CN101266095A - 空气分离方法 - Google Patents
空气分离方法 Download PDFInfo
- Publication number
- CN101266095A CN101266095A CNA2008100951957A CN200810095195A CN101266095A CN 101266095 A CN101266095 A CN 101266095A CN A2008100951957 A CNA2008100951957 A CN A2008100951957A CN 200810095195 A CN200810095195 A CN 200810095195A CN 101266095 A CN101266095 A CN 101266095A
- Authority
- CN
- China
- Prior art keywords
- stream
- liquid
- air stream
- argon
- pressure tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
空气分离方法,其中通过蒸发泵送的液氧流产生的液态空气流被引入到空气分离单元的低压力塔和任选的高压力塔中。通过在比该液态空气流高的温度下从主热交换器抽取主空气进料到高压力塔而使所述液态空气流过冷,以增加连接到低压力塔的氩塔中的氩回收率。所述温度经选择以使液态空气流接近从高和低压力塔注入到主热交换器的返回流的平均温度,差值在约0.2K至约3K的范围内。
Description
技术领域
[0001]一种分离空气的方法,其中通过在主热交换器中伴随着液化空气流蒸发泵送的液氧流而生产加压氧气产品,以及氩产品在连接到低压力塔的氩分离区中生产,低压力塔与高压力塔以热传递方式操作连接。更具体地,本发明涉及一种方法,其中到高压力塔的主进料空气流从主热交换器在比所述液态空气流高的温度下抽取,以低温冷却所述液态空气流,从而增加氩回收率。
背景技术
[0002]将空气分为氮气、氧气和氩气组分的分离已经在空气分离装置中进行,其中空气被压缩、纯化并在主热交换器中冷却到其精馏的合适温度。所述空气被引入到还配置有与高压力塔处于热传递关系的低压力塔的双塔设备中的高压力塔中。氮气和氧气产品可以从高和低压力塔中提取出来。
[0003]富氩流可以从低压力塔中移除,并且被引入到氩塔中以产生富氩塔顶馏分。富氩塔顶馏分被冷凝(通常利用全部或部分的粗液氧流,所述粗液氧流作为高压塔的塔底馏分产生)以产生氩塔的液体回流。一部分富氩塔顶馏分作为氩气产品提出。
[0004]通过泵送由在低压力塔中制备的液体氧塔底馏分构成的富氧流而对其进行加压,并在在主热交换器中蒸发该流,伴随着液化构成已经被压缩至高压的空气的一部分的空气流,而在这样的设备中生产高压氧气产品,也是众所周知的。所得到的液态空气流膨胀并被引入到低压塔中或高压塔和低压塔两者中。
[0005]在美国专利号6,293,126中公开了这样装置的实例。在该专利中,主进料空气流从主热交换器中离开,其温度高于被进一步压缩并液化以生产液态空气流的空气流的温度高。为了简化该装置的构造,粗液氧流在被用来冷凝氩气回流或被引入到低压力塔之前没有低温冷却。因此,比起如果将粗液氧流低温冷却而会发生的情况来说,在膨胀后有更多蒸气部分的粗液氧流进入到低压力塔中。因此,在低压力塔中的高于在该处富氩流被提取以在氩塔中进一步精炼的位点的位点处,液体/蒸气比小于以其它方式可能的值。此外,在高于液态空气流的温度下提取主空气流,将液态空气流的温度降至可达到用于冷却进入空气的回流温度的程度。因此,对进一步压缩并液化的空气流的压缩要求通常大于如果主进料空气流没有从该较高温度下取出而会需要的流量和/或压力。进一步低温冷却所述液态空气流旨在补偿低压力塔中减少的液气比。这样就导致在这种的装置中不增加任何氩气的回收却耗费更多的能量。
[0006]如即将讨论的,本发明提供了分离空气的方法,其中相对于现有技术的空气分离系统,如上文提到的,所能实现的,提高了氩气的回收率,同时将提高氩气回收率所必须使用的过量功率量降到最小。
发明内容
[0007]本发明提供分离空气的方法。
[0008]依照本方法,生产第一压缩净化空气流和第二压缩净化空气流。第二压缩净化空气流比第一压缩净化空气流具有更高的压力。这些流在主热交换器内通过与在空气分离单元中产生的返回流(return stream)间接热交换冷却。所述的返回流包含至少部分泵送的液氧流(pumped liquid oxygen stream),和由于间接热交换,由所述压缩净化空气制备了主进料空气流和液态空气。
[0009]主进料空气流被引入到所述空气分离单元的高压力塔中,液态空气流膨胀,以及至少部分所述液态空气流被引入到空气分离单元的低压力塔中。来自低压力塔的富氩流被引入到由至少一个塔形成的氩气分离区,以产生含氩气的塔顶馏分(column overhead)和由所述含氩气的塔顶馏分构成的含氩产品流。需要说明的是,在此处和在权利要求中使用的术语″氩分离区″包括单个的氩塔,本领域通常指粗氩气塔,以及串联的塔以提供足够数量的分离级以使所述氩产品具有极低的氧含量,一般小于约10ppm。
[0010]由高压力塔的液体塔底馏分构成的粗液氧流,以及由高压力塔的液化氮塔顶馏分构成的富氮液流被低温冷却(subcool)。至少部分所述粗液氧流和至少部分所述富氮液流被引入到所述低压力塔中。
[0011]主进料空气流在比液态空气流高的温度下从主热交换器中引出,并至少在大约该温度下被引入到高压力塔中。优选地,主进料空气流的温度高于液态空气流约6K至约25K,更优选地,比液态空气流高约8K至约15K。
