CN104364597B - 空气分离方法和设备 - Google Patents

空气分离方法和设备 Download PDF

Info

Publication number
CN104364597B
CN104364597B CN201280045357.0A CN201280045357A CN104364597B CN 104364597 B CN104364597 B CN 104364597B CN 201280045357 A CN201280045357 A CN 201280045357A CN 104364597 B CN104364597 B CN 104364597B
Authority
CN
China
Prior art keywords
stream
oxygen
pressure column
nitrogen
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280045357.0A
Other languages
English (en)
Other versions
CN104364597A (zh
Inventor
H.E.霍华德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN104364597A publication Critical patent/CN104364597A/zh
Application granted granted Critical
Publication of CN104364597B publication Critical patent/CN104364597B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/06Lifting of liquids by gas lift, e.g. "Mammutpumpe"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种用于分离空气的方法和设备,在其中氧产品的回收率通过使以热传递关系连接到较高压力塔上的较低压力塔中的液体蒸气比增大来增大。在较高压力塔中产生的粗液态氧塔底产物流部分地气化,防止使输送回较低压力塔的氩提馏区段的较低压力塔的氩富集蒸气冷凝。具有比粗液态氧流的氧含量更大的氧含量的附加的富氮回流和氧富集流被输送入较低压力塔中。这些流由在粗液态氧流部分气化之后由粗液态氧流至少部分地产生的两相流形成。

