CN101667046B - 一种低压差电压调节器 - Google Patents

一种低压差电压调节器 Download PDF

Info

Publication number
CN101667046B
CN101667046B CN2009103078670A CN200910307867A CN101667046B CN 101667046 B CN101667046 B CN 101667046B CN 2009103078670 A CN2009103078670 A CN 2009103078670A CN 200910307867 A CN200910307867 A CN 200910307867A CN 101667046 B CN101667046 B CN 101667046B
Authority
CN
China
Prior art keywords
channel transistor
voltage
drain electrode
grid
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009103078670A
Other languages
English (en)
Other versions
CN101667046A (zh
Inventor
高雷声
周玉梅
蒋见花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brite Powerise (Beijing) Limited company of microelectronics technology
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN2009103078670A priority Critical patent/CN101667046B/zh
Publication of CN101667046A publication Critical patent/CN101667046A/zh
Application granted granted Critical
Publication of CN101667046B publication Critical patent/CN101667046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种低压差电压调节器,属于电子电路技术领域。所述低压差电压调节器包括:误差放大器,误差放大器为一级折叠共源共栅放大器;与误差放大器耦接并接收控制电压的输出放大器,输出放大器包括串联的一个晶体管和两个分压电阻;与误差放大器和输出放大器分别耦接的频率补偿电路,频率补偿电路包括由至少一个晶体管构成的压控电流源电路和与压控电流源电路耦接的至少一个补偿电容。通过本发明的低压差电压调节器,可以解决目前电压调节器的补偿电容比较大,无法片上集成的问题,并且可以提供可全芯片集成的低压差电压调节器,该低压差电压调节器具有很好的电压抑制比特性,减少的补偿电容的数目,简化的补偿电路。