[0012]这样的效果是低温冷却液态空气流,以增加其在膨胀之后的液体量,从而提高低压力塔中的液气比并增加氩气回收率。应注意的是,不同于现有技术,不能有例如不低温冷却粗液氧流的简化。如果该流不低温冷却,那么由于在液态空气流的膨胀期间形成蒸气而导致在液态空气流或其部分进入的位点上方的液气比会较小,使得氩气回收率会受到损害。此外,与现有技术不同,主进料空气流的温度经选择使得液态空气流具有接近于返回流的平均温度的接近温度,相差不低于约0.2K至约3K,并优选0.4K至2K。所述的平均温度是计算得到的温度,在该温度,在主热交换器冷端处返回流的流量和焓的乘积等于返回流在其实际温度的流量和焓的乘积。如即将讨论的那样,发明人发现此处如果使该温度出现任何程度的更小,考虑到主热交换器仅为有限的尺寸,那么第二压缩净化空气流的压缩要求增加,而氩气回收率没有可觉察到的增加。
[0013]为了解决热端和热泄漏问题,如现有技术所公知的,必须产生制冷。有许多与本发明相兼容的方法来解决该问题。例如,可以产生第三压缩净化空气流。第三压缩净化空气流可以在主热交换器内部分冷却并被引入到汽轮膨胀机来产生排出流(exhaust stream),以产生制冷。排出流然后被引入到低压力塔中。通过从用于形成第二压缩净化流的压缩机中间级中抽取第四压缩净化空气流,可以产生第四压缩净化空气流。第四压缩净化流在另一个汽轮膨胀机中膨胀并与第一压缩净化空气流在主热交换器中结合以增加液体的产生。
[0014]产生制冷的替换方法是,由氮塔顶馏分构成的氮塔顶馏分流可以在主热交换器内部分加热,然后在汽轮膨胀机内膨胀产生排出流以产生制冷。排出流然后能被引入到主热交换器并然后在其中被充分加热。
[0015]在本发明的任何实施方案中,所述液态空气流可以被引入到液体汽轮机中以使液态空气流膨胀,使其压力适于引入到高压力塔的中间位置。
[0016]粗液氧流与富氮液流可以在穿过间接热交换器被返回流低温冷却,返回流由由低压力塔塔顶馏分构成的富氮蒸气流和比富氮蒸气流中氮含量低的废料蒸气流形成。富氮蒸气流和废料蒸气流可以在使粗液氧流和富氮液流低温冷却后被引入到主热交换器中。
[0017]第一部分粗液氧流可以膨胀并引入到低压力塔中,第二部分粗液氧流可以与由氩塔顶馏分构成的氩塔顶馏分流进行间接热交换。因此,氩塔顶馏分流可以被冷凝,并且第二部分粗液氧流可以被部分蒸发。源自粗液氧流部分蒸发的液体和蒸气馏分流然后被引入到低压力塔中。部分氩塔顶馏分流在冷凝后可以形成氩产品流,以及剩余部分在冷凝后可以作为回流回到氩分离区。
附图说明
[0018]虽然说明书以明确指出申请人认为的其发明的主题的权利要求为结论,但相信结合附图可以更好地理解本发明,其中:
[0019]图1是用于执行本发明方法的装置的工艺流程示意图;
[0020]图2是在主热交换器内现有技术加热和冷却曲线的图示;
[0021]图3是结合依照本发明的空气分离方法操作的主热交换器内加热和冷却曲线的图示;
[0022]图4是图1的可替换性实施方案的部分示意图,示出了与主热交换器集成的低温冷却装置的替换性实施方案;
[0023]图5是图1的替换性实施方案的部分的示意图,利用富氮流的膨胀以产生制冷;和
[0024]图6是图1的替换性实施方案的部分的示意图,利用进一步膨胀以提高液体的产量;
[0025]为了避免对附图进行重复的解释,在附图标记表示的特定要素的描述相同时,在附图中使用和重复相同的附图标记。
具体实施方式
[0026]参照图1,图示的空气分离设备1经构造以用于执行本发明的方法。
[0027]利用主空气压缩机12压缩空气流10。得到的压缩流的空气压力由将在下面讨论的高压力塔(higher pressure column)48的压力以及压降来设定。空气流10在后冷却器(after cooler)14中冷却除去压缩热后,在净化单元16中净化以除去较高沸点的杂质,如二氧化碳和可结冰的水分,以及可收集代表安全危险的烃类。如现有技术中已知的,净化单元16可以是分子筛吸附剂床,其在已知的变温吸附循环中异相工作(operating out of phase)以净化空气流10。
[0028]空气流10的压缩净化产生压缩净化的空气流18,其被划分以产生第一压缩净化空气流20,所述第一压缩净化空气流构成源自这种划分的最大部分。压缩净化空气流18的一部分22在增压压缩机24中被进一步压缩,产生第二压缩净化空气流28。压缩净化空气流18的部分22的流量一般为压缩净化空气流18的约24%至约40%。增压压缩机24的排出压力由在下文中将会讨论的泵送液氧流(pumped liquid oxygen stream)122的压力确定。当第二压缩净化空气流28的压力低于其临界压力时,压力一般是泵送液氧流122的压力的大约2.5倍低。第二压缩净化空气流28的压缩热优选被后冷却器26除去。
[0029]如将被讨论的那样,任选地,压缩空气流18的另一部分30在增压压缩机32内压缩以产生第三压缩净化空气流36,用于制冷目的。压缩净化空气流的所述另一部分30的流量一般占压缩净化空气流18的约5%至约20%。第三压缩净化空气流36的压缩热优选地被后冷却器34除去。需要指出的是,主空气压缩机12和增压压缩机24优选是具有中间级冷却的多级设备(multi-stage machine)。增压压缩机(booster compressor)32是由涡轮机(turbine)62提供动力的单级设备(single stage machine)。压缩机12和24通常由外部源,通常是电动机提供动力。
[0030]第一压缩净化空气流20和第二压缩净化空气流28在主热交换器40中被冷却,形成在或接近其露点的主进料空气流42和液态空气流44。如即将被讨论的,第一压缩净化空气流20和第二压缩净化空气流28通过与产生于空气分离单元46中富含氧和氮的返回流间接热交换被冷却。在此需要指出的是,本发明期望第二压缩净化空气流28可以高于临界压力。在此情况下,冷却这种流会在称作“伪液化”的过程中产生稠密的相蒸气,所述“伪液化”中没有真正的液相产生。所以,此处和权利要求中用在液态空气流44上的术语“液化”或术语“液体”,考虑了产生稠密的相蒸气的伪液化和产生液体的真实液化。
