CN101673785A - Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery - Google Patents
Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery Download PDFInfo
- Publication number
- CN101673785A CN101673785A CN200910196529A CN200910196529A CN101673785A CN 101673785 A CN101673785 A CN 101673785A CN 200910196529 A CN200910196529 A CN 200910196529A CN 200910196529 A CN200910196529 A CN 200910196529A CN 101673785 A CN101673785 A CN 101673785A
- Authority
- CN
- China
- Prior art keywords
- silicon
- silicon chip
- film
- electrolyte
- porous silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Weting (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种硅基太阳能电池表面嵌入式多孔硅结构减反射膜的制备方法,属电化学腐蚀技术领域。本发明方法的要点是:先在硅片背面用传统的丝网印刷法制备金属铝薄膜阳极电极,并使Al与硅具有良好的欧姆接触,另外以铂片或铂丝为阴极电极。然后将硅片正面放在HF∶H2O=1∶10(体积比)的腐蚀液中浸泡1分钟;腐蚀液的温度为26℃;然后将硅片正面再放入带有超声波频率为40~60Hz的超声条件下的容器中,并在电解液HF∶H2O∶C2H5OH=2∶1∶1(体积比)的混合液中进行电化学腐蚀处理;电解液的温度为40℃。电解腐蚀电流的面密度为5~10mA/cm2;电解腐蚀时间为40~60s;最终在硅片正面形成表面嵌入式多孔硅结构的减反射层薄膜,其反射率平均为1.42%。
The invention relates to a method for preparing an anti-reflection film with a porous silicon structure embedded on the surface of a silicon-based solar cell, belonging to the technical field of electrochemical corrosion. The main points of the method of the present invention are: first prepare the anode electrode of the metal aluminum film on the back of the silicon chip by the traditional screen printing method, and make the Al and silicon have good ohmic contact, and use the platinum sheet or platinum wire as the cathode electrode in addition. Then place the front side of the silicon wafer in the etching solution of HF:H 2 O=1:10 (volume ratio) and soak for 1 minute; the temperature of the etching solution is 26°C; In a container under ultrasonic conditions of ~60Hz, electrochemical corrosion treatment is carried out in a mixed solution of electrolyte HF:H 2 O:C 2 H 5 OH=2:1:1 (volume ratio); the temperature of the electrolyte is 40°C. The surface density of the electrolytic corrosion current is 5-10mA/cm 2 ; the electrolytic corrosion time is 40-60s; finally, an anti-reflection layer film with embedded porous silicon structure is formed on the front side of the silicon wafer, and its average reflectivity is 1.42%.
Description
技术领域 technical field
本发明涉及一种硅基太阳能电池表面嵌入式多孔硅结构减反射膜的制备方法,属电化学腐蚀技术领域。The invention relates to a method for preparing an anti-reflection film with a porous silicon structure embedded on the surface of a silicon-based solar cell, belonging to the technical field of electrochemical corrosion.