Description

空气分离方法和设备
技术领域
本发明涉及一种用于分离空气来产生氧产品的方法和设备,在其中空气由在以热传递关系与彼此运行地相关联的较高压力塔(column)和较低压力塔中的低温精馏(cryogenic rectification)来分离,以从较低压力塔中产生的富氧液塔底产物(bottoms)来产生氧产品。更具体而言,本发明涉及这样的方法和设备:在其中从较高压力塔除去的粗液态氧流用于在较低压力塔内冷凝氩富集蒸气,且用于生成出于提高氧回收的目的而引入较低压力塔中的附加的液态富氮回流和氧富集流。
背景技术
氧通过空气分离装备(plant)内的低温精馏来从空气分离。 在此类装备中,空气被压缩并净化,且随后在主热交换器内冷却至适用于其精馏的温度。冷却的空气随后被引入蒸馏塔系统中,蒸馏塔系统具有通过冷凝器重沸器来与较低压力塔运行地相关联的较高压力塔,冷凝器重沸器使较低压力塔的富氧液体塔底产物部分地气化,防止所产生的富氮蒸气冷凝成较高压力塔的塔顶产物(overhead)。所得的富氮液体用于形成用于两个塔的回流。此外,由较高压力塔的塔底产物构成的粗液态氧流在较低压力塔中进一步提纯,以使氧与氮进一步分离,且由此产生较低压力塔中的富氧液体塔底产物。氧产品的至少一部分由富氧液体塔底产物形成,且可被泵送来产生加压氧产品。
为了分离氧以便使大部分氧从空气分离,较低压力塔的最高区段内必须存在足够的液体蒸气比(liquid to vapor ratio),以便使上升蒸气富集氮。同样地,必须存在足够的较低压力塔重沸,以便有效地从下降液体提馏氩和氮。在泵送产品氧的情况下,大约百分之30至百分之40的空气被液化来提供使主热交换器内的加压液态氧加温所需的能量。液态空气随后被输送入塔中来用于精馏。在许多情况下,液态空气和富氮液体流不足以回流较低压力塔,以便维持高的氧回收。将注意的是,当冷凝的液态或气态氮作为产品从较高压力塔提取时,在较低压力塔和较高压力塔中的液体蒸气比都受损。
如将论述的那样,本发明提供了一种用于分离空气的方法和设备,在其中,优于现有技术方法的是提高了在较低压力塔的精馏区段内的液体蒸气比,以便增大氧从空气的回收。
发明内容
一方面,本发明提供了一种分离空气来产生氧产品的方法。根据此方法,空气在低温精馏过程中分离,该低温精馏过程具有以热传递关系与彼此运行地相关联的较高压力塔和较低压力塔,以产生用于较高压力塔和较低压力塔的富氮回流。氧产品从较低压力塔的富氧液体塔底产物产生。
执行低温精馏过程,使得由在较高压力塔中产生的粗液态氧塔底产物形成的粗液态氧流部分地气化,防止在较低压力塔中产生的氩富集蒸气至少部分地冷凝。具有比粗液态氧流的氧含量更大的氧含量的附加的富氮回流和氧富集流两者都由至少部分地由粗液态氧流在其部分气化之后产生的两相流形成。氧富集流和附加的富氮回流的至少一部分被输送入较低压力塔中。氩富集蒸气至少部分地在较低压力塔的位置处冷凝,在此位置处氩富集蒸气均具有0.1摩尔百分数与5.0摩尔百分数之间的氮浓度。所得的冷凝物将与较低压力塔的下降液体组合来使较低压力塔的最低区段中的液体蒸气比增大。氧富集流和附加的富氮液体流的至少一部分在较低压力塔的连续的较高位置处且在氩富集蒸气至少部分地冷凝之处的较低压力塔位置上方输送。
如可领会,氩的中间冷凝和附加的液态氮回流的形成使较低压力塔的最低区段内的液体蒸气比增大。此外,由于含氧流比粗液态氧流更富含氧,且已经生成附加的较低压力回流,故氧回收将提高。
尽管本发明具有对采用较高压力塔和较低压力塔的空气分离装备的普遍适用性,但由于输送空气的有意义部分在进入塔之前冷凝而特别适用于泵送的液态氧装备,且在具有百分之99.5及更高纯度的氧的生产中特别有用。此类装备具有与装备相关的较低的基本水平回收,在这些装备中,氧产品主要是从较低压力塔回收的气态氧。在此方面,氧产品通过泵送从较低压力塔取出(withdraw)且由富氧液体塔底产物构成的富氧塔底产物流的至少一部分来从较低压力塔的富氧液体塔底产物产生,以形成加压液态氧流。加压液态氧流的至少一部分通过与高压过程流间接交换来加温,使得其液化。在此方面,在本发明的任何实施例中,此高压过程流可为高压空气流,其被液化来形成液态空气流。氧产品由加温之后的加压氧流的至少一部分形成,且在液化之后,高压流的至少一部分被引入较高压力塔和较低压力塔中的至少一个中。
在具体实施例中,粗液态氧流被阀膨胀(valve expanded),且部分地被气化,且随后经过与氩富集蒸气的间接热交换。附加的富氮回流和氧富集流通过使液相和气相从两相流脱离以形成气相流和液相流而形成。液相流被阀膨胀,且随后与气相流间接热交换地部分地气化气相,由此在液相流已经部分地气化之后使气相冷凝,来从附加的富氮回流流和从液相流的氧富集流。富氮回流的至少一部分被阀膨胀,且被引入较低压力塔中,且氧富集流被引入较低压力塔中。
在另一个具体实施例中,高压过程流由高压空气流形成,其在液化之后形成液态空气流,且液态空气流的至少一部分被分成第一附属(subsidiary)液态空气流和第二附属液态空气流。第一附属液态空气流被阀膨胀且被引入较低压力塔中。附加的富氮回流和氧富集流通过使液相和气相从两相流脱离而形成,以形成气相流和液相流。气相流被引入辅助塔的底部区域中,且第二附属液态空气流被引入辅助塔的中间位置中,以在辅助塔内形成含氧底部产物液体和附加的富氮蒸气塔顶产物。组合的氧富集流通过使液态相流与由含氧底部产物液体形成的含氧底部产物液体流组合来形成。由附加的富氮蒸气塔顶产物形成的附加的富氮蒸气塔顶产物流通过在其阀膨胀之后与组合的液体流间接热交换来冷凝。这导致了组合的液体流的部分气化,且形成了氧富集流和附加的富氮回流,并且还形成了辅助塔回流。辅助塔利用辅助塔回流来回流,且附属富氮液体流的至少一部分被阀膨胀且被引入较低压力塔中。