[0031]主进料空气流42被引入到空气分离单元46中高压力塔48的底部区域,所述高压力塔在比空气分离单元的低压力塔50的压力高的压力下操作。空气分离单元46还包括氩塔52,其为精炼氩气提供氩气分离区来生产含氩塔顶馏分,从所述塔顶馏分中提取氩产品。氩塔52在适当的情况下可以被替换为具有足够分离级数的一系列塔,来充分地分离上文提到的氧气。
[0032]虽然未举例说明,可理解高压力塔48、低压力塔50和氩塔52包含传质元件,以在塔内接触待分离的混合物的液相和气相。这些传质元件可以为已知的规整填料(structured packing)或筛板、堆积填料或其组合。
[0033]液态空气流44引入液体膨胀设备54并膨胀到适宜的压力,以进入到高压力塔中高于主进料空气流42的中间位置。液体膨胀设备54,举例来说,优选是液体涡轮机,其中的膨胀功可以被发电机回收,用来驱动压缩机或用油压制动器以热量消耗。可理解的是,液体膨胀设备54可以为膨胀阀。膨胀之后,液态空气流44被分成第一子液流56和第二子液流58。第二子液流58被引入到高压力塔48。这样,液体膨胀设备54的排出压力被设置为高压力塔48的压力加上压降。第一子液流56通过膨胀阀60降低压力,然后被引入到低压力塔50中。如本领域技术人员可知的,所有液态空气流44可以被引入低压力塔50中,以及为了该目的膨胀到合适的压力。
[0034]为了冷却所述工艺并由此解决热端损失,第三压缩净化空气流36在除去压缩热之后在主热交换器40之中部分冷却。部分冷却是指流冷却到主热交换器40的热端和冷端温度之间的温度。生成的第三压缩空气流36在部分冷却后随后被引入到汽轮膨胀机62以产生排出流64,其被引入到低压力塔50中。可以从图示中明显得到,排出流64的压力被设置为低压力塔50的压力。
[0035]高压力塔48中的空气分离产生富集氮气的氮气塔顶馏分。另外,在高压力塔48内产生富含氧气的粗液氧塔底馏分。由富氮塔顶馏分构成的富氮蒸气流66,被引入到设置在低压力塔底部区域的冷凝再沸器68中,以蒸发在低压力塔50中作为液体塔底馏分收集的富氧液体,伴随着冷凝富氮蒸气流66以产生富氮液流70。富氮液流70的一部分72作为回流被引入回到高压力塔48的顶部,富氮液流70的一部分74在低温冷却单元78中和由高压力塔48的粗液氧塔底馏分构成的粗液氧流76一起被低温冷却。
[0036]富氮液流70的部分74被分成第一和第二子氮流80和82。第二子液氮流82可以取出作为产品。第一子液氮流80通过膨胀阀84降压然后引入到低压力塔50顶部。如本领域技术人员可知的,富氮液流70的部分74全部可被引入到低压力塔50。
[0037]富氩流86作为蒸气引入到氩塔52。富氩流86一般包含约5%至约20%氩。富氩塔顶馏分作为富氩蒸气流88被提取并在设置在壳92之中的热交换器90内冷凝。生成的富氩液流94,以流96形式,作为回流引回到氩塔52,氩产品流98可作为氩产品被取出。生成的贫氩液流100回到低压力塔50中。
[0038]取决于氩塔52的级数,富氩塔顶馏分和由此的氩产品流98可以是为了净化目的需要进一步处理的粗流。如现有技术已知的,这样的粗流可以在脱氧单元中进一步处理以除去残留氧气然后在氮塔中除去任何剩余的氮。
[0039]粗液氧流76在被低温冷却之后然后被划分,并且该流的第一部分102在膨胀阀104内膨胀并被直接引入到低压力塔50中。第二部分106可以在膨胀阀108内膨胀并随后被引入到热交换器92中,与富氩蒸气流88间接热交换以使其冷凝。生成的蒸气流110可与液流112一起被引入到所述低压力塔50中。
[0040]粗液氧流76和富氮液流70的第二部分74在低温冷却单元78中,通过与氮塔顶馏分流114和具有比氮塔顶馏分流114低浓度的氮的废流116间接换热而低温冷却。同时,提取自低压力塔50底部的富氧流118可由泵120泵送以产生泵送的液氧流122。泵送的氧也可处于其临界压力以上,从而为稠密的相或“伪液体”。它的第一部分124可以被引入到主热交换器40来液化第二压缩空气流28。被引入到主热交换器的还有其它返回流,如氮塔顶馏分流114和废流116。这些返回流也用于冷却引入的第一压缩净化空气流20来产生主进料空气流42,以及部分地冷却所述第三压缩空气流36。需要指出的是,其中废流116不被除去的本发明实施方案也是可能的。这导致有较低浓度的氮并由此形成废流的氮塔顶馏分流114。然而,在举出的实施方案中,塔顶馏分流114、废流116和泵送液氧流122的第一部分124组成了所述方法的返回流。
[0041]氮塔顶馏分流114和泵送液氧流的蒸发的第一部分124形成氮以及加压的氧产品。泵送液氧流122的第二部分126可以任选地作为液体产品。
[0042]如上所述,第一压缩空气流20在主热交换器40中不完全冷却。相反地,其被排出以产生主进料空气流42,具有比在主热交换器40中被液化并作为液态空气流44抽取的第二压缩空气流28更高的温度。如上所述,这引起液态空气流44过冷。主进料空气流42的温度优选比液态空气流44高约6K至约25K。更优选范围在约8K至约15K。
[0043]参照图2,示出了主热交换器40内的温度曲线,其中第一压缩空气流20被完全冷却并且因此是在完全穿过主热交换器40之后抽取的。在这个特定的现有技术操作中,主热交换器冷端中的温差约为6.2K。
