。首先,下面参照图1和2对这种可变屈光率透镜的实施例进行描述。例如,从US 4,795,248、US 6,317,190B1、US5,617,109、US 4,909,626、US 4,781,440、US 4,190,330、US 4,572,616以及US 5,815,233可以获知这种透镜,通过引用将它们的全部公开内容并入于此。
图1示出了可变屈光率透镜1的剖面。透镜1包括第一液晶层3和第二液晶层5,各自布置于公共透明连续电极7的一侧。如图2中的平面图所示,在第一液晶层3的与公共电极7相对的一侧设置有另一透明电极结构9。该电极结构9提供了按矩形栅格排列的多个可控像素11。设置有控制器13,以通过驱动器15向各像素11施加可调电压,该驱动器15向各个像素提供电压,对于液晶显示器,这是公知的。因此,在各像素11与公共电极之间的电场是可调的,并且,根据如何设置该电场,液晶层3为沿光束17的偏振方向经过所述液晶层的光束提供了可变光路长度。在液晶层5的面对公共电极7的一侧设置有如图2所示地构造的另一透明电极结构9,由控制器13类似地控制该电极结构9。液晶层3提供了沿图1的平面中的偏振方向(如箭头19所示)的可变光路长度,而液晶层5提供了沿与上述偏振方向相垂直的偏振方向(如图1中的箭头21所示)的对应可变光路长度。
通过适当地控制电极结构9,由此可以为光束17的两个偏振方向提供两个液晶层3、5的光路长度,可以将这些光路长度作为在层3、5上的位置的函数加以调节。因此,可以在整体上对透镜1进行控制,以向光束17提供可调光学效果,如针对可选光轴的正屈光率或负屈光率的圆透镜作用、针对可调对称面的正屈光率或负屈光率的圆柱透镜作用、可调倍率(power)的楔棱镜作用,以及对应于更复杂的光学元件的作用。
图3示出了可变屈光率的另一透镜1的剖面。透镜1包括腔22,腔22具有两个窗23(分别为入射窗和出射窗),入射窗和出射窗23封住了具有不同折射率的两种液体25和27,优选地,这两种液体不可相互混合。一种液体25例如是水或水盐溶液。另一液体27例如是油。腔22为这两种液体25、27提供了锥形壁31,该锥形壁31相对于该组件的光轴29来说是对称的,并按接触角θ与这两种液体之间的界面33相接触。在壁31内布置有类似的锥形的电极35,在窗23附近的液体25中布置有环形电极36。液体25是导电的,而液体27基本上不导电。通过控制器13可以调节电极35与36之间的电压。电极35与36之间的电压的变化会改变两种液体25、27之间的界面33被壁31包围的角度θ。通过改变电极35、36之间的电压,从而可以改变界面33的形状和曲率,如由图3中的虚线33′示意性表示的。由于这两种液体25、27的不同的折射率,透镜1赋予沿光轴29穿过该透镜的光束的透镜作用是可变的。
例如,根据Varioptic,69007Lyon,France公司可以获得图3所示的类型的透镜。
根据US 6,369,954、CA 2,368,553以及US 4,783,155可以了解到其他可变屈光率透镜(其利用界面的形状变化来改变屈光率),通过引用将它们的全部公开内容并入于此。
本发明的原理可以应用于任意成像光学系统,如摄相机、照相机、望远镜、测量光学系统或显微镜。作为示例,以下将对立体显微镜进行描述。
图4示意性地示出了一种常规立体显微系统41,其包括用于将从物面45发出的物端光束丛47变换成像端光束丛49的物镜43。立体显微系统41还包括左手部分光学系统51和右手部分光学系统51′,左手部分光学系统51和右手部分光学系统51′中的每一个分别从像端光束丛49提取部分光束丛53和53′,并将它们分别馈送给作为立体显微系统41的图像形成组件的目镜55和55′。为此,左手部分立体光学系统51和右手部分立体光学系统51′中的每一个分别包括变焦系统57和57′,变焦系统57和57′包括多个透镜组58、58′、具有透镜组件59、59′的管以及反射棱镜61、61′,在图4中以展开的方式示出由反射棱镜61、61′折叠的光束路径。
物镜43包括负屈光率的透镜64的透镜组件63,该透镜是物镜43的面对物面45的透镜。此外,透镜组件63包括与透镜64接合的正屈光率的透镜65。
图5示出了只包括两个可变屈光率透镜1a1和1a2的可变焦成像光学系统57a的示例,这两个透镜被布置成按距离d=28.8mm沿公共光轴彼此分开。这两个可变屈光率透镜1a1和1a2中的每一个都是如参照图3所述的类型,即,这两个透镜1a1和1a2中的每一个都包括两种液体25a与27a之间的界面33a,这两种液体25a与27a具有不同折射率并被封闭在窗23a之间的空间中。设置控制器13a,以向透镜1a1和1a2适当地施加控制电压,以调节界面33a的曲率半径。
以下表1表示具有由控制器13a产生的焦距f1和f2的透镜1a1和1a2的3种设置。
图5示出了第3设置,标号103表示通过透镜1a1和1a2的光束。
因此,该成像光学系统像伽利略望远镜那样操作,并在入射侧和出射侧具有无焦光束路径。通过控制器13a对两个透镜1a1和1a2进行相反的控制,即,从1.0X的放大率(在此条件两个透镜都具有0dptr的屈光率)开始,增大透镜1a1的屈光率并减小透镜1a2的屈光率,以增大放大率。
表1
设置编号 放大率   透镜1a11/f1[dptr]   透镜1a21/f2[dptr]
  1   1.0   0   0
  2   1.25   6.5   -8.1
  3   0.80   -8.1   6.5
除表1按dptr示出的屈光率(其针对546nm的波长以dptr(屈光度)为单位示出)以外,所述两种介质25a与27a之间的界面33a的曲率还产生了不可忽略的纵向色差,在下表2中以dptr为单位针对透镜1a1和1a2中的每一个以及总成像光学系统57a示出了该纵向色差,作为480nm的蓝光与644nm的红光之间的屈光率差。
表2
设置编号 放大率   透镜1a1   透镜1a2   总光学系统57a
  1   1.0   0   0   0
设置编号 放大率   透镜1a1   透镜1a2   总光学系统57a
  2   1.25   -0.3   0.3   -0.07
  3   0.80   0.2   -0.2   -0.04
从表2可见,透镜1a1和1a2中的每一个都产生了相当大的纵向色差,但是总光学系统57a的纵向色差比各透镜的纵向色差小很多。这归因于以下事实:由于相反地控制透镜1a1和1a2,因此在变焦系统57a中它们的纵向色差总体上大部分抵消了。
变焦系统57a可以取代参照图4所述的常规显微系统的变焦系统57和57′,因而该显微系统提供了可变放大率,而不必为此使光学部件机械地移位。同样,可以将变焦系统57a集成在任何其他光学系统中,如望远镜。
图6示意性地示出了一种变焦光学系统,其包括顺序地布置在公共光轴29b上的以下光学部件:透镜1071和1091,它们接合在一起并形成了具有正屈光率的透镜组件1051;可变屈光率透镜1b1;另一可变屈光率透镜1b2;以及透镜1072和1092,它们接合在一起并形成了具有负屈光率的透镜组件1052。以下表3示出了变焦光学系统57b的与材料、曲率半径以及顶点距离有关的光学数据。在该表中,SF1、NSK4、NSK2以及NSF56表示玻璃材料,从SCHOTT,Mainz,Germany公司可以获得这些玻璃材料。
表3
透镜 编号   半径[mm]   厚度[mm] 介质   自由直径[mm]
  1   64.1383   17.0
  1071   2.0   SF1
  2   34.6203   17.0
  1091   4.5   NSK4
  3   -486.2486   17.0
  0.5   空气
  1b1
透镜 编号   半径[mm]   厚度[mm] 介质   自由直径[mm]
  28.8   空气
  1b2
  0.5   空气
  4   -130.7438   13.0
  1072   1.0   NSK2
  5   27.4285   13.0
  1092   2.5   NSF56
  6   46.4366   13.0
同样可以通过控制器(图6中未示出)来相反地控制具有可变屈光率的两个透镜1b1和1b2,以改变变焦光学系统57b的成像比。以下表4示出了在3种不同设置下的放大率以及为此而调节的透镜1b1和1b2的屈光率。此外,该表的最后3列示出了在这些设置下这两个透镜1b1和1b2由于控制的结果而产生的纵向色差的变化以及变焦光学系统57b的纵向色差在整体上的变化。
表4
Figure GSA00000069500300091
同样,从该表可以推断,在变焦光学系统57b中透镜1b1和1b2的纵向色差在整体上被相对好地抵消了,这是因为这些透镜被相反地控制。
图7示意性地示出了又一变焦光学系统57c,其包括沿光轴29c顺序布置的以下部件:具有可变屈光率的透镜1c1;透镜107c1和透镜109c1,它们接合在一起以形成具有固定正屈光率的透镜组件105c1;透镜107c2和109c2,它们接合在一起以形成具有固定负屈光率的透镜组件105c2;以及具有可变屈光率的透镜1c2。同样可以通过控制器(图7中未示出)来相反地控制具有可变屈光率的两个透镜1c1和1c2,以改变变焦光学系统57c的放大率。以下表5示出了变焦光学系统57c的光学数据。具有固定屈光率的透镜组件分别与图6和表3所示的透镜组件相同。
表5
透镜 编号   半径[mm]   厚度[mm] 介质   自由直径[mm]
  1c1
  2.0   空气
  1   64.1383   17.0
  107c1   2.0   SF1
  2   34.6203   17.0
  109c1   4.5   NSK4
  3   -486.2486   17.0
  34.0   空气
  4   -130.7438   13.0
  107c2   1.0   NSK2
  5   27.4285   13.0
  109c2   2.5   NSF56
  6   46.4366   13.0
  2.0   空气
  1c2
与关于图6的实施例的表4类似,以下表6再次针对所述3个放大率设置示出了具有可变屈光率的透镜1c1和1c2的各个经调节的屈光率,和这两个透镜的取决于所述控制的纵向色差的变化,这示出了在变焦光学系统57c中所述像差如何在整体上被抵消。
表6
Figure GSA00000069500300101
从表6可以显见,因为透镜1c1和1c2被相反地控制,在光学系统57c中纵向色差在整体上被相对好地抵消了。对表6与表4进行的比较表明,为了产生相同的放大率1.6x、2.0x以及1.3x,与在参照图6所述的实施例相比,在变焦光学系统57c中需要更小的透镜1c1和1c2的屈光率变化。这是因为如下事实:在系统57c的可变屈光率透镜1c1与1c2之间的距离比在根据图6的实施例中的可变屈光率透镜之间的距离要大。
参照图6和7所述的可变焦成像光学系统的实施例根据伽利略望远镜的原理进行操作,其中组合有具有正屈光率的透镜组与具有负屈光率的透镜组。
图8示意性地示出了根据开普勒望远镜的原理进行操作的可变焦成像光学系统57d,其中组合有具有正屈光率的两个透镜组,在这两个透镜组之间产生了中间图像。
光学系统57d包括沿公共光轴29d布置的以下部件:具有可变屈光率的透镜1d1;透镜107d1和透镜109d1,它们接合在一起以形成具有固定正屈光率的透镜组件105d1;透镜107d2和109d2,它们接合在一起以形成具有固定正屈光率的透镜组件105d2;以及具有可变屈光率的透镜1d2。同样,设置有用于相反地控制可变屈光率透镜1d1和1d2的控制器(图8中未示出),以分别改变光学系统57d的成像比和放大率。
以下表7示出了变焦光学系统57d的光学数据:
表7
透镜 编号   半径[mm]   厚度[mm] 介质   自由直径[mm]