在此类实施例中的任一个中,至较高压力塔和较低压力塔的液态氮回流都通过在较高压力塔中通过与较低压力塔的富氧液体塔底产物的间接热交换来冷凝由较高压力富氮蒸气构成的较高压力富氮蒸气流来产生,由此产生冷凝富氮流。较高压力塔利用冷凝富氮流的至少一部分来回流。不纯的富氮液体流可从较高压力塔除去,过冷且通过阀膨胀,且随后用于使较低压力塔回流。
由较低压力塔中产生的较低压力富氮蒸气构成的较低压力富氮蒸气流可从较低压力塔除去。较低压力富氮蒸气流经过与粗液态氧流和不纯的富氮液体流间接热交换,来使粗液态氧流和不纯的富氮液体流过冷。较低压力富氮蒸气流经过与由待分离的空气构成的压缩且净化的空气流间接热交换。在已经冷却之后,压缩且净化的空气流被引入较高压力塔的底部区域中。
如上文所述,在本发明的任何实施例中,高压过程流可为高压空气流,其被液化来形成液态空气流。在此情况下,在高压空气流已经部分地冷却之后,高压空气流可被分成第一附属高压空气流和第二附属高压空气流。第一附属高压空气流完全冷却且形成液态空气流。在已经部分地冷却之后,第二附属高压空气流在涡轮膨胀器中膨胀,且被引入较高压力塔的底部区中,以对低温精馏过程施加制冷。较高压力塔可利用冷凝的富氮流的第一部分来回流。冷凝的富氮流的第二部分可经过与不纯的富氮液体流和粗液态氧流一起与较低压力富氮蒸气流间接热交换,以形成液态氮产品流。冷凝的富氮流的第三部分可泵送并且通过与富氧塔底产物流一起与高压空气流间接热交换来加温,以形成加压的氮产品流。
另一方面,本发明提供了一种用于分离空气来产生氧产品的设备。根据本发明的该方面,空气分离装备构造成通过低温精馏来分离空气。该装备具有以热传递关系与彼此运行地相关联的较高压力塔和较低压力塔,以产生用于较高压力塔和较低压力塔的富氮回流。还包括机构,其用于由较低压力塔的富氧液体塔底产物来产生氧产品。
较低压力塔和较高压力塔的运行关联包括使较高压力塔的粗液态氧塔底产物构成的粗液态氧流部分地气化,以防较低压力塔中产生的氩富集蒸气至少部分地冷凝的机构。还包括用于产生具有比来自于两相流的粗液态氧塔底产物的氧含量更高的氧含量的附加的富氮回流和氧富集流的机构。在其部分气化之后,两相流至少部分地由粗液态氧流产生。氩富集蒸气至少部分地在较低压力塔的位置处冷凝,此处氩富集蒸气均具有0.1摩尔百分数与5.0摩尔百分数之间的氮浓度。所得的冷凝物将与较低压力塔的下降液体组合且使较低压力塔的最低区段中的液体蒸气比增大。附加的富氮回流和氧富集流产生机构连接到较低压力塔上,使得氧富集流和附加的富氮液体流的至少一部分在较低压力塔的连续较高位置处且在氩富集蒸气至少部分地冷凝所处的较低压力塔的位置上方输送。
氧产品产生机构可包括连接到较低压力塔上的泵,使得从较低压力塔取出且由富氧液体塔底产物构成的富氧塔底产物流的至少一部分由泵来泵送以产生加压液态氧流。主热交换器与泵流动连通,且构造成通过与高压流间接热交换来加温加压液态氧流的至少一部分,使得高压流的至少一部分液化,且氧产品由已经加温之后的加压液态氧流的至少一部分形成。至少较低压力塔与主热交换器流动连通,使得高压过程流的至少一部分在已经液化之后被引入较高压力塔和较低压力塔中的至少一个中。
在本发明的具体实施例中,用于部分地气化粗液态氧流的机构包括与较低压力塔流动连通且构造成使粗液态氧流与氩蒸气间接热交换穿过的中间热交换器。附加的富氮回流和氧富集流产生机构包括连接到中间热交换器上的分相器,以使液相和气相从两相流分离,且由此形成气相流和液相流,以及连接到分相器上且构造成部分地气化与气相流间接热交换的液相流的辅助热交换器。辅助热交换器冷凝气相流,且在其冷凝之后由气相流形成附加的富氮回流,以及在液相流的部分气化之后由液相流形成氧富集流。辅助热交换器连接到较低压力塔上,使得氧富集流和附加的富氮回流的至少一部分被引入较低压力塔中。膨胀阀的装置定位成用于膨胀:部分地气化之前的粗液态氧流;在与气相流间接热交换之前的液相流;以及在引入较低压力塔中之前的富氮回流的至少一部分。
在也使用中间热交换器的另一个实施例中,高压过程流为高压空气流,其在其液化之后形成液态空气流。较低压力塔与主热交换器流动连通,使得液态空气流的至少一部分被分成引入较低压力塔中的第一附属液态空气流和第二附属液态空气流。附加的富氮回流和氧富集流产生机构包括以上文所述的方式连接到中间热交换器上的分相器。辅助塔连接到分相器和主热交换器上,使得气相流被引入辅助塔的底部区中,且由液态空气流形成的第二附属液态空气流被引入辅助塔的中间位置中。含氧的底产物液体和附加的富氮蒸气塔顶产物在辅助塔内形成。辅助塔热交换器连接到辅助塔和分相器上,使得液相流与由含氧底产物液体形成的含氧底产物液体流组合,且组合的液体流经过与由附加的富氮蒸气塔顶产物形成的附加的富氮蒸气塔顶产物流间接热交换。辅助塔热交换器冷凝附加的富氮蒸气流且部分地气化组合的液体流,来形成富氧回流、附加的富氮回流以及辅助塔回流。膨胀阀的装置定位成用于膨胀:部分地气化之前的粗液态氧流;在被引入较低压力塔中之前的第一附属液态空气流;在经过进入辅助塔热交换器之前的组合液体流;以及在被引入较低压力塔中之前的附属富氮液体流的至少一部分。
在任一实施例中,冷凝器重沸器可连接到较高压力塔和较低压力塔上,使得由较高压力塔中产生的高压富氮蒸气构成的较高压力富氮蒸气流通过与较低压力塔的富氧液体塔底产物间接热交换来冷凝。冷凝产生了冷凝的富氮流。较高压力塔连接到冷凝器重沸器上,使得较高压力塔利用冷凝的富氮流的至少一部分回流。较低压力塔连接到较高压力塔上,使得不纯的富氮液体流从较高压力塔除去且被引入较低压力塔中。过冷单元定位在较高压力塔与较低压力塔之间,使得不纯的富氮液体流在被引入较低压力塔中之前过冷。膨胀阀的装置还包括定位在过冷单元与较低压力塔之间的膨胀阀,使得不纯的富氮液体流在被引入较低压力塔中之前过冷。