[0044]参照图3,示出了根据本发明的主热交换器40内的温度曲线。在较高温度下抽取压缩净化空气流20并因此在该较高温度产生的主进料空气流42,导致冷却曲线更陡峭,这是因为所有保持在主热交换器40之内待冷却的都是第二压缩净化空气流28,这样导致在过冷温度产生液态空气流24。因此,更少的汽化由于在膨胀器54内的液态空气流44膨胀而发生,并且在通过阀60之后的第一子液流56和第二子液流58,在进入高压力塔48时具有更高的液体含量。主进料空气流42进入高压力塔的温度更高。这导致更大的液-气通量(liquid-vaportraffic),因而在高压力塔48顶部增加富氮蒸气产量。第一子空气流56更大的液体含量使得在低于进入到所述低压力塔50的位置产生增加的液气比。另外,在高压力塔48顶部产生更多富氮蒸气,导致有更多的液体在低压力塔50中形成,通过提高富氮液流70的第二部分74的生成量作为回流。在本发明中,由于粗液氧流76也是低温冷却的,更大液体分数的该流体在膨胀后也能被引入到低压力塔50中。在低压力塔50中所得到的总体更高的液气比,导致在富氩流86中存在更多氩,因此有更大的氩回收率。需要指出的是,这也同样将增加氧的回收,虽然程度较小。然而,一般由于氧按照供应合同提供给顾客,所以通过降低主空气压缩的程度以降低本发明方法对总能量的需求,同时仍然利用此处公开的本发明方法可行的增加氩回收率的优点,该设备可以经操作来满足市场需求。
[0045]然而,随着主进料空气流20逐渐变得更热,液态空气流42的温度逐渐变得更低。为了阻止主热交换器40内的加热和冷却曲线交叉,更多空气必须在增压压缩机24内被压缩,因此会增加设备的能量需要。补偿热交换器40冷端的所述较小温差的另一种方式是增加流体30。这样往往增加总功率和降低氩的回收率。发明人已经发现,从主热交换器40在特别的、预先确定的温度下抽取主进料空气流20,可以控制液态空气流的温度以接近返回流温度,即氮塔顶馏分流114、废流116和泵送液氧流124的温度。这样的控制由此允许增加氩的回收率而不必增加空气压缩的能量需要量。在典型的板-翅片热交换器中,主进料空气流42应该如下温度下从主热交换器中抽取:所述温度使得液态空气流44的温度接近于返回流的平均温度,相差不低于约0.2K至3K,优选0.4K至2K。低于该温度范围,能量需要量会迅速地增加而氩回收不会有明显的增加。如上所述,这个“平均温度”计算为如下温度:在该温度,流量乘以焓等于所述返回流在主热交换器40的冷端处在其实际温度的流量乘以焓。在所述的实施方案中,在主热交换器40冷端的返回流是泵送液氧流122的第一部分124,以及在低温冷却单元78热端处的氮塔顶馏分流114和废流116。应当注意的是,如果有任何附加流从塔系统抽取并然后提供给主热交换器40,那么这样的流将被计入平均温度的该计算中。会知道的,通过主热交换器40的设计实现对主进料空气流44的所述温度的控制,更具体地,设计从其中排出主进料空气流42的出口的位置。
[0046]参照图4,是图2所示的空气分离设备的替换性实施方案中,主热交换器40和低温冷却单元28可以合并成单一装置40’。图4中示出的空气分离设备以另外的方式实现图1的装置的功能。
[0047]参照图5,是图1所示的空气分离设备的替换性实施方案。富氮蒸气流130可从富氮蒸气流66中提取,富氮蒸气流66的剩余部分67可以被引入到冷凝再沸器68中。富氮蒸气流130被引入到主热交换器40″,在其中被部分加热并然后被引入到与发电机134连接的汽轮膨胀机132中。生成的冷却排出流136被引入到配有通道的主热交换器40″中,以完全加热所述流并由此制冷该过程。除了进行制冷的所述替换性方法以外,图5中的设备在其它方面和图1中所示的相同。
[0048]参照图6,是图1所示的空气分离设备的又一示例性实施方案。在该实施方案中,从增压压缩机24的中间级取出第四压缩空气流150,优选从其第一或第二级取出。所得到的第四压缩空气流150然后在压缩机152中压缩以产生压缩空气流154,在后冷却器156中移除压缩热后,被引入到汽轮机158以产生排出流160,其与第一压缩空气流20在主热交换器40”’的中间的位置和温度水平处结合,主热交换器40”’具有为该目的设置的入口。这样会具有比图1所示设备产生更多液体的能力。除了本段落所述的修改以外,该设备的其余部分会另外与图1所示的空气分离设备相同。
[0049]以下是操作空气分离设备1的计算实施例,如图1所示,依照本发明的方法(表1)和现有技术的方法进行,在现有技术方法中主进料空气流42在主热交换器40的冷端温度从主热交换器40中抽取(表2)。在两个实施例中,设备经设计以生产组合的(unitized)气态氧流1000(泵送液氧流122在主热交换器40中蒸发后的第一部分124)和组合的液氧流34(泵送液氧流122的第二部分126)。
表1
涉及的流编号 | 流量 | 温度,K | 压力,psia | 组成 | 蒸气百分比 |
18 | 4948 | 282.0 | 88.0 | 空气 | 100 |
20 | 2815 | 282.0 | 88.0 | 空气 | 100 |
28(在后冷却器26中冷却后) | 1453 | 305.4 | 1100 | 空气 | 100 |
42 | 2815 | 108.9 | 84.0 | 空气 | 100 |
44 | 1453 | 97.9 | 1099 | 空气 | 0 |
58 | 436 | 96.2 | 83.7 | 空气 | 0 |
56(阀60后) | 1017 | 82.0 | 20.1 | 空气 | 14.8 |
36(从主热交换器40排出后) | 679 | 144.9 | 136.8 | 空气 | 100 |
64 | 679 | 89.2 | 20.2 | 空气 | 100 |
82 | 34.0 | 81.9 | 83.0 | 99.9998%N2+Ar | 0 |
98 | 36.1 | 89.1 | 17.8 | 99.9998%Ar | 0 |
126 | 34.0 | 96.3 | 450 | 99.6%O2 | 0 |
124(在主热交换器40中蒸发之后) | 1000 | 291.0 | 446 | 99.6%O2 | 100 |
116(在主热交换器40中被完全加热之后) | 815 | 291.0 | 17.2 | 98.6%N2 | 100 |
114(在主热交换器40中被完全加热之后) | 3029 | 291.0 | 16.9 | 99.9999%N2+Ar | 100 |
表2
流编号 | 流量 | 温度,K | 压力,psia | 组成 | 蒸气百分比 |