背景技术 Background technique
目前对于单晶硅太阳能电池来说,工业上常采用TiO2、MgF2,ZnS和Si3N4等减反射膜,其生产成本较高、工艺复杂。如何廉价可靠地制备硅基太阳能电池的减反射膜,是太阳能电池的光电转换效率不断提高、大规模产业化的关键技术之一。而微米尺度多孔硅作为太阳能电池的嵌入式减反射层有如下优点:At present, anti-reflection coatings such as TiO 2 , MgF 2 , ZnS and Si 3 N 4 are often used in the industry for monocrystalline silicon solar cells, and their production costs are high and the process is complicated. How to cheaply and reliably prepare anti-reflective coatings for silicon-based solar cells is one of the key technologies for the continuous improvement of photoelectric conversion efficiency and large-scale industrialization of solar cells. Micron-scale porous silicon has the following advantages as an embedded anti-reflection layer for solar cells:
(1)、表面嵌入式多孔硅具有较高的绒面织构密度,取向随机、均匀性好,可被用来直接“面对”各个方向入射来的自然光线,大大增强光量子的捕获概率,提高硅基半导体的内量子效率。在制备方面,传统的NaOH或者KOH腐蚀溶液,只能将<100>取向的单晶硅表面腐蚀成金字塔,作为陷光的绒面。然而,表面嵌入式多孔硅的制备,在技术上没有晶向的局限性。可以将任何取向的单晶、多晶或微晶硅的表面制备成嵌入式多孔硅。表面嵌入式多孔硅覆盖在硅的表层,其减反射效果可以和其它复杂的薄膜结构相比拟,甚至好于双层膜结构。(1) The surface-embedded porous silicon has a high suede texture density, random orientation, and good uniformity. It can be used to directly "face" the natural light incident from all directions, greatly enhancing the capture probability of light quanta. Improving the internal quantum efficiency of silicon-based semiconductors. In terms of preparation, the traditional NaOH or KOH etching solution can only etch the <100>-oriented monocrystalline silicon surface into a pyramid, which serves as a textured surface for light trapping. However, the preparation of surface-embedded porous silicon has no technical limitation of crystal orientation. Surfaces of monocrystalline, polycrystalline or microcrystalline silicon in any orientation can be prepared as embedded porous silicon. The surface-embedded porous silicon is covered on the surface of the silicon, and its anti-reflection effect can be compared with other complex thin-film structures, and even better than the double-layer film structure.
(2)、表面嵌入式多孔硅太阳能电池具有良好的发展前景,采用电化学腐蚀法,制备嵌入式多孔硅的低成本化,以及易操作、易控制等特点,比其它方法(如离子束溅射,激光烧蚀图形化技术)更引人注目,易于实现工业化生产。(2) Surface-embedded porous silicon solar cells have good development prospects. Compared with other methods (such as ion beam sputtering), the preparation of embedded porous silicon is low-cost, easy to operate, and easy to control. Injection, laser ablation patterning technology) is more eye-catching and easy to realize industrial production.
发明内容 Contents of the invention
本发明的目的是提供一种通过电化学腐蚀的方法来制备和形成表面嵌入式多孔硅结构减反射层薄膜The purpose of the present invention is to provide a method for preparing and forming a surface-embedded porous silicon structure anti-reflection layer film by electrochemical corrosion
本发明一种硅基太阳能电池表面嵌入式多孔硅结构减反射膜的制备方法,其特征在于具有以下的过程和步骤:A method for preparing an anti-reflection film with a porous silicon structure embedded on the surface of a silicon-based solar cell of the present invention is characterized in that it has the following processes and steps:
a.选用太阳能电池硅衬底材料,它为直拉单晶硅、P型、晶向<100>,厚度为200~240μm,未抛光;首先将作为太阳能电池硅衬底材料的硅片放在氢氧化钠磁性溶液中进行初步腐蚀,以除去硅片表面的机械损伤层;碱液的配制即氢氧化钠与水的体积配比为1∶5;碱液的温度为80℃;将所述硅片放置于所述碱液中,并在超声波作用下腐蚀1~2分钟;a. Select solar cell silicon substrate material, which is Czochralski monocrystalline silicon, P type, crystal orientation <100>, thickness 200-240μm, unpolished; first place the silicon wafer as solar cell silicon substrate material on Preliminary corrosion is carried out in the sodium hydroxide magnetic solution, to remove the mechanical damage layer on the surface of the silicon wafer; the preparation of the lye is that the volume ratio of sodium hydroxide and water is 1:5; the temperature of the lye is 80 ° C; The silicon wafer is placed in the alkali solution and corroded for 1 to 2 minutes under the action of ultrasonic waves;
b.在所述硅片背面用传统的丝网印刷法制备金属铝薄膜阳极电极,并使Al薄膜与衬底硅片具有良好的欧姆接触;另外在硅片另一侧的正面通过导线连接一阴极电极铂片或铂丝;b. Prepare metal aluminum thin film anode electrode with traditional screen printing method on the back side of the silicon wafer, and make the Al thin film have good ohmic contact with the substrate silicon wafer; Cathode electrode platinum sheet or platinum wire;