过冷单元连接到较低压力塔和较高压力塔上,且构造成使得由较低压力塔中产生的较低压力富氮蒸气构成的较低压力富氮蒸气流经过与粗液态氧流和不纯的富氮液体流间接热交换,以使粗液态氧流和不纯的富氮液体流过冷。主热交换器连接到过冷单元上,使得在已经穿过过冷单元之后,较低压力富氮蒸气流经过与由待分离的空气构成的压缩且净化的空气流间接热交换。主热交换器连接到较高压力塔上,使得在已经在主热交换器中冷却之后,压缩且净化的空气流被引入较高压力塔的底部区中。
主热交换器可构造成使得在高压空气流已经部分地冷却之后,高压空气流被分成完全冷却且形成液态空气流的第一附属高压空气流和在从主热交换器排出之前部分地冷却的第二附属高压空气流。涡轮膨胀器定位在主热交换器与较高压力塔之间,使得第二附属高压空气流在涡轮膨胀器中膨胀,且被引入较高压力塔的底部区中来将制冷施加到空气分离装备中。
较高压力塔可连接到冷却器重沸器上,使得较高压力塔利用冷凝的富氮流的第一部分来回流。过冷单元连接到冷凝器重沸器上,使得冷凝的富氮流的第二部分经过与不纯的富氮液体流和粗液态氧流一起与较低压力富氮蒸气流间接热交换,以形成液态氮产品流。另一个泵可定位在主热交换器与冷凝器重沸器之间,使得冷凝的富氮流的第三部分被泵送且随后在主热交换器中通过与富氧塔底产物流一起与高压空气流间接热交换加温,以形成加压的氮产品流。
附图说明
尽管说明书以清楚地指出申请人看作是其发明的主题来结束,所相信的是本发明在与附图组合时将被更好地理解,在这些附图中:
图1为设计来执行根据本发明的方法的空气分离装备的示意性图示;并且
图2为设计来执行根据本发明的方法的空气分离装备的备选实施例的示意性图示。
具体实施方式
参看图1,图示了空气分离装备1,其用于通过低温精馏来分离压缩且净化的空气流10,以产生氧产品流64以及氮产品,如,加压的氮产品流96和液态氮产品流92。
空气分离装备1可包括在装备的包围物(enclave)中,且因此,将用于产生压缩且净化的空气流10的设备通常可用于包围物中的所有装备。然而,此类设备可单独用于空气分离装备1,且将包括主空气压缩机和预净化单元。如本领域中已知的那样,此类预净化单元设计成从空气除去较高沸点的杂质,如水蒸汽、二氧化碳和碳氢化合物,且可组合以异相(out of phase)循环来运行的吸附剂床,异相循环为变温吸附循环或变压吸附循环或它们的组合。在已经压缩和净化之后,空气可在升压压缩机(booster compressor)中进一步压缩来产生将论述的高压空气流62。主空气压缩机和升压压缩机两者都可为多级中间冷却一体式齿轮压缩机。主空气压缩机还可组合在级间的冷凝物除去器。
压缩且净化的空气流10随后冷却至适于其主热交换器12内精馏的温度,该温度为接近饱和的温度。主热交换器12可为硬钎焊的铝翅片构造,且尽管未图示,但可为一系列并行运行的此类热交换器。此外,主热交换器可出于在高压空气流92、氧产品流64和加压氮产品流96之间间接热交换的目的而分成高压区段。这可以说本发明可独立于主热交换器的选择和构造来使用。
在已经冷却之后,压缩且净化的空气流10被引入具有较高压力塔14和较低压力塔16的蒸馏塔装置中。较高压力塔14将具有比较低压力塔16更高的较高运行压力,且典型地将在75psia至95psia的压力下运行。引入压缩且净化的空气流10使上升的气相开始形成,该上升的气相随着其在较高压力塔14中上升且通过质量传输接触元件18、20和22而变为更富含氮,这些接触元件可为塔盘或规整填料或塔盘或规整填料的组合或可能地为无规则填料。结果,较高压力富氮蒸气塔顶产物在较高压力塔14内产生,其冷凝来使下降的液相开始形成,下降的液相与穿过质量传输接触元件18、20和22的上升气相接触,以变成更富含氧,且由此产生在本领域中也称为釜液(kettle liquid)的粗液态氧塔底产物24。以将论述的方式,粗液态氧塔底产物被除去来作为粗液态氧流26,根据本发明,粗液态氧流26在较低压力塔16中被进一步提纯。
较低压力塔16具有质量传输接触元件28、30、32和36,其作用为使上升气相与下降液相接触,且可为塔盘、规整填料或无规则填料或它们的组合。结果,富氧液体塔底产物38可与较低压力富氮蒸气塔顶产物56一起产生。
较低压力塔16借助于冷凝器重沸器40以热传递关系联结到较高压力蒸馏塔14上。冷凝器重沸器40用于冷凝由较高压力塔14的高压富氮蒸气塔顶产物构成的更高压力富氮蒸气流42。富氧液体塔底产物38的一部分在冷凝器重沸器40中气化来产生较低压力蒸馏塔16中的沸腾物(boilup)和冷凝的富氮流43。富氧液体塔底产物38因此为不会气化的残余液体。冷凝器重沸器40可为常规热虹吸型热交换器或降膜向下流动型热交换器。
冷凝的富氮流43可被分成冷凝的富氮流的第一部分44、冷凝的富氮流的第二部分46以及冷凝的富氮流的第三部分48。冷凝的富氮流的第一部分44用于对较高压力塔14回流。如本领域的技术人员已知的那样,所有冷凝的富氮流43都可用于此目的。用于较低压力塔16的回流由从较高压力塔14除去的不纯的富氮液体流50生成。不纯的富氮液体流50在过冷单元52中过冷,在膨胀阀54内阀膨胀至与较低压力塔16的运行压力相容的压力,且随后作为回流被引入较低压力塔16中。不纯的富氮液体流50典型地从较高压力塔14的顶部与液态空气84输送到较高压力塔14中的点之间的位置取出;且将具有典型地从按氧体积百万分之1000至百万分之20000之间的纯度。如本领域的技术人员已知的那样,还可通过使用冷凝的富氮流43的一部分来生成用于较低压力塔16的回流。在此情况下,较低压力塔16将设计成以较高的纯度产生较低压力富氮塔顶产物。
