CN101632328B - 气体冷却的等离子体电弧割炬 - Google Patents

气体冷却的等离子体电弧割炬 Download PDF

Info

Publication number
CN101632328B
CN101632328B CN2008800051561A CN200880005156A CN101632328B CN 101632328 B CN101632328 B CN 101632328B CN 2008800051561 A CN2008800051561 A CN 2008800051561A CN 200880005156 A CN200880005156 A CN 200880005156A CN 101632328 B CN101632328 B CN 101632328B
Authority
CN
China
Prior art keywords
cutting torch
air flow
cooling air
flow passage
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800051561A
Other languages
English (en)
Other versions
CN101632328A (zh
Inventor
N·A·桑德斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hypertherm Inc
Original Assignee
Hypertherm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hypertherm Inc filed Critical Hypertherm Inc
Publication of CN101632328A publication Critical patent/CN101632328A/zh
Application granted granted Critical
Publication of CN101632328B publication Critical patent/CN101632328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3489Means for contact starting

Abstract

一种用于气体冷却的等离子体电弧割炬的方法和装置。割炬部件可包括电极、喷嘴和保护罩,其每一个均可被气体冷却。喷嘴可相对于电极设置并包括基本中空的导热本体以及由设置在本体外表面周围的至少一个翼片界定的冷却气流通道,该本体提供在割炬工作期间在喷嘴和冷却气流通道之间传热的导热路径。保护罩可相对于喷嘴设置并包括基本中空的导热本体以及由设置在本体的外表面周围的至少一个翼片界定的冷却气流通道,该本体提供在割炬工作期间在保护罩和冷却气流通道之间传热的导热路径。

