CN101644654B - 控制装置的老化诊断系统 - Google Patents

控制装置的老化诊断系统 Download PDF

Info

Publication number
CN101644654B
CN101644654B CN 200910004942 CN200910004942A CN101644654B CN 101644654 B CN101644654 B CN 101644654B CN 200910004942 CN200910004942 CN 200910004942 CN 200910004942 A CN200910004942 A CN 200910004942A CN 101644654 B CN101644654 B CN 101644654B
Authority
CN
China
Prior art keywords
humidity
temperature
casing
environmental data
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910004942
Other languages
English (en)
Other versions
CN101644654A (zh
Inventor
南谷林太郎
大贯朗
松井孝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Building Systems Co Ltd filed Critical Hitachi Ltd
Publication of CN101644654A publication Critical patent/CN101644654A/zh
Application granted granted Critical
Publication of CN101644654B publication Critical patent/CN101644654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

提供高精度推定导电构件腐蚀量的老化诊断系统。具有:测定收容具有导电构件的印刷线路板的控制装置内的温度的温度传感器;湿度传感器;腐蚀传感器;诊断处理装置,在设定期间记录由各传感器测定的控制装置内环境数据和导电构件的腐蚀数据,根据记录的箱体内环境数据和腐蚀数据推定导电构件将来的腐蚀量进行老化诊断;记录外部空气环境数据的外部空气环境数据库,诊断处理装置求出设定期间记录的控制装置内环境数据与腐蚀数据的相关关系,求出与设定期间同时期的外部空气环境数据与控制装置内环境数据的对应关系,由对应关系和过去外部空气环境数据推定将来的控制装置内环境数据,由推定的控制装置内环境数据和相关关系推定导电构件将来的腐蚀量。