c.将硅片正面放置于氟氢酸溶液腐蚀液中浸泡1~2分钟,以去除硅片表面的自然氧化层;氟氢酸溶液的配制即HF与H2O的体积配比为1∶10;腐蚀液的温度为26~30℃;c. Place the front side of the silicon wafer in hydrofluoric acid solution and soak it for 1 to 2 minutes to remove the natural oxide layer on the surface of the silicon wafer; the preparation of the hydrofluoric acid solution is that the volume ratio of HF and H 2 O is 1: 10; The temperature of the corrosive solution is 26-30°C;
d.然后将硅片正面放在带有超声波频率为40~60Hz的超声条件下的容器中,并在电解液氟氢酸、水和乙醇组成的混合液中进行电化学腐蚀处理;所述的电解液为氟氢酸、水和有机溶剂乙醇的混合液,其三者的体积比为:HF∶H2O∶C2H5OH=2∶1∶1;电解液的温度为40~50℃;然后接通直流电源,电解腐蚀电流的面密度为5~10mA/cm2;电解腐蚀时间为40~60s;最终在硅片正面形成表面嵌入式多孔硅结构的减反射层薄膜,其反射率平均为1.42%;该减反射层膜的厚度为380~1100nm,具有多孔结构。d. Then place the front side of the silicon chip in a container under ultrasonic conditions with an ultrasonic frequency of 40-60 Hz, and perform electrochemical corrosion treatment in a mixed solution composed of electrolytic hydrofluoric acid, water and ethanol; The electrolyte is a mixture of hydrofluoric acid, water and organic solvent ethanol, and the volume ratio of the three is: HF: H 2 O:C 2 H 5 OH=2:1:1; the temperature of the electrolyte is 40-50 ℃; then turn on the DC power supply, the surface density of the electrolytic corrosion current is 5-10mA/cm 2 ; the electrolytic corrosion time is 40-60s; finally, an anti-reflection layer film with a porous silicon structure embedded in the surface is formed on the front of the silicon wafer, and its reflection The average rate is 1.42%; the thickness of the anti-reflection layer film is 380-1100nm, and has a porous structure.
本发明方法的特点和原理如下所述:The characteristics and principle of the inventive method are as follows:
用电化学腐蚀法,制备超低反射率的表面嵌入式多孔硅的过程中,采用铂片作为阴极电极,硅片与Al的接触作为阳极电极,在含HF酸的混合溶液中进行电化学腐蚀。阳极氧化过程中,想大的工艺参数包括环境温度、混合溶液中酸的浓度、电流面密度、腐蚀时间、基体掺杂类型,电阻率,抛光程度等,它们对表面嵌入式多孔硅的结构及光学性能有很大的影响。In the process of preparing ultra-low reflectivity surface-embedded porous silicon by electrochemical corrosion method, the platinum sheet is used as the cathode electrode, and the contact between the silicon sheet and Al is used as the anode electrode, and the electrochemical corrosion is carried out in a mixed solution containing HF acid . In the anodizing process, the most important process parameters include ambient temperature, acid concentration in the mixed solution, current surface density, corrosion time, matrix doping type, resistivity, polishing degree, etc., which affect the structure of the surface-embedded porous silicon and Optical properties have a big impact.
常用的电解液是一定浓度的HF和有机溶剂配成的混合溶液。实验证明,在多孔硅的制备中加入有机溶剂能增加硅表面的浸润性,降低电解液的表面张力。在阳极氧化过程中,有大量的氢气产生,从而产生大量的气泡。水具有很大的表面张力,当氢气产生时,由于水的表面张力的缘故,使氢气牢牢的吸附在硅的表面,不能自由的溢出,阻止下一步电化学反应。通过有机溶剂和超声波的加入,可以减小腐蚀液的表面张力,有机溶剂的作用可由很多因素决定,比较重要的一点是有机溶剂在水中的溶解度。加入乙醇可以使多孔硅在深度上保持均匀性和一致性,并且还可以使多孔硅的表面形貌均匀。The commonly used electrolyte is a mixed solution made of a certain concentration of HF and an organic solvent. Experiments have shown that adding organic solvents in the preparation of porous silicon can increase the wettability of the silicon surface and reduce the surface tension of the electrolyte. In the process of anodizing, a large amount of hydrogen gas is produced, resulting in a large number of bubbles. Water has a high surface tension. When hydrogen is generated, due to the surface tension of water, hydrogen is firmly adsorbed on the surface of silicon and cannot overflow freely, preventing the next electrochemical reaction. The surface tension of the corrosive solution can be reduced by adding organic solvents and ultrasonic waves. The role of organic solvents can be determined by many factors, and the more important point is the solubility of organic solvents in water. The addition of ethanol can keep the porous silicon uniform and consistent in depth, and can also make the surface morphology of the porous silicon uniform.