过冷单元52的热交换工作由较低压力塔16中产生的较低压力塔富氮蒸气塔顶产物构成的较低压力富氮蒸气流56提供。较低压力富氮蒸气流56随后通入主热交换器12中且在该主热交换器12内加温,以冷却压缩且净化的空气流10,且作为废氮流57排出,废氮流57自身可作为产品获取或在预净化器的再生中使用。
氧产品以常规方式从较低压力塔16的富氧液体塔底产物38产生。在此方面,富氧塔底产物流58从较低压力塔16取出,且由富氧液体塔底产物38构成,且由泵59加压。所得的加压液态氧流60的一部分通过与主热交换器12内的高压空气流62间接热交换来加温,以产生加压的氧产品流64。高压空气流62构成输送至此蒸馏塔装置的空气的百分之30至百分之40之间。取决于由泵59给予的加压程度,所得的加压氧产品流64将为蒸气或超临界流体。尽管所有加压液态氧都可用于此目的,但作为流66的所得的加压液态氧的另一部分可通过阀68来降低压力,且用于形成用于储存的液态氧产品流70。
将注意的是,其它加压产品流也可用于加温加压液态氧。例如,氮可从主热交换器的温热端获取,被压缩且随后用作加压产品流来加温加压液态氧。所得的液体流随后将被再引入较高压力塔或较低压力塔或两个此类塔中。
高压空气流62与所得的加压液态氧流60的一部分之间的间接热交换产生了液态空气76。在此方面,在高压空气流62已经在主热交换器12内部分地冷却之后,该高压空气流62被分成第一附属高压空气流72和第二附属高压空气流74。第一附属高压空气流72完全冷却且形成液态空气流76,液态空气流76典型地将具有98K至103K之间的温度。在已经部分地冷却之后,第二附属高压空气流74在涡轮膨胀器78中膨胀来产生排气流80,排气流80被引入较高压力塔14的底部区中来施加制冷。
如本领域的技术人员将想到的那样,其它方法可用于生成制冷,且因此所有高压空气流62都可液化。在此方面,其它选择包括:使更高压力富氮蒸气流42的一部分膨胀;使压缩且净化的空气流膨胀到较高压力塔14中、使压缩且净化的空气流的一部分膨胀并且将排气引入较低压力塔16中;或在过冷单元52和主热交换器12中部分加温之后使来自于较低压力塔16的含氮流膨胀。如还已知的那样,膨胀的轴功可施加至膨胀流的压缩,或用于压缩另一种过程流或发电的目的。备选地,液态空气流76可通过生成附加制冷目的的液态涡轮的方式来减压。
液态空气流76被分成两个部分82和84,它们分别被引入较低压力塔16和较高压力塔14。液态空气流76的部分82典型地将构成液态空气流76的百分之50至百分之85之间。将液态空气这样引入蒸馏塔中由两个部分82和84分别借助于膨胀阀86和88来降低压力而实现。如可领会的是,本发明的实施例是有可能的,在其中所有液态空气流76在已经降低压力之后被引入较低压力塔16或较高压力塔14中。备选地,还有可能的是使过冷单元52内的液态空气流82过冷。
在许多情况下,液态空气82的输送位置或意在用于较低压力塔16的流26(或由此生成的任何流体)的输送点处于例如大约150英尺至200英尺的相当高的高度处。在一些情况下,将需要机械泵来将液态空气推动入其输送位置。备选地,可通过低水平膨胀或引入诸如空气的加压气体来产生蒸气升高。另一个点为液态空气流可被引导至较高压力塔14的中间位置,且液态空气流可随后在类似的(comparable)位置处(例如,在塔中使用塔盘的情况下,塔盘的下水管)获取。获取的流可随后过冷,且输送至较低压力塔16,或部分地输送至较低压力塔16和将在下文中联系图2论述的辅助塔124,或与将在下文中联系图1中所示的本发明的实施例论述的氧富集流122组合。
如上文指出那样,冷凝的氮流32可分成冷凝的富氮流的第一部分44、冷凝的富氮流的第二部分46以及冷凝的富氮流的第三部分48。冷凝的富氮流的第二部分46可在过冷单元52内过冷,且随后通过膨胀阀90降低压力,以产生液态氮产品流92。冷凝的富氮流的第三部分48可借助于泵94来泵送,且随后在主热交换器12内加温来产生加压的氮产品流96。
根据本发明,氧回收且因此氧产品(例如,氧产品流58)的产生以不损害氧产品纯度的方式通过使较低压力塔中的液体蒸气比增大来提高。因此,空气分离装备1能够以较高的速率产生其氧产品,而不会使氧纯度或氧回收降低。如上文指出那样,这对于产生氧产品和氮产品两者且如上文所述的在氧具有百分之99.5和更高的纯度的情况下的空气分离装备特别成问题。在空气分离装备1中,通过以使得此类塔底产物液体用于冷凝在较低压力塔16的氩提馏区段上方的氩富集蒸气且随后产生将在较低压力塔16内精馏的附属富氮液体回流和氧富集流的方式来进一步处理较高压力塔14的粗液态氧塔底产物24的至少一部分,以提高产量。