  瞳孔   4.5
  30.6   空气
  1d1   10.0
  0.5   空气
  1   30.9734   10.0
  107d1   3.0   NSSK8
透镜 编号   半径[mm]   厚度[mm] 介质   自由直径[mm]
  2   -13.5988   10.0
  109d1   1.0   SF4
  3   -38.0658   10.0
  65.5   空气
  4   38.0658   10.0
  107d2   1.0   SF4
  5   13.5988   10.0
  109d2   3.0   NSSK8
  6   -30.9734   10.0
  0.5
  1d2   10.0
  30.6   空气
  瞳孔   4.5
以下表8针对变焦光学系统57d的3个不同放大率设置示出了透镜1d1和1d2的屈光率、取决于所述控制的纵向色差的变化以及在变焦光学系统57d中该纵向色差如何在整体上被抵消。
表8
Figure GSA00000069500300121
从表8可见,由于相反地控制具有可变屈光率的透镜,因此实现了由各透镜产生的纵向色差的几乎理想的抵消。
图9示意性地示出了例如用作参照图4所述的显微系统中的物镜的可变焦成像光学系统43e。物镜43e包括沿光轴29e顺序地布置的以下光学部件:具有正屈光率的透镜组件105e1,其由接合在一起的两个透镜107e1和透镜108e1组成;具有可变屈光率的透镜1e1;具有可变屈光率的另一透镜1e2;以及具有负屈光率的透镜组件105e2,其由透镜107e2和透镜109e2组成。所述两个可变屈光率透镜1e1和1e2可以是如参照图1和2所述的类型、或如参照图3所述的类型、或能够提供可变屈光率的任何其他透镜类型。然而,在参照图9描述的实施例中,优选地使用液晶型可变屈光率透镜(图1、2),这是因为可以容易地将这种透镜分别布置在透镜109e1和107e2的平透镜面上。同样通过控制器(图9中未示出)来控制透镜1e1和1e2,以提供可调屈光率。作为液晶型透镜,透镜1e1和1e2具有小的并且在其剖面上恒定的厚度。图9所示的透镜被象征性地表示为用于对它们的屈光率进行特定调节的玻璃透镜,并提供了与所述各设置相对应的屈光率。由此可以显见,在图9所示的设置中透镜1e1提供了负屈光率,透镜1e2提供了正屈光率。
在表中示出了可变焦显微物镜43e的光学数据:
表9
Figure GSA00000069500300131
物镜43e将从物面45e发出的物端光束丛47e变换成具有无焦光束路径的像端光束丛49e。通过对透镜1e1和1e2进行控制,可以分别改变物面45e与前透镜109e2之间的工作距离AA和由物镜43e产生的放大率以及其焦距。为了改变放大率,在给定并且保持不变的工作距离AA上,通过控制器对透镜1e1和1e2进行相反的控制,即,增大一个透镜的屈光率并减小另一透镜的屈光率。
以下表10示出了对透镜1e1和1e2的控制的6个不同设置,这些设置用于针对两个不同工作距离中的每一个产生3个不同的放大率。
表10
  工作距离AA[mm]   焦距f[mm]   透镜1e11/f1[dptr]   透镜1e21/f2[dptr]
  200   240   -8.7   10.8
  200   275   0   0
  200   300   5.0   -7.8
  300   340   -12.1   13.0
  300   385   -3.7   3.6
  300   430   2.9   -5.8
图10示出了变焦光学系统57f,在所示的设置中,其包括沿光轴29f布置的以下光学部件:具有可变屈光率的透镜1f1;具有正屈光率的透镜组件105f1,其由接合在一起的透镜107f1和透镜109f1组成;具有负屈光率的透镜组件105f2,其由接合在一起的透镜107f2和透镜109f2组成;以及具有可变屈光率的透镜1f2。透镜组件105f1和105f2安装在支承件115上,该支承件115像转盘(turret)一样可以绕垂直于光轴29f定向的轴113旋转。透镜组件105f1和105f2安装在位于公共光轴111上的支承件115上,在图10所示的设置中,该公共光轴111与具有可变屈光率的透镜1f1和1f2的公共轴29f相重合。
通过控制器(图10中未示出)可以相反地控制透镜1f1和1f2,以分别改变光学系统57f的放大率和成像比。如果将透镜1f1和1f2控制成使得它们提供为零的屈光率,则在图10所示的设置中光学系统57f具有0.4x的基本放大率。
在支承件115上还安装有两个透镜组件105f1′和105f2′,这两个透镜组件具有与透镜组件105f1和105f2的光轴111形成60°的夹角的公共光轴111′。当支承件115逆时针旋转60°时,透镜组件105f1和105f2从透镜1f1与1f2之间的光束路径移开,而透镜组件105f1′和105f2′移动到透镜1f1与1f2之间的光束路径上,使得其光轴111′与轴29f相重合。在此情况下,当将透镜1f1和1f2控制成使得它们不提供屈光率时,光学系统57f提供0.6x的基本放大率。
当支承件105进一步逆时针旋转时,透镜组件105f1′和105f2′从透镜1f1与1f2之间的光束路径移开,并且该光束路径延伸穿过支承件115的开口117,而没有具有固定屈光率的透镜置于透镜1f1与1f2之间的光束路径上。在此情况下,当将透镜1f1和1f2控制成使得它们不提供屈光率时,光学系统57f提供1.0x的基本放大率。然后,当支承件115进一步逆时针旋转时,透镜组件105f1和105f2再次移动到透镜1f1与1f2之间的光束路径上。但是,此时透镜组件105f2位于图10的顶部而透镜组件105f1位于底部,因此,当不对透镜1f1和1f2进行控制时,光学系统57f提供2.5x的基本放大率。如果支承件115再逆时针旋转60°,当不对透镜1f1和1f2进行控制时,该光学系统此时提供1.6x的放大率。
在支承件115的上述多个设置中的每一个设置中,可以针对透镜1f1和1f2的屈光率对它们进行相反的控制,以从在各情况下调节出的基本放大率开始基本上连续地改变光学系统57提供的放大率。由于透镜1f1和1f2的屈光率的变化是有限的,因此可以旋转支承件115以进一步改变放大率,以提供具有固定焦距的透镜的另一基本放大率。
可以将变焦光学系统57f集成在参照图4所述的显微系统中,以按上述简单的方式在相对宽的范围上提供对放大率的连续改变,而不必相对于光轴沿纵向方向使变焦系统的部件移位。
图11示意性地示出了另一可变焦成像系统57g,其包括具有可变屈光率的两个透镜1g1和1g2,并展现出与参照图5所述的实施例相似的光学作用。但是,在具有可变屈光率的这两个透镜之间的光束路径上插入有Schmidt-Pechan棱镜121,以使光束路径多次折叠,使得该光学系统的总长度b约为22mm。若不使该光束路径折叠,则当使用其他相同的光学部件时该总长度将为40mm。除了使用用于使光束路径折叠的Schmidt-Pechan棱镜121以外,也可以使用用于使光束偏转的其他可能方式,如使用反射镜、其他棱镜类型(如Porro-II棱镜等)。如果需要的话,还可以通过提供合适的光束折叠来实现横向翻转。
可变放大率成像光学系统的上述原理提供了提供一种产品族的特别有效的可能性,该产品族具有两组光学器件,这两组光学器件的彼此之间的不同之处在于:一个组的器件展现出变焦功能,而另一组的器件不展现出变焦功能。两个组的器件均包括在结构上大致相似的具有固定焦距的光学部件。例如,两个组的对应器件的大部分固定焦距光学部件的曲率半径、自由直径以及顶点距离基本上彼此相似。与另一组器件不同,可变焦组的器件包括具有可变屈光率的至少两个透镜,这些透镜彼此分开地插在光束路径中。这使得可以针对两个组的对应器件采用共同的制造处理,由此允许节省成本地提供该产品组。
例如,可以在提供了变焦功能的高价显微镜中使用参照图9所述的物镜,也可以在不提供该功能的低价显微机中使用该物镜,即,不包括透镜1e1和1e2,而是保持其他透镜107e1、108e1、109e1、107e2以及109e2基本上不变。
同样,可以在模型组中的显微镜组中与可变屈光率透镜一起使用参照图6、7以及10所述的变焦系统,并且可以将该变焦系统与具有基本上相同的变焦光学系统但是不包括可变屈光率透镜(除此之外就具有基本上相同的结构)的另一模型组集成起来。
如公知的,可以将其在其光轴上的厚度d比其两个表面的半径r1和r2之差要小得多的球面透镜近似地称为“薄透镜”,该薄透镜的屈光率
Figure GSA00000069500300161
和色散ηDL与它们的两个表面的半径的倒数(即,曲率k1和k2)之差直接成正比。对于两个这种薄透镜的组件以下公式成立(或近似成立):各透镜的屈光率
Figure GSA00000069500300162
Figure GSA00000069500300163
之和减去各屈光率与透镜距离e之积给出了这种组件的屈光率
Figure GSA00000069500300165
那么由以下公式近似给出了这种两个薄透镜的组件的色散η:
Figure GSA00000069500300166
我们来考虑具有4个薄透镜的系统,这4个薄透镜成对地布置(其间没有间距),各对薄透镜的部件的一个屈光率是固定的
Figure GSA00000069500300167
而另一个是可变的
Figure GSA00000069500300168
这得到了如下总屈光率(e为两对之间的距离)
相应地总色散为:
Figure GSA000000695003001610
特别重要的是简化的公式,在其推导过程中假设将固定焦距的部件设计成使得它们的色散与具有可变屈光率的部件的色散相比是可忽略的,即:
对于无焦系统可以得到进一步的简化,这是因为在这些系统中透镜对的距离e必须等于屈光率的倒数和:
Figure GSA000000695003001612
Figure GSA000000695003001613
(6)
根据该公式可以推断,如果具有可变屈光率和色散的透镜的色散ηa v与ηb v之比是由屈光率
Figure GSA00000069500300171
Figure GSA00000069500300172
的平方比(即,成像比的平方Г2)确定的数,并且只要ηa v与ηb v具有不同的前符号,在无焦系统中就可以实现总色散的补偿。通常,如果对具有可变屈光率的两个透镜进行相反的控制,即,如果它们的屈光率
Figure GSA00000069500300173
也具有不同的前符号,则会出现后一情况。由基本成像比Г0和在各情况下要调节的成像比Г给出无焦系统中的待设置的可变屈光率。因此,针对所有可调成像比实现对色散的精确补偿通常是不可能或不实际的。除了根本就不控制具有可变屈光率的透镜因而这些透镜不产生任何色散因而该系统提供基本成像比的情况以外,针对另一成像比提供这种精确的补偿通常就足够了。已经发现,根据成像比设置,残余色散(resident dispersion)描述了一个抛物线型函数,只要设置有固定焦距的颜色校正部件,该抛物线型函数就与零(对应于在基本成像比下的可忽略的色散)相交并尤其对于非常大和非常小的成像比达到相对高的正值。如果具有可变屈光率的两个透镜的屈光率色散关系(阿贝值)非常相似,则该抛物线型曲线的顶点靠近基本成像比,而这两个透镜的阿贝值越不相同,该抛物型曲线的顶点就越远离基本成像比并向负色散移动。在本语境下“负色散”是指对蓝光的总屈光率比对红光的总屈光率小,因此,如果无焦系统允许平行地进入该系统的多色光束丛对于其绿光谱部分来说平行地出射,则在负色散的情况下蓝光谱部分将发散地从该系统射出,而红光谱部分将会聚地从该系统射出。在具有有限相交长度的系统中,“负色散”是指蓝光的相交长度将比红光的相交长度大。