Description

控制装置的老化诊断系统
技术领域
本发明涉及一种控制装置的老化诊断系统。 
背景技术
导致对电梯和各种设备等进行控制的控制装置发生故障的主要原因之一是因收容在控制装置中且安装有电子器件等的印刷线路板上的配线和电子器件的连接端子(以下统称为导电构件)腐蚀而产生的老化。因此,优选预先对导电构件进行老化诊断,推定将来的老化进度情况,以便能够在因老化而产生故障之前更换老化部分。 
作为现有的老化诊断技术,已知有将与导电构件相同的金属材料作为试验片,使其在控制装置内暴露一定期间,测定腐蚀厚度,根据腐蚀厚度和暴露期间来求出平均的腐蚀进度,并根据求出的平均腐蚀进度来推定将来的腐蚀量的方法。此外,在专利文献1中公开了一种方法,其对作为腐蚀量的影响因素的温度和湿度等进行测定,并对测定值的范围给予评分数,同时根据评分数的函数来求出将来的腐蚀量。 
【专利文献1】日本特开2001-215187。 
然而,作为腐蚀量的影响因素的温度和湿度因暴露试验片的季节而有较大变动,另外,控制装置内的温度和湿度也会因控制装置的运行状态而变动,因此,实际的腐蚀进度并不是恒定的。在上述现有的方法中,没有对温度以及湿度的变动作出考虑,难以进行高精度的腐蚀量的推定。 
发明内容
本发明的目的在于提供一种能够高精度地推定导电构件的将来的腐蚀量的老化诊断系统。 
为了解决上述课题,本发明的老化诊断系统的特征在于,具有:温度传感器,其测定收容有印刷线路板的箱体的内部温度,其中该印刷线路板 上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定箱体内部的湿度;腐蚀传感器,其测定诊断对象的腐蚀量;诊断处理装置,其在设定期间记录由利用各个传感器中测定的箱体内的温度以及湿度构成的箱体内环境数据和诊断对象的腐蚀数据,根据所记录的箱体内环境数据和腐蚀数据来推定诊断对象的将来的腐蚀量,进行老化诊断;外部空气环境(open-air environment)数据库,其记录有由箱体外的过去的温度以及湿度构成的外部空气环境数据,其中,诊断处理装置求出在设定期间记录的箱体内环境数据与腐蚀数据的相关关系,并求出设定期间内的外部空气环境数据与箱体内环境数据的对应关系,根据该对应关系和过去的外部空气环境数据来推定将来的箱体内环境数据,并根据该推定的箱体内环境数据及其相关关系来推定诊断对象的将来的腐蚀量。 
根据本发明,能够按照实际情况来推定将来的箱体内环境数据,因此能够高精度地推定诊断对象的将来的腐蚀量。即,根据与设定期间相同时期的外部空气环境数据和箱体内环境数据的对应关系,求出例如外部空气环境数据与箱体内环境数据的温度差、湿度差以及它们的周期性变化,并将该数据与过去的外部空气环境数据进行对照,如此,能够在考虑到箱体内环境数据的周期性变化以及外部空气环境数据的影响的情况下对将来的箱体内部环境数据进行推定。由于温度和湿度是影响腐蚀量的影响因素,因此,如果能够根据实际情况高精度地对将来的箱体内环境数据进行推定,便能够高精度地推定将来的腐蚀量。此外,设定期间一般为1至3个月,但为了进行高精度推定,设定期间优选在3个月以上。进行简易推定时,设定期间可以为一个星期左右,但此时优选使用高精度的腐蚀传感器即电阻式腐蚀传感器。另外,外部空气环境数据库可以使用例如气象厅的气象统计信息。 
在此,在控制装置的设置环境是进行空调控制的情况下,箱体外的温度及湿度即为空调的设定温度及湿度。 
此时,优选老化诊断系统具有:温度传感器,其测定收容有印刷线路板且处于空调氛围中的箱体的内部温度,其中该印刷线路板上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定箱体内的湿度;腐蚀传感器,其测定诊断对象的腐蚀量;诊断处理装置, 其在设定期间记录由利用各个传感器中测定的箱体内的温度以及湿度构成的箱体内环境数据和诊断对象的腐蚀数据,根据所记录的箱体内环境数据和腐蚀数据来推定诊断对象的将来的腐蚀量,进行老化诊断;空调数据库,其记录有由空调的设定温度以及湿度构成的空调数据,其中,诊断处理装置求出在设定期间记录的箱体内环境数据与腐蚀数据的相关关系,并根据箱体内环境数据与空调数据之间的对应关系来推定将来的箱体内环境数据,同时通过该推定的箱体内环境数据及其相关关系来推定诊断对象的将来的腐蚀量。 
由此,与外部空气环境数据的情况一样,能够根据空调的设定温度以及湿度对将来的箱体内温度以及湿度的变化进行高精度的推定,从而能够高精度地推定腐蚀量。 