Description

气体冷却的等离子体电弧割炬
发明领域
本发明总体涉及材料切割和等离子体电弧割炬。更具体地,本发明涉及用于提高等离子体电弧割炬的性能和平均寿命以及割炬耐用性的设计和冷却技术。
发明背景
接触起动式等离子体电弧割炬一般不需要割炬在等离子体起弧时接触由割炬切割或焊接的金属工件。接触起动式等离子体割炬可包括“回暴”割炬技术,该技术记载在美国专利No.4,791,268和美国专利No.4,902,871中,其内容全部援引包含于此作为参考。接触起动式等离子体割炬可包括能够在弹簧和与弹簧相反方向的气动力的作用下在割炬本体内轴线移动的电极(例如阴极)。气动力可作用于靠近例如割炬喷嘴的阳极的电极的下表面。在割炬起动期间,电极和阳极之间的区域内的气压可积累至足以克服弹簧作用举起电极的程度,这种分离点燃等离子体电弧。当停止切割且气流终止时,弹簧将电极偏压至与喷嘴接触的位置并密封住喷嘴中的等离子体出口。
使用“前暴”技术的的等离子体电弧割炬也记载在美国专利No.5,994,663,5,897,795和No.5,841,095中,其内容也全部援引包含于此以供参考。所有这些专利都转让给本发明的所有人Hypertherm,Inc.Hanover,NH。
在割炬操作中,割炬消耗品(例如电极、喷嘴和保护罩)暴露于高温。可利用各种技术冷却割炬消耗品,例如利用注水冷却来冷却喷嘴和/或保护罩、在电极中和/或喷嘴周围利用液体冷却或利用通风孔来冷却保护罩,这记载于美国专利No.5,132,512中,其内容也被全部援引包含于此并且该专利被转让给本发明的所有人Hypertherm,Inc.Hanover,NH。
用于改进等离子体电弧割炬的其它领域涉及等离子体电弧割炬的冷却消耗品(例如电极、喷嘴和保护罩)。冷却能力已成为与等离子体电弧割炬相关的先前设计的限制因素。例如,先前设计已要求对工作在高电流水平(例如100或200安培或更多)的割炬使用并非或另行包括气体的冷却介质(例如冷水或液体)。
不幸的是,这些冷却方法中的大多数需要位于割炬外部的冷却系统(例如可包括供水系统、蓄水池、热交换设备、供给泵等)。外部冷却系统会增加相关的设备费用、会需要更多维护、容易受外泄的影响,并且在一些情形下需要丢弃冷却介质。对于较高的电流系统来说,冷却等离子体电弧割炬的问题加剧,这是因为较高电流系统会产生更多热量并具有更大的冷却需要。实际上,可从市场上购得的工作在约100安培以上的等离子体电弧割炬切割系统利用使用液体制冷剂(例如水或乙二醇)的冷却系统。然而,如上所述,这些系统都有与该系统相关的成本和维护的问题。
因此,本发明的一个目的是为等离子体电弧割炬提供一种能够避免这些缺陷的冷却系统、工艺和相关构件。
发明概述
本发明在有效工作而不需要液体冷却的等离子体电弧割炬中使用新的气体冷却割炬消耗品来克服来自先前设计的这些问题。在一些实施例中,气体冷却的等离子体电弧割炬是高电流等离子体电弧割炬。在一个方面,本发明的特征表现为一种等离子体电弧割炬,该割炬具有能够容纳电极的基本中空本体。喷嘴包括本体和设置在本体一端的孔。喷嘴也可包括由设置在本体外表面周围的至少一个翼片界定的冷却气流通道,该本体提供在割炬工作期间在本体和冷却气流通道之间传热的导热路径。
在另一方面,本发明的特征表现为能够保护喷嘴的等离子体电弧割炬的保护罩。该保护罩包括本体和在本体一端的孔。保护罩还可包括由设置在本体外表面周围的至少一个翼片界定的冷却气流通道,该本体提供在割炬工作期间在本体和冷却气流通道之间传热的导热路径。
在又一方面,本发明的特征表现为等离子体电弧割炬的电极。该电极包括狭长的电极本体和设置在电极本体的远端的高热电子发射率材料。该电极还包括在电极本体近端的内部电接触器,该内部电接触器表面被尺寸化为接纳外接径向弹性元件。该电极可包括受外部气体冷却的表面,受外部气体冷却的表面包括由翼片界定的冷却气流通道,该受外部气体冷却的表面设置在内部电接触器表面的相对侧。电极可包括在内部电接触器表面和受气体冷却表面之间的壁厚,该壁厚的尺寸被设计成能在割炬操作期间将足够的热量传给冷却气流通道。
在另一方面,本发明的特征表现为包含割炬本体的等离子体电弧割炬,该割炬本体包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径。等离子体电弧割炬也可包括相对于割炬本体的第一段设置的电极,该电极包括电接触器装置和在割炬工作期间传导来自电极的热量的冷却装置。
在又一方面,本发明的特征表现为一种等离子体电弧割炬系统,该系统包括:割炬本体,所述割炬本体包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径;以及电极,所述电极相对于割炬本体的近端设置。等离子体电弧割炬系统也可包括在割炬本体远端相对于电极设置以界定等离子体腔室的喷嘴。该喷嘴可包括基本中空的导热本体以及通过设置在本体的外表面周围的至少一个翼片界定的冷却气流通道,该本体提供在割炬工作期间在喷嘴和冷却气流通道之间传热的导热路径。等离子体电弧割炬系统还可包括在割炬本体远端相对于喷嘴设置的保护罩。该保护罩可包括基本中空的导热本体以及通过设置在本体的外表面周围的至少一个翼片界定的冷却气流通道,该本体提供在割炬工作期间在保护罩和冷却气流通道之间传热的导热路径。
在另一方面,本发明的特征表现为延长等离子体电弧割炬的寿命的方法。该方法可包括提供割炬本体,该割炬本体包括用于将等离子体气体通过涡流环引至其中形成等离子体电弧的等离子体腔室的等离子气流路径。该方法可包括提供如上所述在割炬本体远端相对于电极安装以界定等离子体腔室的喷嘴。该方法可包括使等离子体电弧电弧割炬工作在至少约100安培的安培数水平。
在又一方面,本发明的特征表现为延长等离子体电弧割炬的寿命的方法。该方法可包括提供一割炬本体,该割炬本体包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径。该方法可包括:提供相对于电极安装在割炬本体远端以界定等离子体腔室的喷嘴,并如上所述在割炬本体的远端与喷嘴呈间隔关系地提供保护罩。该方法还可包括使等离子体电弧割炬工作在至少约100安培的安培数水平下。
在其它示例中,上述任何方面或本文所述的任何装置或方法可包括在下面实施例中记载的一个或多个下列特征。
在一些实施例中,喷嘴的本体包括含至少一个端口的凸缘。该端口可配置成在割炬工作期间使凸缘和冷却气流通道之间的至少一部分冷却气流通过。在一些实施例中,冷却气流通道可包括设置在喷嘴本体的外表面上的螺旋槽。在一些实施例中,冷却气流通道可由一个以上的气源供气。冷却气流通道可包括尺寸设计成在割炬工作期间建立从喷嘴至冷却气流通道的充分热传递的宽、高和长。在一些实施例中,喷嘴的本体可基本上是圆柱形的。
在一些实施例中,保护罩的高度至少为本体直径的一半。在一些实施例中,冷却气流通道包括设置在保护罩本体的外表面上的螺旋槽。在一些实施例中,保护罩还包括含至少一个端口的凸缘,所述端口配置成在割炬工作期间使凸缘和冷却气流通道之间的一部分冷却气流通过。在一些实施例中,冷却气流通道由一个以上的气源提供。在一些实施例中,冷却气流通道包括尺寸设计成在割炬工作期间建立从喷嘴至冷却气流通道的充分热传递的宽、高和长。
在一些实施例中,保护罩可包括中央纵轴线。保护罩的内表面可部分界定保护气流通道。在一些实施例中,保护罩包括偏心于保护罩的中央纵轴线的泄放端口,该端口形成与保护罩气流的涡流运动相反的排出流,由此衰减排出保护罩的排出孔的保护气流的涡流运动。
内部电接触器表面可包括将外接径向弹簧元件保持在至少部分地由内部电接触器表面界定的孔中。在一些实施例中,电极包括尺寸设计成使外接径向弹簧元件居中的内部电接触器表面。内部电接触器表面的直径与内部电接触器表面的长度之比可小于约2/3。在一些实施例中,内部电接触器表面具有不超过内部接触表面的直径的大约三倍的长度。在一个实施例中,该长度将近为0.6-0.8英寸且该直径将近0.3英寸。
在一些实施例中,冷却气流通道包括设置在电极的外表面上的螺旋槽。在一些实施例中,冷却气流通道可由一个以上的气源供气。在一些实施例中,冷却气流通道包括尺寸设计成建立在割炬工作期间可建立从电极至冷却气流通道的充分热传递的压力降的宽、高和长。
在一些实施例中,电极包括内部电接触器表面,该表面通过冷却气流导热地冷却。当安装在割炬时,电极的内部电接触器表面可反作用于外接径向弹簧元件。在一些实施例中,外接径向弹簧元件通过直径压配附连于割炬。在一些实施例中,冷却气流通道被尺寸化为提供足够量的压力降以克服内部电接触器表面和外接径向弹簧元件之间的纵向摩擦阻力。
在一些实施例中,内部电接触器表面包括外接径向弹簧元件,当安装在割炬时,该外接径向弹簧元件反作用于割炬的电接触器表面。在一些实施例中,冷却气流通道被尺寸化为提供足够量的压力降以克服割炬的电接触器表面和外接径向弹簧元件之间的纵向摩擦阻力。该外接径向弹簧元件可通过直径压配附连于内部电接触器表面。
在一些实施例中,一种用于延长等离子体电弧割炬寿命的方法包括:提供割炬本体,该割炬本体包括用于将等离子体气体通过涡流环引至其中形成等离子体电弧的等离子体腔室的等离子气流路径。该方法可包括:提供相对于电极安装在割炬本体远端以界定等离子体腔室的喷嘴,该喷嘴可包括上述任何方面和/或实施例。该方法还可包括使等离子体电弧割炬工作在至少约100安培的安培数水平。
在一些实施例中,一种用于延长等离子体电弧割炬寿命的方法包括:提供割炬本体,该割炬本体包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子气流路径。该方法可包括:提供相对于电极安装在割炬本体远端以界定等离子体腔室的喷嘴并提供保护罩,该保护罩可包括在割炬本体的远端与喷嘴呈间隔关系提供的上述任何方面和/或实施例。该方法还可包括使等离子体电弧割炬工作在至少约100安培的安培数水平。
在一些实施例中,等离子体电弧割炬包括相对于电极在割炬本体的第二端设置以界定等离子体腔室的喷嘴,该喷嘴包括在割炬工作期间传导来自喷嘴的热量的冷却装置。在一些实施例中,等离子体电弧割炬包括相对于喷嘴设置在割炬本体的第二端的保护罩,该保护罩包括在割炬工作期间传导来自喷嘴的热量的冷却装置。
本发明的其它方面和优点可从下面的附图和说明中看出,所有附图仅以示例方式示出本发明的原理。
附图简述
本发明上述优点以及其它优点可通过结合附图参照下面的说明而变得更为易懂。附图不一定以比例绘出,而是通常以突出方式表示以示出本发明的原理。
下面的附图示出气体冷却的等离子体电弧割炬的不同实施例的不同部件。等离子体电弧割炬的不同部件(例如电极、喷嘴、保护罩、割炬本体、涡流环等)可基于割炬中的气流(例如冷却气流、等离子体气流)而设计。例如,喷嘴、保护罩、电极、割炬本体或其任意组合可由冷却气流冷却。等离子体电弧割炬的涡流环可设计成产生涡流状等离子体气流以帮助稳定等离子体电弧或在等离子体腔室或冷却气流通道中产生最佳等离子体气压。下面的附图还示出在等离子体电弧割炬的不同实施例中的冷却气体、驱动气体和/或等离子体气流。附图还示出能够用于受气体冷却的割炬的不同密封组件。
图1是根据示例性实施例的等离子体电弧割炬的剖视图。
图2是根据示例性实施例的冷却气流通道的示意图。
图3是根据另一示例性实施例的等离子体电弧割炬的消耗品的组装的截面图。
图4A是根据一示例性实施例的等离子体电弧割炬的电极的三维示图。
图4B是图4A的电极的横截面图。
图4C是根据一示例性实施例的与外接径向弹簧元件连通的图4A的电极的横截面图。
图5A是根据一示例性实施例的等离子体电弧割炬的三维示图。
图5B是图5A的喷嘴的横截面图。
图6A是根据一示例性实施例的等离子体电弧割炬的保护罩的三维示图。
图6B是图6A的保护罩的横截面图。
图7是根据一示例性实施例的等离子体电弧割炬的喷嘴和保护罩组件的三维示图。
图8A是根据一示例性实施例的等离子体电弧割炬的涡流环的三维示图。
图8B是图8A的涡流环的横截面图。
图9是根据一示例性实施例的等离子体电弧割炬的涡流环的等离子体气流扼流器的截面图。
图10A是根据一示例性实施例的等离子体电弧割炬的涡流环和电极组件的截面图。
图10B是图10A的涡流环和电极组件的另一示图。
图10C是根据一示例性实施例的与等离子体电弧割炬的喷嘴、保护罩和电极连通的图10A的涡流环的示图。
图10D是根据一示例性实施例的图10A的涡流环相对于等离子体电弧割炬的另一示图。
图11A是根据另一示例性实施例的等离子体电弧割炬的涡流环的剖视图。
图11B是图11A的涡流环的横截面图。
图11C是图11A的涡流环显示端口和密封组件的横截面图。
图11D是图11A的涡流环的等轴立体图。
图11E是示出来自图11A-11D的涡流环的气流的示图。
图12A是根据一示例性实施例的等离子体电弧割炬的保持帽的三维示图。
图12B是图12A的保持帽的横截面图。
图13A是根据一示例性实施例的流过等离子体电弧割炬的冷却气体和驱动气体的示意图。
图13B是根据一示例性实施例的图13A的等离子体电弧割炬的等轴立体图。
图13C是根据一示例性实施例的流过等离子体电弧割炬的等离子体气体的示意图。
图14是根据一示例性实施例的涡流环的密封组件的示意图。
图15是根据另一示例性实施例的涡流环的密封组件的示意图。
发明详述