更具体而言,粗液态氧流26从较高压力塔14取出,在过冷单元52内过冷并且随后在膨胀阀100内阀膨胀至25psia至45psia之间的压力。在由于膨胀的温度降低之后,粗液态氧流26被引入中间热交换器102中。中间热交换器102与较低压力塔16成流动连通,使得氩富集蒸气流104经过与粗液态氧流26的间接热交换,引起氩富集蒸气流104形成了至少部分地冷凝的流106。流106被引回到由质量传输接触元件28形成的较低压力塔的最低区上方的较低压力塔中。该区为氩从下降液体提馏的位置。粗液态氧流26在中间热交换器102内部分地气化,以形成两相流108,两相流108典型地可包含百分之15至百分之25之间的蒸气。将注意的是,中间热交换器可定位在较低压力塔16内;且在此情况下,氩富集蒸气流104将不必从较低压力塔16取出且再引入较低压力塔16中。氩富集蒸气冷凝的效果在于使较低压力塔内的液体蒸气比增大,这提高了从下降液体提馏氩的效率,由此提高了氧回收。在此方面,氩富集蒸气流104或将在较低压力塔16内冷凝的氩富集蒸气的氮浓度应当为在0.1摩尔百分数至5.0摩尔百分数的氮之间。此氮浓度确保了由粗液态氧流25对氩富集蒸气流104进行冷凝。如本领域中公知的那样,当氮浓度增大时,氩富集蒸气流104的饱和温度将变得更冷,且利用粗液态氧流25的此类流的冷凝将变得无法实行。无论如何,氩富集蒸气流104的氩含量按体积典型地将在百分之7至百分之12之间。
将注意的是,本发明涵盖了氩富集蒸气流104仅部分地冷凝的可能实施例。如可认识到的那样,流104的部分冷凝将需要处理更大的蒸气体积流且因此需要更大的交换器。还将提到的是,尽管粗液态氧流25最优选地为过冷的,存在其中不使用此类过冷的本发明的可能实施例。此类改型将趋于减少流108的气化部分,且因此减少可生成的富氮回流的量。
分相器110连接到中间热交换器102上来使液相和气相从两相流108脱离,且由此形成气相流112和液相流114。辅助热交换器116连接到分相器110上,且构造成通过与气相流112的间接热交换来在膨胀阀117内膨胀之后使液相流114部分地气化。在通过阀117膨胀之后,液相流114具有与较低压力塔的压力类似的压力,或在15psia至20psia之间的压力。由于热交换,气相流112冷凝来形成附加的富氮回流118,其通过膨胀阀120来降低压力,且作为附加回流被引入较低压力塔16中,以还使此塔内的液体蒸气比增大,且协助增加氧回收。有可能仅将附加的富氧回流的一部分引入较低压力塔中。在此情况下,另一部分可被泵送且引入较高压力塔14中。
液相流114的部分气化形成了氧富集流122,其典型地可包含40摩尔百分数至50摩尔百分数的蒸气以及在大约45摩尔百分数至50摩尔百分数左右的氧浓度。氧富集流122在氩富集蒸气104被取出来用于冷凝的位置处的上方被引入较低压力塔16中;优选地高出2到6级。
尽管有利的是使用粗液态氧流26的全部流穿过中间热交换器102,但并非必须如此。具体而言,可仅将粗液态氧流26的一部分用于此目的;且粗液态氧流26的一部分可在氧富集流122进入此塔之上的高处直接地输送到较低压力塔16中。备选地,液相流114可被划分,以便液体的一部分可随后被引导至较低压力塔16的高处位置,在其余部分在已经穿过辅助热交换器116之后引入的位置的上方。
尽管附加的富氧回流118图示为被引导至较低压力塔16,但可为有利的是使该流与液态空气流82的一部分一起在过冷单元52内进一步过冷。备选地,这些液体流可在进入塔之前组合。备选地,附加的富氮回流可输送到与液态空气流82的塔位置不同的塔位置。附加的富氮回流可通过在进入较高压力塔14或较低压力塔16中之前通过静压头和/或机械泵的组合来加压。
参看图2,提供了辅助塔124,其含有质量传输接触元件126和128。辅助塔124连接到分相器110上,使得气相流112被引入辅助塔124的底部区中。液态空气流82的第一部分被划分成第一附属液态空气流130和第二附属液态空气流132。第一附属液态空气流130在膨胀阀134中阀膨胀且被引入较低压力塔16中,且第二附属液态空气流132在膨胀阀136中阀膨胀且随后被引入辅助塔124的中间位置。含氧的底产物液体138和附加的富氮蒸气塔顶产物在辅助塔124内形成。辅助塔热交换器140连接到辅助塔124上,分相器110和辅助塔124的底部区连接,使得液相流114与由含氧的底部产物液体138形成的含氧的底部产物液体流142组合。备选地,流108可直接地通入塔124的基部。所得的组合的液体流144在膨胀阀146中阀膨胀,且随后在辅助塔热交换器140内经过与附加的富氮蒸气塔顶产物流148间接热交换。这使附加的富氮蒸气流148冷凝且使组合的液体流144部分地气化,以形成氧富集流122'、附加的富氮回流118'和辅助塔回流150。
氧富集流122'被引入较低压力塔16中。附加的富氮回流118'具有与不纯的富氮液体流50的氧含量大致相同的氧含量,且可与其组合,且在阀119中膨胀之后作为回流被引入较低压力塔16中。如可领会,附加的富氮回流118'可单独地引入较低压力塔16中。辅助塔回流150可作为用于此塔的回流来再引入辅助塔124中。
尽管未图示,但辅助塔124可设计为带有级,其足以运送含有小于百万分之10氧体积的高纯度氮流。在此情形中,源自顶部产物的一部分氮可作为产品气体或液体来获取。例如,继续通过泵94的加压产品部分可源自辅助塔124。备选地,气态产品流可从辅助塔124获取,且继续在过冷单元52和主热交换器12中加温。备选地,来自辅助塔124的高纯度氮液体可在过冷单元52中过冷,且被引导至组合到较低压力塔16中的顶部帽形区段。
存在粗液态氧塔底产物液体24的大量过剩,其可潜在地蒸发,带来对发生在较低压力塔16内的蒸馏的过度影响。因此,其它流可在中间热交换器102或相关联的热交换器中有效地冷却,也即,图1中所示的辅助热交换器116或图2中所示的辅助塔热交换器140。作为示例,去往较低压力塔16或去往辅助塔124的液体空气可在这些交换器中的任一个中有利地冷却。净效果将为进入较低压力塔16和辅助塔124时瞬间损失(flash loss)的减小,同时伴随着产品回收上的改善。
尽管本发明已经参照优选实施例来描述,但正如本领域中的技术人员将想到的那样,可在不脱离所附权利要求中阐明的本发明的精神和范围的情况下做出众多改变、增加和省略。