然而,作为导致控制装置发生故障的其他主要原因,可以列举出印刷线路板上的导电构件之间的绝缘老化。由此,还需要与对腐蚀量进行推定相同地,对绝缘老化进行推定。 
此时,优选老化诊断系统具有:温度传感器,其测定收容有印刷线路板的箱体的内部温度,其中该印刷线路板上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定箱体内的湿度;尘埃传感器,其测定附着在诊断对象上的尘埃量;诊断处理装置,其在设定期间记录由利用各个传感器中测定的箱体内的温度以及湿度构成的箱体内环境数据和尘埃数据,并根据所记录的箱体内环境数据和尘埃数据对诊断对象的绝缘老化进行诊断;外部空气环境数据库,其记录有由箱体外的过去的温度以及湿度构成的外部空气环境数据,其中,诊断处理装置求出在设定期间记录的箱体内环境数据与绝缘老化的进度的相关关系,并求出设定期间内的外部空气环境数据与箱体内环境数据的对应关系,根据该对应关系和过去的外部空气环境数据来推定将来的箱体内环境数据,并根据该推定的箱体内环境数据及其相关关系来推定诊断对象的将来的绝缘老化的进度。 
由此,能够与上述腐蚀量的推定相同地对将来的箱体内环境数据进行高精度的推定。导致绝缘老化的主要原因是离子迁移,由于温度和湿度以及尘埃量是离子迁移的影响因素,因此,通过推定的箱体内环境数据以及 根据设定期间记录的箱体内环境数据与绝缘老化的进度的相关关系推定的尘埃量,能够对绝缘老化的进度进行高精度地推定。 
另外,当控制装置的设置环境是进行空调控制的情况下,优选与上述腐蚀量的推定相同地,具有空调数据库。 
发明效果 
根据本发明,能够提供一种高精度地推定将来的腐蚀量的老化诊断系统。 
附图说明
图1(a)是本发明的第1实施例的老化诊断系统的结构图,(b)是收容在控制装置中的印刷线路板的俯视图。 
图2是老化诊断系统的处理流程图。 
图3是诊断处理装置的环境推定部分的处理工序。 
图4(a)是内部温度和外部温度的曲线图,(b)是内部温度和外部温度的频率特性。 
图5是控制装置的内部绝对湿度和外部绝对湿度的曲线图。 
图6表示对环境推定部进行腐蚀量推定的处理工序。 
图7(a)是表示银腐蚀量的实测值和推定值的图,(b)是表示腐蚀寿命与经过年数的关系图。 
图8是表示对环境推定部进行绝缘老化推定的处理工序的图。 
图9(a)是表示离子迁移寿命与相对湿度和尘埃量的关系的图,(b)是离子迁移寿命与经过年数的关系图。 
图10是本发明的第2实施例的老化诊断系统的环境推定部的处理工序。 
符号说明 
1老化诊断系统 
2环境测定装置 
4诊断处理装置 
6外部空气环境数据库 
9导电构件 
10印刷线路板 
12温度传感器 
14湿度传感器 
16腐蚀传感器 
18尘埃传感器 
17腐蚀积算损伤率 
18离子迁移积算损伤率 
30环境推定部 
32损伤推定部 
34寿命诊断部 
36腐蚀数据库 
38空调数据库 
具体实施方式
实施例1 
以下,参照附图对本发明的第1实施例进行说明。 
图1(a)是老化诊断系统1的结构图,图1(b)是收容在控制装置3中的印刷线路板10的俯视图。老化诊断系统1由环境测定装置2、诊断处理装置4、外部空气环境数据库6和诊断结果输出装置8构成。 
环境测定装置2设置在控制电梯等的控制装置3内,控制装置3内收容有具有作为诊断对象的导电构件9的印刷线路板10。环境测定装置2具有测定控制装置3内的温度(以下称为内部温度)的温度传感器12、测定控制装置3内的相对湿度(以下称为内部相对湿度)的湿度传感器14、测定导电构件9的腐蚀量的腐蚀传感器16、测定附着在导电构件9的尘埃量的尘埃传感器18以及记录各个传感器的数据的数据库22。温度传感器12和相对湿度传感器14被构成为以一定间隔测定内部温度以及内部相对湿度并将数据发送至数据库22。 
以下参照图1(b)对腐蚀传感器16以及尘埃传感器18进行说明。腐蚀传感器16是电阻式腐蚀传感器,其由玻璃等制成的基板23、电极垫24和银电极25构成,并且安装在印刷线路板10上。腐蚀传感器16被构成 为利用银电极25的截面积因腐蚀而减小后,电阻会增加这一特性,以一定间隔测定腐蚀量并将数据发送至数据库22。尘埃传感器18由玻璃等制成的基板26、电极垫27以及梳齿电极28构成,并且安装在印刷线路板10上。尘埃传感器18构成为以一定间隔根据因附着的尘埃而在电极之间产生的泄漏电流来测定尘埃量并将数据发送至数据库22中。此外,作为尘埃的种类,除了灰尘和线头外,还可列举出气溶胶等。另外,可以由印刷线路板10兼作基板23、26使用。 