图1是等离子体电弧割炬的剖视图。等离子体电弧割炬100可包括例如割炬本体105、电极110、喷嘴115、保护罩120、涡流环125和保持帽130之类的部件。割炬本体105可包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径。电极110可相对于割炬本体105的近端设置。喷嘴115可相对于电极110设置在割炬本体105的远端,而界定等离子体腔室。保护罩120可相对于喷嘴115设置在割炬本体105的远端。等离子体电弧割炬可包括环形端子135和帽式传感器开关140。
在一些实施例中,割炬头145的最大直径小于约1.2英寸。在一些实施例中,割炬包括半透明的割炬套。帽式传感器开关140可以是指示保持帽130是否已固接于割炬105的本体的安全特征。在一些实施例中,帽式传感器开关140是RoHS(危险物质指示限制)兼容的。在一些实施例中,等离子体电弧割炬100包括连接于割炬本体105的电力环形端子135。当保持帽130已固接于割炬105的本体时,电力环形端子135允许电流流过。
在一些实施例中,主电力连接是螺栓连接于割炬头的环形端子135并且与电极110的电连接是用外接径向弹簧元件150来制成的。外接径向弹簧元件150可以是市场上购得的LOUVERTAC高电流电接触器。在一些实施例中,如之前的接触起动割炬设计那样,主电力连接不轴向移动。等离子体电弧割炬100可以是包括固定的内部割炬本体105的接触起弧等离子体割炬。在一些实施例中,等离子体电弧割炬包括可更换的、固定在位的外接径向弹簧元件150(例如LOUVERTAC电接触器)以及具有弹性回程的气压驱动电极。电极110可相对于固定的外接径向元件150(例如LOUVERTAC接触器)移动,导致每次驱动割炬时外接径向元件150在电极110上的擦拭动作。电极驱动可藉由气体压力来实现,而所述电极回程可藉由固定于割炬本体105的推杆155和弹簧160来实现。当撤去气压时,弹簧160可使电极110返回到喷嘴115上的初始位置。
在一些实施例中,等离子体电弧割炬100是高电流、基本气体冷却的(例如无需液体制冷剂的冷却)的等离子体电弧割炬。等离子体电弧割炬100可以是空气冷却的割炬。气体也可包括多种其它比例的氧气或氮气。在一些实施例中,喷嘴115、保护罩120、电极110、割炬本体105或其任意组合包括由至少一个翼片界定的冷却气流通道165A-165D。在一些实施例中,冷却气流通道165A-165D是由螺旋槽翼片界定的螺旋槽热交换器。保护罩120可包括基本中空的导热本体以及由设置在本体外表面周围的至少一个翼片界定的冷却气流通道165A,该本体提供一导热路径,该导热路径在割炬100工作过程中在保护罩120至冷却气流通道165A之间传热。保护罩120可包括涡流减速通风口(未示出)。喷嘴115可包括基本中空的导热本体和由设置在本体外表面周围的至少一个翼片界定的冷却气流通道165B,该本体提供一导热路径,该导热路径在割炬工作过程中在喷嘴至冷却气流通道之间传热。等离子体电弧割炬100可包括在电极110上的外部冷却气流通道165C附近的内部电接触器表面170(例如电极LOUVERTAC连接器)。割炬本体105可包括至少一个螺旋槽冷却翼片165D和电极回程柱塞155以及弹簧160。
涡流环125也允许割炬中的等离子体气流与冷却/驱动气流的隔离,包括不同的气密技术。还可包括这些气流的外部隔离。涡流环125可绝缘并受保护而不受物理变形的影响。
在一些实施例中,等离子体电弧割炬的“消耗品”部分(例如喷嘴115、保护罩12-、电极110等)通过保持帽130保持在位。保持帽130可具有电绝缘并接触保护罩120的远端部分。在一些实施例中,保持帽130包括接触喷嘴和螺纹部分的电绝缘部分。喷嘴接触部分和螺纹部分可通过电绝缘的衬套部来保持和对齐。保持帽130可包括相对于远端部设置的凸缘175,在该远端部,凸缘175可牢固地将消耗品(例如喷嘴115、保护罩120等)夹紧在割炬本体105上。凸缘175的内表面可设置在喷嘴115和保护罩120组件上的冷却气流通道165A-B(例如螺旋槽流体通道)附近。在一些实施例中,凸缘175的内表面与流过喷嘴115和保护罩120组件中的冷却气流通道165A-B的冷却气体接触。在一些实施例中,在通道165A-B中流动的冷却气体在喷嘴115和/或保护罩120两边产生压力降,使喷嘴115和/或保护罩120冷却。在该实施例中,流过割炬的气体(例如冷却气体)的压力降相对于割炬115和/或保护罩120的冷却气流通道165A-B设置,而之前的设计包括相对于等离子体电弧割炬的保持帽的压力降(例如参见No.6,084,199美国专利,其内容全部援引包含于此并转让给本发明所有人的Hypertherm,Inc.Hanover,NH)。
图2是根据一示例性实施例的冷却气流通道165的示意图。冷却气流通道165可由至少一个翼片180来界定。在一些实施例中,消耗品(例如喷嘴115、保护罩120、电极110或其组合)可包括冷却气流通道165。在一些实施例中,割炬本体也可包括冷却气流通道165。冷却气流通道165可包括尺寸化为在割炬工作期间建立从消耗品至冷却气流通道165的充分传热以防止消耗品出故障的宽度185、高度190和长度195。在该实施例中,冷却气流通道165由翼片180界定并且是螺旋槽热交换器,其中冷却气流通道165的长度195就是螺旋槽的长度。
界定冷却气流通道的翼片180可具有大于宽度185的高度190。在一些实施例中,高度190基本大于一半的宽度185。翼片能引导和/或迫使较多量的气体流入通道并允许较少量的气体流过翼片180。长而且薄的翼片形状可提供有利的传热特性,例如高传热能力。实施例包括相邻翼片之间的距离明显大于翼片的厚度的配置,例如翼片之间的间隔是翼片的厚度的两倍、五倍或更多倍。
在一些实施例中,割炬本体的消耗品包括导热本体200,其中冷却气流通道设置在导热本体200的外表面201周围。导热本体200的外表面201可由翼片180的底部界定。导热本体200可具有足以提供在割炬工作期间将足够的热量从导热本体200传至冷却气流通道165的导热路径的壁厚(未图示),以防止在割炬工作期间消耗品或割炬本体的故障。
冷却气流通道165可配置成在割炬工作期间防止消耗品出故障并延长消耗品的寿命。随着冷却气体流过通道165,气体的速率降低(即通道165入口处的气流速率大于通道165出口处的气流速率)。一般来说,较低的气流速率意味着冷却能力提高,同样,较高的气流速率意味着冷却性能降低。
一种适于减小气流速率的方法是增加气流的压力(即增加消耗品两边的压力降)。在一些实施例中,由于等离子体电弧割炬的不同构件需要不同的最佳压力工作条件,因此可对割炬的不同部分采用一个以上的气源。
在一些实施例中,可对等离子体电弧割炬使用一个气源,限制等离子体电弧割炬的消耗品两边的压力降。例如,喷嘴115和/或保护罩120能够适用于比等离子体腔室内的压力(例如60psig)更高压力的气源(例如120-150psig)。对于仅使用一个气源的实施例,在喷嘴115和/或保护罩120两边获得的压力降会因此受到限制。申请人知道,较低的供气压力导致冷却气体和导热表面之间较低的传热系数(例如相比在例如150psig的较高压力下的气源的1/3的传热系数)。然而,申请人已确定,冷却气流通道165可配置成提供来自消耗品和/或割炬本体的导热壁200的充分传热以防止在割炬工作期间出故障。之前,存在压力降和表面积配置能仅通过气体冷却(例如空气冷却)来防止消耗品在割炬工作期间出故障是不为人知的。
在供气压力被预先确定或不需要被控制或增加的实施例中,冷却气流通道165也可被设计/配置成补偿气流速率的减小,同时对预先确定的气流压力作出补偿。冷却气流通道165可设计成增加与冷却气流接触的表面积,由此补偿较低的传热系数同时仍旧提供消耗品和/或割炬本体的充分冷却以防止在割炬工作期间出故障。在一些实施例中,冷却气流通道165由翼片180界定,所述翼片180是螺旋形的、环绕在导热本体200周围超过360°,它也可延伸以形成螺旋槽。在一些实施例中,例如螺旋槽引导冷却气体在导热本体200周围流动或旋转一次或多次(例如产生非轴向的、与气流相切的分量和/或迫使气体同心地在导热本体200周围流动)。在一些实施例中,气流在导热本体200周围周向地流动。
图3是根据另一示例性实施例的等离子体电弧割炬的消耗品(例如电极110、喷嘴115和保护罩120)的组装的截面图。界定冷却气流通道165A-C的至少一个翼片180A-C可相对于喷嘴115、保护罩120、电极110或其任意组合设置。在一些实施例中,界定冷却气流通道165A-C的至少一个翼片180A-C可以是具有很大传热面积的、可提高冷却喷嘴115、保护罩120、电极110、割炬本体105或其组合的能力的冷却翼片。在一些实施例中,喷嘴115和保护罩120通过绝缘部分210彼此电绝缘,所述绝缘部分210由电绝缘材料构成。
电极110可包括本体215和由设置在本体215外表面上的至少一个翼片180c界定的冷却气流通道165C。电极110可包括适于与外接径向弹簧元件(例如LOUVERTAC电接触器)相互作用的内部电接触表面170。在一些实施例中,冷却气流通道165C由至少一个翼片180C界定,该翼片180C可以是螺旋槽冷却翼片。在一些实施例中,冷却气流通道165C设置在电极本体215的外表面且电接触表面170设置在内表面上,由此实现电接触表面170的直接冷却。在一些实施例中,电极本体215包括圆柱形电极本体,该圆柱形电极本体包括相对于外圆柱表面设置的螺旋槽冷却翼片以及在内圆柱面上的冷却翼片附近的电极电流接触区。
等离子体电弧割炬的喷嘴115可包括由至少一个翼片180B界定的冷却气流通道165B。喷嘴115可以是在其外表面(例如圆柱面)上包括至少一个螺旋槽冷却翼片的螺旋槽喷嘴。在一些实施例中,喷嘴115包括与割炬本体形成电接触并与之对齐的多孔凸缘区216。
保护罩120可相对于等离子体电弧割炬的喷嘴115设置。在一些实施例中,保护罩120是在外表面(例如圆柱面)上包括至少一个螺旋槽冷却翼片的螺旋槽保护罩。在一些实施例中,喷嘴115是螺旋槽喷嘴115而保护罩120是由具有流量计测端口的电绝缘部分210分隔的螺旋槽保护罩。在一些实施例中,在喷嘴115和保护罩120之间不设有绝缘部分210,且调整/设计喷嘴115和保护罩210之间的间隙以使流过冷却气流通道165B的气体流过通道165B并聚集在翼片180B的末梢。流过翼片180B上的气体可在气流中产生涡流,并增强喷嘴115和保护罩120的冷却。在一些实施例中,设置在喷嘴115外表面上并界定冷却气流通道165B的翼片180B面向保护罩120的内表面。在一些实施例中,保护罩120的内表面具有翼片(未示出)或与喷嘴115上的翼片180B交错或面向翼片180B的特征(未示出)。
在一些实施例中,保护罩120包括形成与保护气流的涡流运动相反的排出流的端口217,由此衰减从保护罩120的孔220排出的保护气流的涡流运动。保护罩120上的端口可抵消来自喷嘴115的涡流。端口217(例如通风口)可流过冷却气体(例如保护气体),该冷却气体使喷嘴115冷却并在喷嘴115和保护罩120之间流动。冷却气体可通过沿设置在喷嘴115外表面上的冷却气流通道165B(例如螺旋槽)而流动。这种来自冷却气体的涡流可从喷嘴115和保护罩120带走热量。涡流可通过相对于保护罩120设置的端口217部分地通风。在一些实施例中,保护罩120上的端口217是沿周向偏心的。通过使端口217周向偏心,可减缓冷却气流的涡流分量,使不排出端口的剩余气流(例如非排出流)沿更为轴向的流动路径流动。不排出保护罩120的端口的剩余气流可从形成“同轴”流(例如具有基本轴向流的流、具有最小或不具有涡流的流)的等离子体孔225附近的喷嘴115排出。“同轴流”有益于产生高质量的金属切割。
在一些实施例中,等离子体电弧割炬可包括产生一定量的涡流的涡流环125,该量的涡流产生由排出保护罩120的“同轴”流扩散开的等离子体喷射。涡流环125可包括偏心的端口230和密封件235,它们以要求的涡流速率引导流体。涡流环125能轴向“浮动”,消除了因夹紧力造成的变形的可能性。
流过等离子体电弧割炬的气体可通过一个或多个气源供给。在一些实施例中,等离子体电弧割炬中的消耗品具有可比拟的压力降。等离子体电弧割炬中的消耗品可具有共同的供气压力。例如,在一些实施例中,具有一个气源的等离子体电弧割炬可具有将近60psi的压力降。在其它实施例中,割炬的不同构件可能工作在不同的压力条件下。例如,等离子体电弧割炬具有针对电极的一个气源压力以及针对供给喷嘴115和/或保护罩120的冷却气体的不同气源压力。喷嘴115和/或保护罩120可适用于来自气源的压力降,例如120-150psig,而割炬中的其它消耗品(例如电极110、涡流环125)可适用于来自较低压力的不同气源的压力降(例如60psig)。
等离子体电弧割炬中的消耗品(例如喷嘴115、保护罩120、电极110、涡流环125等)可设计成适用和/或控制在割炬中流动的气体同时也适用于各消耗品两边的压力降。例如,任何一个消耗品可包括冷却气流通道165A-D以使用气流冷却消耗品并防止在割炬工作期间消耗品出故障。保护罩120可包括影响排出等离子体电弧割炬的气体流动的端口。绝缘端口210可设置在保护罩120和喷嘴115之间以通过端口计测气流,从而影响气流的压力。涡流环125可包括用于引导等离子体气流并影响割炬中流动的气体的压力降的端口或计测孔。涡流环125也可包括扼流部分(未示出),这取决于等离子体气体的压力。例如,如果来自气源的等离子体气体压力高于等离子体腔室中所要求的压力水平,则涡流环可包括扼流部分(未示出)以影响涡流环125两边的压力降,从而影响割炬的等离子体腔室中的压力。
