CN101684983B - 制备高纯度氧的方法和设备 - Google Patents

制备高纯度氧的方法和设备 Download PDF

Info

Publication number
CN101684983B
CN101684983B CN2009101793442A CN200910179344A CN101684983B CN 101684983 B CN101684983 B CN 101684983B CN 2009101793442 A CN2009101793442 A CN 2009101793442A CN 200910179344 A CN200910179344 A CN 200910179344A CN 101684983 B CN101684983 B CN 101684983B
Authority
CN
China
Prior art keywords
liquid
oxygen
stream
destilling tower
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101793442A
Other languages
English (en)
Other versions
CN101684983A (zh
Inventor
D·R·帕斯尼克
R·D·卡普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN101684983A publication Critical patent/CN101684983A/zh
Application granted granted Critical
Publication of CN101684983B publication Critical patent/CN101684983B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04963Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipment within or downstream of the fractionation unit(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种制备高纯度氧的方法和设备,所述方法和设备与由多个低温空气分离装置制备的低纯度液态氧相关。将来自空气分离装置的低纯度液态氧引入辅助低温精馏装置的蒸馏塔,蒸馏塔通过氮再沸,氮同样由此空气分离装置产生。使氮从低纯度液态氧分离,以便从位于蒸馏塔底部区域的残余液体制备高纯度液态氧,高纯度液态氧可作为产物取出。可任选将氩塔连接到蒸馏塔,以产生液态氩产物流。