Description

一种低压差电压调节器
技术领域
本发明涉及电子电路技术领域,具体而言,涉及一种低压差电压调节器。
背景技术
低压差电压调节器(Low DropOut Regulator,简称为LDO)广泛用于便携式电子设备的电源供给,常规的低压差电压调节器结构如图1所示,其核心电路由误差放大器、输出放大器电路和频率补偿电路组成,其中频率补偿电路由片外补偿电容C0和串联电阻RESR组成。图1所示的低压差电压调节器的工作原理是:如果负载RL发生变化使输出电压Vout降低,则输出电压Vout经过电阻R1和R2分压后反馈到误差放大器正端的电压也降低,由于参考电压Vref保持不变,因此误差放大器的输出电压降低,于是通过功率PMOS管MP的电流增加,从而使Vout升高,电路恢复平衡,输出电压稳定;反之,如果输出电压Vout升高,则反馈到误差放大器正端的电压升高,误差放大器的输出电压升高,于是通过功率PMOS管MP的电流减小,从而使Vout降低,电路恢复平衡。
图1所示的低压差电压调节器,频率补偿电容C0和串联电阻RESR产生一个零点,其频率如下:
f 0 = 1 2 π R ESR C 0 - - - ( 1 )
该零点用于抵消电路的极点,为电压调节器提供足够的相位裕度,使电路保持稳定。
图2所示的电路为误差放大器,其通常采用两级放大器结构,如果采用该结构,则低压差电压调节器为三级放大器结构,这样为了保持电路的稳定性,需要补偿电容数目通常要多于三个,且补偿电路比较复杂。另外,补偿电容C0的数值通常为μF级,不能片上集成。
随着片上系统(System on Chip,简称为SoC)规模的不断增加以及便携式设备的迅猛发展,可以全芯片集成的低压差电压调节器受到人们越来越多的关注。常规的低压差电压调节器由于上述缺点不能全芯片集成,因而目前,急需一种可以片上集成的低压差电压调节器。
发明内容
针对相关技术中低压差电压调节器无法片上集成和不稳定的问题而提出本发明,为此,本发明的主要目的在于提供一种低压差电压调节器,以解决上述问题至少之一。
鉴于上述,本发明提出一种低压差电压调节器,低压差电压调节器包括:误差放大器,误差放大器为一级折叠共源共栅放大器,接收参考电压和反馈节点处的反馈电压,根据参考电压和反馈电压产生控制电压;与误差放大器耦接并接收控制电压的输出放大器,输出放大器包括串联的一个晶体管和两个分压电阻,根据控制电压产生输出电压和反馈电压;与误差放大器和输出放大器分别耦接的频率补偿电路,频率补偿电路包括由至少一个晶体管构成的压控电流源电路和与压控电流源电路耦接的至少一个补偿电容,频率补偿电路接收电源电压,产生抵消输出电压的节点处的极点的零点;
所述一级折叠共源共栅放大器包括:
第一P沟道晶体管,其栅极接收第一偏置电压,其源极接收电源电压;
第二P沟道晶体管,其源极连接所述第一P沟道晶体管的漏极,其栅极接收所述反馈电压;
第三P沟道晶体管,其源极连接所述第一P沟道晶体管的漏极,其栅极接收参考电压;
第四P沟道晶体管,其源极接收电源电压;
第五P沟道晶体管,其源极接收电源电压;
第六P沟道晶体管,其源极连接所述第四P沟道晶体管的漏极,其栅极接收第四偏置电压,其漏极与所述第四P沟道晶体管的栅极和所述第五P沟道晶体管的栅极相连接;
第七P沟道晶体管,其源极与所述第五P沟道晶体管的漏极相连接,其栅极接收所述第四偏置电压;
第一N沟道晶体管,其源极接地,其栅极接收第二偏置电压,其漏极与所述第二P沟道晶体管的漏极相连接;
第二N沟道晶体管,其源极接地,其栅极接收所述第二偏置电压,其漏极与所述第三P沟道晶体管的漏极相连接;
第三N沟道晶体管,其源极与所述第一N沟道晶体管的漏极相连接,其栅极接收第三偏置电压,其漏极与所述第六P沟道晶体管的漏极相连接;