本发明方法中,表面嵌入式多孔硅电化学形成机理如下所述:In the method of the present invention, the electrochemical formation mechanism of surface-embedded porous silicon is as follows:
硅在HF水溶液中不断地溶解,一般情况下Si在HF中的化学腐蚀速度是极慢的,其表面的硅悬挂键被氢钝化,可以组成Si-H和Si-H2两种键。在电化学过程中是阳极不断有空穴从硅体内提供,扩散到表面附近的空穴将排斥已钝化硅悬键的氢原子,使硅氢键减弱。F原子能够置换一个H原子,同时释放一个电子。失掉了一个H原子后,硅原子上的另一个H原子稳定性下降,另外的F原子可以取而代之,并向硅释放一个电子。放出的两个H原子构成一个H2分子。失掉了H原子钝化的硅原子被HF溶解,产生SiF4。进而与F原子结合形成SiF6基团。即当空穴从体内迁移到硅表面,Si-H键断裂,形成Si-F键。从而使Si-Si键被HF溶解。(见图2所示)Silicon is continuously dissolved in HF aqueous solution. Generally, the chemical corrosion rate of Si in HF is extremely slow, and the silicon dangling bonds on the surface are passivated by hydrogen, which can form Si-H and Si-H 2 bonds. In the electrochemical process, the anode continuously provides holes from the silicon body, and the holes diffused near the surface will repel the hydrogen atoms that have passivated the silicon dangling bonds, weakening the silicon-hydrogen bonds. An F atom can replace an H atom, releasing an electron at the same time. After losing one H atom, another H atom on the silicon atom becomes less stable, and another F atom can take its place and release an electron to the silicon. The two H atoms released form one H2 molecule. The silicon atoms that have lost the passivation of H atoms are dissolved by HF to produce SiF 4 . And then combine with F atom to form SiF 6 group. That is, when holes migrate from the body to the silicon surface, Si-H bonds are broken and Si-F bonds are formed. Thus, the Si-Si bond is dissolved by HF. (See Figure 2)
电化学反应过程:Electrochemical reaction process:
Si+2HF+2e+→SiF2+2H+ Si+2HF+2e + → SiF 2 +2H +
SiF2+4HF→H2SiF6+H2↑SiF 2 +4HF→H 2 SiF 6 +H 2 ↑
附图说明 Description of drawings
图1为本发明中用电化学腐蚀法制备减反射膜的装置示意图。Fig. 1 is a schematic diagram of a device for preparing an anti-reflection film by an electrochemical corrosion method in the present invention.
图2为本发明中表面嵌入式多孔电化学腐蚀法形成机理图。Fig. 2 is a diagram of the formation mechanism of the surface-embedded porous electrochemical corrosion method in the present invention.
具体实施方式 Detailed ways
现将本发明的具体实施例叙述于后。Specific embodiments of the present invention are described below.
实施例Example
本实施例的过程和步骤如下所述The process and steps of this embodiment are as follows
本实施例中所用的装置参见附图中的图1。图1为用电化学腐蚀法制备减反射膜或低反射率膜的装置示意图。该装置为普通常用用实验室装置。The device used in this example is shown in Figure 1 of the accompanying drawings. Fig. 1 is a schematic diagram of a device for preparing an anti-reflection film or a low-reflection film by electrochemical corrosion. The device is a commonly used laboratory device.