18 | 4968 | 282.0 | 88.0 | 空气 | 100 |
20 | 2863 | 282.0 | 88.0 | 空气 | 100 |
28(在后冷却器26中冷却后) | 1426 | 305.4 | 1100 | 空气 | 100 |
42 | 2863 | 103.4 | 84.0 | 空气 | 100 |
44 | 1426 | 103.4 | 1099 | 空气 | 0 |
58 | 428 | 98.1 | 83.7 | 空气 | 3.9 |
56(阀60后) | 998 | 82.1 | 20.1 | 空气 | 20.2 |
36(从主热交换器40排出后) | 679 | 144.9 | 136.8 | 空气 | 100 |
64 | 679 | 89.2 | 20.2 | 空气 | 100 |
82 | 34.0 | 82.0 | 83.0 | 99.9998%N2+Ar | 0 |
98 | 34.4 | 89.1 | 17.8 | 99.9998%Ar | 0 |
126 | 34.0 | 96.3 | 450 | 99.6%O2 | 0 |
124(在主热交换器40中蒸发之后) | 1000 | 290.7 | 446 | 99.6%O2 | 100 |
116(在主热交换器40中被完全加热之后) | 941 | 290.7 | 17.2 | 98.1%N2 | 100 |
114(在主热交换器40中被完全加热之后) | 2925 | 290.7 | 16.9 | 99.9999%N2+Ar | 100 |
[0050]经过比较,本发明的氩回收率如表1所示为78.1%。现有技术方法的氩回收率在表2中为74.1%。同样地,表1中氧回收率为99.3%,表2中氧回收率为98.9%。如表1(蒸气百分比)所示的本发明中,流56和58进入高和低压力蒸馏塔48和60时的闪蒸出(flash off)程度较低,并且主进料空气流42温度较高,导致提高产品流回收率。在本发明中,闪蒸下降是液态空气流44的较低温度的结果。在表1中,第二压缩净化空气流28的流量要求比表3中高1.9%。因此,本发明的能量消耗稍微高于现有技术。
[0051]虽然已经参考优选实施方案描述了本发明,但是如本领域技术人员可知的,很多的变换、添加和省略均可在不脱离本发明所附权利要求描述的精神和范围下作出。
Claims (12)
1.分离空气的方法,包括:
产生第一压缩净化空气流和具有比第一压缩净化空气流更高压力的第二压缩净化空气流;
在主热交换器中,通过与在空气分离单元中产生的包括至少部分泵送液氧流的返回流间接热交换,冷却所述第一压缩净化空气流和所述第二压缩净化空气流,由此产生主进料空气流和液态空气流;
引导所述主进料空气流进入空气分离单元的高压力塔内,使所述液态空气流膨胀并引导至少部分所述液态空气流进入到所述空气分离单元的低压力塔中;
从所述低压力塔引导富氩流进入到由至少一个塔形成的氩分离区中,以产生含氩塔顶馏分和由所述含氩塔顶馏分构成的含氩产品流;
低温冷却由所述高压力塔的液态塔底馏分构成的粗液氧流和由所述高压力塔的液化氮塔顶馏分构成的富氮液流,并引导至少部分所述粗液氧流和至少部分所述富氮液流进入所述低压力塔内;以及
所述主进料空气流在比所述液态空气流更高的温度从所述主热交换器中抽取,并在至少大约所述温度被引入到所述高压力塔中,由此使所述液态空气流低温冷却并增加其在膨胀之后的液体含量,从而提高低压力塔中的液气比并由此提高氩回收率,所述温度经选择使得所述液态空气流具有接近返回流的平均温度的接近温度,相差不小于约0.2K至约3K的范围,所述平均温度是计算得到的温度,在该温度所述主热交换器冷端处的返回流的流量和焓的乘积等于返回流在其实际温度的流量和焓的乘积。
2.如权利要求1所述的方法,其中所述范围是约0.4K至约2K。
3.如权利要求1所述的方法,其中所述主进料空气流的所述温度处于比所述液态空气流高约6K至约25K的范围内。
4.如权利要求1所述的方法,其中所述主进料空气流的所述温度处于比所述液态空气流高约8K至约15K的范围内。
5.如权利要求4所述的方法,其中所述范围是约0.4K至约2K.
6.如权利要求1所述的方法,其中:
所述液态空气流膨胀到适于将其引入到所述高压力塔的中间位置的压力;
所述液态空气流被划分为第一子液流和第二子液流;
所述第一子液流被引入到所述高压力塔;以及
所述第二子液流膨胀并被引入到所述低压力塔,引入位置高于将富氩流排放到氩塔的位置。
7.如权利要求1所述的方法,其中:
产生第三压缩净化空气流;
所述第三压缩净化空气流在所述主热交换器中部分冷却,并被引入汽轮膨胀机以产生排出流,从而产生制冷;以及
所述排出流被引入到所述低压力塔。
8.如权利要求5所述的方法,其中:
通过从用于形成所述第二压缩净化流的压缩机的中间级抽取第四压缩净化空气流来产生第四压缩净化空气流;以及
所述第四压缩净化流在另一个汽轮膨胀机内膨胀并在所述主热交换器内与所述第一压缩净化空气流结合以提高液体产量。
9.如权利要求1所述的方法,其中由氮塔顶馏分构成的氮塔顶馏分流在主热交换器中部分加热,在汽轮膨胀机中膨胀以产生用于产生制冷的排出流,以及所述排出流被引入主热交换器并在其中被完全加热。
10.权利要求1或权利要求5或权利要求6或权利要求7或权利要求8或权利要求9所述的方法,其中所述液态空气流被引入液体汽轮机以膨胀所述液态空气流,使其压力适于其引入到所述高压力塔的中间位置。
11.权利要求1所述的方法,其中所述粗液氧流和所述富氮液流通过与所述返回流间接热交换而低温冷却,所述返回流由由低压力塔塔顶馏分构成的富氮蒸气流和含氮量比所述富氮蒸气流低的废蒸气流形成,所述富氮蒸气流和所述废蒸气流在低温冷却了所述粗液氧流和所述富氮液流之后被引入到主热交换器中。
12.权利要求1所述的方法,其中:
所述粗液氧流的第一部分膨胀并被引入到低压力塔中,以及所述粗液氧流的第二部分与由氩塔顶馏分构成的氩塔顶馏分流间接热交换,从而冷凝所述氩塔顶馏分流并部分蒸发粗液氧流的第二部分;