上述推导还包括具有固定焦距的两个部件根本没有屈光率或者根本不存在这两个部件的情况,这使得对于各屈光率和色散插入零。这种特殊情况导致在成像比设置对应于具有可变屈光率的透镜的阿贝值之比时会得到最优色散补偿。如果存在具有固定焦距的光学效应部件,则在成像比设置与基本成像比之比对应于具有可变屈光率的透镜的阿贝值之比的情况下会按类似的方式得到最优色散补偿。在由所述关系给出的该成像比与基本成像比之间,残余色散一般是负的,并只随调节的成像比设置轻微变化。
实际上,不能将具有可变屈光率的系统完全视为无间隙的(spaceless),因而必须对包括这种透镜的每个系统进行精确计算;根据以上推导的一般规律,具有可变屈光率的成像系统的最小总色散的精确条件在各情况下也由于上述原因而或多或少地不同。其他原因是对其他基本像差的忽略和对于各应用最大可容忍的残余色散的不同要求。
当然可以将上述具有可变屈光率的透镜替换为其中每一个都包括多个这种透镜的多个透镜系统或由多个这种透镜构成的透镜系统,以实现更好的色散补偿。例如,可以将被相反地控制的两个不同透镜靠近地布置成一个在另一的后方,使得它们一起提供相当大的屈光率,但是只有小的色散;因此这种组合的阿贝值会非常高。为此使用参照图3所述的类型的透镜将两个单个透镜集成为3层结构,该结构包括位于中间的水(可选用盐水)和位于其两侧的不同的油。可以将这种结构控制成使得两个界面在永不互相接触的情况下向同一方向移动。可以直接互相层叠地布置根据图1的类型的不同透镜并对它们进行相反的控制;此外,可以将根据图1的类型的透镜直接布置在根据图3的类型的透镜的一个或两个玻璃盖上。还可以将这些玻璃盖替换为提供固定屈光率的透镜,其中它的多个表面中的至少一个是弯曲的并且也是成对地色散补偿的。
图3所示的类型的透镜的唯一独立可变的光学参数是两个介质(水与油)之间的界面的曲率k,这两个介质本身是不可变的。该界面的屈光率与由此产生的色散直接相互成比例,因而可以按照调节出的屈光率与由此产生的色散之比将基本上与屈光率无关的阿贝值分配给这种透镜。如果将两个这种透镜集成为一个结构,则在两个界面之间总是必须保留一定间距,以保持后一界面作为光轴垂直地穿过的区域,这是因为如果这两个界面彼此接触就会形成环绕油柱的水环。此外,该间距按取决于这些透镜的内部结构的方式随所产生的屈光率而变化,这是因为油和水的体积保持恒定,除非有电致收缩(eletectrostriction)效应。此外,由于这种透镜半径差小并且透镜厚度相对较大,因此不能将它们当作薄透镜进行精确计算。因此,很明显,对透镜特性的仅仅近似的计算实际上是不够的,而需要进行更精确的计算。不过,出于例示的目的,针对如下集成结构对没有间距的薄透镜进行近似计算:该集成结构包括位于一侧的正常色散浸渍油和位于另一侧的几乎无色散的浸渍油,其间是水。表11示出了所使用的3种介质的有关光学参数。表12示出了针对3种设置(包括光学中性零设置)的调节后的半径以及所得到的屈光率和色散。
表11
  介质   折射率nr   阿贝值va
  水   1.3347   55.8
  A类型浸渍油   1.4811   56.5
  B类型浸渍油   1.5178   43.0
表12
如从表11和12显见的,优选地,将该类型的集成透镜系统控制成使得两个界面曲率相互之间的比例是恒定的,使得顶点始终沿同一方向移位。这要求各接触角相反地变化,即,这也需要进行相反的控制。因此可以实现使这种系统的有效阿贝值基本上保持与该系统的屈光率无关。在此情况下,上述公式(6)也是适用的,根据该公式,总色散只取决于部件的各个色散和所调节的屈光率。然而,由于在该集成系统中色差已经是部分预补偿的,因此在此情况下的有效阿贝值比在具有相反的曲率的情况下的高得多,并且还可以具有负前符号,使得在所观察的成像比的整个范围上所得到的总色散可以在理想情况下保持为可容忍地小。
图12示意性地示出了一种集成透镜组合,对其的控制近似对应于表12的设置I。控制器13h单独地对环形电极36h和两个锥形电极35h进行控制。介质26h和27h是表11的油A和B。油A与B之间的水层25h的界面33h、33h′分别展现了与控制相关的接触角θA和θB。玻璃盖23h的厚度例如是0.55mm。
为了与图5所示的包括根据图3的类型的两个可变屈光率透镜的变焦系统进行类比,以下表13示出了一种类似的变焦系统的界面半径、屈光率以及色散,该变焦系统包括两个不同的透镜,第一透镜包括A类型的浸渍油,第二透镜包括B类型的浸渍油并按e=55mm的间距与第一透镜分开。
表13
Figure GSA00000069500300201
即使该集成型透镜组件本身没有完全补偿色差,也可以将它们组合成图5所示的类型的变焦系统。这使得可以使用其他变化参数以补偿色差和其他像差(例如球面像差)。此外,这种组合使得可以再进一步补偿总色差,因为将具有这种残余像差(residual aberration)的集成透镜系统组合起来,这针对特定成像比最优地补偿了残余像差。
图13示出了布置于伽利略型无焦系统中的公共光轴29i上的两个这种集成透镜系统的组合。将该透镜系统控制成使得它们的焦距之和(即,这里是它们的焦距之差)约等于这两个透镜系统的间距di,使得这两个透镜系统的组合的总屈光率正好是零。为此,控制器13i分别对两个环形电极36i和全部4个锥形电极35i进行控制。
然而,如果对集成透镜系统的锥形电极进行同步控制使得所述顶点相反地移位,则对色差η的预补偿不是那么好,而屈光率
Figure GSA00000069500300202
明显更高(见图14)。由于这些透镜系统的更高的屈光率,总长度相对较短。因此,这种系统更适用于开普勒型无焦系统,如图14所示。在此情况下,同样,将该透镜系统控制成使得它们的焦距之和约等于它们的间距dj。通过适当地选择这两个集成系统的介质,可以至少针对标定成像比Γ0(这里是负的)实现对色差的补偿,并且/或者,如果需要的话,通过位于公共光轴29j上的具有固定焦距的其他透镜来实现对色差的补偿。由于各焦距f1和f2之和应当是恒定的,因此当一个透镜系统的焦距增大时另一透镜系统的焦距减小。这意味着:对这两个透镜系统进行相反的控制,以保持该组合的无焦性;这同样得到了对色差的至少部分的补偿。
表14
Figure GSA00000069500300211
在图9所示的物镜系统中,具有正屈光率的透镜与具有负屈光率的透镜之间的距离是如此的大或者负屈光率与正屈光率相比是如此的小,以至于总体上得到了正屈光率:从表10的第二行可以显见,当不对具有可变屈光率的透镜进行控制时,该物镜的焦距f是275mm并且工作距离AA是200mm。如上所述,通过对具有可变屈光率的透镜进行相反的控制,可以影响具有正的和负的屈光率的透镜组件,使得获得其他焦距和/或工作距离。根据参照公式(1)到(5)所描述的,具有可变屈光率的透镜的色散也随着变化,因此总色散也变化。由于没有更详细地限定透镜组件之间的距离,因此在此情况下不能再指定各色散的特定最优比;相反,这个比在下述两个范围中的一个范围内。
如果将具有可变屈光率的多个透镜控制成使得布置于光束路径之后的透镜具有正屈光率而布置于光束路径之前的透镜具有负的但是绝对值大很多的屈光率,则由于与它们的屈光率的倒数之差相比它们的间距很小,因此这两个具有可变屈光率的透镜呈现具有负屈光率的组件的组合作用(公式1)。然而,与相对较长的物镜焦距相对应地,该透镜组件的间距(见上文)比对应于无焦系统的间距要大,与色差补偿有关的最优色散比必定超过无焦系统的最优值(
Figure GSA00000069500300212
见公式6):
∧e>0    (7a)
Figure GSA00000069500300222
Figure GSA00000069500300223
(因为
Figure GSA00000069500300224
)    (7b)
Figure GSA00000069500300225
(其中
Figure GSA00000069500300226
)    (7c)
然而,对于相同结构的具有可变屈光率的简单透镜,只能得到
Figure GSA00000069500300227
因此,在这种情况下应当不同地构成具有可变屈光率的透镜或者/并且将这些透镜构成为使得满足以上不等式。
如果将具有可变屈光率的多个透镜控制成使得置于光束路径之后的透镜具有负屈光率而置于光束路径之前的透镜具有正的但是绝对值更大的屈光率,则与相对较短的物镜焦距相对应地,具有可变屈光率的这两个透镜呈现具有正屈光率的器件的组合作用(见公式1),而与它们的间距无关。在此情况下,由于更靠近物体的透镜组件的正屈光率已经超过了离物体更远的透镜组件的负贡献,并且距离相关项也是正的,因此使用相同结构的具有可变屈光率的简单透镜也不能实现最优色差校正(见公式2,其具有两个正项,因为ηab>0)。补偿色差的一种可能性在于:针对被布置得离物体更远的透镜组件选择具有可变屈光率的较高色散透镜,而针对被布置得更靠近物体的透镜组件选择具有可变屈光率的较低色散透镜。在此情况下高和低色散是指在相同的屈光率下色散分别更低和更高,即,阿贝值将分别更低和更高。同样,不可能在整个工作距离和焦距范围上实现完全色差补偿;然而,除了不对具有可变屈光率的透镜进行控制的情况以外,对于还一情况(例如,表10的行5(工作距离为300mm,焦距为385mm)的情况),可以获得尽可能最优的补偿,使得在两个工作距离下提供差不多同样好的色差补偿。
从原理上说,出于成像的目的,也可以使用两级变焦光学系统连同具有固定焦距的其他透镜,该变焦光学系统的总屈光率是负的,这是因为:只要该变焦系统的两个透镜组件的屈光率具有不同的前符号,这两个透镜组件之间的距离就比对应于无焦(伽利略)系统的要小;或者,只要这两个透镜组件的屈光率具有相同的(即,正的)前符号,它们之间的距离就比对应于无焦(开普勒)系统的要大。在这方面感兴趣的尤其是第一种情况,因为它的总长度较短,在此情况下,透镜组件之间的距离由此在零与具有这两个透镜组件的预定屈光率的无焦系统的间距(即,屈光率的倒数之和)之间。因此,各色散之比的最优值介于无间隙系统的值(即,ηa v opt=-ηb v opt,见公式2,其中e=0)与无焦系统的最优值(公式6)之间:
Figure GSA00000069500300231
Figure GSA00000069500300232
Figure GSA00000069500300233
(其中
Figure GSA00000069500300234
)    (8c)
这例如适用于如下情况:对由图3所示的类型的两个透镜组成的图12所示的类型的集成系统进行控制,使得各屈光率的倒数值之差超过界面的如上所述的不可避免的间距,并且一个界面的负屈光率在数值上比另一界面的正屈光率要高。优选地,将随着所调节的屈光率而变化的界面间距考虑在内,来对这种系统进行最优控制。
此外,在这些透镜系统中色散与屈光率至少近似成比例,因而在每个情况下可以认为有效阿贝值
Figure GSA00000069500300235
更加基本上与所调节的屈光率无关,并且仅由包含在透镜中的液体的光学参数来确定。在此情况下,由公式8c得出对于这些阿贝值(数量)之比,在色差补偿方面的光学值范围是:
Figure GSA00000069500300236
(其中)    (9a)
对于具有特别小的界面间距(或者,更精确来说,主面距离)的系统,更靠近下限是最优的,即:
(其中
Figure GSA00000069500300239
)    (9b)
相应地,对于屈光率之差特别小的系统,或者具有大界面间距的系统,更靠近上限是最优的,即:
(其中
Figure GSA000000695003002311
)    (9c)
对于所有其他上述示例,各色散和阿贝值的最优选择还分别与其他也必须被补偿的像差(尤其是球面像差)和在各应用中尚可容忍的残余像差有关。