第四N沟道晶体管,其源极与所述第二N沟道晶体管的漏极相连接,其栅极接收所述第三偏置电压,其漏极与所述第七P沟道晶体管的漏极相连接;
其中,所述第七P沟道晶体管的漏极与所述第四N沟道晶体管的漏极相连的节点处产生所述误差放大器的控制电压;
所述输出放大器包括:
第八P沟道晶体管,其源极接收电源电压,其栅极接收所述控制电压,其漏极输出所述输出电压;
第一电阻,其一端连接所述第八P沟道晶体管的漏极,另一端与所述第二P沟道晶体管的栅极相连接;
第二电阻,其一端连接所述第二P沟道晶体管的栅极,另一端接地;
所述第一电阻与所述第二电阻相连接的反馈节点处的反馈电压反馈到所述第二P沟道晶体管的栅极;
所述频率补偿电路包括:
第五N沟道晶体管,其栅极接收所述第二偏置电压,其源极接地;
第六N沟道晶体管,其栅极接收所述第二偏置电压,其源极接地;
第七N沟道晶体管,其栅极接收所述输出电压,其源极与所述第六N沟道晶体管的漏极相连接;
补偿电容,其一端与所述第六N沟道晶体管的漏极相连接,其另一端接地;
第九P沟道晶体管,其栅极接收所述第四偏置电压,其漏极与所述第五N沟道晶体管的漏极相连接;
第十P沟道晶体管,其栅极接收所述第四偏置电压,其漏极与所述第七N沟道晶体管的漏极相连接;
第十一P沟道晶体管,其栅极与所述第十P沟道晶体管的漏极相连接,其漏极与所述第九P沟道晶体管的源极相连接,其源极接收电源电压;
第十二P沟道晶体管,其栅极与所述第十P沟道晶体管的漏极相连接,其漏极与所述第十P沟道晶体管的源极相连接,其源极接收电源电压;
所述反馈节点与所述频率补偿电路的第九P沟道晶体管和第五N沟道晶体管的漏极相连。
所述输出放大器还包括:可片上集成的电容,其一端连接所述第八P沟道晶体管的漏极,另一端接地。
所述可片上集成的电容为30pF至50pF。
所述补偿电容小于1pF。
所述P沟道晶体管为PMOS晶体管,所述N沟道晶体管为NMOS晶体管。
所述误差放大器、输出放大器和频率补偿电路集成在一个芯片中。
通过本发明的上述技术方案,提供一种低压差电压调节器,可以解决目前的电压调节器补偿电容比较大,无法片上集成的问题,并且可以提供可全芯片集成的低压差电压调节器,该低压差电压调节器具有很好的电源抑制比性能,减少的补偿电容的数目,简化的补偿电路。
附图说明
图1为现有低压差电压调节器的结构图;
图2为现有误差放大器的结构图;
图3为本发明的低压差电压调节器的结构框图;
图4为根据本发明优选实施例的低压差电压调节器的结构图;
图5为根据本发明优选实施例的没有频率补偿电路时输出节点的等效小信号负载的结构框图;
图6为根据本发明优选实施例的有频率补偿电路时输出节点的等效小信号负载的结构框图;
图7是根据本发明优选实施例的环路增益的示意图。
具体实施方式
在本发明实施例中,提供了一种低压差电压调节器的方案,在该实现方案中,利用一级放大器结构的误差放大器,以及相应的输出放大器和频率补偿电路,形成复杂度低至适于集成到一个芯片中的低压差电压调节器。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
图3为本发明的低压差电压调节器的结构框图。如图3所示,本发明的低压差电压调节器包括:
误差放大器10,误差放大器10为一级折叠共源共栅放大器,接收参考电压和反馈节点处的反馈电压,根据参考电压和反馈电压产生控制电压;
输出放大器20,输出放大器20与误差放大器10耦接并接收控制电压,输出放大器20包括串联的一个晶体管和两个分压电阻,根据控制电压产生输出电压和反馈电压;
频率补偿电路30,与误差放大器10和输出放大器20分别耦接,频率补偿电路包括由至少一个晶体管构成的压控电流源电路和与压控电流源电路耦接的至少一个补偿电容,频率补偿电路30接收电源电压,产生抵消输出电压节点处极点的零点。