Description

制备高纯度氧的方法和设备
技术领域
本发明涉及制备高纯度氧的方法和设备,其中从低温空气分离装置抽取低纯度液态氧,并在蒸馏塔中精馏,以作为塔底液体制备高纯度液态氧,高纯度液态氧可作为产物抽取,或者泵抽并蒸发,以在压力下制备高纯度气态氧产物。
背景技术
在很多工业过程中需要低纯度氧,例如煤和石油焦气化。对于这些过程,通常在单一位置提供这些装置的包体,用来供给必须的低纯度氧。在集成气化组合循环中,经常需要高压氮气作为产物用于提高燃气轮机的动力和NOx控制。在某些场所,除了需要从气化过程产生动力外,也需要产生化学物质。在这些场所需要产生高压、高纯度气态氧产物。另外也可能需要氩。
在为这些目的作为气化需要氧时,产生氧的最实际方式是使用空气的低温精馏。在此过程中,将引入的空气压缩,纯化,然后在主热交换器内冷却到适合精馏的温度。然后将得到的压缩、冷却和纯化空气引入通常由高压塔和低压塔组成的空气分离装置。在高压塔中,将空气精馏,以产生富氮的塔顶馏出物。使至少一部分此塔顶馏出物冷凝,以产生高压塔和低压塔的回流。在高压塔内产生富氧塔底物,称为釜液体或粗液态氧。将此底部液体流引入低压塔进一步提纯。由于此进一步提纯,在低压塔中产生富氧塔底液体,此液体可作为富氧产物取出。
可用于产生低纯度氧的空气分离装置的实例公开于美国专利5,675,977。在此专利所示装置中,较高压力塔中产生的富氮蒸气在位于较低压力塔底部的底部再沸器中部分冷凝,以产生液态回流,液态回流用于使较高压力塔和较低压力塔回流。另一部分富氮蒸气在主热交换器中充分温热,作为高压产物取出。氮产物流也可在较低压力从低压塔顶部取出,并充分温热,以产生低压氮产物。富氧液体流从低压塔底部取出,任选泵抽并在主热交换器中蒸发,以产生具有低纯度的高压氧产物。为了产生足够回流,以能够制备高压氮产物,将粗液态氧或釜液体作为物流取出,并引入辅助釜液体塔用于精馏。使用来自辅助塔顶部的含氮蒸气,在中间点使低压塔再沸,以产生在辅助塔和低压塔回流中使用的液体。
有多种低温空气分离装置设计用于制备低纯度氧产物和较高纯度氧产物。例如,在美国专利5,628,207中,泵抽低压塔的富氧塔底物,然后将塔底物引入辅助塔。此塔通过压缩和冷却高压塔中产生的一部分富氮塔顶蒸气再沸。得到的残余液体为超高纯度液态氧,这种液态氧可作为产物取出。气态流可从塔顶部移出,并充分温热,以产生低纯度氧产物。
应注意到,美国专利5,628,207所示的空气分离装置为高度集成装置,其中所有的低纯度氧被泵抽并引入辅助塔用于蒸发和分离,以产生高纯度液态氧。因此,虽然可用此专利的教授构造包体中的一个装置,但不易适应改型情况。另外,由于所有的低纯度氧通过辅助塔,因此,无法在对高纯度液态氧和可能的氩有低需求的地方提供原始安装。
以下将讨论,本发明提供分离空气的方法和设备,所述方法和设备可更灵活地制备高纯度液态氧,并且可在此制备与低温空气分离装置现有包体结合时对现有技术作出更改。另外,本发明允许回收低纯度氧中含有的氩。
发明内容
本发明提供一种用低纯度氧制备高纯度氧的方法。在此方面,本文和权利要求书中使用的术语“高纯度氧”是指具有高于约98%体积,一般高于约99.5%体积纯度的氧。本文和权利要求书中使用的术语“低纯度氧”是指具有约75至约98%体积纯度的氧。
根据此方法,从多个低温空气分离装置抽取低纯度液态氧流和气态氮流。将由低纯度液态氧流形成的合并低纯度液态氧流和由气态氮流形成的合并气态氮流引入辅助低温精馏装置。在辅助低温精馏装置的蒸馏塔内使氮从合并的低纯度液态氧流分离,以便由底部液体在蒸馏塔底部区域再沸产生的残余液体形成高纯度氧。底部液体用合并的气态氮流再沸,从而使合并的气态氮流冷凝,并形成液态氮流。液态氮流作为回流引入蒸馏塔顶部区域。给予辅助低温精馏装置制冷,并通过使液态氮流过冷,随后通过与从蒸馏塔顶部区域抽取的富氮蒸气流间接热交换使合并的气态氮流冷却将制冷回收。高纯度氧从蒸馏塔底部区域作为高纯度液态氧流抽取。
可将合并的气态氮流在冷却前压缩,并且可从合并的气态氮流去除压缩热。通过将液态氮制冷流作为回流的部分引入蒸馏塔,可给予辅助低温精馏装置制冷。
可从蒸馏塔抽取含氩的物流,并将含氩的物流引入辅助低温精馏装置的氩塔,以使氧从氩分离,并因此产生富氩塔顶馏出物和富氧塔底液体。使富氩蒸气流冷凝,以通过与从蒸馏塔抽取的热交换流间接热交换形成富氩液体,从而形成蒸发的热交换流。由部分富氩液体形成富氩液体产物流,其余部分富氩液体作为氩回流引入氩塔。蒸发的热交换流和由富氧塔底液体组成的富氧液体流向回引入蒸馏塔。