以下,对根据本发明的使用可变光学作用的光学组件的立体显微系统的实施例进行描述。
在图15所示的物镜中,透镜组件63还包括具有可变屈光率的透镜66,该透镜66被布置于透镜65的不与透镜64相接合的一侧。具有可变屈光率的透镜66的结构对应于参照图1所述的结构。为此,按挠性膜形式设置参照图1描述的组件1:该挠性膜的厚度约为100μm,并在透镜65的整个表面上固定地连接到透镜65。然而,也可以将具有可变屈光率的透镜66布置成与透镜65的表面分开,例如,将其布置在平面玻璃支承件上。
同样,可以将具有可变屈光率的透镜布置在透镜64的不与透镜65相接合的表面上。
以下表15示出了两个透镜64和65的与材料、曲率半径以及顶点距离有关的光学数据。在该表中,NSSK8和NSF56表示可以从SCHOTT,Mainz,Germany公司获得的玻璃材料。
表15
透镜标号 表面标号   半径[mm]   厚度/气隙[mm] 玻璃/介质   自由直径[mm]
  1   142.549   43.0
  65   6.5   NSSK8
  2   -105.481   43.0
  64   3.5   NSF56
  3   -364.018
  200.0   空气   43.0
  物面
因此,透镜组件63的总高度是10mm,两个透镜65和64的焦距一共是205mm,因而如果具有可变屈光率的透镜66提供了0dptr的屈光率,则由透镜64、65、66组成的整个透镜组件63的焦距是205mm。
图15a、15b、15c针对透镜66k的屈光率的3种不同设置示出了物面45k与物镜43k之间的物端光束丛47k的光束路径。此外,图15a、15b、15c针对各设置示出了物镜43k的焦距f和物面45k与面对物面45k的透镜面64k之间的工作距离A。
在图15a的设置中,透镜66k提供了0dptr的屈光率。在图15b的设置中,透镜66k提供了-1.6dptr的屈光率。图15b不是将透镜66k示为具有恒定厚度的层,而是将它象征性地示为类似地提供了-1.6dptr的屈光率的玻璃材料的凸透镜。在图15c的设置中,透镜66k提供了-2.4dptr的屈光率。其中,同样将透镜66k象征性地表示成具有相应屈光率的玻璃透镜。
以下表16总结了在图15a到15c所示的3种设置中物镜43k的光学数据。
表16
  设置   A[mm]   f[mm]   1/f[dptr]   Δ1/f[dptr]
  1   200   205   4.9   0
  2   300   304   3.3   -1.6
  3   400   403   2.5   -2.4
以下,对参照图1到4所述的实施例的其他变型例进行描述。由相同的标号来指定在结构和功能上与图1到4的部件相对应的部件,但是,为区别起见,为这些标号追加附加的字母。在这方面,请参照以上的全部说明。
图16示出了用于图4的显微系统的无焦变焦系统57l的变型例。在图4中,将具有可变放大率的变焦系统57控制成使得变焦系统57的4个透镜组58中的2个可以沿部分立体光学系统51的光轴54移位。图16所示的变焦系统57l包括沿变焦系统57l的光轴54l按固定间距彼此分隔开地布置的两个透镜组件58l1和58l2。透镜组件58l1置于在图16中未示出的物镜附近,透镜组件58l2布置于在图16中也未示出的管附近。透镜组件58l1包括与具有正屈光率的透镜722接合在一起的具有负屈光率的透镜721。按与已针对物镜43的透镜66参照图3和4描述的方式相似的方式,将具有可变屈光率的透镜731布置于透镜721的不与透镜711相接合的整个表面的上方。
透镜组件58l2包括与具有正屈光率的透镜722相接合的具有负屈光率的透镜712。在透镜722的不与透镜712相接合的整个表面的上方类似地布置有具有可变屈光率的透镜732。通过控制器131对具有可变屈光率的透镜731和732进行控制以控制它们的屈光率,以改变变焦系统57l的放大率。
图16a、16b以及16c针对3个不同的放大率示出了变焦系统57l的3个不同设置。同样,其中不是将透镜731和732示为具有恒定厚度的层,而是将它们示为提供了根据相应设置的屈光率的对应的玻璃透镜。
以下表17示出了透镜711、721、712以及722的与材料、曲率半径以及顶点距离有关的光学数据。在该表中,同样,SF1、NSK4、NSK2以及NSF56表示可以从SCHOTT,Mainz,Germany公司获得的玻璃材料。
表17
透镜标号 表面标号   半径[mm]   厚度/气隙[mm] 玻璃/介质   自由直径[mm]
  1   64.1383   17.0
  711   2.0   SF1
  2   34.6203   17.0
  721   4.5   NSK4
  3   -486.249   17.0
  34.0   空气
  4   -130.744   13.0
透镜标号 表面标号   半径[mm]   厚度/气隙[mm] 玻璃/介质   自由直径[mm]
  712   1.0   NSK2
  5   27.4285   13.0
  722   2.5   NSF56
  6   46.4366   13.0
以下表18示出了在根据图16a、16b、16c的3种设置中由变焦系统57l提供的放大率的值,还示出了透镜731和732的各设置的屈光率。
表18
设置 放大率n   1/f(dptr)透镜731   1/f(dptr)透镜732
  1(图16a)   2.0   4.1   -11.2
  2(图16b)   1.6   0   0
  3(图16c)   1.3   -4.1   7.5
图17示出了用于立体显微系统的目镜55m。
目镜55m包括透镜组件80,该透镜组件80由以下透镜组成:具有负屈光率的透镜81,其面对立体显微系统的管并与具有正屈光率的透镜82相接合;和具有正屈光率的还一透镜83,其在其整个表面的上方设置有可变屈光率透镜84。可以通过控制器13m控制可变屈光率透镜84以改变透镜84的屈光率,以对通过目镜55m进行观察的眼睛的视觉缺陷进行补偿。
图17a、17b、17c示出了目镜55m的3种不同设置,由眼睛瞳孔AP和透镜85(其象征视觉缺陷)象征性地表示通过目镜55m进行观察的眼睛。在图17a中,视觉缺陷是+4dptr,将象征该视觉缺陷的透镜85示为平凸透镜。在图17b中,视觉缺陷是0dptr,即,眼睛具有理想的视觉,将象征视觉缺陷的透镜85示为平面平行板。在图17c中,视觉缺陷是-4dptr,将象征该视觉缺陷的透镜85相应地示为平凹透镜。
图17a、17b以及17c的标记ZB表示由显微系统的管生成的中间图像。
根据以下表19可见目镜55m的透镜81、82、83的与材料、曲率半径以及顶点距离有关的光学数据。同样,SF56A和SK55表示可以从SCHOTT,Mainz,Germany公司获得的玻璃材料。
表19
透镜标号 表面标号   半径[mm]   厚度/气隙[mm] 玻璃/介质   自由直径[mm]
  中间图像
  14.47
  1   122.32   28.0
  81   4.0   SF56A
  2   21.288   28.0
  82   13.0   SK55
  3   -38.681   29.0
  0.3   空气
  4   24.406   27.5
  83   7.2   SK55
  5   平的   25.2
  25.0
  眼睛瞳孔
在图17a、17b、17c中,同样,不是将可变屈光率透镜84示为具有恒定厚度的层,而是将它们示为被研磨成提供了具有与透镜84相对应的屈光率的玻璃透镜。
控制器13m包括存储器87,该存储器87用于存储图17a到17c所示的透镜84的3个不同设置的特性。从存储器87选择性地取出这些特性以对透镜84进行相应的调节。为了改变该设置,将选择切换器89耦合到控制13m,在所描述的实施例中该切换器提供3个可选设置。因此,在所描述的实施例中,目镜55m由此可以快速地进行切换,以实现以下目的:补偿第一用户的+4dptr的视觉缺陷,以使该用户最佳地感知立体图像;为视觉最佳的第二用户提供一种设置,以使该用户也最佳地感知立体图像;以及为第三用户提供补偿了-4dptr的视觉缺陷的设置。对于另一或其他用户,该存储器可以包含针对相应的视觉缺陷的其他特性。通过在图17中未示出的输入装置可以预先确定存储的值。
图18示出了参照图4和15所述的立体显微系统的还一变型例,该变型例的对具有可变屈光率的透镜66n的控制方式与参照图4和15所述的立体显微系统不同。不仅对透镜66n进行控制以改变工作距离,使得它针对物镜63n的光轴42n提供可变的圆透镜作用,而且还使得它分别针对左手部分立体光学系统51n和右手部分立体光学系统51′n的光轴54n和54′n提供附加的圆透镜作用。部分光学系统51n和51′n的变焦系统57n和57′n各自包括透镜组件58n和58′n,透镜组件58n和58′n可以分别沿部分光学系统的光轴54n和54′n移位,如图7的箭头91和91′象征性地表示的。通过控制器13n实现对透镜组件58n和58′n的移位以改变由变焦系统57n、57′n提供的放大率,控制器13n对具有可变屈光率的透镜66n类似地进行控制。
根据所调节的放大率对具有可变屈光率的透镜66n进行控制,以在各部分光束丛53n、53′n中提供附加的屈光率,如在图18中由象征性的凸透镜92和92′表示的。结果,具有可变屈光率的透镜66n可以具有变焦系统57n和57′n的功能,使得后者可以在比通常至少要少一个光学组件的情况下进行操作。
变焦系统57n和57′n可以沿周向绕物镜43n的光轴42n移位,如由图18中的箭头93所示。因此,光轴54n和54′n绕光轴42n沿周向移位,并且控制器13对透镜66n进行连续控制,使得分别针对轴54n和54′n对称地提供附加的透镜作用92、92′。
图19示意性地示出了另一立体显微系统41o。与上述立体显微系统相对照,立体显微系统41o包括两个部分立体光学系统51o和51′o,这两个部分立体光学系统51o和51′o中的每一个分别包括单独的物镜63o和63′o、以及象征性地表示的变焦系统58o和58′o,此外还分别包括管59o和59′o,并且分别包括目镜55o和55′o。物镜63o(63′o)、变焦系统58o(58′o)、具有场透镜的管59o(59′o)以及目镜55o(55′o)沿光轴54o(54′o)对称布置,并被固定地支承在立体显微系统的机架101中,使得光轴54o与54′o形成约6°的夹角α,轴54o、54′o相对于立体显微系统41o的主轴42o对称布置。
物镜63o和63′o与具有负屈光率的透镜64o(64′o)、具有正屈光率的透镜65o(65′o)以及具有可变屈光率的透镜66o(66′o)在结构上相同,并类似于参照图4和15所述的显微系统的物镜。通过在图19中未示出的控制器可以改变透镜66o的屈光率,以改变物镜63o的焦距,以改变立体显微系统41o的工作距离(即,物面45o与物镜63o之间的间距)。图19针对物面45o1和45o2示出了工作距离的两个设置。但是,在距物面45o2的较短工作距离下,只有光轴54o2和54′o2在物镜63o与63′o之间延伸使得它们在物面45o2上相交于主轴42o上,才可以获得精确的立体图像。为了提供光轴54o2和54′o2的这种“弯曲”,对具有可变屈光率的透镜66o和66′o进行附加控制,使得它们充当光楔(optical wedge),如由图19中的虚线象征性地表示的。
图20示出了用于图4的显微系统的无焦变焦系统57p的还一变型例。图20所示的变焦系统57p包括沿变焦系统57p的光轴54p按固定间距彼此分开地布置的两个透镜组件58p1和58p2。将透镜组件58p1布置成靠近在图20中未示出的物镜,而将透镜组件58p2布置成靠近在图20中也未示出的管。透镜组件58p1包括与具有正屈光率的透镜72p1相接合的具有负屈光率的透镜71p1