图4A-4B是根据一示例性实施例的等离子体电弧割炬的电极110的三维示图。电极110可包括狭长的电极本体215以及设置在电极本体245远端处的高热电子发生率材料(例如电子发射元件)。电极110还包括在电极本体250近端处的内部电接触表面170,该内部电接触表面170的尺寸被设计成接纳外接径向弹簧元件150。电极110也可包括具有由翼片180C界定的冷却气流通道165C的受外部气体冷却的表面,所述受外部气体冷却的表面与内部电接触表面170相对地设置。内部电接触表面170和受气体冷却表面之间的壁厚255可尺寸化以在割炬工作期间将充分的热量传至冷却气流通道165。在一些实施例中,传递充分的热量以防止电极110在割炬工作期间出故障。在一些实施例中,电极110包括由导电材料(例如铜)制成的电极基底。
在一些实施例中,电极110包括电接触表面(例如电极电流接触表面)。电接触表面可以是内部电接触表面170。电接触表面170可设置在电极的内表面上并靠近界定冷却气流通道165C的翼片180C。冷却气流通道165C可设置在电极215的本体的外表面,可通过设置在本体215的外表面上的至少一个翼片180C界定(例如设置在外表面上的螺旋槽冷却翼片)。在一些实施例中,冷却气流通道165C包括设置在电极110的外表面上的螺旋槽。流过冷却气流通道165C的气体可沿朝向电极本体250的近端的方向流动。在一些实施例中,电极110具有圆柱本体且螺旋槽冷却翼片紧挨着内圆柱面上的至少一个冷却翼片设置在外圆柱面上。在一些实施例中,冷却气流通道165可由一个以上的气源供气。
冷却气流通道165C可包括尺寸化以建立足以在割炬工作期间从电极110至冷却气流通道165C充分传热的压力降的宽度、高度和长度。在一些实施例中,内部电接触表面170通过冷却气流导热地冷却。
图4C是接纳外接径向弹簧元件150的图4A-B的电极110的横截面图。电接触表面170可以是用于电接触的界面。可形成电接触表面170以实现轴向滑动电接触。在一些实施例中,电接触可在电极电流接触表面170内自由地轴向移动,同时与电接触表面170形成密切的电接触。电接触可以是外接径向弹簧元件150(例如可从TYCO公司商用购得的LOUVERTAC接触器)。在一些实施例中,内部电接触表面170被尺寸化以使外接径向弹簧元件150居中。内部电接触表面170可包括将外接径向弹簧元件150保持在至少部分地由内部电接触表面170界定的孔中的特征(未示出)。内部电接触表面170的直径与内部电接触表面170的长度之比可小于大约2/3。内部电接触表面170的长度可不超过内部电接触表面170的直径的三倍。在一较佳实施例中,该长度为将近0.6-0.8英寸且该直径为将近0.3英寸。在一些实施例中,电接触表面170可设计和配置成插座(例如形成电接触表面的内圆柱表面至电极)或孔。
在一些实施例中,外接径向弹簧元件150可能需要将近3-6磅的力来使外接径向弹簧元件150在电接触表面170上滑动。在一些实施例中,电极110具有一外径,该外径被尺寸化以在施加气压时产生能够将电极110移动至工作位置的力。在一些实施例中,该力足以克服电接触器150的阻力和回程弹性力。阻力可产生自外接径向弹簧元件150(例如牌号为LOUVERTAC)和割炬本体或内部电接触表面170之间的摩擦力。克服阻力所需的压力可近似为40-80psi。由至少一个翼片180C界定的冷却气流通道165C可设置在内部电接触表面170附近。冷却气流通道165C可设计成冷却内部电接触表面170同时例如在引导起弧过程中克服外接径向弹簧元件150的摩擦阻力并相对于弹簧回程(例如图1的弹簧160回程)平衡阻力。在一些实施例中,外接径向弹簧元件150可附连于割炬本体上的引脚。在一些实施例中,割炬上的引脚可被冷却并经由外接径向弹簧元件150将电流传递给电极110。
在该实施例中,当安装在割炬中时,内部电接触表面170反作用于外接径向弹簧元件150。外接径向弹簧元件150可通过直径压配附连于割炬。在一些实施例中,冷却气流通道165C被尺寸化以提供足以克服内部电接触表面170和外接径向弹簧元件150之间的纵向摩擦阻力的一定量的压力降。
在一些实施例中,内部电接触表面170包括当安装在割炬时反作用于割炬的电接触表面的外接径向弹簧元件。冷却气流通道165C可尺寸化以提供足以克服内部割炬的电接触表面和相对于电极10的外接径向弹簧元件之间纵向摩擦阻力的一定量的压力降。外接径向弹簧元件可通过直径压配附连于内部电接触表面。
图5A是根据一示例性实施例的等离子体电弧割炬的喷嘴115的三维示图。图5B是图5A的喷嘴的横截面图。喷嘴115可由导电材料(例如铜)制成。喷嘴115可具有能够接纳电极(例如图4A-C的电极)的基本中空本体260。喷嘴115可包括本体260、设置在本体一端的孔265以及由设置在本体260外表面周围的至少一个翼片180B界定的冷却气流通道165B。本体260可提供在割炬工作期间在本体260和冷却气流通道165B之间传热的导热路径。在一些实施例中,传递足够的热以防止喷嘴115在割炬工作期间出故障。
在一些实施例中,冷却气流通道165B包括设置在喷嘴115的本体260的外表面上的螺旋槽。在一些实施例中,冷却气流通道165B可由一个以上的气源供气。冷却气流通道165B可包括尺寸化以在割炬工作期间建立从喷嘴115至冷却气流通道165B的充分传热的宽度、高度和长度。
在一些实施例中,喷嘴115可包括远端部分270(例如前部)和近端部分275(例如后部)。孔265可设置在喷嘴的远端部分270的远端(例如前部的前端)。在一些实施例中,喷嘴115包括至少一个翼片180B,翼片180B可以是设置在喷嘴115的远端部分270的外表面上的一个螺旋冷却翼片。
喷嘴115也可包括相对于喷嘴115的近端部分275设置的凸缘280。凸缘280可在表面285,上与割炬本体形成电接触并且还能在表面285’和285”上将喷嘴115对齐于割炬本体。在一些实施例中,凸缘280包括多孔的凸缘区域。喷嘴115的本体260可包括凸缘280,该凸缘280包括在割炬工作期间使凸缘280和冷却气流通道165B之间的至少一部分冷却气流通过的至少一个端口290。在一些实施例中,端口290(例如穿孔)将冷却气体(例如空气)从割炬本体引至喷嘴115的远端部分270。
在一些实施例中,喷嘴115的本体260基本为圆柱形(例如圆柱本体)且螺旋槽冷却翼片被设置在外圆柱面上。在一些实施例中,螺旋槽冷却翼片被配置成延伸过冷却表面同时保持槽的通道中的高速流动,提高喷嘴的冷却。冷却气体的高速流动能产生相对高的传热系数,这增进了冷却。
延长等离子体电弧割炬的寿命的方法可包括:提供一割炬本体105,该割炬本体105包括将等离子体气体通过涡流环125引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径;提供相对于电极(例如图4A-4C所示的电极)安装在割炬本体105的远端以界定等离子体腔室的喷嘴115(例如图1、3和5A-B所示的喷嘴)并使等离子体电弧割炬工作在至少约100安培的安培数水平下。
图6A是根据一示例性实施例的等离子体电弧割炬的保护罩120的三维示图。图6B是图6A的保护罩120的横截面图。保护罩120能够保护喷嘴并包括本体290和设置在本体290端部处的孔295。保护罩120可包括由设置在本体290的外表面周围的至少一个翼片180A界定的冷却气流通道165A,本体290提供在割炬工作期间在本体290和冷却气流通道165A之间传热的导热路径。在一些实施例中,传递足够的热量以防止保护罩120在割炬工作期间出故障。
保护罩120可由导电材料(例如铜)制成。在一些实施例中,保护罩120的高度295为本体290的直径300的至少一半。
冷却气流通道165A可包括尺寸化以在割炬工作期间建立从保护罩120至冷却气流通道165A充分传热的宽度、高度和长度。在一些实施例中,冷却气流通道165A可由一个以上的气源提供。在一些实施例中,冷却气流通道165A包括设置在本体290外表面上的螺旋槽。在一些实施例中,保护罩120包括设置在本体290外表面上的至少一个螺旋槽冷却翼片。在一些实施例中,保护罩120基本呈圆柱形并在其外圆柱面上包括至少一个螺旋槽冷却翼片。
保护罩120也可包括含至少一个端口310的凸缘305,所述端口310配置成在割炬工作期间使在凸缘305和冷却气流通道165A之间流动的冷却气流的至少一部分通过。端口310可将冷却气体(例如空气)提供给保护罩120。在一些实施例中,端口310连接于割炬本体中的冷却气体增压区域。
保护罩120还包括使从喷嘴流出的冷却气体偏流的端口315,所述喷嘴可位于和/或配置成使从喷嘴流出的冷却气体相对于从喷嘴的小孔排出的等离子体气流呈更为同轴的流。端口315(例如泄放端口)可相对于保护罩120的远端320设置。保护罩120可包括中央纵轴线325(例如中心线)且保护罩120的内表面可至少部分地界定保护罩气流通道和/或保护罩增压区330。保护罩120可包括偏心于保护罩120的中央纵轴线325的泄放端口315,该泄放端口315形成与保护罩气流的涡流运动相反的排出流,由此衰减从保护罩120的排出孔295排出的保护罩气流的涡流运动。偏心的端口315可形成漩涡气流,该漩涡气流与从喷嘴115的冷却气流通道165B(例如至少一个螺旋槽冷却翼片)排出并流入保护罩增压区330的冷却气体的涡流分量相反。衰减来自喷嘴115的冷却气流的涡流分量将导致使来自喷嘴115的冷却流相对于从喷嘴265的小孔排出的等离子体气体更具同轴性。通过显著地衰减来自喷嘴115的冷却气流的涡流分量,保护罩中的端口315可提高等离子体电弧割炬的切割质量。
一种延长等离子体电弧割炬的寿命的方法可包括:提供一割炬本体,该割炬本体包括将等离子体气体引导至其中形成有等离子体电弧的等离子体腔室的等离子体气流路径;以及提供一喷嘴(例如上面图5A-B所示的喷嘴),该喷嘴相对于电极(例如上面图4A-C所示的电极)安装在割炬本体的远端以界定等离子体腔室。该方法还可包括在割炬本体的远端与喷嘴呈间隔关系地提供保护罩120(例如图6A-B所示)并使等离子体电弧割炬工作在至少约100安培的安培数水平下。
图7是根据一示例性实施例的等离子体电弧割炬的喷嘴和保护罩组件的三维示图。喷嘴可以是图5A和5B所示的喷嘴115且保护罩可以是图6A和6B所示的保护罩120。在一些实施例中,保护罩120组装在绝缘衬套210上,绝缘衬套210组装在喷嘴115上。绝缘衬套210与来自喷嘴115的冷却气体的气体端口电绝缘。绝缘衬套210可具有连接于割炬本体中的冷却气体增压区的端口335。在一些实施例中,保护罩120具有连接于割炬本体中相同或不同的冷却气体增压区的端口310。冷却气体可流过端口进入喷嘴115和保护罩120,冷却气流通道165A-B。在一些实施例中,喷嘴115或保护罩120上的冷却气流通道是螺旋冷却槽。
在一些实施例中,喷嘴115和保护罩120组件产生从喷嘴孔265排出的基本同轴的同轴流体。在一些实施例中,一部分来自喷嘴115的冷却气流340通过保护罩120中的端口315(例如偏心的迂回孔或端口)排出保护罩增压区。来自喷嘴115的剩余冷却气流345和来自喷嘴265的小孔的等离子体气流350可以基本同轴的方式从割炬排出。
图8A是根据一示例性实施例的等离子体电弧割炬的涡流环125的三维示图。图8B是图8A的涡流环的横截面图。涡流环125可包括密封组件355(例如密封O形环区域)并且还可包括端口360(例如偏心的涡流孔)。在一些实施例中,端口360产生有助于稳定等离子体电弧的涡流式等离子体气流。端口360可相对于涡流环365的纵轴线和/或其它消耗品(例如电极、保护罩、喷嘴等)的纵轴线偏心且其尺寸化为产生一定量和/或方向的涡流,该量和/或方向的涡流产生由喷嘴冷却流的“同轴”流扩散开的等离子体喷射。
涡流环125也可包括密封组件355(例如气封),该密封组件355允许涡流环轴向“浮动”,这能显著地消除因夹紧力引起变形的可能性。在一些实施例中,涡流环125密封以使进入端口360的流体或者经过相对于电极110设置的冷却气流通道165B-C或经过喷嘴孔265。密封组件355可设置在涡流环125的远端部分。在一些实施例中,密封组件355包括将涡流环125密封于喷嘴115的O形环。在一些实施例中,密封组件355可通过将涡流环125密封于割炬本体105的O形环设置在近端。涡流环125可沿轴向自由移动,由此避免因夹紧力造成的变形。
图9是根据一示例性实施例的等离子体电弧割炬的涡流环125’的等离子体气流扼流器的截面图。涡流环125’可包括本体370和等离子体气流扼流器375。在一些实施例中,扼流器275具有凹口(未示出)和至少一个端口(未示出)以计量等离子体气体的流量。在一些实施例中,等离子体气流扼流器375包括密封组件355(例如O形环)和扼流管部380。密封组件355可形成相对于涡流环本体370内壁的气体密封。
涡流环本体370还可包括密封组件355和端口360(例如偏心的涡流孔)。端口360可形成帮助等离子体电弧的涡流等离子体气流。端口360的直径可尺寸化并相对于涡流环125’的纵轴线365和/或其它消耗品(例如电极、保护罩、喷嘴等)的纵轴线偏心,从而产生具有一定量的涡流式等离子体气流,该量的涡流式等离子体气流产生由来自喷嘴的冷却气流的“同轴”流扩散开的等离子体喷射。