环境测定装置2的测定结果由诊断处理装置4进行处理。诊断处理装置4安装在未图示的计算机等信息处理终端中。外部空气环境数据库6中保存有控制装置3的外部温度(以下称为“外部温度”)的履历以及控制装置3的外部的绝对湿度(以下称为“外部绝对湿度”)的履历。外部空气环境数据库6可以利用气象厅公开的气象统计信息中的离控制装置3最近的测定地点的信息。 
如图1(a)所示,诊断处理装置4由环境推定部30、损伤度推定部32和寿命诊断部34构成。环境推定部30构成为根据环境测定装置2的测定结果以及外部空气环境数据库6的数据来推定内部温度以及控制装置3的内部相对湿度(以下称为“内部相对湿度”),并将推定的结果输出至损伤度推定部32。损伤度推定部32构成为根据环境推定部30的推定结果来推定腐蚀量以及绝缘老化,并将推定的结果输出到寿命诊断部34中。寿命诊断部34构成为根据损伤度推定部32的推定结果来诊断寿命,并将诊断结果输出到诊断结果输出装置8中。诊断结果输出装置8构成为将诊断结果输出到未图示的信息处理终端的显示画面中。 
参照图2对上述结构的老化诊断系统1的动作进行说明。图2是老化诊断系统1的处理流程图。在步骤1中,将环境测定装置2的温度传感器12以及湿度传感器14设置在控制装置3内,如图1(b)所示,将腐蚀传感器16和尘埃传感器18设置在印刷线路板10或者印刷线路板10的附近。通过设置的各个传感器进行1至3个月的测定。进行高精度测定时可以设定为3个月以上,进行简易测定时可以设定为1个星期左右。测定时期优选在对腐蚀和绝缘老化影响大的相对湿度高的时期。在本实施例中,作为示例,在2007年8月到10月的3个月中进行了测定。此外,通常,导电 构件9采用铜制成,但在此使用由不同于导电构件9的金属制成的银电极25进行腐蚀量的推定。选择银电极的理由是,银比铜容易腐蚀,由于腐蚀在短期内加剧,所以,通过推定银的腐蚀,能够尽早地对铜制的导电构件9的腐蚀采取措施。当然,也可以使用铜来进行腐蚀的推定。 
以下参照图3至图5对步骤2进行说明。图3是诊断处理装置4的环境推定部30的处理工序,图4(a)是内部温度和外部温度的曲线图,图4(b)是内部温度和外部温度的频率特性,图5是控制装置3的内部绝对湿度(以下称为内部绝对湿度)和外部绝对湿度的曲线图。在步骤1中测定的8月到10月的内部温度以及内部相对湿度、保存在外部空气环境数据库6中的8月到10月的外部温度以及外部绝对湿度被输入到环境推定部30中。 
首先,如图4所示,在温度方面,计算内部温度和外部温度的温度差ΔT。温度差ΔT根据8月到10月这3个月的平均温度求出。并且,通过离散傅立叶解析(Discrete Fourier Analysis)提取内部温度的频率特性。内部温度受到外部温度和控制装置3在运行时产生的热量的影响。例如,每天运行和停止的控制装置3的内部温度受到外部温度的变动以及运行和停止的影响而具有以一天为周期的特征。另外,在工作日运行和停止,而在周末停止的控制装置3除了具有以一天为周期的特征,同时还具有以一个星期为周期的特征。通常,具有一个星期以上的周期特征的控制装置3不多,但通过傅立叶解析,能够取得任何周期的频率特性。图4(b)表示内部温度和外部温度的周期特性。内部温度和外部温度均具有以一天为周期的特征。但是,内部温度与控制装置3的使用频率对应,具有显著的以一个星期为周期的特征。 
根据测定期间比将求出的频率特性保存在外部空气环境数据库6中的测定期间更早的过去的外部温度,例如2006年1月至12月的外部温度,并且结合由上述方法求出的温度差ΔT以及频率特性,能够求出将来的例如2009年1月至12月的内部温度的推定值。 
以下对内部相对湿度的推定方法进行说明。由于控制装置3外部的水分立刻会进入到控制装置3的内部,所以外部绝对湿度和内部绝对湿度大致一致。因此,将从外部空气环境数据库6得到的外部绝对湿度与根据测 定的内部温度和内部相对湿度算出的内部绝对湿度进行比较,如果能够确认为同等的值,则能够根据过去的外部绝对湿度,例如2006年的1月至12月的外部绝对湿度,采用绝对湿度-温度-相对湿度的换算式来推定将来的例如2009年1月至12月的内部相对湿度。 
如上所述,在环境测定部分30中求出与测定期间相同时期的外部温度以及外部绝对湿度和内部温度以及内部相对湿度的对应关系,根据该对应关系和过去的外部温度以及外部绝对湿度,能够推定将来的内部温度以及内部相对湿度。 