同样,透镜组件58p2包括与具有正屈光率的透镜72p2相接合的具有负屈光率的透镜71p2。透镜组件58p1与58p2具有相同的结构,并相对于与光轴54p相垂直地延伸的平面镜面对称。
在这两个透镜组件58p1与58p2之间布置有另一透镜组件97,该透镜组件包括具有正屈光率的两个透镜94和96,透镜94和96形状相同并被布置成类似地相对于位于这两个透镜94、96之间的平面镜面对称。在这两个透镜94与96之间的空间中插入有负屈光率透镜95,其与这两个透镜94与96相接合。通过驱动器99可以使透镜组件97沿光轴54p移位,以改变变焦系统57p的放大率。
与图4所示的变焦系统(其中4个透镜组件中有2个可以沿光轴移位)相对照,在根据图20的变焦系统57p的3个透镜组件58p1、58p2、97中,只有透镜组件97可以沿光轴54p移位,而其他2个透镜组件58p1和58p2固定地置于光轴上。为了补偿剩余的图像位置缺陷,变焦系统57p包括具有可变屈光率的透镜73p,在图20所示的实施例中,将透镜73p布置成与透镜71p1分离开小间距,从而靠近透镜71p1。同样,在透镜71p1、72p1、72p2以及71p2的一个表面上可以布置具有可变屈光率的透镜,或者也可以将具有可变屈光率的透镜布置在变焦系统57p的光束路径的另一位置处。
图20a、20b、20c针对3个不同的放大率示出了变焦系统57p的3种不同设置,不是将具有可变屈光率的透镜73p示为具有恒定厚度的层,而是将它示为提供了相应设置的对应屈光率的对应玻璃透镜。通过控制器13p对具有可变屈光率的透镜73p和用于使透镜组件97沿光轴54p移位的电机99进行控制,控制器13p包括用于针对各放大率值存储具有可变屈光率的透镜73p和电机99的控制值的存储器。
以下表20示出了透镜71p1、72p1、96、95、72p2的与材料、曲率半径以及顶点距离有关的光学数据。同样,SF56A、SSK51、SF57、LSFN7表示可以从SCHOTT公司获得的玻璃材料。
表20
透镜标号 表面标号   半径[mm]   厚度/气隙[mm] 玻璃/介质   自由直径[mm]
  1   31.851   16.0
  71e1   1.8   SF56A
  2   18.701   16.0
  72e1   3.4   SSK51
  3   -325.46   16.0
  0.8...32.7(d2)
  4   -19.527   6.3
  96   1.5   SF57
  5   -8.0006   6.3
透镜标号 表面标号   半径[mm]   厚度/气隙[mm] 玻璃/介质   自由直径[mm]
  95   0.8   LAFN7
  6   8.0006   6.3
  94   1.5   SF57
  7   19.527   6.3
  32.7...0.8(d1)
  8   325.46   16.0
  72e2   3.4   SSK51
  9   -18.701   16.0
  71e2   1.8   SF56A
  10   -31.851   16.0
针对图20a、20b、20c所示的设置,以下表21示出了由变焦系统57p提供的放大率的值和各屈光率1/f以及在各情况下调节的透镜之间的间距d。
表21
设置   d1[mm]   d2[mm] 放大率   1/f[dptr]e透镜
  1(图20a)   0.8   32.7   2.4   0
  2(图20b)   19.3   14.2   1.0   4.6
  3(图20c)   32.7   0.8   0.4   0
与包括两个可移位透镜组件的常规变焦系统相比,图20所示的变焦系统57p的优势在于它表现出具有短的总长度。此外,为了改变放大率,只需要使一个透镜组件沿光轴移位。因此,可以免除如在常规系统中使用的用于使透镜组件移位的复杂凸轮控制。这使得相当大地简化了该机构,也简化了由于对变焦系统的不可避免的机械和光学容限而所需要的调节。例如,可以简单地通过对应地控制线性驱动器来完全取代必要的机械图像位置调节。
总而言之,提出了包括可调光学器件的物镜和(如果希望的话)具有固定焦距的透镜。通过对该可调光学器件进行合适的控制,由此可以有利地改变光学系统的特性。为此,提供了分别适合用作外科立体显微镜、物镜、目镜以及变焦系统的系统。
根据本发明的可变焦成像光学系统包括具有可变屈光率的透镜,为了改变放大率,可以对该透镜进行相反的控制,使得一个透镜的屈光率增大而另一透镜的屈光率减小。此外,该成像光学系统可以包括具有固定焦距的其他组件。

Claims (29)

1.一种成像光学系统,所述成像光学系统包括:
具有可变屈光率的第一透镜;
具有可变屈光率的第二透镜,其中,能够向所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜中的每一个指定公共光轴;以及
控制器,所述控制器适于进行以下控制来提供所述成像光学系统的不同于零的可调总屈光率:
对所述具有可变屈光率的第一透镜进行控制以增大由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以减小由所述具有可变屈光率的第二透镜提供的屈光率;
或者
对所述具有可变屈光率的第一透镜进行控制以减小由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以增大由所述具有可变屈光率的第二透镜提供的屈光率。
2.根据权利要求1所述的成像光学系统,所述成像光学系统还包括至少一个透镜组件,各所述透镜组件包括至少一个固定屈光率透镜,所述至少一个透镜组件具有与所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的所述公共光轴基本上相重合的光轴。
3.根据权利要求2所述的成像光学系统,其中,沿所述公共光轴按顺序布置:所述具有可变屈光率的第一透镜;具有至少一个固定屈光率透镜的第一透镜组件;具有至少一个固定屈光率透镜的第二透镜组件;以及所述具有可变屈光率的第二透镜。
4.根据权利要求1所述的成像光学系统,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜都提供随各自的屈光率改变的色散,并且其中对所述具有可变屈光率的第一透镜的色散和所述具有可变屈光率的第二透镜的所述色散以及对所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的控制进行相互调节,使得满足以下条件:
12|<|η1|+|η2|,其中,
12|是所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的组合色散量,并且
1|和|η2|是具有所述可变屈光率的第一透镜的单独色散量和所述具有可变屈光率的第二透镜的单独色散量。
5.根据权利要求1所述的成像光学系统,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜都提供随所述屈光率改变的色散,并且其中对所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的所述改变的色散以及对所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的控制进行相互调节,使得满足以下条件:
12|<Min(|η1|;|η2|),其中,
12|是所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的组合色散量,
1|和|η2|是所述具有可变屈光率的第一透镜的单独色散量和所述具有可变屈光率的第二透镜的单独色散量,并且
Min(|η1|;|η2|)是所述具有可变屈光率的第一透镜的单独色散量和所述具有可变屈光率的第二透镜的单独色散量中的较小者。
6.根据权利要求1所述的成像光学系统,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜中的至少一个包括在光束路径上连续布置的具有可变屈光率的两个部分透镜,并且其中所述控制器适于控制所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜中的所述至少一个的所述部分透镜。
7.根据权利要求6所述的成像光学系统,其中,所述两个部分透镜中的每一个都包括两种液体介质之间的界面,并且其中所述控制器适于控制所述两个部分透镜,使得所述光轴与所述两个部分透镜的界面的交点沿相同的方向移位。
8.根据权利要求1所述的成像光学系统,所述成像光学系统还包括具有至少一个固定屈光率透镜并具有第一光轴的第一部分成像光学系统,和具有至少一个固定屈光率透镜并具有第二光轴的第二部分成像光学系统,其中所述第一部分成像光学系统和所述第二部分成像光学系统能够移位,使得能够选择性地使所述第一光轴或所述第二光轴与所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的所述公共光轴基本上相重合。
9.根据权利要求8所述的成像光学系统,其中,在所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的某一设置下的所述成像光学系统的在所述第一光轴布置在所述公共光轴上时的第一成像比与在所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的同一设置下的所述成像光学系统的在所述第二光轴布置在所述公共光轴上时的第二成像比不同。
10.根据权利要求9所述的成像光学系统,其中,
2 | M 1 - M 2 | ( M 1 + M 2 ) > 0.3 , 其中,
M1是所述第一成像比,并且
M2是所述第二成像比。
11.根据权利要求9所述的成像光学系统,其中,所述第一部分成像光学系统和所述第二部分成像光学系统均包括望远镜布置。
12.根据权利要求1所述的成像光学系统,所述成像光学系统还包括沿所述公共光轴布置的至少一个反射镜面,所述至少一个反射镜面用于使所述成像光学系统的光束路径折叠。
13.根据权利要求12所述的成像光学系统,其中,所述至少一个反射镜面布置在所述具有可变屈光率的第一透镜与所述具有可变屈光率的第二透镜之间。
14.根据权利要求1所述的成像光学系统,所述成像光学系统具有这样的至少一个可变屈光率透镜,其中:
D<Δf·k
其中,
D是所述至少一个可变屈光率透镜的有效直径;
Δf表示所述至少一个可变屈光率透镜的焦距的最大变化;以及
k是在约0.9到约1.2的范围内的常数。
15.根据权利要求1所述的成像光学系统,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜中的至少一个包括至少一个液晶层,能够根据空间来调节所述至少一个液晶层的光路长度。
16.根据权利要求1所述的成像光学系统,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜被组合为集成型透镜组件。
17.根据权利要求1所述的成像光学系统,所述成像光学系统还包括:
具有第一基本放大率并具有第一光轴的安装在支承件上的第一部分成像光学系统;和
作为具有第二光轴的第二部分成像光学系统的空开口,所述空开口用于具有所述公共光轴的光束路径,
其中所述第一部分成像光学系统和所述第二部分成像光学系统能够移位,使得能够选择性地使所述第一光轴或所述第二光轴与所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜的所述公共光轴基本上相重合。