图10A是根据一示例性实施例的等离子体电弧割炬的涡流环和电极组件的截面图。图10B是图10A的涡流环和电极组件的另一示图。电极可以是图6A和6B所示的电极110。在图10C和10D中示出涡流环125’与其它割炬消耗部件和割炬本体的关系。涡流环本体370可以是气密的以使进入端口(例如涡流孔)的等离子体气流能分成两条流动路径。
在一些实施例中,来自电极385的冷却气流流过相对于电极110设置的冷却气流通道165C。冷却气流通道165C可由至少一个翼片180C界定并且可以是螺旋槽。涡流式等离子体气流390可流过电极110和涡流环125’的等离子体气流扼流器375的扼流管部分380之间的扼流环形间隙395。在一些实施例中,等离子体气流扼流器375可包括想要的特征(未示出)。如图10D所示,在一些实施例中,涡流环125不包括扼流部分。
在一些实施例中,涡流环125’通过涡流环125’远端部分395处的密封组件355(例如密封环)与密封组件355(例如O形环)气密密封。涡流环125’也可通过密封组件355(例如O形环)在涡流环125’的近端400与割炬本体105密封。涡流环125’可沿轴向自由移动,从本质上避免因夹紧力造成的变形。在一些实施例中,涡流环125’包括扼流器375,其导致由等离子体气流390经历的压力差。
在一些实施例中,由至少一个翼片界定的冷却气流通道165A-D(例如螺旋槽热交换器)可设置在保护罩120、喷嘴115、电极110、割炬本体105或其任何组合上。在一些实施例中,在冷却气流通道165A-D(例如热交换器)中流动的冷却气体可与周围压力通风。为得到经过冷却气流通道165A-D的合需流体,必需将上游压力设定在适当较高的水平以驱动流体。在一些实施例中,上游压力已被限制在确定使等离子体电弧处于最佳工作状态的值。例如,典型等离子体腔室压力可在40-70psig的范围内。40-70psig的上游压力将导致电极110的次优冷却流体通道设计,这将导致冷却气流通道165C两边相对高的体积流量和低压力降。为了提高冷却气流通道165C的性能,可使用大表面积,这可能需要较低的流量和较高的压力降。本技术通过改变等离子体气体工作压力和热交换器的上游压力之间的关系而解决了这个问题。
可迫使等离子体气流390流过限流扼流区域或间隙395。该间隙或区域395可形成在电极110和涡流环125’的管部分380(例如由管部分直径405界定)的内表面之间。涡流环125’的管部分380可包括相对于涡流环的近端部分设置的入口410以及相对于涡流环的远端部分设置的出口415,在一些实施例中,扼流区域或间隙395造成从入口410至等离子体气流扼流器375的管部分380的出口415的压力降。出口415可直接耦合于等离子体腔室420。通过适当地调整涡流环125’的管部分380的直径和长度,可在等离子体腔室420中获得最佳等离子体气体压力,并同时允许冷却气流通道165C上游压力获得高压。
通过示例,对于工作在200安培的等离子体切割喷嘴的实施例,典型等离子体气流速率可大约为60标准立方英尺/小时,而等离子体腔室420中的典型工作压力大约为60psig。在一些实施例中,对于0.268”直径和0.002”间隙的电极110,工作压力降大约为40psig,允许上游压力工作在100psig下。
图11A-D是根据一示例性实施例的等离子体电弧割炬的涡流环的不同示图。图11E是示出来自图11A-D的涡流环的气流的图。在本实施例中,等离子体气流425通过涡流环125’的高压侧中的多个径向端口430(例如径向孔)进入涡流环125’。在一些实施例中,端口430的数目和端口430的直径很大以使端口430两侧的压力降很小。在一些实施例中,端口430不是偏心的并且不导致涡流。
在一些实施例中,移动电极(例如回暴式)等离子体割炬的涡流环125’包括压力降限制区域。该限制区域可产生一定流量和压力的气流以适当地优化等离子体工作,同时产生有效地实现热传递功能所需的合适(或更高)流量和压力降的气流。流体限制部分也可在等离子体气流中产生涡流分量。涡流环125,可包括允许涡流环125’轴向“浮动“的气密,由此显著减小因夹紧力造成的变形。
在一些实施例中,涡流环125’包括扼流端口435(例如扼流孔)。可迫使等离子体气流440流过端口435的限流扼流横截面积。扼流端口435使气压从入口435A下降至出口435B。在一些实施例中,孔出口435B直接暴露于并排放至等离子体腔室420。通过适当地调整限流扼流孔435的直径和长度,可在等离子体腔室420中获得优化等离子体气压,同时为冷却气流通道165C(例如螺旋槽热交换器)的上游压力获得高压。可确定端口435’的尺寸并使其具有某一直径和偏心位置,从而产生一定量的涡流,该涡流产生由喷嘴冷却流的“同轴”流扩散开的等离子体喷射。可通过使端口430相对消耗品部件445的共同中轴向倾斜某一角度而将涡流给予等离子体气体。可通过调整倾斜端口的角度而获得合适量的涡流。
为了将等离子体气流440约束于端口435并减缓流过电极110和涡流环125’的管部分的内表面之间的环形间隙的流体,可在涡流环125的等离子体气流扼流器375’的管部分380’的内部形成一连串小凹槽450。尽管在电极110和管部分380’的内表面之间存在间隙,这些凹槽450造成如此大的压力降以至于流过间隙的流体小至可以忽略。这种类型的流体密封件有时被称为“迷宫式”密封件。涡流环本体和等离子体气流扼流元件375’可以是独立的单件或是一个整体部分,例如整件。
在一些实施例中,同一气源提供等离子体气体和用于冷却和电极驱动的气体。涡流环125’可将电极110’驱动的高压和割炬冷却功能的高压所需的功能与“等离子体腔室”420中的较低等离子体气压分开。等离子体腔室420是直接处于电极110端部的电子发射元件和喷嘴孔225之间的区域,并由电极110和喷嘴115界定。该区域中的压力大约为40-70psig以在切割工艺中正确发挥等离子体电弧的作用。通过在该等离子体腔室420和涡流环125中的高压区之间添加降压密封,等离子体腔室420’中的压力可大约为40-70psig,同时涡流环125’的高压区中的压力可远高于此,通常为70-120psig。涡流环125’流体入口区中的高压允许电极110快速可靠的驱动或移动或允许冷却气流通道165A-D(例如螺旋槽热交换器)较高压运作,这能设置成穿过通过割炬(由此增进冷却性能)。驱动和等离子体气流可由上述压力降功能而分开。
图12A是根据一示例性实施例的等离子体电弧割炬的保持帽130的三维示图。图12B是图12A的保持帽130的横截面图。保持帽130可包括远端部分455(例如前端电绝缘部分)、衬套部分460和螺纹部分465。
衬套部分460可由能够承受相对高温的电绝缘材料制成。在一些实施例中,衬套部分460由缠绕纤维的复合材料构成,例如可从Coastal Composites公司商业购得的那些材料。
远端部分455可电绝缘并用作电绝缘的喷嘴接触部分。在一些实施例中,电绝缘部分和螺纹部分465由间隙470分开。喷嘴接触部分和螺纹部分465可由电绝缘衬套部分460保持在位并对齐。在一些实施例中,电绝缘部分455和螺纹部分465可压入衬套部分460。电绝缘部分455夹紧在喷嘴115和保护罩120上,并将整组消耗品保持在割炬本体105。
图13A是根据一示例性实施例的流过等离子体电弧割炬的冷却气体和驱动气体的示意图。在一些实施例中,割炬本体105通过附加由位于割炬内本体上的至少一个翼片180D界定的冷却气流通道165D而从内部冷却。割炬100中的附加的冷却气体路径可将冷却气体提供给位于割炬100其它区域内的其它冷却气流通道165A-C(例如螺旋槽热交换器)。冷却气流通道165A-D可相对于喷嘴115、保护罩120、电极110或其任何组合设置。在该实施例中,冷却路径的一个支路将冷却气体传至割炬本体105的割炬本体冷却气流通道165D(例如螺旋槽热交换器)。另一冷却气体路径将冷却气体传至喷嘴115的保护罩冷却气流通道165A(例如螺旋槽热交换器)。另一冷却气体路径将冷却气体传至喷嘴115的喷嘴冷却气流通道165B(侧的螺旋槽热交换器)。等离子体电弧割炬100也可包括:主体105,相对于割炬本体设置的绝缘体490,喷嘴,保护罩绝缘体,包括夹紧部件、螺纹部件、绝缘部件、功率引线和控制引线的保持帽。
冷却气流可经由冷却气体管道进入割炬100并在进入割炬100后分成两路。一部分冷却气体流至割炬本体105而第二部分流至喷嘴115和其它消耗品。一旦到达喷嘴115,流体即分流,且第一部分可通过涡流环125流至等离子体腔室420和电极110而第二部分流入喷嘴115和保护罩120组件。通过将流体分入多个平行的冷却路径,输入的冷却气体进入冷却气流通道165A-D,这些通道以较低温度设置在任何一个消耗品上(准备吸取热量)。可能要求使等离子体割炬100工作以使流过遍及割炬100设置的冷却气流通道165A-D的冷却气体足以传递最大量的热并将割炬100工作温度限制在安全范围内。
在一些实施例中,等离子体气体通过将冷却气体和驱动气体475经由两分离的气体路径连接于割炬而与冷却气体和驱动气体475分离。在一些实施例中,等离子体电弧割炬包括等离子体气体提供源以及分离的冷却和驱动气体提供源。在一些实施例中,一条气体路径以切割工艺所需的流量和压力将等离子体气体提供给等离子体腔室。等离子体气体腔室内的压力可工作在40-70psig之间。在一些实施例中,另一气体路径可将冷却气体提供给冷却气流通道165A-D(例如热交换器)并提供用于使接触起动(例如回暴)电极移动的驱动气体。例如,冷却和驱动气体路径480将冷却和驱动气体475提供给割炬100的若干区域。在一个流体路径中,冷却和驱动气体475可流入涡流环125的高压区485。这种气体的压力和流量可足以冷却电极110并移动或驱动电极110至其工作位置(电极图示为在其工作位置)。
电极110的冷却可通过使冷却气体流过螺旋冷却槽165C并流出割炬通孔480B而完成。驱动电极110并使其移至其工作位置的压力是由复位弹簧160的减速力确定的,该减速力通过柱塞155反作用于电极并克服由外接径向弹簧元件150(例如LOUVERTAC电接触器)引起的阻力(纵向摩擦力)。用于正确驱动和冷却的典型压力可在70-120psig的范围内。
等离子体气体可通过气体分离部件与冷却和/或驱动气体分开。等离子体腔室可通过涡流环125的密封组件355与冷却和驱动气体密封隔开。在一些实施例中,密封组件355是“迷宫式密封件”、O形环密封件或其任意组合。在一些实施例中,密封组件355包括迷宫式密封部分,该部分包括形成在密封部件内表面上的数个凹槽。在电极110和凹槽之间可存在间隙,这能够产生足够大的压力降同时将允许经过间隙的气流减少至小到可以忽略的量。这种类型的流体密封件有时被称为“迷宫式”密封件。
在图13A所示实施例中,冷却和驱动气流475在入口(未示出)进入流体路径480。图13B是图13A的等离子体电弧割炬的等轴立体图,其示出气流的进入孔和流出孔。电极110的冷却可通过使冷却气流流过冷却气流通道160C(例如螺旋式冷却槽)并通过孔480B流出割炬来完成。割炬本体105的冷却可通过使冷却气流流过冷却气流通道165D(例如螺旋式冷却槽)并通过孔480A流出割炬来完成。保护罩120的冷却可通过允许冷却气流经过冷却气流通道165A(例如螺旋式冷却槽)并通过保护罩120和保持帽130的夹紧部分之间的冷却气流通道165A的端部处的间隙480C流出割炬来完成。喷嘴115的冷却可通过允许冷却气流经过冷却气流通道165B(例如螺旋式冷却槽)并通过喷嘴115和保护罩120之间的环形间隙480D流出割炬来完成。
图13C是根据一示例性实施例的流过等离子体电弧割炬的等离子体气体的示意图。等离子体气体495可通过入口(未示出)进入流体路径500并流至主体105中的增压区500A,增压区500A可连接于喷嘴115中的增压区500B,并随后流过涡流环125中的涡流端口500C并流到等离子体气体腔室420上。在割炬工作期间,等离子体气体腔室420中的压力可保持在将近40-70psig。在一些实施例中,涡流端口500C偏心于割炬的中心线以将涡流分量给予等离子体气体。涡流量可基于具体切割工艺的要求来确定。等离子体气体通过喷嘴孔265排出等离子体气体腔室。
此外,在本文中描述和示意地示出于图13A-C中的割炬设计方案可使用上述其它特征和概念,包括使用外接径向弹簧元件150(例如移动LOUVERTAC电接触器)、相对于喷嘴115设置的冷却气流通道165A-D、割炬本体105、电极110和/或保护罩120。该割炬设计方案也可包括使用相对于保护罩设置的电绝缘前端保持帽130和涡流减速通风端口315。
图14是根据一示例性实施例的涡流环125的密封组件355’的示意图。在一些实施例中,涡流环包括充当涡流环125的气密封件的密封组件355’。密封组件355’可以是“迷宫式密封件”。在该实施例中,电极110不接触涡流环125的密封组件355’(例如密封部件)。可通过每个凹槽450’中的气体膨胀来形成密封。增加凹槽450’的数目会导致较大的压力降和气流减少。
图15是根据另一示例性实施例的涡流环125的密封组件355”的示意图。在一些实施例中,涡流环125包括可充当涡流环125的气密部件的密封组件355”。该密封组件355”可以是O形环。在本实施例中,O形环从低压侧密封住高压侧。由于O形环与电极110接触,因此当O形环移动时有额外的阻力施加于电极110。为了正确工作,必需在设计割炬时将该阻力的补偿考虑在内。
尽管已结合特定实施例具体示出和描述了本发明,然而要理解可在形式和细节上作出各种变化而不脱离本发明如所附权利要求书所定义的精神和范围。