Claims (8)

1.一种分离空气来产生氧产品的方法,所述方法包括:
在具有以热传递关系与彼此运行地关联的较高压力塔和较低压力塔的低温精馏过程中分离所述空气,来产生用于所述较高压力塔和所述较低压力塔的富氮回流,且从所述较低压力塔的富氧液体塔底产物来产生所述氧产品;
进行所述低温精馏过程,使得:由在所述较高压力塔中产生的粗液态氧塔底产物形成的粗液态氧流在热交换器之内与在所述较低压力塔中产生的氩富集蒸气间接地交换热,由此使所述粗液态氧流部分地气化,并且至少部分地使氩富集蒸气冷凝;具有比所述粗液态氧流的氧含量更大的氧含量的附加的富氮回流流和氧富集流两者都由两相流形成,所述两相流至少部分地在所述粗液态氧流部分气化之后从所述粗液态氧流产生;且所述氧富集流和所述附加的富氮回流流的至少一部分输送入所述较低压力塔中;
所述氩富集蒸气在所述氩富集蒸气具有0.1摩尔百分数至5.0摩尔百分数之间的氮浓度的所述较低压力塔的位置处至少部分地冷凝,并且使得从所述氩富集蒸气的至少部分冷凝所得的冷凝物与所述较低压力塔的下降液体组合;并且
所述氧富集流和所述附加的富氮回流流的至少一部分在所述较低压力塔的连续较高位置处输送,使得所述附加的富氮回流流在所述较低压力塔的比所述氧富集流更高的位置处输送,并且所述连续较高位置位于在所述氩富集蒸气至少部分地冷凝处的所述较低压力塔的位置上方。
2.根据权利要求1所述的方法,其中,所述氧产品通过以下步骤来由所述较低压力塔的富氧液体塔底产物产生:
泵送从所述较低压力塔取出且由所述富氧液体塔底产物构成的富氧塔底产物流的至少一部分来产生加压液态氧流;
经过与加压过程流的间接交换来对所述加压液态氧流的至少一部分加温,使得所述加压过程流的至少一部分被液化且所述氧产品在已经加温之后从所述加压液态氧流形成;并且
将所述加压过程流的所述至少一部分在液化之后引入所述较高压力塔和所述较低压力塔中的至少一个中。
3.根据权利要求2所述的方法,其中:
所述粗液态氧流阀膨胀且部分地气化,且随后经过与所述氩富集蒸气间接热交换;
所述附加的富氮回流流和所述氧富集流通过使液相和气相从所述两相流脱离以形成气相流和液相流而形成,使所述液相流阀膨胀,且经过与所述气相流间接热交换来使所述液相流部分地气化,由此使所述气相流冷凝,以在所述液相流已经部分被气化之后从所述液相流形成所述附加的富氮回流流和所述氧富集流;
所述富氮回流的所述至少一部分阀膨胀且至少部分地引入所述较低压力塔中;并且
所述氧富集流被引入所述较低压力塔中。
4.根据权利要求3所述的方法,其中,所述加压过程流为加压空气流,所述加压空气流在液化之后形成液态空气流。
5.根据权利要求4所述的方法,其中,至所述较高压力塔和所述较低压力塔的所述富氮回流通过以下步骤产生:
通过与所述较低压力塔的所述富氧液体塔底产物间接热交换来冷凝由所述较高压力塔中产生的富氮蒸气塔顶产物构成的富氮蒸气流,由此产生冷凝的富氮流;
利用所述冷凝的富氮流的至少一部分来使所述较高压力塔回流;并且
从所述较高压力塔除去不纯的富氮液体流,使所述不纯的富氮液体流过冷并阀膨胀,且利用所述不纯的富氮液体流使所述较低压力塔回流。
6.根据权利要求5所述的方法,其中:
将由所述较低压力塔中产生的另一个富氮蒸气塔顶产物构成的另一个富氮蒸气流从所述较低压力塔除去;
所述另一个富氮蒸气流经过与所述粗液态氧流和所述不纯的富氮液体流间接热交换,来使所述粗液态氧流和所述不纯的富氮液体流过冷;
所述另一个富氮蒸气流经过与由待分离的所述空气构成的压缩且净化的空气流间接热交换;并且
在已经冷却之后,所述压缩且净化的空气流被引入所述较高压力塔的底部区中。
7.根据权利要求6所述的方法,其中:
在所述加压空气流已经部分地冷却之后,所述加压空气流被分成第一附属加压空气流和第二附属加压空气流;
所述第一附属加压空气流完全冷却且形成所述液态空气流;
在已经部分地冷却之后,所述第二附属加压空气流在涡轮膨胀器中膨胀,且被引入所述较高压力塔的所述底部区中,以将制冷施加入所述低温精馏过程中。
8.根据权利要求7所述的方法,其中:
所述较高压力塔利用所述冷凝的富氮流的第一部分来回流;
所述冷凝的富氮流的第二部分与所述不纯的富氮液体流和所述粗液态氧流一起经过与所述较低压力富氮蒸气流间接热交换,以形成液态氮产品流;
所述冷凝的富氮流的第三部分被加压且经过与所述富氧塔底产物流一起与所述加压空气流间接热交换来加温,以形成加压的氮产品流。
CN201280045357.0A 2011-07-18 2012-06-29 空气分离方法和设备 Expired - Fee Related CN104364597B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/184,985 US20130019634A1 (en) 2011-07-18 2011-07-18 Air separation method and apparatus
US13/184985 2011-07-18
PCT/US2012/044826 WO2013012540A2 (en) 2011-07-18 2012-06-29 Air separation method and apparatus