以下参照图6对步骤3中关于损伤推定部32的腐蚀的处理进行说明。图6表示环境推定部30的处理工序。在步骤1中测定的腐蚀量以及在步骤2中推定的内部温度以及内部相对湿度被输入到环境推定部30中。 
此后,求出内部温度和内部相对湿度与腐蚀量的相关关系。银的腐蚀量X以硫化银的生成为主,例如在古河电工时报76卷98页(1985年)中揭示了作为实验式的式(1)。 
X=X0·[H2S]1.0·[RH]n·exp(-E/kT)·t    (1) 
式中,X0表示系数,[H2S]表示硫化氢的浓度,[RH]表示相对湿度,E表示活性能量,K表示波耳兹曼常数(Boltzmann constant),T表示绝对温度,t表示时间。其中,如果将X0·[H2S]1.0定义为腐蚀性气体系数Co,则腐蚀量X由式(2)求出。 
X=C0·[RH]n·exp(-E/kT)·t    (2) 
其中,环境测定装置2的各个传感器的单位测定时间tUT的腐蚀量XUT在温度T、相对湿度RH的环境下通过式(3)求出。 
XUT=C0·[RH]n·exp(-E/kT)·tUT  (3) 
其中,由于银的腐蚀量X与时间成正比,因此,在腐蚀传感器16的测定期间tCS内的腐蚀量XCS作为单位时间tUT的腐蚀量XUT的积算值通过式(4)求出。 
XCS=∑XUT=C0·∑{[RH]n·exp(-E/kT)·tUT}(4) 
根据式(4),由式(5)求出Co。 
Co=XCS/∑{[RH]n·exp(-E/kT)·tUT}(5) 
如上所述,腐蚀性气体系数Co在控制装置的各个设置环境中为固有 值,能够通过将所测定的内部温度、内部相对湿度、腐蚀量和测定期间代入式(5)而决定。在使用计算机进行实际的推定时,也可以通过如下方法设定腐蚀性气体系数,即,预先假设临时的腐蚀性气体系数,使得推定的积算腐蚀量与腐蚀传感器16的测定期间tCS内的腐蚀量XCS相等,以此来设定腐蚀性气体系数。在此,虽然没有考虑腐蚀性气体Co的季节性变动,但只要以某一规定的间隔进行测定,考虑腐蚀性气体Co的季节性变动,便能够进行更高精度的推定。通过将决定的腐蚀性气体系数Co和在步骤2中推定的内部温度和内部相对湿度的值代入式(4)中,能够推定积算腐蚀量。图7(a)表示银腐蚀量的实测值和推定值。两者的值非常接近,表明本推定方法是适当的推定方法。 
以下对诊断对象金属为铜的情况进行说明。由于铜的腐蚀量与时间的1/2次方成比例,因此不能简单地积算单位时间的腐蚀量。铜的腐蚀量XCu由式(6)求出。 
X=C0·[RH]n·exp(-E/kT)·t0.5    (6) 
假定最初的单位时间t=t1时的温度为T0,相对湿度为RH0,膜厚为X0时,腐蚀量由式(7)求出。 
X0=C0·[RH0]n·exp(-E/kT0)·t1 0.5    (7) 
将接下来的单位时间t=(t2-t1)的温度设定为T1,相对湿度设定为RH1,膜厚设定为X1。在铜的表面形成有膜厚X0的腐蚀皮膜。在此,假定铜的腐蚀皮膜的耐腐蚀性与温度和相对湿度无关。则在温度为T1和相对湿度为RH1的环境形成膜厚X0的换算时间t2C由式(8)求出。 
t2C=[X0/{Co·[RH1]n·exp(-E/kT1)}]2    (8) 
因此,接下来的单位时间t=(t2-t1)的腐蚀量X1由式(9)求出。 
X1=C0·[RH1]n·exp(-E/kT1)·(t2c+t1)0.5    (9) 
如上所述,通过修正经过时间求出等价经过时间,即使是像铜那样的腐蚀量不与时间成比例的金属,也能够高精度地推定腐蚀量。 
在步骤4中,将在步骤3中推定的腐蚀量和保存在腐蚀数据库36中的腐蚀容许值的比例输入到寿命诊断部34中。寿命诊断部34根据上述数据求出腐蚀积算损伤率,如图7(b)所示,将腐蚀积算损伤率到达1的时间点作为腐蚀寿命求出。 
以下参照图8对步骤3’中关于损伤度推定部32的绝缘老化的处理进行说明。图8表示环境推定部30的绝缘老化的处理工序,在步骤1中测定的尘埃量和在步骤2中推定的内部温度以及内部相对湿度被输入到环境推定部分30中。 
绝缘老化的主要原因是离子迁移。离子迁移的产生经过阳极金属的电化学性溶解析出、金属离子的传输和阴极中的电化学性析出这3个阶段的反应,因此,在进行寿命评价时,有必要对各个阶段的反应进行评价。在此,使用对3个阶段的反应进行综合计算的寿命。图9(a)表示温度和电场强度为一定时的离子迁移寿命与相对湿度和尘埃量的关系。离子迁移寿命L与绝对温度T和相对湿度RH以及尘埃量D有关,并且由式(10)求出。 