可泵抽部分高纯度液态氧流,以形成泵抽液态氧流。泵抽的液态氧流可在与低温空气分离装置之一相关的主热交换器内蒸发。
另一方面,本发明提供制备高纯度氧的设备。根据本发明的这一方面,将辅助低温精馏装置连接到多个低温空气分离装置,以接收从低温空气分离装置产生的低纯度液态氧流形成的合并低纯度液态氧流和从低温空气分离装置产生的气态氮流形成的合并气态氮流。
辅助低温精馏装置具有蒸馏塔,蒸馏塔经构造,使得氮从合并的低纯度氧流分离,高纯度氧由底部液体在蒸馏塔底部区域再沸产生的残余液体形成。再沸器位于蒸馏塔底部区域,并且经布置,使得合并的气态氮流通过再沸器,以使底部液体再沸并产生液态氮流,并将液态氮流引入蒸馏塔顶部区域作为回流。将热交换器连接到再沸器,以使合并的气态氮流在通入再沸器之前冷却,并在再沸器和蒸馏塔顶部区域之间布置过冷装置,以便在引入蒸馏塔顶部区域之前使液态氮流过冷。
提供一种给予辅助低温精馏装置制冷的工具。将过冷装置连接到蒸馏塔顶部区域,将热交换器连接到过冷装置,使得在蒸馏塔顶部区域产生的富氮流与液态氮流间接热交换,随后与合并的气态氮流热交换。因此,在液态氮流过冷和合并气态氮流冷却中回收制冷。蒸馏塔在其底部区域具有出口,以排出高纯度氧作为高纯度液态氧流。
可在低温空气分离装置和辅助低温精馏装置之间布置压缩机,以便压缩合并的气态氮流。将后冷却器连接到压缩机,以便在压缩后从合并的气态氮流除去压缩热。
制冷给予工具可以是作为回流的部分引入蒸馏塔顶部区域的液态氮制冷流。
辅助低温精馏装置可提供有氩塔和冷凝器。氩塔连接到蒸馏塔,并经构造,以便含氩的物流从蒸馏塔抽取并引入氩塔,使氧从氩分离,并因此在氩塔内产生富氩塔顶馏出物和富氧塔底液体。氩塔连接到蒸馏塔也应使得由富氧塔底液体组成的富氧液体流向回引入蒸馏塔。将冷凝器连接到蒸馏塔和氩塔,使得由富氩塔顶馏出物组成的富氩蒸气流冷凝,以通过与从蒸馏塔抽取的热交换流间接热交换形成富氩液体。热交换形成的蒸发热交换流返回到蒸馏塔。由部分富氩液体形成富氩液体产物流,其余部分富氩液体作为氩回流引入氩塔。
可提供泵与蒸馏塔的出口流体连通,以便泵抽部分高纯度液态氧流,形成泵抽液态氧流。与低温空气分离装置之一相关的主热交换器可连接到泵,以使泵抽的液态氧流在热交换器内蒸发。
从以上讨论明显看出,本发明可以比多纯度氧制备结合到单一装置的现有技术方法更大程度的改进低纯度氧装置的包体。另外,由于本发明的集成利用辅助低温精馏装置,因此,在构造这种装置中允许有较大活动余地,以便能够做成适当尺寸制备高纯度氧。关于这一点,如果需要,可将氩产物加到此装置的板片上。
附图说明
虽然本说明用清楚地指出申请人认为是本发明的主题的权利要求作出结论,但相信通过结合附图,可更好地理解本发明,其中:
图1是为实施本发明方法设计的设备的工艺流程图;并且
图2为显示低温空气分离装置的主热交换器的图1的片段图。
具体实施方式
参照图1,图1显示为制备低纯度氧产物设计的由参考数字10、12、14和16指示的多个低温空气分离装置。虽然未显示,低温空气分离装置10-16可形成此类装置的包体,以制备用于煤气化的低纯度氧。多个低纯度液态氧流18、20、22和24从低温空气分离装置10-16抽取,并结合成合并低纯度液态氧流26。另外,多个气态氮流28、30、32和34也从低温空气分离装置10-16抽取,并结合成合并气态氮流36。以下讨论将合并低纯度液态氧流26和合并气态氮流36引入辅助低温精馏装置1。
虽然未显示,但本领域的技术人员应理解,低温空气分离装置10-16的每个装置可以为能够产生低纯度液态氧和气态氮的任何设计,本发明不限于具体类型的装置。然而,为了示例目的,装置设计可以为美国专利5,675,977所述的类型,低纯度液态氧流18-24可由在这种装置的低压塔内作为塔底物形成的部分低纯度液态氧来形成。
然后将合并的低纯度液态氧流26引入蒸馏塔38(“主塔”),以使氮从此流分离。虽然未显示,但蒸馏塔38包含质量传递接触元件,如构造或无规填充的塔盘或填料或其组合,这些均为本领域的技术人员所熟悉。