(1)、选用太阳能电池硅衬底材料,它为直拉单晶硅、P型、晶向<100>,厚度为220μm,未抛光;首先将作为太阳能电池硅衬底材料的硅片放在氢氧化钠磁性溶液中进行初步腐蚀,以除去硅片表面的机械损伤层;碱液的配制即氢氧化钠与水的体积配比为1∶5;碱液的温度为80℃;将所述硅片放置于所述碱液中,并在超声波作用下腐蚀1分钟;(1) Select solar cell silicon substrate material, which is Czochralski monocrystalline silicon, P type, crystal orientation <100>, thickness 220 μm, unpolished; first place the silicon wafer as the solar cell silicon substrate material on Preliminary corrosion is carried out in the sodium hydroxide magnetic solution, to remove the mechanical damage layer on the surface of the silicon wafer; the preparation of the lye is that the volume ratio of sodium hydroxide and water is 1:5; the temperature of the lye is 80 ° C; The silicon wafer is placed in the alkali solution and corroded for 1 minute under the action of ultrasonic waves;
(2)、在所述硅片背面,也即上表面,用传统的丝网印刷法制备金属铝薄膜阳极电极,并使Al薄膜与衬底硅片具有良好的欧姆接触;另外在硅片另一侧的正面,也即下表面,通过导线连接一阴极电极铂片或铂丝;(2), on the back side of the silicon chip, i.e. the upper surface, prepare the metal aluminum thin film anode electrode with the traditional screen printing method, and make the Al thin film and the substrate silicon chip have good ohmic contact; The front side of one side, that is, the lower surface, is connected to a cathode electrode platinum sheet or platinum wire through a wire;
(3)、将硅片正面放置于氟氢酸溶液腐蚀液中浸泡1分钟,以去除硅片表面的自然氧化层;氟氢酸溶液的配制即HF与H2O的体积配比为1∶10;腐蚀液的温度为26℃;(3) Place the front side of the silicon chip in hydrofluoric acid solution and soak it for 1 minute to remove the natural oxide layer on the surface of the silicon chip; the preparation of the hydrofluoric acid solution is that the volume ratio of HF and H 2 O is 1: 10; The temperature of the corrosive solution is 26°C;
(4)、然后将硅片正面放在带有超声波频率为40Hz的超声条件下的容器中,并在电解液氟氢酸、水和乙醇组成的混合液中进行电化学腐蚀处理;所述的电解液为氟氢酸、水和有机溶剂乙醇的混合液,其三者的体积比为:HF∶H2O∶C2H5OH=2∶1∶1;电解液的温度为40℃;然后接通直流电源,电解腐蚀电流的面密度为5mA/cm2;电解腐蚀时间为40s;最终在硅片正面形成表面嵌入式多孔硅结构的减反射层薄膜;该减反射层薄膜具有极低的反射率;其反射率平均为1.42%;该减反射层膜的厚度为700~900nm,具有多孔结构。(4), then place the front side of the silicon chip in a container under ultrasonic conditions with an ultrasonic frequency of 40 Hz, and carry out electrochemical corrosion treatment in a mixed solution composed of electrolyte hydrofluoric acid, water and ethanol; The electrolyte is a mixture of hydrofluoric acid, water and organic solvent ethanol, and the volume ratio of the three is: HF: H 2 O:C 2 H 5 OH=2:1:1; the temperature of the electrolyte is 40°C; Then turn on the DC power supply, and the surface density of the electrolytic corrosion current is 5mA/cm 2 ; the electrolytic corrosion time is 40s; finally, an anti-reflection layer film with a surface-embedded porous silicon structure is formed on the front side of the silicon wafer; the anti-reflection layer film has an extremely low The reflectivity is 1.42% on average; the thickness of the anti-reflection layer is 700-900nm and has a porous structure.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101965294A CN101673785B (en) | 2009-09-25 | 2009-09-25 | Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101965294A CN101673785B (en) | 2009-09-25 | 2009-09-25 | Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101673785A true CN101673785A (en) | 2010-03-17 |
CN101673785B CN101673785B (en) | 2011-08-17 |
Family
ID=42020882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101965294A Expired - Fee Related CN101673785B (en) | 2009-09-25 | 2009-09-25 | Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101673785B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101975815A (en) * | 2010-09-21 | 2011-02-16 | 上海大学 | Measuring method of recombination center concentration and trap center concentration in solar-grade crystalline silicon |