L=C·V-m·[RH]-n·D-p·exp(E/kT)(10) 
式中,C表示常数,m、n、p表示指数,E表示活性能量,k表示波耳兹曼常数。由于在实际环境中温度和湿度会发生变动,因此需要对温度和湿度的变动作出了考虑的寿命推定式。在此,导入在疲劳寿命的推定中使用的线性累积损伤法则(Miner法则)这一方法。假定相对湿度RH1、RH2、RH3、...的寿命为L1、L2、L3、...。当在相对湿度RH1、RH2、RH3、...下分别暴露了t1、t2、t3、...时间时,可以将t1/L1、t2/L2、t3/L3、...作为离子迁移损伤。因此,离子迁移损伤率的积算值由式(11)求出。 
(t1/L1)+(t2/L2)+(t3/L3)+...(11) 
离子迁移寿命的判断值可以由式(12)求出。 
(t1/L1)+(t2/L2)+(t3/L3)+...=1(12) 
将在步骤2中推定的内部温度以及内部相对湿度代入离子迁移寿命推定式(12)中,此外,根据在测定期间内附着的尘埃量求出每一单位时间内附着的尘埃量并代入离子迁移寿命推定式(12)中。由此,可以求出单位时间(例如1个小时)的离子迁移损伤量。 
在步骤4’中,将在步骤3’中求出的每一单位时间内的离子迁移损伤量输入到寿命诊断部34中。寿命诊断部34据此求出离子迁移的积算损伤率,如图9(b)所示,将离子迁移的积算损伤率达到1的时间点作为绝缘老化寿命求出。 
在步骤5中,将在步骤4以及4’中求出的腐蚀寿命以及绝缘老化寿命输出到未图示的信息处理终端的显示画面上。老化诊断系统1的处理至此结束。 
如上所述,本实施例的老化诊断系统1具有:测定控制装置3内的温度的温度传感器12,其中该控制装置3中收容有具有导电构件9的印刷线路板10;测定相对湿度的湿度传感器14;测定导电构件9的腐蚀量的腐蚀传感器16;诊断处理装置4;外部空气环境数据库6,本实施例的老化诊断系统1能够根据与测定期间相同时期的外部空气环境数据和控制装置3内的环境数据的对应关系求出外部空气环境数据与控制装置3内环境数据的温度差和湿度差以及它们的周期,通过将该数据与过去的外部空气环境数据进行对照,能够推定将来的控制装置3内环境数据。由此,能够高精度地推定温度和相对湿度为影响因素的腐蚀量。 
另外,具有尘埃传感器18,能够与推定腐蚀量相同地,推定将来的控制装置3内环境数据,并根据在设定期间记录的箱体内环境数据与绝缘老化的进度的相关关系推定尘埃量,从而,能够高精度地推定绝缘老化的进度。 
实施例2 
图10表示本发明的第2实施例的老化诊断系统1的结构。在本实施例中,控制装置3的设定环境为进行空调控制,取代第1实施例的外部空气环境数据库6,具有空调数据库38,其他结构与第1实施例相同。空调数据库38中保存有控制装置3的设置环境的设定温度以及设定相对湿度。能够使用所述设定温度以及设定相对湿度,采用与实施例1相同的步骤,推定内部温度以及内部相对湿度。 
如上所述,根据本实施例的以空调数据库38替代了外部空气环境数据库6的老化诊断系统1,与第1实施例相同地,能够根据空调的设定温度以及湿度来高精度地推定将来的内部温度以及内部湿度的变化,并且还能够高精度地推定腐蚀量以及绝缘老化。 
以上对本实施例的老化诊断系统1进行了说明,但本发明并不仅限于上述实施例,本发明的上述结构在应用时可以进行适当的变更。例如,在本实施例中,将腐蚀传感器16以及尘埃传感器18安装在印刷线路板10 进行了测定,但也可以将具有腐蚀传感器16以及尘埃传感器18的测定用基板作为测定组件使用。另外,腐蚀传感器16也可以构成为通过比色法或阴极还原法来测定腐蚀量。另外,尘埃传感器18也可以构成为使用“为了评价大气环境的腐蚀性而进行的环境因子的测定”(JIS-Z-2382)和JEIDA-63-2000示出的暴露纱布进行的收集来进行测定。 
另外,腐蚀的诊断对象并不限于导电构件,也能够将控制装置3内的金属部分(例如断路器等)作为对象。此时,优选使用上述测定组件。 
另外,对通过傅立叶解析法求出所测定的内部温度以及外部温度的周期性等的方法作了说明,但并不限于通过傅立叶解析法求出的方法,也可以采用通过移动平均值求出平均特征,并根据对象温度数据和平均特征的差分求出周期性特征的方法。另外,按照傅立叶解析法求出的周期性特征,决定移动平均值的条件,由此,能够进行高精度的推定。并且,也可以使用其他的时序性数据的解析方法。 
进而,在尘埃对腐蚀产生影响时,也可以在温度和湿度之外,进一步推定尘埃量,并用于腐蚀量的推定中。 