同样从低温空气分离装置10-16抽取的多个气态氮流28、30、32和34可由美国专利5,675,977所示类型装置形成。在此情况下,每个流可以为在辅助釜塔(kettle column)产生的含氮蒸气流的部分。如图所示,得到的合并气态氮流36在压缩机40内压缩,产生压缩的气态氮流41。然而,应注意到,由于美国专利5,675,977所示装置的潜在操作压力覆盖宽范围,其他低纯度氧装置也是如此,因此,合并气态氮流36可以足够高压力取出,无需进一步压缩。然而,在所示实施方案中,然后将得到的压缩气态氮流41在后冷却器42内冷却,以除去压缩热,然后进一步在与蒸馏塔38和辅助低温精馏装置1相关的热交换器44内冷却。
在已充分冷却后,然后将压缩氮流41引入位于蒸馏塔38底部区域48中的再沸器46,以使蒸馏塔38再沸,并引发形成上升的气相。上升的气相接触下降的液相,由回流引入蒸馏塔38借助于以上讨论的质量传递接触元件引起。再沸使压缩氮流41冷凝,并由此产生液态氮流50,然后将液态氮流50通入过冷装置52,并且通过阀53,以减小其压力。液态氮流然后作为回流引入蒸馏塔38的顶部区域56。应注意到,根据再沸器46产生的压降,过冷装置52和相关的管、阀53可能不是必需的。
富氮流58从蒸馏塔38的顶部区域56抽取,并通过过冷装置52,以使液态氮流50过冷。随后,使富氮流58通过热交换器44,以使压缩氮流40在引入再沸器46前冷却。因此,如下讨论,给予辅助低温精馏装置1的制冷在此过冷和冷却操作中回收。
氮从合并液态氧流26的分离在蒸馏塔38的底部区域48内从再沸器46再沸底部液体产生的残余液体60产生高纯度液态氧。高纯度液态氧可从蒸馏塔56的出口62作为高纯度液态氧流移出。液态氧产物流64可从部分高纯度液态氧流产生,其另一部分66可任选在泵68中抽送。然后,泵抽部分66可在低温空气分离装置之一(例如低温空气分离装置16)内蒸发,以在压力下制备高纯度气态氧产物流70。
简要参照图2,为了说明,图2再一次与在美国专利5,675,977所示装置内使用的热交换器相关显示制备高纯度气态氧流70。如此专利所示,在主空气压缩机72中压缩空气流71,以形成压缩空气流73,再将压缩空气流73引入已知设计的纯化装置74。纯化装置74一般包含吸附剂床,吸附剂床以异相循环操作,并且包含氧化铝,以便从压缩空气流72除去水分、二氧化碳和烃。将得到的压缩纯化空气流76分出第一部分78,第一部分78进一步在增压压缩机80内压缩,并且在由后冷却器82除去压缩热后引入主热交换器84,以在泵抽液态氧流86蒸发下冷凝。压缩纯化空气流76的第二部分88也进一步在增压压缩机90内压缩,并且在后冷却器91内除去压缩热和在主热交换器84内部分冷却后,引入涡轮膨胀机92并膨胀,以产生排出流94。将排出流94引入此装置的低压塔,以给予此排出流94所含的制冷。压缩纯化空气78的第三部分96在主热交换器84内冷却后引入此装置的高压塔用于精馏。分别从高压塔和低压塔的富氮塔顶馏出物产生的高压气态氮产物流98和低压气态氮产物流100在主热交换器84内充分温热。在与本发明并且特别与其所示实施方案相关使用时,用多路接收泵抽高纯度液态氧流66改进主热交换器,以形成高纯度气态氧流70。要注意的是,本领域的技术人员应想到,为使高纯度氧蒸发,可以类似方式改进在不同设计低温空气分离装置中使用的主热交换器。
可任选制备液态氩产物。就这一点而言,可从蒸馏塔38抽取含氩的物流100,并引入氩塔102(“氩塔”),以使氧从氩分离,从而在氩塔102的顶部区域104产生富氩塔顶馏出物,并且在氩塔102的底部区域内产生富氧塔底液体106。由富氩塔顶馏出物组成的富氩蒸气流108引入位于壳112内的热交换器110,并通过与热交换流114间接热交换冷凝,热交换流114作为液体从蒸馏塔38移出,并引入壳112。此热交换形成的冷凝氩流116作为回流重新引入氩塔102。可取出部分富氩液体作为氩产物流118。热交换流114蒸发,并作为蒸发热交换流120向回引入蒸馏塔38。另外,从富氧塔底液体106形成的富氧液体流122可由泵124泵抽,并作为泵流126向回重新引入蒸馏塔38。
蒸馏塔38和氩塔104及其相关热交换器位于它们自己的冷箱内。因此,为了补偿热漏,必须给予制冷。在所示的实施方案中,制冷由氮液体流128引入蒸馏塔38的顶部区域56。氮液体流128也可由低温空气分离装置10-16之一产生的液体形成,并储存在储罐中(未显示)。可提供产生制冷的其他装置,例如循环液化器,或者,可用高压膨胀使富氮流58液化,以产生氮液体流128。另外,可提供其他类型制冷,例如提供深冷温度制冷剂的闭合回路制冷循环。