源自部分汽化所述粗液氧流的液体和蒸气馏分流被引入低压力塔;以及
所述氩塔顶馏分流的一部分在被冷凝之后形成氩产品流,其剩余部分在冷凝后作为回流返回氩分离区。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/717389 | 2007-03-13 | ||
US11/717,389 US20080223077A1 (en) | 2007-03-13 | 2007-03-13 | Air separation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101266095A true CN101266095A (zh) | 2008-09-17 |
Family
ID=39760361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100951957A Pending CN101266095A (zh) | 2007-03-13 | 2008-03-13 | 空气分离方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080223077A1 (zh) |
EP (1) | EP2122283A2 (zh) |
CN (1) | CN101266095A (zh) |
MX (1) | MX2008001840A (zh) |
WO (1) | WO2008112728A2 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103003652A (zh) * | 2009-10-13 | 2013-03-27 | 普莱克斯技术有限公司 | 氧气汽化方法和系统 |
CN104364597A (zh) * | 2011-07-18 | 2015-02-18 | 普莱克斯技术有限公司 | 空气分离方法和设备 |
CN106247757A (zh) * | 2016-08-26 | 2016-12-21 | 陈正洪 | 一种气体转化方法及系统 |
WO2022016416A1 (en) * | 2020-07-22 | 2022-01-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Argon enhancing method and device |
CN114174747A (zh) * | 2019-07-26 | 2022-03-11 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过低温蒸馏分离空气的方法和设备 |
CN115265094A (zh) * | 2021-09-18 | 2022-11-01 | 乔治洛德方法研究和开发液化空气有限公司 | 空气的低温分离方法和低温空气分离装置 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090241595A1 (en) * | 2008-03-27 | 2009-10-01 | Praxair Technology, Inc. | Distillation method and apparatus |
US8286446B2 (en) * | 2008-05-07 | 2012-10-16 | Praxair Technology, Inc. | Method and apparatus for separating air |
CN101464085B (zh) * | 2009-01-08 | 2011-01-26 | 北京名都厚德科技有限公司 | 一种超低压单塔深冷空分工艺 |
FR2943408A1 (fr) * | 2009-03-17 | 2010-09-24 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
US8820115B2 (en) * | 2009-12-10 | 2014-09-02 | Praxair Technology, Inc. | Oxygen production method and apparatus |
US20110192194A1 (en) * | 2010-02-11 | 2011-08-11 | Henry Edward Howard | Cryogenic separation method and apparatus |
US9279613B2 (en) | 2010-03-19 | 2016-03-08 | Praxair Technology, Inc. | Air separation method and apparatus |
FR2961586B1 (fr) * | 2010-06-18 | 2014-02-14 | Air Liquide | Installation et procede de separation d'air par distillation cryogenique |
CN103277981B (zh) * | 2013-06-14 | 2015-05-06 | 济钢集团有限公司 | 一种提高空分装置氮氧产品比例的装置及方法 |
US10106430B2 (en) | 2013-12-30 | 2018-10-23 | Saudi Arabian Oil Company | Oxycombustion systems and methods with thermally integrated ammonia synthesis |
EP2980514A1 (de) * | 2014-07-31 | 2016-02-03 | Linde Aktiengesellschaft | Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage |
US10018413B2 (en) * | 2015-07-31 | 2018-07-10 | Praxair Technology, Inc. | Method and apparatus for increasing argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system |
US10981103B2 (en) | 2018-04-25 | 2021-04-20 | Praxair Technology, Inc. | System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit |
US10816263B2 (en) | 2018-04-25 | 2020-10-27 | Praxair Technology, Inc. | System and method for high recovery of nitrogen and argon from a moderate pressure cryogenic air separation unit |
US10663223B2 (en) * | 2018-04-25 | 2020-05-26 | Praxair Technology, Inc. | System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit |
US10663222B2 (en) * | 2018-04-25 | 2020-05-26 | Praxair Technology, Inc. | System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit |
US10663224B2 (en) | 2018-04-25 | 2020-05-26 | Praxair Technology, Inc. | System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit |
CN115461584B (zh) | 2020-05-11 | 2024-08-02 | 普莱克斯技术有限公司 | 用于从中压低温空气分离单元回收氮、氩和氧的系统和方法 |
CN115485519A (zh) | 2020-05-15 | 2022-12-16 | 普莱克斯技术有限公司 | 用于产生氮和氩的低温空气分离单元的集成式氮液化器 |
US11619442B2 (en) | 2021-04-19 | 2023-04-04 | Praxair Technology, Inc. | Method for regenerating a pre-purification vessel |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2711778B1 (fr) * | 1993-10-26 | 1995-12-08 | Air Liquide | Procédé et installation de production d'oxygène et/ou d'azote sous pression. |
GB9405072D0 (en) * | 1994-03-16 | 1994-04-27 | Boc Group Plc | Air separation |
US5564290A (en) * | 1995-09-29 | 1996-10-15 | Praxair Technology, Inc. | Cryogenic rectification system with dual phase turboexpansion |
FR2744795B1 (fr) * | 1996-02-12 | 1998-06-05 | Grenier Maurice | Procede et installation de production d'oxygene gazeux sous haute pression |
FR2776057B1 (fr) * | 1998-03-11 | 2000-06-23 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
US6112550A (en) * | 1998-12-30 | 2000-09-05 | Praxair Technology, Inc. | Cryogenic rectification system and hybrid refrigeration generation |
FR2800859B1 (fr) * | 1999-11-05 | 2001-12-28 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
-
2007
- 2007-03-13 US US11/717,389 patent/US20080223077A1/en not_active Abandoned
-
2008
- 2008-02-07 MX MX2008001840A patent/MX2008001840A/es not_active Application Discontinuation
- 2008-03-12 EP EP08743791A patent/EP2122283A2/en not_active Withdrawn
- 2008-03-12 WO PCT/US2008/056599 patent/WO2008112728A2/en active Application Filing