18.一种具有至少两个可变屈光率透镜的成像光学系统,所述至少两个可变屈光率透镜被设置成共同地提供可调总屈光率,其中,所述至少两个可变屈光率透镜各包括至少两种不同的介质,各所述介质具有至少一个挠性表面,其中通过改变所述至少一个挠性表面的形状来进行所述总屈光率的调节。
19.根据权利要求18所述的成像光学系统,其中,所述至少两个可变屈光率透镜中的每一个都具有随它们各自的屈光率而改变的色散,并且其中选择所述至少两种不同的介质,使得在所述成像光学系统的至少一个总屈光率下,组合的所述至少两个可变屈光率透镜的总色散量最小,其中所述成像光学系统的至少一个总屈光率不同于零。
20.根据权利要求18所述的成像光学系统,其中,在公共光束路径上彼此直接连续地布置所述至少两个可变屈光率透镜。
21.根据权利要求20所述的成像光学系统,其中,在所述公共光束路径上彼此直接连续地布置的所述至少两个可变屈光率透镜包括其间具有两个挠性界面的三种不同介质。
22.根据权利要求18所述的成像光学系统,其中,在所述公共光束路径上以固定间距布置所述至少两个可变屈光率透镜,其中,它们各自的屈光率能够改变使得它们各自的屈光率的相应倒数值之和基本上等于所述固定间距,使得能够将所述成像光学系统的所述总屈光率调节成基本为零。
23.根据权利要求22所述的成像光学系统,其中,在所述公共光束路径上以固定间距布置的所述至少两个可变屈光率透镜均包括各具有至少一个挠性表面的至少两种介质,并且其中在所述公共光束路径上以固定间距布置的所述至少两个可变屈光率透镜中的一个的所述介质中的至少一种介质与在所述公共光束路径上以固定间距布置的所述至少两个可变屈光率透镜中的另一个的至少两种介质都不同。
24.根据权利要求22所述的成像光学系统,其中,所述至少两个可变屈光率透镜适于共同地提供可调成像比,其中所述至少两个可变屈光率透镜均提供取决于它们各自的屈光率的色散,并且其中选择所述介质,使得在不同于1和-1的至少一个共同提供的成像比下,组合的所述至少两个可变屈光率透镜的总色散量最小。
25.一种成像光学系统,所述成像光学系统包括:
具有可变屈光率的第一透镜;
具有可变屈光率的第二透镜,其中,能够向所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜指定公共光轴;以及
控制器,所述控制器适于:
对所述具有可变屈光率的第一透镜进行控制以增大由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以减小由所述具有可变屈光率的第二透镜提供的屈光率;
或者
对所述具有可变屈光率的第一透镜进行控制以减小由所述具有可变屈光率的第一透镜提供的屈光率,并对所述具有可变屈光率的第二透镜进行控制以增大由所述第二透镜提供的屈光率,
其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的透镜各具有至少一个界面,所述至少一个界面均关于各自的所述具有可变屈光率的第一透镜或所述具有可变屈光率的第二透镜的光轴对称。
26.根据权利要求25所述的成像光学系统,其中,所述具有可变屈光率的第一透镜和所述具有可变屈光率的第二透镜均包括锥形壁。
27.根据权利要求25所述的成像光学系统,所述成像光学系统提供能够调节为零的所述成像光学系统的总屈光率。
28.根据权利要求25所述的成像光学系统,所述成像光学系统包括至少一个液体介质或液晶。
29.根据权利要求25所述的成像光学系统,所述成像光学系统提供不同于零的所述成像光学系统的可调总屈光率。
CN201010148147A 2003-10-23 2004-10-25 成像光学系统 Pending CN101825762A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004026580.1 2000-06-01
DE2003149293 DE10349293B4 (de) 2003-10-23 2003-10-23 Stereo-Mikroskopiesystem und Stereo-Mikroskopieverfahren
DE10349293.3 2003-10-23
DE102004026580 2004-06-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800314431A Division CN1882856A (zh) 2003-10-23 2004-10-25 具有可调屈光率的成像光学系统和调节光学系统的屈光率的方法

Publications (1)

Publication Number Publication Date
CN101825762A true CN101825762A (zh) 2010-09-08

Family

ID=34524042

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201010148147A Pending CN101825762A (zh) 2003-10-23 2004-10-25 成像光学系统
CN2011101021463A Pending CN102141640A (zh) 2003-10-23 2004-10-25 成像光学系统及生成物体的放大立体图像的立体显微系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011101021463A Pending CN102141640A (zh) 2003-10-23 2004-10-25 成像光学系统及生成物体的放大立体图像的立体显微系统

Country Status (3)

Country Link
US (3) US7411739B2 (zh)
CN (2) CN101825762A (zh)
WO (1) WO2005040866A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914732A (zh) * 2017-02-13 2020-03-24 安科迪有限公司 展现伽利略多尺度设计的共瞄准单中心多尺度(mms)相机
CN112285870A (zh) * 2020-11-04 2021-01-29 福建福光股份有限公司 红外双视场切换镜头及工作方法
CN115769108A (zh) * 2020-09-18 2023-03-07 核心光电有限公司 弹出式变焦相机

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060129321A (ko) * 2004-01-30 2006-12-15 코닌클리케 필립스 일렉트로닉스 엔.브이. 밀봉 링이 패키지에 의해 저장된 유체의 체적 변화를보상하기 위해 사용된 가변 초점 렌즈 패키지
JP4398352B2 (ja) * 2004-12-02 2010-01-13 オリンパス株式会社 医療用立体撮像装置
TWI342408B (en) * 2006-10-26 2011-05-21 Nat Applied Res Laboratories Macro imaging system utilizing catadioptric telescope method
DE102006052142B4 (de) * 2006-11-06 2014-10-09 Carl Zeiss Microscopy Gmbh Immersions-Mikroskopobjektiv
US8034106B2 (en) * 2007-02-02 2011-10-11 Adoptics Ag Interfacial refraction accommodating lens (IRAL)
WO2008097915A1 (en) * 2007-02-02 2008-08-14 Key Medical Technologies, Inc. Interfacial refraction accommodating lens (iral)
US8081380B2 (en) * 2007-10-10 2011-12-20 Mckinley Harry R Stereoscopic zoom endoscope
JP5045919B2 (ja) * 2007-10-22 2012-10-10 株式会社ニコン 結像レンズ及びそれを用いた顕微鏡装置
JP4442682B2 (ja) 2007-11-27 2010-03-31 ソニー株式会社 光学素子
AU2008331643B2 (en) * 2007-12-04 2014-04-10 Blackeye Optics, Llc Image stabilization system using one, or more, liquid lens
WO2009073387A1 (en) * 2007-12-04 2009-06-11 Blackeye Optics, Llc Zoom lens of the telephoto type having a liquid lens in a fixed group
WO2009120152A1 (en) * 2008-04-23 2009-10-01 Innovative Nano Systems Pte. Ltd. Variable optical systems and components
WO2010015093A1 (en) * 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
NL2003401A (en) * 2008-09-30 2010-03-31 Asml Holding Nv Inspection apparatus, lithographic apparatus and method for sphero-chromatic aberration correction.
DE202009002387U1 (de) * 2008-12-22 2010-05-12 Maiorova, Tatiana, Dmitrov Optische Anordnung zum Ändern eines Abbildungsverhältnisses oder einer Brechkraft
EP2472301A3 (en) * 2009-01-29 2015-09-02 Nikon Corporation Imaging Optical System, Microscope Apparatus Including The Imaging Optical System, and Stereoscopic Microscope Apparatus
US8087778B2 (en) 2009-02-13 2012-01-03 Adlens Beacon, Inc. Variable focus liquid filled lens mechanism
US20100208194A1 (en) * 2009-02-13 2010-08-19 Amitava Gupta Variable focus liquid filled lens apparatus
US8699141B2 (en) 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
US8659835B2 (en) 2009-03-13 2014-02-25 Optotune Ag Lens systems and method
WO2010117628A2 (en) 2009-04-10 2010-10-14 Blackeye Optics, Llc. Variable power optical system