根据本发明的优选实施例,提供了一种可全芯片集成的低压差电压调节器。图4为根据本发明优选实施例的低压差电压调节器的结构图。如图4所示,本发明优选实施例的低压差电压调节器包括误差放大器10,输出放大器20,频率补偿电路30。具体结构如下。
误差放大器10为一级折叠共源共栅放大器,具体包括:
第一P沟道晶体管Mp1,优选为PMOS晶体管,其栅极接收第一偏置电压Vb1,其源极与输出电源电压VDD输出端相连接,用于接收电源电压;第二P沟道晶体管Mp2,其源极连接第一P沟道晶体管的漏极,其栅极接收来自输出放大器20的反馈电压;第三P沟道晶体管Mp3,其源极连接第一P沟道晶体管的漏极,其栅极接收参考电压Vref;第四P沟道晶体管Mp4,其源极接收电源电压VDD;第五P沟道晶体管Mp5,其源极接收电源电压VDD;第六P沟道晶体管Mp6,其源极连接第四P沟道晶体管的漏极,其栅极接收第四偏置电压Vb4,其漏极与第四P沟道晶体管的栅极和第五P沟道晶体管的栅极相连接;第七P沟道晶体管Mp7,其源极与第五P沟道晶体管的漏极相连接,其栅极接收第四偏置电压Vb4;第一N沟道晶体管Mn1,其源极接地,其栅极接收第二偏置电压Vb2,其漏极与第二P沟道晶体管的漏极相连接;第二N沟道晶体管Mn2,其源极接地,其栅极接收第二偏置电压Vb2,其漏极与第三P沟道晶体管的漏极相连接;第三N沟道晶体管Mn3,其源极与第一N沟道晶体管的漏极相连接,其栅极接收第三偏置电压Vb3,其漏极与第六P沟道晶体管的漏极相连接;第四N沟道晶体管Mn4,其源极与第二N沟道晶体管的漏极相连接,其栅极接收第三偏置电压Vb3,其漏极与第七P沟道晶体管的漏极相连接;第七P沟道晶体管的漏极与第四N沟道晶体管的漏极相连的节点处产生误差放大器10的控制电压。
较佳实施例中,误差放大器10为一级折叠共源共栅放大器,这样本发明的电压调节器仅为两级放大器结构,可以降低频率补偿电路的复杂度,易于集成到一个芯片上。而且,在简化频率补偿电路的同时,可以保证线性电压调节器精度。
输出放大器20与误差放大器10耦接并接收控制电压,优选实施例中,输出放大器20中的一个晶体管具体为第八P沟道晶体管Mp8,其源极接收电源电压VDD,其栅极接收来自误差放大器10的控制电压,其漏极输出输出电压Vout;两个分压电阻具体表示为第一电阻R1,其一端连接第八P沟道晶体管的漏极,另一端与第二P沟道晶体管的栅极相连接;第二电阻R2,其一端连接第二P沟道晶体管的栅极,另一端接地;第一电阻与第二电阻相连接的反馈节点NETF处的反馈电压反馈到第二P沟道晶体管的栅极;可片上集成的电容C1,其一端连接第八P沟道晶体管的漏极,另一端接地,用于改善本发明的低压差电压调节器的瞬态响应特性。可片上集成的电容C1的数值一般为30pF到50pF。输出放大器20根据控制电压产生输出电压Vout和反馈电压。负载电阻RL,其一端与第二P沟道晶体管的栅极相连接,另一端接地。由于可片上集成的电容C1的数值很小,所以可以集成到芯片上。
频率补偿电路30与误差放大器10和输出放大器20分别耦接。具体地,频率补偿电路30的压控电流源电路包括第五N沟道晶体管Mn5,其栅极接收第二偏置电压Vb2,其源极接地;第六N沟道晶体管Mn6,其栅极接收第二偏置电压Vb2,其源极接地;第七N沟道晶体管Mn7,其栅极接收输出电压Vout,其源极与第六N沟道晶体管的漏极相连接;第九P沟道晶体管Mp9,其栅极接收第四偏置电压Vb4,其漏极与第五N沟道晶体管的漏极相连接;第十P沟道晶体管Mp10,其栅极接收第四偏置电压Vb4,其漏极与第七N沟道晶体管的漏极相连接;第十一P沟道晶体管Mp11,其栅极与第十P沟道晶体管的漏极相连接,其漏极与第九P沟道晶体管的源极相连接,其源极接收电源电压VDD;第十二P沟道晶体管,其栅极与第十P沟道晶体管的漏极相连接,其漏极与第十P沟道晶体管的源极相连接,其源极接收电源电压VDD。