Claims (34)

1.一种气体冷却的等离子体电弧割炬的喷嘴,所述喷嘴包括:
基本中空的导热本体,所述本体构造成容纳电极;
设置在所述本体一端的等离子体排出孔;以及
由设置在本体的外表面周围的一个或多个翼片界定的冷却气流通道,所述冷却气流通道被构造成能够引导大部分冷却气体在所述冷却气流通道的所述一个或多个翼片的相对表面之间流动,由此使较少量的冷却气体流过所述翼片,所述本体提供在割炬工作期间从本体到冷却气流通道传热的导热路径,所述一个或多个翼片具有高度和宽度,所述一个或多个翼片的相对表面的高度大于相对表面之间的通道的宽度的一半。
2.如权利要求1所述的喷嘴,其特征在于,所述喷嘴的本体包括含至少一个端口的凸缘,所述端口被配置成在割炬工作期间使所述凸缘和冷却气流通道之间的冷却气流的至少一部分通过。
3.如权利要求1所述的喷嘴,其特征在于,所述冷却气流通道包括设置在所述喷嘴的本体的外表面上的螺旋槽。
4.如权利要求1所述的喷嘴,其特征在于,所述冷却气流通道由一个以上气源供气。
5.如权利要求1所述的喷嘴,其特征在于,所述冷却气流通道包括尺寸设计成在割炬工作期间建立从喷嘴至冷却气流通道的充分热传递以防喷嘴过早出现故障的所述宽度、高度和长度。
6.如权利要求1所述的喷嘴,其特征在于,所述本体基本呈圆柱形。
7.如权利要求1所述的喷嘴,其特征在于,每个翼片的所述高度大于所述宽度。
8.一种气体冷却的等离子体电弧割炬的保护罩,所述保护罩包括:
基本中空的导热本体,所述本体构造成保护喷嘴;
设置在所述本体一端的冷却气体排出孔;以及
由设置在本体的外表面周围的一个或多个翼片界定的冷却气流通道,所述冷却气流通道被构造成能够引导大部分冷却气体在所述冷却气流通道的所述一个或多个翼片的相对表面之间流动,由此使较少量的冷却气体流过翼片,所述本体提供在割炬工作期间从本体到冷却气流通道传热的导热路径,所述一个或多个翼片具有高度和宽度,所述一个或多个翼片的相对表面的高度大于相对表面之间的通道的宽度的一半。
9.如权利要求8所述的保护罩,其特征在于,所述保护罩的高度为本体直径的至少一半。
10.如权利要求8所述的保护罩,其特征在于,所述冷却气流通道包括设置在所述本体外表面上的螺旋槽。
11.如权利要求8所述的保护罩,其特征在于,还包括含至少一个端口的凸缘,所述端口被配置成在割炬工作期间使所述凸缘和冷却气流通道之间流过的冷却气流的至少一部分通过。
12.如权利要求8所述的保护罩,其特征在于,所述冷却气流通道由一个以上气源供气。
13.如权利要求8所述的保护罩,其特征在于,所述冷却气流通道包括尺寸设计成在割炬工作期间建立从保护罩至冷却气流通道的充分热传递的所述宽度、高度和长度。
14.如权利要求8所述的保护罩,其特征在于,还包括:
中央纵轴线;
部分界定保护罩气流通道的保护罩内表面;以及
偏心于所述保护罩的中央纵轴线的泄放端口,所述泄放端口形成与所述保护罩气流的涡流运动相反的排出流,从而衰减从保护罩的排出孔排出的保护罩气流的涡流运动。
15.如权利要求8所述的保护罩,其特征在于,每个翼片的所述高度大于所述宽度。
16.一种用于气体冷却的等离子体电弧割炬的电极,包括:
基本圆柱形狭长的电极本体;
设置在所述电极本体的远端的高热电子发射材料;
位于所述电极本体的近端处的内部电接触表面,所述内部电接触表面的尺寸设计成能接纳外接径向弹簧元件;
包括由一个或多个翼片界定的冷却气流通道的外部气体冷却表面,所述冷却气流通道被构造成能够引导大部分冷却气体在所述冷却气流通道的所述一个或多个翼片的相对表面之间流动,所述外部气体冷却表面与所述内部电接触表面相对地设置,所述一个或多个翼片具有高度和宽度,所述一个或多个翼片的相对表面的高度大于相对表面之间的通道的宽度的一半;以及
所述内部电接触表面和气体冷却表面之间的壁厚尺寸设计成提供在所述割炬的工作期间传递足够的热量至所述冷却气流通道的导热路径,以防电极过早出现故障。
17.如权利要求16所述的电极,其特征在于,所述内部电接触表面尺寸设定成使外接径向弹簧元件居中。
18.如权利要求16所述的电极,其特征在于,所述内部电接触表面包括将所述外接径向弹簧元件保持在至少部分地由所述内部电接触表面界定的孔中的特征。
19.如权利要求16所述的电极,其特征在于,所述内部电接触表面的直径与所述内部电接触表面的长度之比小于约2/3。
20.如权利要求16所述的电极,其特征在于,所述内部电接触表面具有不超过所述内部电接触表面大约三倍直径的长度。
21.如权利要求16所述的电极,其特征在于,所述冷却气流通道包括设置在电极外表面上的螺旋槽。
22.如权利要求16所述的电极,其特征在于,所述冷却气流通道可由一个以上的气源提供。
23.如权利要求16所述的电极,其特征在于,所述冷却气流通道包括尺寸设计成在割炬工作期间建立导致从电极至冷却气流通道的充分热传递的压力降的所述宽度、高度和长度。
24.如权利要求16所述的电极,其特征在于,所述内部电接触表面由冷却气流导热地冷却。
25.如权利要求16所述的电极,其特征在于,所述内部电接触表面当安装于割炬时反作用于外接径向弹簧元件。
26.如权利要求25所述的电极,其特征在于,所述外接径向弹簧元件通过直径压配附连于割炬。
27.如权利要求25所述的电极,其特征在于,所述冷却气流通道被尺寸化为提供足以克服内部电接触表面和外接径向弹簧元件之间的纵向摩擦阻力的一定量的压力降。
28.如权利要求16所述的电极,其特征在于,所述内部电接触表面包括外接径向弹簧元件,当所述弹簧元件安装于割炬时,其反作用于割炬的电接触表面。
29.如权利要求28所述的电极,其特征在于,所述冷却气流通道被尺寸化为提供足以克服割炬的电接触表面和外接径向弹簧元件之间的纵向摩擦阻力的一定量的压力降。
30.如权利要求28所述的电极,其特征在于,所述外接径向弹簧元件通过直径压配附连于所述内部电接触表面。
31.如权利要求16所述的电极,其特征在于,每个翼片的所述高度大于所述宽度。
32.一种延长气体冷却的等离子体电弧割炬的寿命的方法,包括:
提供一割炬本体,所述割炬本体包括用于将等离子体气体通过涡流环引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径;
提供在割炬本体的远端相对于电极安装的权利要求1所述的喷嘴,以界定等离子体腔室;
使第二气体流过所述喷嘴的外部气体通道以冷却喷嘴,这样所述第二气体沿所述通道流动;以及
使所述等离子体电弧割炬工作在至少约100安培的安培数水平下。
33.一种延长气体冷却的等离子体电弧割炬的寿命的方法,包括:
提供一割炬本体,所述割炬本体包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径;
提供相对于电极安装在割炬本体的远端以界定等离子体腔室的喷嘴;
在所述割炬本体的远端以与喷嘴呈间隔关系地提供权利要求8的保护罩;
使第二气体流过所述保护罩的外部气体通道以冷却所述保护罩,这样第二气体沿所述通道流动;以及
使所述等离子体电弧割炬工作在至少约100安培的安培数水平下。
34.一种气体冷却的等离子体割炬系统,包括:
割炬本体,所述割炬本体包括用于将等离子体气体引至其中形成等离子体电弧的等离子体腔室的等离子体气流路径;
相对于所述割炬本体的近端设置的电极;
相对于所述电极设置在所述割炬本体的远端以界定所述等离子体腔室的喷嘴,所述喷嘴包括:
基本中空的导热本体,所述本体构造成容纳所述电极;
设置在所述本体一端的等离子体排出孔;以及
由设置在所述喷嘴本体的外表面周围的一个或多个翼片界定的冷却气流通道,所述冷却气流通道构造成能够引导大部分冷却气体在所述冷却气流通道的所述一个或多个翼片的相对表面之间流动,由此使较少量的冷却气体在流过所述翼片,所述喷嘴本体提供在割炬工作期间从喷嘴到冷却气流通道传热的导热路径,所述一个或多个翼片具有高度和宽度,所述一个或多个翼片的相对表面的高度大于相对表面之间的通道的宽度的一半;以及
相对于喷嘴设置在所述割炬本体的远端的保护罩,所述保护罩包括:
基本中空的导热本体,所述保护罩本体构造成保护所述喷嘴;
设置在所述本体一端的冷却气体排出孔;以及
由设置在所述保护罩本体的外表面周围的一个或多个翼片界定的冷却气流通道,所述冷却气流通道被构造成能够引导大部分冷却气体在所述冷却气流通道的所述一个或多个翼片的相对表面之间流动,由此使较少量的冷却气体流过所述翼片,所述保护罩本体提供在割炬工作期间从保护罩到冷却气流通道传热的导热路径,所述一个或多个翼片具有高度和宽度,所述一个或多个翼片的相对表面的高度大于相对表面之间的通道的宽度的一半。
CN2008800051561A 2007-02-16 2008-02-15 气体冷却的等离子体电弧割炬 Active CN101632328B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90180407P 2007-02-16 2007-02-16
US60/901,804 2007-02-16
PCT/US2008/054182 WO2008101226A1 (en) 2007-02-16 2008-02-15 Gas-cooled plasma arc cutting torch