下表为显示图1所示设备操作的计算实例。表
流编号 41   通过热交换器44后的41 50
  蒸气馏分   1.0   1.0   0
  摩尔流量(CFH-NTP)   6.47E+06   6.47E+06   6.47E+06
  压力(psia)   78   78   78
  温度(K)   300   101.9   94.93
  主要成分摩尔分数(氮)   9.96E-01   9.96E-01   9.96E-01
  主要成分摩尔分数(氧)   2.50E-03   2.50E-03   2.50E-03
  主要成分摩尔分数(氩)   1.50E-03   1.50E-03   1.50E-03
流编号   通过过冷装置52后的50   通过过冷装置52前的58   通过过冷装置52后的58
  蒸气馏分   0   1.0   1.0
  摩尔流量(CFH-NTP)   6.47E+06   6.51E+06   6.51E+06
  压力(psia)   78   18   18
  温度(K)   87   79.14   93.93
  主要成分摩尔分数(氮)   9.96E-01   9.99E-01   9.99E-01
  主要成分摩尔分数(氧)   2.50E-03   7.19E-04   7.19E-04
  主要成分摩尔分数(氩)   1.50E-03   6.04E-04   6.04E-04
流编号   通过热交换器44后的58 26 62
  蒸气馏分   1   0   0
  摩尔流量(CFH-NTP)   6.51E+06   1.52E+06   1.46E+06
  压力(psia)   18   20   19.5
  温度(K)   297.2   92.48   92.94
  表(续)
  主要成分摩尔分数(氮)   9.99E-01   2.00E-02   0.00E+00
  主要成分摩尔分数(氧)   7.19E-04   9.50E-01   9.95E-01
  主要成分摩尔分数(氩)   6.04E-04   3.00E-02   5.00E-03
 流编号 64   66   泵68后的66
 蒸气馏分 0   0   0
 摩尔流量(CFH-NTP) 3.36E+05   1.12E+06   1.12E+06
 压力(psia) 19.5   19.5   377.3
 温度(K) 92.94   92.94   92.94
  主要成分摩尔分数(氮)   0.00E+00   0.00E+00   0.00E+00
  主要成分摩尔分数(氧)   9.95E-01   9.95E-01   9.95E-01
  主要成分摩尔分数(氩)   5.00E-03   5.00E-03   5.00E-03
  流编号   70   100   122
  蒸气馏分   1   1   0
  摩尔流量(CFH-NTP)   1.12E+06   2.03E+06   1.99E+06
  压力(psia)   377.3   19.12   19.3
  温度(K)   92.94   92.52   92.6
  主要成分摩尔分数(氮)   0.00E+00   0.00E+00   0.00E+00
  主要成分摩尔分数(氧)   9.95E-01   9.32E-01   9.53E-01
  主要成分摩尔分数(氩)   5.00E-03   6.76E-02   4.69E-02
  流编号   118   128
  蒸气馏分   0   0
  摩尔流量(CFH-NTP)   4.43E+04   3.04E+04
  压力(psia)   18   80
  温度(K)   89.26   85
  主要成分摩尔分数(氮)   0.000017   1.0
  主要成分摩尔分数(氧)   0.010004   0
  主要成分摩尔分数(氩)   0.989979   0
虽然已关于优选的实施方案描述了本发明,但本领域的普通技术人员应想到,可在不脱离附加权利要求阐明的本发明的精神和范围下进行许多变化、增加和省略。