与压控电流源电路耦接的补偿电容C2,其一端与第六N沟道晶体管的漏极相连接,其另一端接地,补偿电容C2的值小于1pF,因此C2能集成在芯片上。频率补偿电路30接收电源电压VDD。通过以上结构,产生抵消输出电压Vout节点处极点的零点。
本发明提供的电压调节器的频率补偿电路采用压控电流源结构,所需的补偿电容的数值小,非常适合全芯片集成。并且采用补偿电容,易于使电路稳定。
下面分析本发明的频率补偿电路对环路特性的影响。与图1所示的常规的低压差电压调节器不同,本发明提供的可全芯片集成的低压差电压调节器,当去掉频率补偿电路时,输出节点Vout的小信号等效负载可以简化为图5所示的电阻电容网络,则在Vout节点处的极点频率为fpo
f po = 1 2 π [ r ds / / RL / / ( R 1 + R 2 ) ] * C 1 - - - ( 2 )
其中,其中rds为功率PMOS管Mp8的电阻,RL表示负载电阻RL的阻值,R1表示第一电阻R1的阻值,R2表示第二电阻R2的阻值,C1表示可片上集成的电容C1的电容值。
当采用本发明的频率补偿电路时,由于其为压控电流源结构,输出节点的小信号等效负载可以简化为图6所示的网络,其中,压控电流i大小为:
i=S*C2*Vout    (3)
式中C2为频率补偿电路中的补偿电容,S=jw为复频率,Vout表示输出信号的电压值。根据图6所示的网络可以得到,采用本发明的频率补偿电路后,产生一个零点,其频率f0为:
f 0 = 1 2 πR 1 * C 2 - - - ( 4 )
该零点用于抵消电路的极点fpo,使电路保持稳定。
另外,图7给出了本发明的低压差电压调节器的环路增益,如图7所示,可以看出本发明的低压差电压调节器的环路增益很高,这是由于本发明中误差放大器采用的一级折叠共源共栅放大器结构,可以保证线性电压调节器精度,这样的好处是保证了本发明提供的低压差电压调节器的高精度。
综上所述,通过本发明的上述实施例,提供了低压差电压调节器,解决了目前的低压差电压调节器无法集成到一个芯片中,并且低压差电压调节器不稳定的问题,简化了频率补偿电路的复杂度,减少了补偿电容的数目,降低了补偿电容的数值,提高了精度,使其能够集成到一个芯片中。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种低压差电压调节器,其特征在于,所述低压差电压调节器包括:
误差放大器,所述误差放大器为一级折叠共源共栅放大器,接收参考电压和反馈节点处的反馈电压,根据所述参考电压和所述反馈电压产生控制电压;
与所述误差放大器耦接并接收所述控制电压的输出放大器,所述输出放大器包括串联的一个晶体管和两个分压电阻,根据所述控制电压产生输出电压和所述反馈电压;
与所述误差放大器和所述输出放大器分别耦接的频率补偿电路,所述频率补偿电路包括由至少一个晶体管构成的压控电流源电路和与所述压控电流源电路耦接的至少一个补偿电容,所述频率补偿电路接收电源电压,产生抵消输出电压的节点处的极点的零点;
所述一级折叠共源共栅放大器包括:
第一P沟道晶体管,其栅极接收第一偏置电压,其源极接收电源电压;
第二P沟道晶体管,其源极连接所述第一P沟道晶体管的漏极,其栅极接收所述反馈电压;
第三P沟道晶体管,其源极连接所述第一P沟道晶体管的漏极,其栅极接收参考电压;
第四P沟道晶体管,其源极接收电源电压;
第五P沟道晶体管,其源极接收电源电压;