Claims (5)

1.一种控制装置的老化诊断系统,其具有:温度传感器,其测定收容有印刷线路板的箱体的内部温度,其中该印刷线路板上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定所述箱体内的湿度;腐蚀传感器,其测定所述诊断对象的腐蚀量;诊断处理装置,其在设定期间记录由利用所述各个传感器测定的所述箱体内的温度以及湿度构成的箱体内环境数据和所述诊断对象的腐蚀量,根据所记录的所述箱体内环境数据和所述腐蚀量来推定所述诊断对象的将来的腐蚀量,进行老化诊断;外部空气环境数据库,其记录有由所述箱体外的过去的温度以及湿度构成的外部空气环境数据,所述控制装置的老化诊断系统的特征在于,
所述诊断处理装置求出在所述设定期间记录的所述箱体内环境数据的温度、湿度与所述腐蚀量的相关关系,并求出所述设定期间内的所述外部空气环境数据的温度、湿度与所述箱体内环境数据的温度、湿度的对应关系,根据该对应关系和过去的所述外部空气环境数据的温度、湿度推定将来的所述箱体内环境数据的温度、湿度,并根据该推定的箱体内环境数据的温度、湿度和所述相关关系来推定所述诊断对象的将来的腐蚀量。
2.一种控制装置的老化诊断系统,其具有:温度传感器,其测定收容有印刷线路板且处于空调氛围中的箱体的内部温度,其中该印刷线路板上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定所述箱体内的湿度;腐蚀传感器,其测定所述诊断对象的腐蚀量;诊断处理装置,其在设定期间记录由利用所述各个传感器测定的所述箱体内的温度以及湿度构成的箱体内环境数据和所述诊断对象的腐蚀量,根据所记录的所述箱体内环境数据和所述腐蚀量来推定所述诊断对象的将来的腐蚀量,进行老化诊断;空调数据库,其记录有由所述空调的设定温度以及湿度构成的空调数据,所述控制装置的老化诊断系统的特征在于,
所述诊断处理装置求出在所述设定期间记录的所述箱体内环境数据的温度、湿度与所述腐蚀量的相关关系,并根据所述箱体内环境数据的温度、湿度与所述空调数据的温度、湿度的对应关系来推定将来的所述箱体内环境数据的温度、湿度,同时根据该推定的箱体内环境数据的温度、湿度和所述相关关系来推定所述诊断对象的将来的腐蚀量。
3.一种控制装置的老化诊断系统,其具有:温度传感器,其测定收容有印刷线路板的箱体的内部温度,其中该印刷线路板上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定所述箱体内的湿度;尘埃传感器,其测定附着在所述诊断对象上的尘埃量;诊断处理装置,其在设定期间记录由利用所述各个传感器测定的所述箱体内的温度以及湿度构成的箱体内环境数据和尘埃量,并根据所记录的所述箱体内环境数据和所述尘埃量来诊断所述诊断对象的绝缘老化;外部空气环境数据库,其记录有由所述箱体外的过去的温度以及湿度构成的外部空气环境数据,所述控制装置的老化诊断系统的特征在于,
所述诊断处理装置求出在所述设定期间记录的所述箱体内环境数据的温度、湿度与所述绝缘老化的进度的相关关系,并求出所述设定期间的所述外部空气环境数据的温度、湿度与所述箱体内环境数据的温度、湿度的对应关系,根据该对应关系和过去的所述外部空气环境数据的温度、湿度来推定将来的所述箱体内环境数据的温度、湿度,并根据该推定的箱体内环境数据的温度、湿度和所述相关关系来推定所述诊断对象的将来的绝缘老化的进度。
4.一种控制装置的老化诊断系统,其具有:温度传感器,其测定收容有印刷线路板且处于空调氛围中的箱体的内部温度,其中该印刷线路板上安装有具有作为诊断对象的导电构件的电子器件或者电气器件;湿度传感器,其测定所述箱体内的湿度;尘埃传感器,其测定附着在所述诊断对象上的尘埃量;诊断处理装置,其在设定期间记录由利用在所述各个传感器测定的所述箱体内的温度以及湿度构成的箱体内环境数据和尘埃量,并根据所记录的所述箱体内环境数据和所述尘埃量来诊断所述诊断对象的绝缘老化;空调数据库,其记录有由所述空调的设定温度以及湿度构成的空调数据,所述控制装置的老化诊断系统的特征在于,
所述诊断处理装置求出在所述设定期间记录的所述箱体内环境数据的温度、湿度与所述绝缘老化的进度的相关关系,并根据所述箱体内环境数据的温度、湿度与所述空调数据的温度、湿度的对应关系来推定将来的所述箱体内环境数据的温度、湿度,同时根据该推定的箱体内环境数据的温度、湿度和所述相关关系来推定所述诊断对象的将来的绝缘老化的进度。
5.根据权利要求1或者2所述的控制装置的老化诊断系统,其特征在于,所述腐蚀传感器为电阻式腐蚀传感器。
CN 200910004942 2008-08-07 2009-02-20 控制装置的老化诊断系统 Active CN101644654B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-204630 2008-08-07
JP2008204630 2008-08-07
JP2008204630A JP4599439B2 (ja) 2008-08-07 2008-08-07 制御装置の劣化診断システム