Claims (10)

1.一种制备高纯度氧的方法,所述方法包括:
从多个低温空气分离装置抽取低纯度液态氧流和气态氮流;
将由低纯度液态氧流形成的合并低纯度液态氧流和由气态氮流形成的合并气态氮流引入辅助低温精馏装置;
在辅助低温精馏装置的蒸馏塔内使氮从合并的低纯度液态氧流分离,使得由底部液体在蒸馏塔底部区域再沸产生的残余液体形成高纯度氧,用合并的气态氮流使底部液体再沸,从而使合并的气态氮流冷凝并形成液态氮流,并且将液态氮流作为回流引入蒸馏塔顶部区域;
给予辅助低温精馏装置制冷,并通过使液态氮流过冷,随后通过与从蒸馏塔顶部区域抽取的富氮蒸气流间接热交换使合并的气态氮流冷却将制冷回收;并且
从蒸馏塔底部区域抽取高纯度氧作为高纯度液态氧流。
2.权利要求1的方法,其中在冷却前将合并的气态氮流压缩,并且从合并的气态氮流去除压缩热。
3.权利要求1的方法,其中通过将液态氮制冷流作为回流的部分引入蒸馏塔来给予辅助低温精馏装置制冷。
4.权利要求1的方法,其中:
从蒸馏塔抽取含氩的物流,并将含氩的物流引入辅助低温精馏装置的氩塔,以使氧从氩分离,并因此产生富氩塔顶馏出物和富氧塔底液体;
使由富氩塔顶馏出物组成的富氩蒸气流冷凝,以通过与从蒸馏塔抽取的热交换流间接热交换形成富氩液体,从而形成蒸发的热交换流;
由部分富氩液体形成富氩液体产物流,其余部分富氩液体作为氩回流引入氩塔;并且
将蒸发的热交换流和由富氧塔底液体组成的富氧液体流向回引入蒸馏塔。
5.权利要求1的方法,其中:
泵抽部分高纯度液态氧流,以形成泵抽液态氧流;并且
使泵抽液态氧流在与低温空气分离装置之一相关的主热交换器内蒸发。
6.一种制备高纯度氧的设备,所述设备包括:
连接到多个低温空气分离装置的辅助低温精馏装置,以接收从低温空气分离装置产生的低纯度液态氧流形成的合并低纯度液态氧流和从低温空气分离装置产生的气态氮流形成的合并气态氮流;
辅助低温精馏装置具有蒸馏塔,蒸馏塔经构造,使得氮从合并的低纯度氧流分离,由底部液体在蒸馏塔底部区域再沸产生的残余液体形成高纯度氧;再沸器位于蒸馏塔底部区域,并且经布置,使得合并的气态氮流通过再沸器,使底部液体再沸,从而产生液态氮流,并且液态氮流作为回流引入蒸馏塔的顶部区域;热交换器连接到再沸器,使得合并的气态氮流在通入再沸器之前冷却;并且过冷装置置于再沸器和蒸馏塔的顶部区域之间,使得液态氮流在引入蒸馏塔的顶部区域之前过冷;
用于给予辅助低温精馏装置制冷的工具;
过冷装置连接到蒸馏塔顶部区域,热交换器连接到过冷装置,使得在蒸馏塔顶部区域产生的富氮流与液态氮流间接热交换,随后与合并的气态氮流热交换,由此在液态氮流过冷和合并气态氮流冷却中回收制冷;并且
蒸馏塔在其底部区域具有出口,以排出高纯度氧作为高纯度液态氧流。
7.权利要求6的设备,其中:
在低温空气分离装置和辅助低温精馏装置之间布置压缩机,以便压缩合并的气态氮流;并且
将后冷却器连接到压缩机,以便在已压缩后从合并的气态氮流除去压缩热。
8.权利要求6的设备,其中制冷给予工具是作为回流的部分引入蒸馏塔顶部区域的液态氮制冷流。
9.权利要求6的设备,其中:
辅助低温精馏装置具有连接到蒸馏塔的氩塔和连接到氩塔的冷凝器;
氩塔经构造,以便将含氩的物流从蒸馏塔抽取并引入氩塔,使氧从氩分离,从而在氩塔内产生富氩塔顶馏出物和富氧塔底液体;
氩塔也连接到蒸馏塔,使得由富氧塔底液体组成的富氧液体流向回引入蒸馏塔;并且
冷凝器连接到蒸馏塔和氩塔,使得由富氩塔顶馏出物组合的富氩蒸气流冷凝,以通过与从蒸馏塔抽取的热交换流间接热交换形成富氩液体,从而形成蒸发热交换流,蒸发热交换流返回到蒸馏塔,由部分富氩液体形成富氩液体产物流,其余部分富氩液体作为氩回流引入氩塔。
10.权利要求6的设备,其中:
泵与蒸馏塔的出口流体连通,以便泵抽部分高纯度液态氧流,形成泵抽液态氧流;并且
与低温空气分离装置之一相关的主热交换器连接到泵,以使泵抽液态氧流在热交换器内蒸发。
CN2009101793442A 2008-09-22 2009-09-22 制备高纯度氧的方法和设备 Expired - Fee Related CN101684983B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/235,029 US8479535B2 (en) 2008-09-22 2008-09-22 Method and apparatus for producing high purity oxygen
US12/235029 2008-09-22
US12/235,029 2008-09-22