第六P沟道晶体管,其源极连接所述第四P沟道晶体管的漏极,其栅极接收第四偏置电压,其漏极与所述第四P沟道晶体管的栅极和所述第五P沟道晶体管的栅极相连接;
第七P沟道晶体管,其源极与所述第五P沟道晶体管的漏极相连接,其栅极接收所述第四偏置电压;
第一N沟道晶体管,其源极接地,其栅极接收第二偏置电压,其漏极与所述第二P沟道晶体管的漏极相连接;
第二N沟道晶体管,其源极接地,其栅极接收所述第二偏置电压,其漏极与所述第三P沟道晶体管的漏极相连接;
第三N沟道晶体管,其源极与所述第一N沟道晶体管的漏极相连接,其栅极接收第三偏置电压,其漏极与所述第六P沟道晶体管的漏极相连接;
第四N沟道晶体管,其源极与所述第二N沟道晶体管的漏极相连接,其栅极接收所述第三偏置电压,其漏极与所述第七P沟道晶体管的漏极相连接;
其中,所述第七P沟道晶体管的漏极与所述第四N沟道晶体管的漏极相连的节点处产生所述误差放大器的控制电压;
所述输出放大器包括:
第八P沟道晶体管,其源极接收电源电压,其栅极接收所述控制电压,其漏极输出所述输出电压;
第一电阻,其一端连接所述第八P沟道晶体管的漏极,另一端与所述第二P沟道晶体管的栅极相连接;
第二电阻,其一端连接所述第二P沟道晶体管的栅极,另一端接地;
所述第一电阻与所述第二电阻相连接的反馈节点处的反馈电压反馈到所述第二P沟道晶体管的栅极;
所述频率补偿电路包括:
第五N沟道晶体管,其栅极接收所述第二偏置电压,其源极接地;
第六N沟道晶体管,其栅极接收所述第二偏置电压,其源极接地;
第七N沟道晶体管,其栅极接收所述输出电压,其源极与所述第六N沟道晶体管的漏极相连接;
补偿电容,其一端与所述第六N沟道晶体管的漏极相连接,其另一端接地;
第九P沟道晶体管,其栅极接收所述第四偏置电压,其漏极与所述第五N沟道晶体管的漏极相连接;
第十P沟道晶体管,其栅极接收所述第四偏置电压,其漏极与所述第七N沟道晶体管的漏极相连接;
第十一P沟道晶体管,其栅极与所述第十P沟道晶体管的漏极相连接,其漏极与所述第九P沟道晶体管的源极相连接,其源极接收电源电压;
第十二P沟道晶体管,其栅极与所述第十P沟道晶体管的漏极相连接,其漏极与所述第十P沟道晶体管的源极相连接,其源极接收电源电压;
所述反馈节点与所述频率补偿电路的第九P沟道晶体管和第五N沟道晶体管的漏极相连。
2.根据权利要求1所述的低压差电压调节器,其特征在于,所述输出放大器还包括:可片上集成的电容,其一端连接所述第八P沟道晶体管的漏极,另一端接地。
3.根据权利要求2所述的低压差电压调节器,其特征在于,所述可片上集成的电容为30pF至50pF。
4.根据权利要求1所述的低压差电压调节器,其特征在于,所述补偿电容小于1pF。
5.根据权利要求1-4中任一项所述的低压差电压调节器,其特征在于,所述P沟道晶体管为PMOS晶体管,所述N沟道晶体管为NMOS晶体管。
6.根据权利要求1-4中任一项所述的低压差电压调节器,其特征在于,所述误差放大器、输出放大器和频率补偿电路集成在一个芯片中。
CN2009103078670A 2009-09-28 2009-09-28 一种低压差电压调节器 Active CN101667046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009103078670A CN101667046B (zh) 2009-09-28 2009-09-28 一种低压差电压调节器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009103078670A CN101667046B (zh) 2009-09-28 2009-09-28 一种低压差电压调节器