Publications (2)

Publication Number Publication Date
CN101632328A CN101632328A (zh) 2010-01-20
CN101632328B true CN101632328B (zh) 2013-04-24

Family

ID=39472842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800051561A Active CN101632328B (zh) 2007-02-16 2008-02-15 气体冷却的等离子体电弧割炬

Country Status (4)

Country Link
US (1) US8089025B2 (zh)
EP (1) EP2022299B1 (zh)
CN (1) CN101632328B (zh)
WO (1) WO2008101226A1 (zh)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492883B2 (en) 2006-02-17 2016-11-15 Hypertherm, Inc. Electrode for a contact start plasma arc torch and contact start plasma arc torch employing such electrodes
CN103763846B (zh) * 2006-02-17 2016-08-31 海别得公司 接触启动式等离子弧焊炬和用于该焊炬的电极、接触元件
US9560732B2 (en) 2006-09-13 2017-01-31 Hypertherm, Inc. High access consumables for a plasma arc cutting system
US10194516B2 (en) 2006-09-13 2019-01-29 Hypertherm, Inc. High access consumables for a plasma arc cutting system
US10098217B2 (en) 2012-07-19 2018-10-09 Hypertherm, Inc. Composite consumables for a plasma arc torch
US8981253B2 (en) * 2006-09-13 2015-03-17 Hypertherm, Inc. Forward flow, high access consumables for a plasma arc cutting torch
US8624150B2 (en) * 2010-09-09 2014-01-07 Hypertherm, Inc. Adapter for a plasma arc torch
US9662747B2 (en) 2006-09-13 2017-05-30 Hypertherm, Inc. Composite consumables for a plasma arc torch
US7935909B2 (en) * 2007-09-04 2011-05-03 Thermal Dynamics Corporation Hybrid shield device for a plasma arc torch
US8389887B2 (en) 2008-03-12 2013-03-05 Hypertherm, Inc. Apparatus and method for a liquid cooled shield for improved piercing performance
JP5364517B2 (ja) * 2009-09-10 2013-12-11 本田技研工業株式会社 プラズマトーチおよびプラズマアーク溶接方法
EP2549839A3 (de) 2009-11-04 2013-04-24 Siemens Aktiengesellschaft Plasmaspritzdüse mit innenliegender Injektion
US10486260B2 (en) 2012-04-04 2019-11-26 Hypertherm, Inc. Systems, methods, and devices for transmitting information to thermal processing systems
US8283594B2 (en) 2010-08-09 2012-10-09 The Esab Group, Inc. System and method for supplying fluids to a plasma arc torch
DE102010037428A1 (de) * 2010-09-09 2012-03-15 Alexander Binzel Schweisstechnik Gmbh & Co. Kg Schweiß- oder Schneidbrenner mit Zwangsluftkühlung
USD687874S1 (en) * 2010-09-28 2013-08-13 Koike Sanso Kogyo Co., Ltd. Electrode for plasma torch
US8546719B2 (en) * 2010-12-13 2013-10-01 The Esab Group, Inc. Method and plasma arc torch system for marking and cutting workpieces with the same set of consumables
US8933363B2 (en) * 2011-02-09 2015-01-13 Thermal Dynamics Corporation Method and apparatus for recycling shield gas in a plasma arc torch
MX356075B (es) * 2011-03-25 2018-05-14 Illinois Tool Works Sistemas de soplete de plasma que tienen boquillas de plasma mejoradas.
US8901451B2 (en) * 2011-08-19 2014-12-02 Illinois Tool Works Inc. Plasma torch and moveable electrode
JP5942082B2 (ja) * 2011-10-24 2016-06-29 パナソニックIpマネジメント株式会社 プラズマ切断トーチ
US9227265B2 (en) * 2011-11-22 2016-01-05 Thermacut, S.R.O. Electrode-supporting assembly for contact-start plasma arc torch
CN102389998A (zh) * 2011-11-29 2012-03-28 刘迎春 高效等离子钎焊枪头
CN102489818A (zh) * 2011-11-29 2012-06-13 刘迎春 新型等离子钎焊枪头
EP2801244B2 (en) 2012-01-06 2020-04-15 Hypertherm, Inc Component for a contact start plasma arc torch
US20150332071A1 (en) * 2012-04-04 2015-11-19 Hypertherm, Inc. Configuring Signal Devices in Thermal Processing Systems
US11783138B2 (en) 2012-04-04 2023-10-10 Hypertherm, Inc. Configuring signal devices in thermal processing systems
US8525069B1 (en) * 2012-05-18 2013-09-03 Hypertherm, Inc. Method and apparatus for improved cutting life of a plasma arc torch
ITBO20120375A1 (it) * 2012-07-11 2014-01-12 Tec Mo S R L Dispositivo a torcia al plasma raffreddato
US9949356B2 (en) 2012-07-11 2018-04-17 Lincoln Global, Inc. Electrode for a plasma arc cutting torch
US10542614B2 (en) * 2013-07-18 2020-01-21 Hypertherm, Inc. Apparatus and method for securing a plasma torch electrode
US9326367B2 (en) * 2013-07-25 2016-04-26 Hypertherm, Inc. Devices for gas cooling plasma arc torches and related systems and methods
US9386679B2 (en) 2013-07-31 2016-07-05 Lincoln Global, Inc. Apparatus and method of aligning and securing components of a liquid cooled plasma arc torch using a multi-thread connection
US9338872B2 (en) 2013-07-31 2016-05-10 Lincoln Global, Inc. Apparatus and method of aligning and securing components of a liquid cooled plasma arc torch
US9313871B2 (en) 2013-07-31 2016-04-12 Lincoln Global, Inc. Apparatus and method of aligning and securing components of a liquid cooled plasma arc torch and improved torch design
US11684995B2 (en) 2013-11-13 2023-06-27 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
US11278983B2 (en) 2013-11-13 2022-03-22 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US11432393B2 (en) 2013-11-13 2022-08-30 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
US10456855B2 (en) * 2013-11-13 2019-10-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US9981335B2 (en) 2013-11-13 2018-05-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US9560733B2 (en) 2014-02-24 2017-01-31 Lincoln Global, Inc. Nozzle throat for thermal processing and torch equipment
US10786924B2 (en) 2014-03-07 2020-09-29 Hypertherm, Inc. Waterjet cutting head temperature sensor
US20150269603A1 (en) 2014-03-19 2015-09-24 Hypertherm, Inc. Methods for Developing Customer Loyalty Programs and Related Systems and Devices
US9510436B2 (en) * 2014-03-31 2016-11-29 Hypertherm, Inc. Wide bandgap semiconductor based power supply assemblies for plasma operating systems and related methods and devices
TWI531280B (zh) * 2014-04-16 2016-04-21 馗鼎奈米科技股份有限公司 電漿裝置
AU2015255670B2 (en) * 2014-05-09 2019-09-19 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US9572242B2 (en) * 2014-05-19 2017-02-14 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9572243B2 (en) 2014-05-19 2017-02-14 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9398679B2 (en) 2014-05-19 2016-07-19 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9967964B2 (en) 2014-05-30 2018-05-08 Hypertherm, Inc. Cooling plasma cutting system consumables and related systems and methods
US9908195B2 (en) * 2014-05-30 2018-03-06 Hypertherm, Inc. Plasma cutting system with efficient components
US11622440B2 (en) * 2014-05-30 2023-04-04 Hypertherm, Inc. Cooling plasma cutting system consumables and related systems and methods
CN105307372A (zh) * 2014-06-04 2016-02-03 成都真火科技有限公司 一种电弧通道冷却结构
EP3180151B1 (en) * 2014-08-12 2021-11-03 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
US9681528B2 (en) 2014-08-21 2017-06-13 Lincoln Global, Inc. Rotatable plasma cutting torch assembly with short connections
US9736917B2 (en) 2014-08-21 2017-08-15 Lincoln Global, Inc. Rotatable plasma cutting torch assembly with short connections
US9730307B2 (en) 2014-08-21 2017-08-08 Lincoln Global, Inc. Multi-component electrode for a plasma cutting torch and torch including the same
US9457419B2 (en) 2014-09-25 2016-10-04 Lincoln Global, Inc. Plasma cutting torch, nozzle and shield cap
US9686848B2 (en) 2014-09-25 2017-06-20 Lincoln Global, Inc. Plasma cutting torch, nozzle and shield cap
WO2016060840A1 (en) * 2014-10-14 2016-04-21 Hypertherm, Inc. High access consumables for a plasma arc cutting system
DE202015002334U1 (de) * 2014-10-14 2015-06-17 Hypertherm, Inc. Verbrauchsteile mit hoher Zugänglichkeit für ein Plasmalichtbogenschneidsystem
JP6522967B2 (ja) * 2015-01-30 2019-05-29 株式会社小松製作所 プラズマトーチ用センタパイプ、接触子、電極、及びプラズマトーチ
CN104602433A (zh) * 2015-02-05 2015-05-06 成都真火科技有限公司 一种等离子体源阳极冷却结构
CN113163567A (zh) * 2015-06-08 2021-07-23 海别得公司 冷却等离子体焊炬喷嘴及相关的系统和方法
CN107249803B (zh) * 2015-08-04 2020-01-31 海别得公司 改进的等离子弧切割系统、消耗品和操作方法
US10561009B2 (en) 2015-08-04 2020-02-11 Hypertherm, Inc. Cartridge for a liquid-cooled plasma arc torch
KR102519617B1 (ko) * 2015-08-12 2023-04-06 하이퍼썸, 인크. 비용적으로 효과적인 플라즈마 아크 토치용 카트리지
US10208263B2 (en) * 2015-08-27 2019-02-19 Cogent Energy Systems, Inc. Modular hybrid plasma gasifier for use in converting combustible material to synthesis gas
US10863610B2 (en) 2015-08-28 2020-12-08 Lincoln Global, Inc. Plasma torch and components thereof
DE102016010341A1 (de) 2015-08-28 2017-03-02 Lincoln Global, Inc. Plasmabrenner und komponenten des plasmabrenners
NL2017713A (en) * 2015-11-06 2017-05-24 Asml Netherlands Bv Radioisotope Production
JP2018537818A (ja) * 2015-12-21 2018-12-20 ハイパーサーム インコーポレイテッド プラズマアークトーチの内側で通電される電極
US10561010B2 (en) 2015-12-21 2020-02-11 Hypertherm, Inc. Internally energized electrode of a plasma arc torch
US10413991B2 (en) 2015-12-29 2019-09-17 Hypertherm, Inc. Supplying pressurized gas to plasma arc torch consumables and related systems and methods
US10335888B2 (en) 2016-02-12 2019-07-02 Hypertherm, Inc. Swirl ring and contact element for a plasma arc torch cartridge
EP3437440A1 (en) * 2016-03-28 2019-02-06 Hypertherm, Inc Improved plasma arc cutting system, consumables and operational methods
CN207039985U (zh) * 2016-04-11 2018-02-23 海别得公司 用于液体冷却式等离子体电弧喷枪的等离子气体回旋环
AU2016426427A1 (en) * 2016-10-12 2019-05-02 The Esab Group, Inc. Consumable assembly with internal heat removal elements
EP3560300B1 (en) * 2016-12-23 2020-11-18 Hypertherm, Inc Swirl ring for a plasma arc torch
CN115515291A (zh) * 2017-02-09 2022-12-23 海别得公司 用于等离子弧焊炬筒的涡流环和接触元件
US10639748B2 (en) 2017-02-24 2020-05-05 Lincoln Global, Inc. Brazed electrode for plasma cutting torch
DE102017112821A1 (de) * 2017-06-12 2018-12-13 Kjellberg-Stiftung Elektroden für gas- und flüssigkeitsgekühlte Plasmabrenner, Anordnung aus einer Elektrode und einem Kühlrohr, Gasführung, Plasmabrenner, Verfahren zur Gasführung in einem Plasmabrenner und Verfahren zum Betreiben eines Plasmabrenners
USD861758S1 (en) 2017-07-10 2019-10-01 Lincoln Global, Inc. Vented plasma cutting electrode
US10589373B2 (en) 2017-07-10 2020-03-17 Lincoln Global, Inc. Vented plasma cutting electrode and torch using the same
US10625359B2 (en) 2018-04-06 2020-04-21 The Esab Group Inc. Automatic identification of components for welding and cutting torches
US11267069B2 (en) 2018-04-06 2022-03-08 The Esab Group Inc. Recognition of components for welding and cutting torches
US10926238B2 (en) 2018-05-03 2021-02-23 Cogent Energy Systems, Inc. Electrode assembly for use in a plasma gasifier that converts combustible material to synthesis gas
RU2702169C1 (ru) * 2018-07-19 2019-10-04 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" Устройство для сварки полым термоэмиссионным катодом
DE102018125772A1 (de) * 2018-07-27 2020-01-30 Kjellberg-Stiftung Verbindungsteil für einen Bearbeitungskopf zur thermischen Materialbearbeitung, insbesondere für einen Plasmabrennerkopf, Laserkopf, Plasma-Laser-Kopf sowie ein Verschleißteil und eine Verschleißteilhalterung und ein Verfahren zum Fügen dieser
WO2020206429A1 (en) * 2019-04-04 2020-10-08 Hypertherm, Inc. Adjustable length consumables for a liquid-cooled plasma arc torch
CN110234194A (zh) * 2019-07-23 2019-09-13 烟台龙源电力技术股份有限公司 等离子体发生器
US20210146468A1 (en) 2019-11-19 2021-05-20 Hypertherm, Inc. Systems and Methods for Separating Consumables Under Pressure in a Plasma Arc Torch
CZ2019808A3 (cs) 2019-12-30 2021-07-07 B&Bartoni, spol. s r.o. Sestava plazmového obloukového hořáku s kontaktním startem
USD992517S1 (en) * 2020-11-17 2023-07-18 Thermacut, K.S. Plasma torch electrode
US11673204B2 (en) * 2020-11-25 2023-06-13 The Esab Group, Inc. Hyper-TIG welding electrode
CN112548288B (zh) * 2020-11-27 2022-02-08 中船澄西船舶修造有限公司 三合一焊接小车用防风、遮光、隔热装置
CN112705826B (zh) * 2020-12-18 2023-06-30 温州大学 一种焊接冷却保护罩
US11839015B2 (en) 2021-02-04 2023-12-05 The Esab Group Inc. Consumables for processing torches
CN114147328B (zh) * 2021-12-22 2022-12-13 南通阳光焊割设备有限公司 一种等离子弧弧焊喷嘴