WO2010117731A2 (en) 2009-04-10 2010-10-14 Blackeye Optics, Llc Variable power optical system
US8414121B2 (en) * 2009-10-13 2013-04-09 Adlens Beacon, Inc. Non-round fluid filled lens optic
US8817381B2 (en) 2009-10-13 2014-08-26 Adlens Beacon, Inc. Full field membrane design for non-round liquid lens assemblies
US8136942B2 (en) 2009-10-14 2012-03-20 Adlens Beacon, Inc. Aspheric fluid filled lens optic
AR078654A1 (es) 2009-10-15 2011-11-23 Adlens Beacon Inc Lentes rellenas con un fluido y mecanismo de inflado de las mismas
US8596781B2 (en) * 2009-10-15 2013-12-03 Adlens Beacon, Inc. Fluid filled lens reservoir system and manufacturing method of the reservoir system
US8353593B2 (en) 2009-10-15 2013-01-15 Adlens Beacon, Inc. Hinge mechanism for a fluid filled lens assembly
DE102010018498B4 (de) 2010-04-22 2021-08-19 Andreas Obrebski Optische Anordnung und optische Vorrichtung oder Gerät
WO2011141887A2 (en) 2010-05-13 2011-11-17 Uri Milman Compact magnifying optical system with wide field of view
US9036264B2 (en) 2010-08-12 2015-05-19 Adlens Beacon, Inc. Fluid-filled lenses and their ophthalmic applications
US8488250B2 (en) 2010-10-11 2013-07-16 Adlens Beacon, Inc. Perimeter piezo reservoir in a lens
USD665009S1 (en) 2010-10-14 2012-08-07 Adlens Beacon, Inc. Spectacles frame
AU2011326408B2 (en) 2010-11-10 2015-06-11 Adlens Beacon, Inc. Fluid-filled lenses and actuation systems thereof
DE102010064387B4 (de) 2010-12-30 2019-11-21 Carl Zeiss Meditec Ag Abbildungssystem und Abbildungsverfahren
EP2495597A1 (de) * 2011-03-01 2012-09-05 Möller-Wedel GmbH Operationsmikroskop mit zwei Vergrößerungssystemen
WO2012163327A2 (de) 2011-05-28 2012-12-06 Andreas Obrebski Kamerasystem
DE102011103395A1 (de) 2011-05-28 2012-11-29 Andreas Obrebski Kamerasystem
DE102011107636A1 (de) 2011-06-30 2013-01-03 Andreas Obrebski Kamerasystem
US9459430B2 (en) * 2012-03-20 2016-10-04 Microsoft Technology Licensing, Llc Wide-angle depth imaging lens construction
US9535264B2 (en) 2012-07-13 2017-01-03 Adlens Beacon, Inc. Fluid lenses, lens blanks, and methods of manufacturing the same
GB201215117D0 (en) * 2012-08-24 2012-10-10 Univ Durham Apparatus and method for determining visual acuity of a subject
US8988773B2 (en) * 2012-09-28 2015-03-24 Raytheon Canada Limited Optical sighting device
DE102012223712A1 (de) * 2012-12-19 2014-06-26 Carl Zeiss Microscopy Gmbh Variables abbildungssystem mit objektiv fester brennweite
DE102013001461A1 (de) * 2013-01-23 2014-07-24 Jenoptik Optical Systems Gmbh Fokussiereinrichtung für ein optisches System und zugehöriges Messverfahren
CA2921976A1 (en) * 2013-08-22 2015-02-26 Thorlabs, Inc. Beam expander using two power-adjustable lenses
DE102013110425A1 (de) 2013-09-20 2015-04-09 Karl Storz Gmbh & Co. Kg Okular
DE102013112212B4 (de) * 2013-11-06 2022-03-10 Carl Zeiss Smt Gmbh Optische Zoomeinrichtung, optische Abbildungseinrichtung, optisches Zoomverfahren und Abbildungsverfahren für die Mikroskopie
DE102014214750B3 (de) * 2014-07-28 2015-06-11 Reimar Lenz Bildaufnahmesystem mit schnell vibrierendem Global-Shutter-CMOS-Sensor
US9310601B1 (en) * 2014-08-13 2016-04-12 Lockheed Martin Corporation System and method for converting between Keplerian and Galilean telescope magnification
EP3275359A1 (en) * 2015-05-12 2018-01-31 Olympus Corporation Stereoscopic endoscope device
US10828125B2 (en) * 2015-11-03 2020-11-10 Synaptive Medical (Barbados) Inc. Dual zoom and dual field-of-view microscope
KR102435836B1 (ko) * 2016-07-11 2022-08-24 코닝 인코포레이티드 감소된 색수차를 가진 액체 렌즈
US10299880B2 (en) * 2017-04-24 2019-05-28 Truevision Systems, Inc. Stereoscopic visualization camera and platform
DE102017214790A1 (de) * 2017-08-24 2019-02-28 Carl Zeiss Meditec Ag Vorrichtung zur motorischen Verstellung der Vergrößerungsstufen eines Vergrößerungswechslers
EP3677942B1 (en) * 2017-08-30 2023-09-13 FUJIFILM Corporation Observation device, observation method, and observation device control program
CN109254397A (zh) * 2018-11-02 2019-01-22 上海酷聚科技有限公司 一种液体透镜及其制造方法
CN110727098B (zh) * 2019-10-10 2021-10-22 北京航空航天大学 一种自适应变倍望远镜
CN114125195B (zh) * 2020-08-31 2024-09-20 宁波舜宇光电信息有限公司 集成式双变焦潜望式成像系统、摄像模组和电子设备
KR20220048525A (ko) 2020-10-12 2022-04-20 삼성전기주식회사 카메라 모듈
IT202200003692A1 (it) 2022-02-28 2023-08-28 Opto Eng S P A Obiettivo zoom

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2439820C2 (de) 1974-08-20 1985-12-19 J.D. Möller Optische Werke GmbH, 2000 Wedel Objektiv für ein an einem Fußboden- oder einem Deckenstativ aufgehängtes Mikroskop für die Mikrochirurgie
US4155622A (en) 1974-08-20 1979-05-22 J. D. Moller Optische Werke Gmbh Microscope with internal focussing
US4190330A (en) 1977-12-27 1980-02-26 Bell Telephone Laboratories, Incorporated Variable focus liquid crystal lens system
US4572616A (en) 1982-08-10 1986-02-25 Syracuse University Adaptive liquid crystal lens
US4784479A (en) * 1984-05-30 1988-11-15 Canon Kabushiki Kaisha Varifocal optical system
US4795248A (en) 1984-08-31 1989-01-03 Olympus Optical Company Ltd. Liquid crystal eyeglass