Publications (2)

Publication Number Publication Date
CN101684983A CN101684983A (zh) 2010-03-31
CN101684983B true CN101684983B (zh) 2013-12-04

Family

ID=42036240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101793442A Expired - Fee Related CN101684983B (zh) 2008-09-22 2009-09-22 制备高纯度氧的方法和设备

Country Status (3)

Country Link
US (1) US8479535B2 (zh)
CN (1) CN101684983B (zh)
CA (1) CA2679246C (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864021B (zh) * 2014-03-18 2015-12-30 南京理工大学 一种利用化学链空气分离制备氧气的装置及方法
CN105423703B (zh) * 2015-12-16 2017-08-25 新疆天辰气体有限公司 外冷式单级精馏空分系统
CN106123489A (zh) * 2016-06-29 2016-11-16 苏州制氧机股份有限公司 一种混合塔制氧方法
US10799827B2 (en) * 2017-04-11 2020-10-13 Praxair Technology, Inc. Mid-range purity oxygen by adsorption
JP7355978B2 (ja) * 2019-04-08 2023-10-04 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 深冷空気分離装置
JP7495675B2 (ja) * 2019-09-18 2024-06-05 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 高純度酸素製造システム
JP2021055890A (ja) * 2019-09-30 2021-04-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 高純度酸素製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918801A (en) * 1955-10-10 1959-12-29 Union Carbide Corp Process and apparatus for separating gas mixtures
US4869741A (en) * 1988-05-13 1989-09-26 Air Products And Chemicals, Inc. Ultra pure liquid oxygen cycle
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
CN1167244A (zh) * 1995-08-11 1997-12-10 乔治·克劳德方法的研究开发空气股份有限公司 超高纯氧的生产
US5916262A (en) * 1998-09-08 1999-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US6128921A (en) * 1998-02-06 2000-10-10 L'air Liquide Air distillation plant comprising a plurality of cryogenic distillation units of the same type
US6694776B1 (en) * 2003-05-14 2004-02-24 Praxair Technology, Inc. Cryogenic air separation system for producing oxygen