Publications (2)

Publication Number Publication Date
CN101644654A CN101644654A (zh) 2010-02-10
CN101644654B true CN101644654B (zh) 2013-01-23

Family

ID=41656627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910004942 Active CN101644654B (zh) 2008-08-07 2009-02-20 控制装置的老化诊断系统

Country Status (2)

Country Link
JP (1) JP4599439B2 (zh)
CN (1) CN101644654B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107110767A (zh) * 2014-12-26 2017-08-29 株式会社日立制作所 腐蚀环境诊断系统、腐蚀防止系统、腐蚀环境诊断方法以及腐蚀防止方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652853B2 (ja) * 2010-03-31 2015-01-14 日本電気株式会社 被験物質センシング方法、センシング装置、および、センシングセット
JP2012154868A (ja) * 2011-01-28 2012-08-16 Hitachi Ltd 絶縁膜内イオン挙動解析システム
JP2012189356A (ja) * 2011-03-09 2012-10-04 Fuji Electric Co Ltd 寿命推定方法及び寿命推定システム
US9292023B2 (en) * 2012-09-12 2016-03-22 International Business Machines Corporation Decreasing the internal temperature of a computer in response to corrosion
US9400204B2 (en) * 2013-03-13 2016-07-26 Gregory B. Schoenberg Fuel level sensor
TW201447277A (zh) * 2013-06-04 2014-12-16 Biotronik Se & Co Kg 感應單元,電子模組以及計算各電子模組之腐蝕物暴露水準之方法
CN104157121B (zh) * 2014-08-22 2017-01-25 北京机电工程研究所 面向无线数据传输设备的直接健康因子构建方法
JP6524257B2 (ja) * 2015-11-30 2019-06-05 日本郵船株式会社 船体整備支援装置
CN109406384A (zh) * 2018-10-18 2019-03-01 广西丰林木业集团股份有限公司 核心部件疲劳预测方法和装置
WO2020165961A1 (ja) * 2019-02-13 2020-08-20 三菱電機株式会社 電気機器の余寿命診断方法および余寿命診断装置
WO2020255427A1 (ja) 2019-06-18 2020-12-24 三菱電機株式会社 腐食検知センサ、およびそれを備えた電気機器、ならびに腐食検知方法
JP7259815B2 (ja) * 2019-09-19 2023-04-18 Jfeスチール株式会社 腐食量予測方法及び装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208162A (en) * 1990-05-08 1993-05-04 Purafil, Inc. Method and apparatus for monitoring corrosion
CN1771434A (zh) * 2003-05-12 2006-05-10 学校法人日本大学 点焊构造的疲劳寿命预测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126776A (ja) * 1991-11-08 1993-05-21 Hitachi Ltd 高電気絶縁性冷媒用腐食センサ
JP2606506B2 (ja) * 1991-11-19 1997-05-07 ダイキン工業株式会社 空気質検出装置
JP3400362B2 (ja) * 1998-10-20 2003-04-28 株式会社東芝 電子装置の寿命診断方法及び装置
JP3895087B2 (ja) * 2000-02-01 2007-03-22 株式会社東芝 劣化診断方法
JP2002140448A (ja) * 2000-11-01 2002-05-17 Toshiba Corp 劣化診断方法及び診断サーバ並びにプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4184613B2 (ja) * 2001-01-10 2008-11-19 株式会社東芝 劣化診断方法
JP2002304213A (ja) * 2001-04-06 2002-10-18 Kansai Electric Power Co Inc:The 設備劣化率予測システム
JP4400293B2 (ja) * 2004-04-19 2010-01-20 株式会社明電舎 電気機器の絶縁劣化診断方法
JP4745811B2 (ja) * 2005-12-14 2011-08-10 太平洋セメント株式会社 腐食検知部材および腐食センサ
JP4343194B2 (ja) * 2006-06-29 2009-10-14 株式会社東芝 設置環境および設備劣化寿命の診断装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208162A (en) * 1990-05-08 1993-05-04 Purafil, Inc. Method and apparatus for monitoring corrosion
CN1771434A (zh) * 2003-05-12 2006-05-10 学校法人日本大学 点焊构造的疲劳寿命预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2000-131363A 2000.05.12
JP特开2002-207837A 2002.07.26
JP特开平5-126776A 1993.05.21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107110767A (zh) * 2014-12-26 2017-08-29 株式会社日立制作所 腐蚀环境诊断系统、腐蚀防止系统、腐蚀环境诊断方法以及腐蚀防止方法

Also Published As

Publication number Publication date
JP2010038838A (ja) 2010-02-18
JP4599439B2 (ja) 2010-12-15
CN101644654A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
CN101644654B (zh) 控制装置的老化诊断系统
KR100395842B1 (ko) 열화진단방법과 그 장치
CN103176077B (zh) 一种数控成品电路板在环境综合作用下的可靠性快速测评方法
JP4724649B2 (ja) Acmセンサによる構造物の腐食速度推定方法
CN107110767A (zh) 腐蚀环境诊断系统、腐蚀防止系统、腐蚀环境诊断方法以及腐蚀防止方法
CN103048607A (zh) 一种基于给定阀值的数控成品电路板性能退化测评方法
JP6362920B2 (ja) 腐食環境モニタリング装置及び方法
JP4045776B2 (ja) 受配電設備の寿命診断方法
CN106442303A (zh) 一种电子电器服役环境腐蚀性的测量方法
CN112414576A (zh) 一种基于无线传感器网络的工厂环境温度检测系统
CN108802526A (zh) 一种同轴连接器电接触阻抗特性退化规律的建模方法
CN115219831A (zh) 配电变压器绝缘油性能在线监测方法、系统、设备及介质
JP2019163995A (ja) 劣化診断システム、抵抗値推定方法、およびコンピュータープログラム
CN111965099A (zh) 一种大气腐蚀性数据补偿方法、系统、介质及电子设备
CN117216956A (zh) Xlpe电缆的热氧老化模型修正装置、方法及设备
CN101446503A (zh) 修正仪表示值的方法及装置
CN109612919A (zh) 一种用于检测电偶型大气腐蚀传感器的方法
JP3602782B2 (ja) 劣化度測定キットおよびこの劣化度測定キットによる電子回路基板の劣化寿命診断法
CN108984881A (zh) 结合制造工艺及仿真的电子类单机贮存可靠性评估方法
JP7437286B2 (ja) 腐食環境モニタリングシステム及び腐食環境モニタリング方法
CN109612920A (zh) 一种金属构件大气腐蚀监测方法
CN116166924B (zh) 数据处理方法、装置、存储介质及电子设备
JP7195493B1 (ja) 腐食環境診断システム
CN113488279B (zh) 一种环保型控制电缆
JP4501315B2 (ja) 受配電設備の絶縁診断センサおよび余寿命診断方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant