CN101639462A - 靶材的检测方法 - Google Patents

靶材的检测方法 Download PDF

Info

Publication number
CN101639462A
CN101639462A CN200910148985A CN200910148985A CN101639462A CN 101639462 A CN101639462 A CN 101639462A CN 200910148985 A CN200910148985 A CN 200910148985A CN 200910148985 A CN200910148985 A CN 200910148985A CN 101639462 A CN101639462 A CN 101639462A
Authority
CN
China
Prior art keywords
target
ultra
defect detector
detecting targets
sonic defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910148985A
Other languages
English (en)
Other versions
CN101639462B (zh
Inventor
姚力军
潘杰
王学泽
周友平
陈勇军
刘庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Jiangfeng Electronic Material Co Ltd
Original Assignee
Ningbo Jiangfeng Electronic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Jiangfeng Electronic Material Co Ltd filed Critical Ningbo Jiangfeng Electronic Material Co Ltd
Priority to CN2009101489851A priority Critical patent/CN101639462B/zh
Publication of CN101639462A publication Critical patent/CN101639462A/zh
Application granted granted Critical
Publication of CN101639462B publication Critical patent/CN101639462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种靶材的检测方法,包括:提供钎焊后的靶材,所述靶材为铝或铝合金;对所述靶材进行超声波检测,其中,所述超声波的频率为5~15MHz。所述靶材的检测方法无需破坏靶材,同时可以提高焊接质量检测的客观性和可靠性。