CN102005500A (en) * | 2010-09-09 | 2011-04-06 | 中国科学院电工研究所 | A method for preparing metal oxide composite films containing SiO2 |
CN102020485A (en) * | 2010-10-26 | 2011-04-20 | 万平喜 | Method for preparing calcium silicate biofilm on surface of crystalline silicon in situ |
CN102623324A (en) * | 2010-12-13 | 2012-08-01 | 罗门哈斯电子材料有限公司 | Electrochemical etching of semiconductors |
CN103618026A (en) * | 2013-11-11 | 2014-03-05 | 杭州电子科技大学 | Micro-nanometer machining device and method of meshed polycrystalline silicon |
CN103721972A (en) * | 2013-12-20 | 2014-04-16 | 天津力神电池股份有限公司 | Method for wetting polymer lithium ion batteries |
CN103903960A (en) * | 2014-01-10 | 2014-07-02 | 浙江晶科能源有限公司 | HIT battery front-cleansing method |
CN105047767A (en) * | 2015-09-10 | 2015-11-11 | 浙江晶科能源有限公司 | Texturizing method of silicon wafer |
CN105755528A (en) * | 2016-04-07 | 2016-07-13 | 厦门大学 | Method for controlling corrosion depth of porous silicon |
CN111267244A (en) * | 2018-12-05 | 2020-06-12 | 上海新昇半导体科技有限公司 | Crystal bar slicing device |
CN111267245A (en) * | 2018-12-05 | 2020-06-12 | 上海新昇半导体科技有限公司 | A crystal rod slicing device |
CN111267247A (en) * | 2018-12-05 | 2020-06-12 | 上海新昇半导体科技有限公司 | A crystal rod slicing device |
CN112928185A (en) * | 2021-02-10 | 2021-06-08 | 浙江工业大学 | Preparation method of silicon surface passivation layer |
CN115117207A (en) * | 2021-03-22 | 2022-09-27 | 浙江爱旭太阳能科技有限公司 | HJT battery passivation method, HJT battery and HJT battery component |
-
2009
- 2009-09-25 CN CN2009101965294A patent/CN101673785B/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005500A (en) * | 2010-09-09 | 2011-04-06 | 中国科学院电工研究所 | A method for preparing metal oxide composite films containing SiO2 |
CN101975815A (en) * | 2010-09-21 | 2011-02-16 | 上海大学 | Measuring method of recombination center concentration and trap center concentration in solar-grade crystalline silicon |
CN102020485B (en) * | 2010-10-26 | 2012-08-29 | 万平喜 | Method for preparing calcium silicate biofilm on surface of crystalline silicon in situ |
CN102020485A (en) * | 2010-10-26 | 2011-04-20 | 万平喜 | Method for preparing calcium silicate biofilm on surface of crystalline silicon in situ |
CN102623324B (en) * | 2010-12-13 | 2014-12-10 | 罗门哈斯电子材料有限公司 | Electrochemical etching of semiconductors |
CN102623324A (en) * | 2010-12-13 | 2012-08-01 | 罗门哈斯电子材料有限公司 | Electrochemical etching of semiconductors |
CN103618026A (en) * | 2013-11-11 | 2014-03-05 | 杭州电子科技大学 | Micro-nanometer machining device and method of meshed polycrystalline silicon |
CN103618026B (en) * | 2013-11-11 | 2016-05-04 | 杭州电子科技大学 | A kind of polysilicon micro-nano processing unit (plant) and method of gridding |
CN103721972A (en) * | 2013-12-20 | 2014-04-16 | 天津力神电池股份有限公司 | Method for wetting polymer lithium ion batteries |
CN103903960A (en) * | 2014-01-10 | 2014-07-02 | 浙江晶科能源有限公司 | HIT battery front-cleansing method |
CN105047767A (en) * | 2015-09-10 | 2015-11-11 | 浙江晶科能源有限公司 | Texturizing method of silicon wafer |
CN105755528A (en) * | 2016-04-07 | 2016-07-13 | 厦门大学 | Method for controlling corrosion depth of porous silicon |
CN111267244A (en) * | 2018-12-05 | 2020-06-12 | 上海新昇半导体科技有限公司 | Crystal bar slicing device |
CN111267245A (en) * | 2018-12-05 | 2020-06-12 | 上海新昇半导体科技有限公司 | A crystal rod slicing device |
CN111267247A (en) * | 2018-12-05 | 2020-06-12 | 上海新昇半导体科技有限公司 | A crystal rod slicing device |
CN112928185A (en) * | 2021-02-10 | 2021-06-08 | 浙江工业大学 | Preparation method of silicon surface passivation layer |
CN112928185B (en) * | 2021-02-10 | 2023-10-20 | 浙江工业大学 | Preparation method of silicon surface passivation layer |
CN115117207A (en) * | 2021-03-22 | 2022-09-27 | 浙江爱旭太阳能科技有限公司 | HJT battery passivation method, HJT battery and HJT battery component |
CN115117207B (en) * | 2021-03-22 | 2023-12-22 | 浙江爱旭太阳能科技有限公司 | HJT battery passivation method, HJT battery and assembly thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101673785B (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101673785A (en) | Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery | |
TWI669830B (en) | Method for manufacturing local back contact solar cell | |
CN102299207B (en) | Method for manufacturing porous pyramid-type silicon surface light trapping structure for solar cell | |
CN102102227B (en) | Preparation method of hydrophobic light trapping structure on silicon surface | |
Salman | Effect of surface texturing processes on the performance of crystalline silicon solar cell | |
WO2016019767A1 (en) | Acidic texturing solution for etching solar cell silicon wafer, texturing method, solar cell and manufacturing method for solar cell | |
CN102290473A (en) | Back point contact crystalline silicon solar cell and preparation method thereof | |
CN102227002B (en) | Polysilicon nanowire solar cell and preparation method thereof | |
CN106229386B (en) | A kind of silver-copper bimetallic MACE method prepares the method for black silicon structure | |
CN103066160B (en) | A kind of method of solar cell silicon wafer Surface Creation porous silicon | |
CN105470392B (en) | A kind of organic inorganic hybridization solar cell and preparation method thereof | |
CN102330142B (en) | Preparation method of nano porous antireflection structure on silicon surface | |
CN105405755B (en) | For the acid Woolen-making liquid of silicon chip pyramid making herbs into wool, etching method and the silicon chip made of the etching method making herbs into wool | |
CN102244149A (en) | Method for removing silicon solar cell diffusion death layer | |
CN102660776B (en) | Method for preparing black silicon through Mn ion catalysis and corrosion | |
CN105140343B (en) | A kind of black silicon structure of polycrystalline and its liquid phase preparation process | |
CN102437236A (en) | Passivation method for surface of black silicon solar cell | |
CN103219427A (en) | Method for realizing single-sided texturing of high-light-trapping nano structure | |
CN104393104B (en) | A kind for the treatment of technology for HIT solar cell texture | |
CN105161553A (en) | Preparation method of novel all back electrode crystalline silicon solar cell | |
CN105826429B (en) | Preparation method of micro nano composite textured structure black silicon and black silicon solar cells | |
CN102646751A (en) | Preparation method of quasi-black silicon efficient solar cell with ultralow nano antireflection structure | |
CN102304766A (en) | Method for preparing silicon surface light trapping structure through sliver mirror reaction | |
CN104051580A (en) | Silicon solar cell and its preparation method | |
CN204311157U (en) | For the silicon chip of solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110817 Termination date: 20140925 |
|
EXPY | Termination of patent right or utility model |