Publications (2)

Publication Number Publication Date
CN104364597A CN104364597A (zh) 2015-02-18
CN104364597B true CN104364597B (zh) 2017-03-08

Family

ID=46598922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280045357.0A Expired - Fee Related CN104364597B (zh) 2011-07-18 2012-06-29 空气分离方法和设备

Country Status (3)

Country Link
US (1) US20130019634A1 (zh)
CN (1) CN104364597B (zh)
WO (1) WO2013012540A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406191B (zh) * 2017-12-25 2021-12-21 乔治洛德方法研究和开发液化空气有限公司 具有反向主热交换器的单封装空气分离设备
FR3102548B1 (fr) * 2019-10-24 2023-03-10 Air Liquide Procédé et appareil de séparation d’air par distillation cryogénique
CN112320764B (zh) * 2020-10-14 2022-02-08 杭州电子科技大学 一种节能型便携制氧装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
EP0860670A2 (en) * 1997-02-11 1998-08-26 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
CN101266095A (zh) * 2007-03-13 2008-09-17 普莱克斯技术有限公司 空气分离方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715874A (en) * 1986-09-08 1987-12-29 Erickson Donald C Retrofittable argon recovery improvement to air separation
US4842625A (en) * 1988-04-29 1989-06-27 Air Products And Chemicals, Inc. Control method to maximize argon recovery from cryogenic air separation units
US5074898A (en) * 1990-04-03 1991-12-24 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation method for the production of oxygen and medium pressure nitrogen
US5161380A (en) * 1991-08-12 1992-11-10 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification system for enhanced argon production
US5715706A (en) * 1993-04-30 1998-02-10 The Boc Group Plc Air separation
US5339648A (en) * 1993-08-05 1994-08-23 Praxair Technology, Inc. Distillation system with partitioned column
US5355681A (en) * 1993-09-23 1994-10-18 Air Products And Chemicals, Inc. Air separation schemes for oxygen and nitrogen coproduction as gas and/or liquid products
CN1331562C (zh) * 2001-10-17 2007-08-15 普莱克斯技术有限公司 中心二氧化碳纯化器
AU2007265476B2 (en) * 2006-06-27 2010-07-15 Fluor Technologies Corporation Ethane recovery methods and configurations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
EP0860670A2 (en) * 1997-02-11 1998-08-26 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
CN101266095A (zh) * 2007-03-13 2008-09-17 普莱克斯技术有限公司 空气分离方法

Also Published As

Publication number Publication date
US20130019634A1 (en) 2013-01-24
WO2013012540A3 (en) 2015-06-18
CN104364597A (zh) 2015-02-18
WO2013012540A2 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
CN102216712B (zh) 氪和氙的回收方法
JP4331460B2 (ja) 低温空気分離によるクリプトン及び/又はキセノンの製造方法及び装置
CN105008272B (zh) 氩生产方法及装置
JP4057668B2 (ja) 空気を成分分離して窒素を生産する方法及び装置
CN101266095A (zh) 空气分离方法
JPH06117753A (ja) 空気の高圧低温蒸留方法
CN103988036B (zh) 用于通过低温蒸馏分离空气的方法和设备
JPH06101963A (ja) 空気の高圧低温蒸留方法
JPH11351738A (ja) 高純度酸素製造方法及び装置
CN102047057A (zh) 分离空气的方法和设备
KR20110026435A (ko) 공기 분리 플랜트를 위한 질소 액화기 개장
KR20100106935A (ko) 저온 공기 분리 방법 및 장치
AU680472B2 (en) Single column process and apparatus for producing oxygen at above atmospheric pressure
CN101351680A (zh) 低温空气分离法
JP2009030966A (ja) 空気低温分離によるアルゴンの製造方法及び装置
CN101285640B (zh) 氮气生产方法及装置
CN101509722A (zh) 蒸馏方法和设备
CN104364597B (zh) 空气分离方法和设备
CN104185767B (zh) 用于产生两股净化的部分空气流的方法和设备
JP2007147113A (ja) 窒素製造方法及び装置
CN102770731B (zh) 用于分离空气的方法和设备
CN104685310A (zh) 空气分离方法和设备
KR100207890B1 (ko) 공기 분리 방법 및 장치
JPH08240380A (ja) 空気の分離
TW202117249A (zh) 空氣的低溫分離方法與設備

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170308

CF01 Termination of patent right due to non-payment of annual fee