Description

靶材的检测方法
技术领域
本发明涉及半导体制造领域,尤其涉及靶材的检测方法。
背景技术
一般,靶材的制作包括将符合溅射性能的靶材与具有一定强度的背板结合。所述背板可以在所述靶材组件装配至溅射基台中起到支撑作用,并具有传导热量的功效。在溅射过程中,由于靶材的工作环境比较恶劣,如果靶材与背板之间的结合度较差,将导致靶材在受热条件下变形、开裂、并与结合的背板相脱落,使得溅射无法达到溅射均匀的效果,同时还可能会对溅射基台造成损伤。
选择一种有效的焊接方式可以使靶材与背板实现可靠结合。一般,对于靶材与背板在熔点等物理性能相接近的产品,例如铝靶材和铜背板、铝靶材和铝背板等,可以采用常规的焊接方式,例如钎焊(SB,Solder Bording),其原理是采用熔点比焊件(靶材和背板)金属低的钎料填充金属,适当加热和加压后,钎料溶化将处于固态的焊件粘接在一起。
对焊接后的靶材进行焊接质量检测是十分必要的。现有对钎焊后的靶材(例如铝靶材)进行检测采用的是拉伸实验(Tensile test),其是通过对靶材试样的抗拉强度的大小来推测产品焊接是否良好的检测手段。这种检测方法是一种破坏性的实验,破坏产品必然会增加成本;并且,这种检测方法具有局限性,因为通过拉伸实验只能检测实验部位的抗拉强度,不能很好地反映整个靶材的焊接情况。
发明内容
本发明解决的问题是提供一种靶材的检测方法,其是无损探伤检测,同时可以提高钎焊质量检测的可靠性和客观性。
为解决上述问题,本发明提供一种靶材的检测方法,包括:
提供钎焊后的靶材,所述靶材为铝或铝合金;
对所述靶材进行超声波检测,其中,所述超声波的频率为5~15MHz。
可选的,所述超声波的频率为10MHz。
可选的,对所述靶材进行超声波检测是用超声波探伤仪对所述靶材进行检测。
可选的,在对所述靶材进行超声波检测前还包括:用超声波探伤仪对所述靶材的标准试样进行检测。
可选的,所述用超声波探伤仪对所述靶材的标准试样进行检测包括:计算所述靶材的标准试样的缺陷率;在计算所得的缺陷率超出预设范围时调整超声波探伤仪的感度。
可选的,所述标准试样的缺陷率的预设范围设定为7~10%和1.6~2.0%,所述超声波探伤仪的感度为17~21dB。
可选的,所述超声波检测是以水为介质。
可选的,所述超声波探伤仪包括发送超声波和接收超声波反射的超声波探头,所述超声波探头伸入水中的深度为6~10mm。
可选的,所述超声波探伤仪还包括对所述超声波进行滤波的过滤器,所述过滤器的频率为5MHz。
可选的,所述超声波探伤仪还包括带动超声波探头进行移动的超声波探头架,所述超声波探头架与靶材顶面的距离为95mm。
与现有技术相比,上述技术方案具有以下优点:无需破坏铝靶材,通过对超声波信号特征和钎焊缺陷特征的分析,可以得到钎焊焊接的缺陷位置、大小和形状评价的定量化直观结果,从而提高了钎焊焊接质量检测的客观性和可靠性,并且减少了钎焊焊接缺陷检测的漏检和误检问题。
附图说明
图1是本发明实施方式靶材的检测方法的基本流程图;
图2是本发明实施例靶材的检测方法的流程图;
图3是本发明实施例的铝靶材的标准试样的电子扫描图;
图4是本发明实施例靶材的检测方法的检测示意图。
具体实施方式
本发明实施方式采用超声波对钎焊后的铝靶材进行检测,超声波检测是一种无损探伤检测,通过对超声波信号特征的分析可以得到钎焊连接质量的缺陷位置、大小和形状等直观结果。
图1是本发明实施方式靶材的检测方法的基本流程图,所述方法包括:
步骤S11,提供钎焊后的靶材,所述靶材为铝或铝合金;
步骤S12,对所述靶材进行超声波检测,其中,所述超声波的频率为5~15MHz。
频率高于20000Hz的声波称为“超声波”,超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。超声波检测是无损检测方法之一,无损检测是在不破坏前提下,检查工件宏观缺陷或测量工件特征的各种技术方法的统称。经发明人研究和分析发现,不同的焊接方式,不同材料的靶材,超声波的穿透能力则不同,因此对应选择的超声波频率也不同,针对钎焊后的铝靶材,确定选择超声波的频率范围在5~15MHz,例如,5MHz、10MHz、15MHz,其中,以10MHz超声波检测的效果较佳。
在步骤S12中,可以使用超声波探伤仪对所述靶材进行检测。超声波探伤仪是运用超声检测的方法来检测的仪器,其原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化。
在实际应用时,为确保超声波探伤仪工作在一个稳定的状态下,在对所述靶材进行检测前,需要先对所述靶材的标准试样进行超声波检测,包括:计算所述靶材的标准试样的缺陷率;在计算所得的缺陷率超出预设范围时调整超声波探伤仪的控制参数,例如感度。
由于超声波在水中的传播距离远,因此超声波检测可以以水为介质,以减少环境因素(例如空气)对检测结果的影响。
图2是本发明实施例靶材的检测方法的流程图,本实施例中,先使用超声波探伤仪对铝靶材的标准试样进行检测,若检测到的缺陷率超出预设范围,则调整超声波探伤仪的控制参数;若检测得到的缺陷率没有超出预设范围,则对钎焊后的铝靶材进行超声波检测。
参考图2,本实施例靶材的检测方法,包括如下步骤:
步骤S21,提供铝靶材的标准试样。
步骤S22,使用超声波探伤仪对所述铝靶材的标准试样进行检测,其中,超声波频率选择为10MHz。
步骤S23,计算超声波探伤仪检测到的所述铝靶材的标准试样的缺陷率。
步骤S24,判断所述计算得到的缺陷率是否超过预设范围,若是则执行步骤S25,若否则执行步骤S26。
步骤S25,调整超声波探伤仪的控制参数,接着执行步骤S22。
步骤S26,提供钎焊后的铝靶材。
步骤S27,使用超声波探伤仪对所述钎焊后的铝靶材进行检测,其中,超声波频率选择为10MHz。
步骤S28,根据超声波检测结果,评估铝靶材焊接表面的焊接质量。
下面结合图3和4对图2所示的各步骤进行详细说明。
步骤S21,提供铝靶材的标准试样。请参考图3,其是一种铝靶材的标准试样30的示意图,其是针对采用钎焊方式焊接的铝靶材可能出现的焊接缺陷而设计的,其中,标准试样31的焊接缺陷31a面积较大,标准试样32的焊接缺陷(点缺陷)32a面积较小。铝靶材的标准试样30与钎焊后的铝靶材具有相同的性能。
步骤S22,使用超声波探伤仪对所述铝靶材的标准试样进行检测,其中,超声波频率选择为10MHz。请参考图4,其是用超声波探伤仪对目标检测物进行检测的示意图。
如图4所示,目标探测物40,即图3所示的铝靶材的标准试样被放置在水中,焊接缺陷面朝上。超声波探伤仪包括超声波探头41、超声波探头架42和控制系统(图中未示出)。超声波探头41用于发送超声波和接收超声波反射,超声波探头架42用于带动超声波探头41移动。本实施例中,超声波探头41伸入水中的深度h1为6~10mm,超声波探头架42距目标探测物40顶面的距离h2为95mm。
考虑到超声波对钎焊后的铝靶材的穿透能力,本实施例中,超声波探伤仪的工作频率选择为10MHz。一般,超声波探伤仪还包括有过滤器,用于对超声波进行滤波,以消除外界噪声干扰,达到更准确的检测结果。本实施例中,针对选择的超声波频率为10MHz,过滤器的频率选择为5MHz。
测试时,超声波探伤仪的控制系统控制移动超声波探头架42,以带动超声波探头41的移动,使得超声波探头41发出的超声波可以在目标探测物40的整个表面上传播,超声波探头移动的步长(包括水平方向和竖直方向移动的距离)可以根据目标探测物40的大小来调节。当超声波遇到异质界面(如焊接缺陷)时,部分声波会被反射并被超声波探头41接收,超声波探伤仪的控制系统会将反射的超声波信号转换为电信号,通过分析所述转换的电信号,可以得到缺陷位置、大小和形状等定量化结果。
步骤S23,计算超声波探伤仪检测到的所述铝靶材的标准试样的缺陷率。其中,缺陷率=缺陷面积/目标探测物面积(%)。具体来说,图4中,标准试样31的缺陷率=缺陷31a的面积/标准试样31的面积(%);标准试样32的缺陷率=缺陷32a的面积/标准试样32的面积(%)。
步骤S24,判断所述计算得到的缺陷率是否超过预设范围,若是则执行步骤S25,若否则执行步骤S26。本实施例中,标准试样31的缺陷率的预设范围设定为7~10%,标准试样32的缺陷率的预设范围设定为1.6~2.0%。若计算得到的标准试样31的缺陷率在7~10%内,并且,计算得到的标准试样32的缺陷率在1.6~2.0%内,说明超声波探伤仪处于稳定的工作状态,则执行步骤S26。否则,则执行步骤S25。
步骤S25,调整超声波探伤仪的控制参数,接着执行步骤S22。超声波探伤仪包括多个可调的控制参数,例如,工作频率、增益控制、衰减控制、步长调节和感度调节等等。经发明人研究和分析发现,针对不同材料的靶材和不同的焊接方式,可以对应设置不同的超声波探伤仪的感度范围,以确保其检测稳定性,感度又称为探伤灵敏度。本实施例中,针对钎焊和铝靶材,将感度控制在17~21dB的范围内,可以提高超声波检测的稳定性,感度可以进行微调。在对感度进行微调后,继续执行步骤S22,再对所述铝靶材的标准试样进行检测并计算缺陷率。
步骤S26,提供钎焊后的铝靶材。所述钎焊后的铝靶材包括铝靶材和与其结合的背板(例如铝背板、铜背板),两者通过钎料粘接在一起。
步骤S27,使用超声波探伤仪对所述钎焊后的铝靶材进行检测,其中,超声波频率选择为10MHz。对所述钎焊后的铝靶材进行检测与步骤S22基本相同,不同的是,图4中的目标探测物40为钎焊后的铝靶材,超声波探头41产生的超声波在铝靶材的焊接表面(例如,铝-铝钎焊层、铝-铜钎焊层)传播,以检测铝靶材的钎焊焊接质量。
步骤S28,根据超声波检测结果,评估铝靶材焊接表面的焊接质量。选用10MHz的超声进行检测,在大面积钎焊焊接及缺陷尺寸较大时检测效果很好,可以直接从超声波探头接收的反射波的高度来判断界面质量;对于细小的缺陷,通过将反射的超声波信号转换为电信号并对其进行分析,可以获取缺陷的位置、大小和形状,从而实现对焊接质量好坏的定性和定量的评估,并且,通过检测能计算出0.00%的缺陷(计算出的缺陷率可以精确到小数点后两位)。
综上所述,上述实施例采用超声波对钎焊后的铝靶材进行焊接质量检测,其无需破坏铝靶材,通过对超声波信号特征和钎焊缺陷特征的分析,可以得到钎焊焊接的缺陷位置、大小和形状评价的定量化直观结果,从而提高了钎焊焊接质量检测的客观性和可靠性,并且减少了钎焊焊接缺陷检测的漏检和误检问题。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

1.一种靶材的检测方法,其特征在于,包括:
提供钎焊后的靶材,所述靶材为铝或铝合金;
对所述靶材进行超声波检测,其中,所述超声波的频率为5~15MHz。
2.如权利要求1所述的靶材的检测方法,其特征在于,所述超声波的频率为10MHz。
3.如权利要求2所述的靶材的检测方法,其特征在于,对所述靶材进行超声波检测是用超声波探伤仪对所述靶材进行检测。
4.如权利要求3所述的靶材的检测方法,其特征在于,在对所述靶材进行超声波检测前还包括:用超声波探伤仪对所述靶材的标准试样进行检测。
5.如权利要求4所述的靶材的检测方法,其特征在于,所述用超声波探伤仪对所述靶材的标准试样进行检测包括:计算所述靶材的标准试样的缺陷率;在计算所得的缺陷率超出预设范围时调整超声波探伤仪的感度。
6.如权利要求5所述的靶材的检测方法,其特征在于,所述标准试样的缺陷率的预设范围设定为7~10%和1.6~2.0%,所述超声波探伤仪的感度为17~21dB。
7.如权利要求3所述的靶材的检测方法,其特征在于,所述超声波检测是以水为介质。
8.如权利要求7所述的靶材的检测方法,其特征在于,所述超声波探伤仪包括发送超声波和接收超声波反射的超声波探头,所述超声波探头伸入水中的深度为6~10mm。
9.如权利要求7所述的靶材的检测方法,其特征在于,所述超声波探伤仪还包括对所述超声波进行滤波的过滤器,所述过滤器的频率为5MHz。
10.如权利要求7所述的靶材的检测方法,其特征在于,所述超声波探伤仪还包括带动超声波探头进行移动的超声波探头架,所述超声波探头架与靶材顶面的距离为95mm。
CN2009101489851A 2009-06-16 2009-06-16 靶材的检测方法 Active CN101639462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101489851A CN101639462B (zh) 2009-06-16 2009-06-16 靶材的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101489851A CN101639462B (zh) 2009-06-16 2009-06-16 靶材的检测方法