Publications (2)

Publication Number Publication Date
CN101667046A CN101667046A (zh) 2010-03-10
CN101667046B true CN101667046B (zh) 2011-10-26

Family

ID=41803688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009103078670A Active CN101667046B (zh) 2009-09-28 2009-09-28 一种低压差电压调节器

Country Status (1)

Country Link
CN (1) CN101667046B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916128B (zh) * 2010-08-18 2012-07-25 北京大学 一种提高带隙基准源输出电源抑制比的方法及相应的电路
CN102681577B (zh) * 2011-03-15 2014-06-11 瑞昱半导体股份有限公司 具有交换式及线性电压调节模式的电压调节装置
US8742853B2 (en) * 2011-10-25 2014-06-03 Marvell World Trade Ltd. Low-stress cascode structure
CN103163925B (zh) * 2011-12-15 2014-11-05 无锡中星微电子有限公司 高效率低压差电压调节器
US9134743B2 (en) * 2012-04-30 2015-09-15 Infineon Technologies Austria Ag Low-dropout voltage regulator
CN103279163B (zh) * 2013-06-03 2016-06-29 上海华虹宏力半导体制造有限公司 高电源电压抑制比无片外电容低压差调节器
CN105242734B (zh) * 2014-07-08 2017-06-16 广州市力驰微电子科技有限公司 一种无外置电容的大功率ldo电路
CN105955387B (zh) * 2016-05-12 2018-07-13 西安电子科技大学 一种双环保护低压差ldo线性稳压器
US10234883B1 (en) * 2017-12-18 2019-03-19 Apple Inc. Dual loop adaptive LDO voltage regulator
CN108334149B (zh) * 2018-02-13 2020-10-02 杭州芯元微电子有限公司 一种低静态电流高psrr低压差线性稳压器电路
US10416695B1 (en) * 2018-06-19 2019-09-17 Synaptics Incorporated Linear regulator with first and second feedback voltages
CN109765957A (zh) * 2019-01-07 2019-05-17 上海奥令科电子科技有限公司 一种低压差线性稳压器
US10705552B1 (en) * 2019-07-08 2020-07-07 The Boeing Company Self-optimizing circuits for mitigating total ionizing dose effects, temperature drifts, and aging phenomena in fully-depleted silicon-on-insulator technologies
WO2021068103A1 (en) * 2019-10-08 2021-04-15 Alibaba Group Holding Limited System and method for efficient power delivery
CN111273720B (zh) * 2020-03-04 2022-02-22 中国电子科技集团公司第二十四研究所 一种用于线性稳压器的补偿零点产生电路
CN112650353B (zh) * 2020-12-31 2022-06-14 成都芯源系统有限公司 具有稳定性补偿的线性电压调节器
CN112783257B (zh) * 2021-01-04 2022-03-25 深圳市南方硅谷半导体股份有限公司 一种在高压线性电压转换器中的串联式补偿电路
US11953925B2 (en) 2021-05-03 2024-04-09 Ningbo Aura Semiconductor Co., Limited Load-current sensing for frequency compensation in a linear voltage regulator
CN114527825B (zh) * 2021-05-03 2024-03-19 宁波奥拉半导体股份有限公司 线性稳压器、线性稳压器的频率补偿方法及系统
CN113839630B (zh) * 2021-09-13 2024-01-30 中国科学院上海微系统与信息技术研究所 一种可用于超低温的低压差分放大器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227146A (zh) * 2006-12-08 2008-07-23 精工电子有限公司 电压调节器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227146A (zh) * 2006-12-08 2008-07-23 精工电子有限公司 电压调节器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
尹勇生,刘宏.具有反馈偏置的折叠共源共栅运算放大器.《合肥工业大学学报(自然科学版)》.2008,第31卷(第9期),第1362-1364页. *
边强等.一种用于低压降稳压器频率补偿的压控电流源.《微电子学》.2006,第36卷(第4期),第498-501页. *

Also Published As

Publication number Publication date
CN101667046A (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
CN101667046B (zh) 一种低压差电压调节器
CN101183270B (zh) 一种低压差稳压器
CN109164861A (zh) 一种快速瞬态响应的低压差线性稳压器
CN108803761B (zh) 一种含有高阶温度补偿的ldo电路
CN102880218B (zh) 宽输入范围的线性稳压器
CN208848104U (zh) 一种快速瞬态响应的低压差线性稳压器
CN102707754A (zh) 低压差线性稳压电路
CN109116906A (zh) 一种基于自适应零点补偿的低压差线性稳压器
CN111338413B (zh) 一种高电源抑制比的低压差线性稳压器
CN101957628A (zh) 低压差线性稳压器中的自适应零点频率补偿电路
CN114253330A (zh) 一种快速瞬态响应的无片外电容低压差线性稳压器
CN103472882B (zh) 集成摆率增强电路的低压差线性稳压器
CN106774581A (zh) 低压差线性稳压器及集成片上系统
CN101609345B (zh) 一种线性电压调节器
CN106155162A (zh) 一种低压差线性稳压器
CN104950975A (zh) 一种低压差线性稳压器
CN113467559B (zh) 一种应用于ldo的自适应动态零点补偿电路
CN108803764A (zh) 一种快速瞬态响应的ldo电路
CN104950976B (zh) 一种基于摆率增强的稳压电路
CN201464838U (zh) 低压差线性稳压器中的自适应零点频率补偿电路
CN114356008A (zh) 一种低压差线性稳压器
CN212989976U (zh) Ldo电路、ldo及soc系统
CN106055011A (zh) 一种自启动供电电路
CN110879629A (zh) 一种低压差线性稳压电路
CN110247645A (zh) 一种电压比较器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161114

Address after: 100176, No. 10, Ronghua Road, Beijing economic and Technological Development Zone, 9 floor, block A, City International Center

Patentee after: Brite Powerise (Beijing) Limited company of microelectronics technology

Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3 Institute of Microelectronics

Patentee before: Institute of Microelectronics, Chinese Academy of Sciences