JPS6187116A (ja) * 1984-09-28 1986-05-02 Canon Inc 変倍光学系
JPS61156213A (ja) 1984-12-28 1986-07-15 Canon Inc ズ−ムレンズ
JPS61251818A (ja) * 1985-04-30 1986-11-08 Canon Inc ズ−ムレンズ
JPS62129813A (ja) 1985-11-29 1987-06-12 Olympus Optical Co Ltd 液晶を利用した立体視差を有する光学機器
GB8618345D0 (en) 1986-07-28 1986-09-03 Purvis A Optical components
JPS6360418A (ja) * 1986-08-30 1988-03-16 Canon Inc 実体顕微鏡
US4758072A (en) * 1986-11-20 1988-07-19 Xerox Corporation Gas zoom lens assembly
US4871240A (en) * 1986-12-22 1989-10-03 Canon Kabushiki Kaisha Zoom lens system having a lens unit with a variable refractive power
JPH03118509A (ja) 1989-10-02 1991-05-21 Olympus Optical Co Ltd 内視鏡用光源光学系
US5091801A (en) 1989-10-19 1992-02-25 North East Research Associates, Inc. Method and apparatus for adjusting the focal length of a optical system
DE9003458U1 (de) 1990-03-24 1990-05-31 Fa. Carl Zeiss, 7920 Heidenheim Objektiv variabler Schnittweite für Operationsmikroskope für die Mikrochirurgie
JPH06324298A (ja) 1993-03-31 1994-11-25 Citizen Watch Co Ltd 光学装置
US5701196A (en) 1993-11-05 1997-12-23 Olympus Optical Co., Ltd Stereomicroscope
US5617109A (en) 1994-12-02 1997-04-01 General Electric Company Three terminal liquid crystal lens cell
IT1279699B1 (it) 1995-12-12 1997-12-16 C S O Costruzione Strumenti Of Microscopio stereoscopico ad ottica convergente con lampada a fessura per la ripresa video
JPH1073758A (ja) 1996-06-07 1998-03-17 Olympus Optical Co Ltd 結像光学系
US6626532B1 (en) * 1997-06-10 2003-09-30 Olympus Optical Co., Ltd. Vari-focal spectacles
DE19837135C5 (de) * 1997-09-29 2016-09-22 Carl Zeiss Meditec Ag Afokales Zoomsystem
US6517203B1 (en) 1999-07-02 2003-02-11 E-Vision, Llc System, apparatus, and method for correcting vision using electro-active spectacles
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6317190B1 (en) 1999-06-14 2001-11-13 International Business Machines Corporation Variable focal length liquid crystal lens assembly and method of manufacture
JP4360504B2 (ja) * 1999-07-26 2009-11-11 オリンパス株式会社 ズームレンズ
JP4472130B2 (ja) 2000-07-14 2010-06-02 オリンパス株式会社 内視鏡装置
US7072086B2 (en) * 2001-10-19 2006-07-04 Batchko Robert G Digital focus lens system
BR0206542A (pt) 2001-01-17 2004-06-22 E Vision Llc Sistema e método que emprega uma lente eletroativa com componentes integrados
WO2002095485A2 (en) 2001-05-23 2002-11-28 E-Vision, L.L.C. Focusing mirrors having variable reflective properties
BR0213012A (pt) 2001-10-05 2004-12-28 E Vision Llc Lentes eletro-ativas hìbridas
US7230771B2 (en) * 2002-10-25 2007-06-12 Koninklijke Philips Electronics N.V. Zoom lens
US6952313B2 (en) * 2003-03-17 2005-10-04 Nokia Corporation Method and device for image zooming
WO2004102253A1 (en) 2003-05-14 2004-11-25 Koninklijke Philips Electronics N.V. Variable shape lens
WO2004102246A1 (ja) * 2003-05-15 2004-11-25 Konica Minolta Opto, Inc. 光学系及び撮像装置
US6898021B1 (en) * 2003-12-18 2005-05-24 Yin S. Tang Motionless zoom lens
US7443601B2 (en) * 2005-06-27 2008-10-28 Canon Kabushiki Kaisha Zoom optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914732A (zh) * 2017-02-13 2020-03-24 安科迪有限公司 展现伽利略多尺度设计的共瞄准单中心多尺度(mms)相机
CN115769108A (zh) * 2020-09-18 2023-03-07 核心光电有限公司 弹出式变焦相机
CN115769108B (zh) * 2020-09-18 2023-12-05 核心光电有限公司 弹出式变焦相机
CN112285870A (zh) * 2020-11-04 2021-01-29 福建福光股份有限公司 红外双视场切换镜头及工作方法

Also Published As

Publication number Publication date
US7411739B2 (en) 2008-08-12
US20110063736A1 (en) 2011-03-17
US8194328B2 (en) 2012-06-05
WO2005040866A2 (de) 2005-05-06
CN102141640A (zh) 2011-08-03
US8130449B2 (en) 2012-03-06
WO2005040866A3 (de) 2005-08-25
US20060256429A1 (en) 2006-11-16
US20090021843A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CN101825762A (zh) 成像光学系统
US9488817B2 (en) Immersion objective and light microscope
US6323998B1 (en) Microscope apparatus
US10359612B2 (en) Microscopical imaging system
GB2547590A (en) Objective lens for a photography or film camera and method for selective damping of specific spatial frequency ranges of the modulation transfer function of s
JP3752356B2 (ja) 実体顕微鏡
EP2469319B1 (en) Vibration proof zoom lens and photographing apparatus having the same
KR20040084750A (ko) 쌍안 확대경
JP2000214384A (ja) 眼視望遠ズ―ムレンズ系
US20100053741A1 (en) Optical imaging system
US20120176530A1 (en) Electrically-Controlled, Variable Focal Length Liquid-Based Optical Imaging Apparatus and Method
DE10349293A1 (de) Stereo-Mikroskopiesystem und Stereo-Mikroskopieverfahren
US9285576B2 (en) Stereoscopic microscope
CN102902058A (zh) 连续变倍目镜
US7253948B2 (en) Optical magnification device for distance variation
CN115657283B (zh) 手术显微镜连续变倍系统及手术显微镜
Wippermann et al. Mechanically assisted liquid lens zoom system for mobile phone cameras
JP2000284184A (ja) 平行系実体顕微鏡及び対物レンズ
EP2848975B1 (en) Eyepiece lens and observation apparatus having the same
US4673260A (en) Stereoscopic optical device
CN112236704A (zh) 观察光学系统
CN113219641B (zh) 一种体视角可调的连续变焦体视显微镜
JP2000105339A (ja) 実体顕微鏡の対物光学系
US20230324660A1 (en) Optical system
US5991099A (en) Adjustable chromatic correction lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100908