- 2008-03-13 CN CNA2008100951957A patent/CN101266095A/zh active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103003652A (zh) * | 2009-10-13 | 2013-03-27 | 普莱克斯技术有限公司 | 氧气汽化方法和系统 |
CN103003652B (zh) * | 2009-10-13 | 2015-11-25 | 普莱克斯技术有限公司 | 氧气汽化方法和系统 |
CN104364597A (zh) * | 2011-07-18 | 2015-02-18 | 普莱克斯技术有限公司 | 空气分离方法和设备 |
CN104364597B (zh) * | 2011-07-18 | 2017-03-08 | 普莱克斯技术有限公司 | 空气分离方法和设备 |
CN106247757A (zh) * | 2016-08-26 | 2016-12-21 | 陈正洪 | 一种气体转化方法及系统 |
CN106247757B (zh) * | 2016-08-26 | 2019-09-24 | 陈正洪 | 一种气体转化方法及系统 |
CN114174747A (zh) * | 2019-07-26 | 2022-03-11 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过低温蒸馏分离空气的方法和设备 |
CN114174747B (zh) * | 2019-07-26 | 2024-05-28 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过低温蒸馏分离空气的方法和设备 |
WO2022016416A1 (en) * | 2020-07-22 | 2022-01-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Argon enhancing method and device |
CN115265094A (zh) * | 2021-09-18 | 2022-11-01 | 乔治洛德方法研究和开发液化空气有限公司 | 空气的低温分离方法和低温空气分离装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2008112728A2 (en) | 2008-09-18 |
WO2008112728A3 (en) | 2008-12-11 |
MX2008001840A (es) | 2009-02-24 |
US20080223077A1 (en) | 2008-09-18 |
EP2122283A2 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101266095A (zh) | 空气分离方法 | |
CN102047057B (zh) | 分离空气的方法和设备 | |
US20090078001A1 (en) | Cryogenic Distillation Method and System for Air Separation | |
US20160025408A1 (en) | Air separation method and apparatus | |
CN111406192B (zh) | 通过与氮气膨胀机联动制动的膨胀机增压机来产生增压空气的深冷精馏方法与设备 | |
CN102652247B (zh) | 用于通过低温蒸馏分离空气的方法和单元 | |
CN101351680B (zh) | 低温空气分离法 | |
JP5547283B2 (ja) | 加圧生成物の生成方法及び生成装置 | |
EP2634517B1 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
US20060277944A1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
US20090320520A1 (en) | Nitrogen liquefier retrofit for an air separation plant | |
US20080223076A1 (en) | Cryogenic Distillation Method and Installation for Air Separation | |
CN102155841A (zh) | 低温分离方法及设备 | |
MXPA02004856A (es) | Metodo de rechazo del nitrogeno. | |
TW202140974A (zh) | 低溫分離空氣的方法、空氣分離設備以及由至少兩個空氣分離設備組成的聯合裝置 | |
CN106595221A (zh) | 制氧系统和制氧方法 | |
CN107606875A (zh) | 通过低温分离空气产生压缩氮和液氮的方法和设备 | |
CN101509722A (zh) | 蒸馏方法和设备 | |
CN104185767B (zh) | 用于产生两股净化的部分空气流的方法和设备 | |
CN102192637A (zh) | 空气分离方法和设备 | |
TW536615B (en) | Air separation method to produce gaseous product | |
JP2000356464A (ja) | 空気分離用低温蒸着システム | |
CN102042742A (zh) | 通过低温空气分离获取液态氮的方法和设备 | |
TW202108222A (zh) | 空氣的低溫分離方法與設備 | |
CN104364597B (zh) | 空气分离方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20080917 |