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210947A (en) * 1961-04-03 1965-10-12 Union Carbide Corp Process for purifying gaseous streams by rectification
US3363427A (en) * 1964-06-02 1968-01-16 Air Reduction Production of ultrahigh purity oxygen with removal of hydrocarbon impurities
US4410343A (en) 1981-12-24 1983-10-18 Union Carbide Corporation Air boiling process to produce low purity oxygen
JPS61190277A (ja) * 1985-02-16 1986-08-23 大同酸素株式会社 高純度窒素および酸素ガス製造装置
US4867772A (en) * 1988-11-29 1989-09-19 Liquid Air Engineering Corporation Cryogenic gas purification process and apparatus
US5315833A (en) 1991-10-15 1994-05-31 Liquid Air Engineering Corporation Process for the mixed production of high and low purity oxygen
US5337570A (en) 1993-07-22 1994-08-16 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen
US5551258A (en) 1994-12-15 1996-09-03 The Boc Group Plc Air separation
US5546767A (en) 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
US5628207A (en) 1996-04-05 1997-05-13 Praxair Technology, Inc. Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen
US5669236A (en) 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5682763A (en) * 1996-10-25 1997-11-04 Air Products And Chemicals, Inc. Ultra high purity oxygen distillation unit integrated with ultra high purity nitrogen purifier
US5675977A (en) 1996-11-07 1997-10-14 Praxair Technology, Inc. Cryogenic rectification system with kettle liquid column
US5682766A (en) 1996-12-12 1997-11-04 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen and higher purity oxygen
US5836174A (en) 1997-05-30 1998-11-17 Praxair Technology, Inc. Cryogenic rectification system for producing multi-purity oxygen
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
US5896755A (en) * 1998-07-10 1999-04-27 Praxair Technology, Inc. Cryogenic rectification system with modular cold boxes
WO2000060294A1 (en) 1999-04-05 2000-10-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Variable capacity fluid mixture separation apparatus and process
FR2828729B1 (fr) * 2001-08-14 2003-10-31 Air Liquide Installation de production d'oxygene sous haute pression par distillation d'air
FR2844039B1 (fr) 2002-09-04 2005-04-29 Air Liquide Procede et installation de production d'oxygene et de gaz rares par distillation cryogenique d'air
US6622520B1 (en) 2002-12-11 2003-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen using shelf vapor turboexpansion
US6626008B1 (en) 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
EP1544559A1 (de) * 2003-12-20 2005-06-22 Linde AG Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918801A (en) * 1955-10-10 1959-12-29 Union Carbide Corp Process and apparatus for separating gas mixtures
US4869741A (en) * 1988-05-13 1989-09-26 Air Products And Chemicals, Inc. Ultra pure liquid oxygen cycle
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
CN1167244A (zh) * 1995-08-11 1997-12-10 乔治·克劳德方法的研究开发空气股份有限公司 超高纯氧的生产
US6128921A (en) * 1998-02-06 2000-10-10 L'air Liquide Air distillation plant comprising a plurality of cryogenic distillation units of the same type
US5916262A (en) * 1998-09-08 1999-06-29 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US6694776B1 (en) * 2003-05-14 2004-02-24 Praxair Technology, Inc. Cryogenic air separation system for producing oxygen

Also Published As

Publication number Publication date
US8479535B2 (en) 2013-07-09
US20100071412A1 (en) 2010-03-25
CA2679246C (en) 2013-02-12
CN101684983A (zh) 2010-03-31
CA2679246A1 (en) 2010-03-22

Similar Documents

Publication Publication Date Title
CN101684983B (zh) 制备高纯度氧的方法和设备
CN105008272B (zh) 氩生产方法及装置
JP4331460B2 (ja) 低温空気分離によるクリプトン及び/又はキセノンの製造方法及び装置
CN102216712B (zh) 氪和氙的回收方法
EP2307835B1 (en) Nitrogen liquefier retrofit for an air separation plant
CN101266095A (zh) 空气分离方法
CN104755360B (zh) 用于通过低温蒸馏进行空气分离的方法和设备
CN102047057B (zh) 分离空气的方法和设备
CN102155841A (zh) 低温分离方法及设备
EP3719427A1 (en) Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking
CN101688753B (zh) 通过低温蒸馏分离氢、甲烷和一氧化碳的混合物的方法和装置
US20100242538A1 (en) Cryogenic rectification method
CN108700373A (zh) 用于稀有气体回收的系统和方法
CN104848654B (zh) 一种天然气中提取氩气的方法和装置
US20110138856A1 (en) Separation method and apparatus
CN102192637B (zh) 空气分离方法和设备
CN101509722A (zh) 蒸馏方法和设备
CN101535755B (zh) 低温空气分离系统
JP2007147113A (ja) 窒素製造方法及び装置
US8549878B2 (en) Method of generating nitrogen and apparatus for use in the same
CN104864683B (zh) 一种天然气中提取氦气和氩气的方法和装置
CN103629894A (zh) 单级精馏设备的空气分离方法
JP5032407B2 (ja) 窒素製造方法及び装置
CN104364597B (zh) 空气分离方法和设备
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131204

Termination date: 20170922