Publications (2)

Publication Number Publication Date
CN101639462A true CN101639462A (zh) 2010-02-03
CN101639462B CN101639462B (zh) 2011-12-21

Family

ID=41614549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101489851A Active CN101639462B (zh) 2009-06-16 2009-06-16 靶材的检测方法

Country Status (1)

Country Link
CN (1) CN101639462B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393420A (zh) * 2011-10-25 2012-03-28 宁波江丰电子材料有限公司 铜靶材坯块的检测方法及铜靶材组件的形成方法
CN102980539A (zh) * 2012-11-19 2013-03-20 河北省电力公司电力科学研究院 锅炉受热面管管壁金属层和氧化层厚度的测量方法
CN103792285A (zh) * 2012-11-01 2014-05-14 宁波江丰电子材料有限公司 靶材组件的焊接缺陷率和结合率的检测方法
CN103792286A (zh) * 2012-11-01 2014-05-14 宁波江丰电子材料有限公司 靶材组件的焊接缺陷率和结合率的检测方法
CN115356493A (zh) * 2022-07-14 2022-11-18 深圳模德宝科技有限公司 靶材检测方法、装置、设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744805B1 (fr) * 1996-02-13 1998-03-20 Pechiney Aluminium Cibles de pulverisation cathodique selectionnees par controle ultrasons pour leur faible taux d'emissions de particules
JP3755552B2 (ja) * 1996-07-05 2006-03-15 株式会社日鉱マテリアルズ アルミニウムまたはアルミニウム合金スパッタリングターゲット
CN1223374A (zh) * 1997-11-17 1999-07-21 北京电力科学研究院 小径管焊接接头超声探伤装置及方法
CN100545652C (zh) * 2003-09-30 2009-09-30 北京时代之峰科技有限公司 观察回波幅度曲线的闸门内展宽方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393420A (zh) * 2011-10-25 2012-03-28 宁波江丰电子材料有限公司 铜靶材坯块的检测方法及铜靶材组件的形成方法
CN103792285A (zh) * 2012-11-01 2014-05-14 宁波江丰电子材料有限公司 靶材组件的焊接缺陷率和结合率的检测方法
CN103792286A (zh) * 2012-11-01 2014-05-14 宁波江丰电子材料有限公司 靶材组件的焊接缺陷率和结合率的检测方法
CN102980539A (zh) * 2012-11-19 2013-03-20 河北省电力公司电力科学研究院 锅炉受热面管管壁金属层和氧化层厚度的测量方法
CN115356493A (zh) * 2022-07-14 2022-11-18 深圳模德宝科技有限公司 靶材检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN101639462B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
CN101699278B (zh) 靶材的检测方法
KR101928946B1 (ko) 3차원 매트릭스 위상 어레이 점 용접 검사 시스템
CN101639461B (zh) 靶材的检测方法
KR100815264B1 (ko) 초음파 오스테나이트 용접 이음매 검사방법 및 장치
US9037419B2 (en) Portable matrix phased array spot weld inspection system
JP5800667B2 (ja) 超音波検査方法,超音波探傷方法及び超音波検査装置
CN101639462B (zh) 靶材的检测方法
JP2008209358A (ja) 管体の品質管理方法及び製造方法
JPH11183446A (ja) 溶接部の超音波探傷方法および装置
WO2007116629A1 (ja) 摩擦撹拌接合物の検査方法および検査装置
CN109564197A (zh) 超声波探伤装置、超声波探伤方法、焊接钢管的制造方法、及焊接钢管的品质管理方法
KR20160122165A (ko) 휴대형 매트릭스 위상 배열 어레이 스폿 용접부 감시 시스템
CN105021142A (zh) 一种激光搭接焊缝宽度的测量方法和所用装置
CN112666265A (zh) 用于激光增材连接区水浸超声无损检测工艺制定方法
JP3535417B2 (ja) 超音波による欠陥高さ測定装置及び欠陥高さ測定方法
CN111458415B (zh) 一种超声相控阵换能器与待测工件耦合状态的检测方法
JP2007178186A (ja) 超音波探傷方法及び装置
CN102393420A (zh) 铜靶材坯块的检测方法及铜靶材组件的形成方法
JPH07190995A (ja) 超音波による溶接欠陥検出方法およびその装置
JP3497984B2 (ja) 超音波探傷装置
CN113607812A (zh) 钎焊型铜铝过渡线夹相控阵超声检测试块结构及检测方法
KR100927249B1 (ko) 초음파를 이용한 레이저 용접부의 용입폭 측정방법
JP4614219B2 (ja) レーザ溶接継手の検査方法及び検査装置
JP2011227060A (ja) 電縫管のシーム検出方法及びその装置
SRIVASTAVA et al. Automated ultrasonic immersion through-transmission imaging technique–a novel way to evaluate dissimilar metal joints

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 315400 Zhejiang Province, Yuyao City Yangming science and Technology Industrial Park No. 1 Jiang Feng Lu

Patentee after: NINGBO JIANGFENG ELECTRONIC MATERIAL CO., LTD.

Address before: 315400 Zhejiang Province, Yuyao City Yangming science and Technology Industrial Park No. 1 Jiang Feng Lu

Patentee before: Ningbo Jiangfeng Electronic Materials Co., Ltd.