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858072A (en) * 1972-02-09 1974-12-31 Vysoka Skola Banska Ostrava Plasma torch with axial supply of the stabilizing gas
US4405853A (en) * 1981-08-14 1983-09-20 Metco Inc. Plasma spray gun with cooling fin nozzle and deionizer
US4659899A (en) * 1984-10-24 1987-04-21 The Perkin-Elmer Corporation Vacuum-compatible air-cooled plasma device
US4782210A (en) * 1987-06-26 1988-11-01 Thermal Dynamics Corporation Ridged electrode
US4902871A (en) * 1987-01-30 1990-02-20 Hypertherm, Inc. Apparatus and process for cooling a plasma arc electrode
CN2138003Y (zh) * 1992-10-17 1993-07-14 张孟荣 低压直流引弧切割机割炬
US5308949A (en) * 1992-10-27 1994-05-03 Centricut, Inc. Nozzle assembly for plasma arc cutting torch
US5393952A (en) * 1991-02-28 1995-02-28 Kabushiki Kaisha Komatsu Seisakusho Plasma torch for cutting use with nozzle protection cap having annular secondary GPS passage and insulator disposed in the secondary gas passage
CN1194889A (zh) * 1997-03-14 1998-10-07 林肯电气公司 等离子电弧喷枪
CN1316021A (zh) * 1998-08-03 2001-10-03 东京电子株式会社 静电屏蔽的射频室冷却系统和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791268A (en) * 1987-01-30 1988-12-13 Hypertherm, Inc. Arc plasma torch and method using contact starting
US5132512A (en) * 1988-06-07 1992-07-21 Hypertherm, Inc. Arc torch nozzle shield for plasma
US5317126A (en) * 1992-01-14 1994-05-31 Hypertherm, Inc. Nozzle and method of operation for a plasma arc torch
US5451739A (en) * 1994-08-19 1995-09-19 Esab Group, Inc. Electrode for plasma arc torch having channels to extend service life
US6084199A (en) * 1997-08-01 2000-07-04 Hypertherm, Inc. Plasma arc torch with vented flow nozzle retainer
DE60139066D1 (de) * 2000-03-31 2009-08-06 Thermal Dynamics Corp Lichtbogen-plasmabrenner und verfahren zur erhöhung der lebensdauer der verschleissteile eines lichtbogen-plasmabrenners
US6403915B1 (en) * 2000-08-31 2002-06-11 Hypertherm, Inc. Electrode for a plasma arc torch having an enhanced cooling configuration
US7071443B2 (en) * 2003-04-07 2006-07-04 Thermal Dynamics Corporation Plasma arc torch
US20050109738A1 (en) * 2003-11-21 2005-05-26 Hewett Roger W. Color coding of plasma arc torch parts and part sets
US7598473B2 (en) * 2005-05-11 2009-10-06 Hypertherm, Inc. Generating discrete gas jets in plasma arc torch applications
US7126080B1 (en) * 2005-07-07 2006-10-24 Thermal Dynamics Corporation Plasma gas distributor with integral metering and flow passageways
CN103763846B (zh) * 2006-02-17 2016-08-31 海别得公司 接触启动式等离子弧焊炬和用于该焊炬的电极、接触元件
US8097828B2 (en) * 2006-05-11 2012-01-17 Hypertherm, Inc. Dielectric devices for a plasma arc torch

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858072A (en) * 1972-02-09 1974-12-31 Vysoka Skola Banska Ostrava Plasma torch with axial supply of the stabilizing gas
US4405853A (en) * 1981-08-14 1983-09-20 Metco Inc. Plasma spray gun with cooling fin nozzle and deionizer
US4659899A (en) * 1984-10-24 1987-04-21 The Perkin-Elmer Corporation Vacuum-compatible air-cooled plasma device
US4902871A (en) * 1987-01-30 1990-02-20 Hypertherm, Inc. Apparatus and process for cooling a plasma arc electrode
US4782210A (en) * 1987-06-26 1988-11-01 Thermal Dynamics Corporation Ridged electrode
US5393952A (en) * 1991-02-28 1995-02-28 Kabushiki Kaisha Komatsu Seisakusho Plasma torch for cutting use with nozzle protection cap having annular secondary GPS passage and insulator disposed in the secondary gas passage
CN2138003Y (zh) * 1992-10-17 1993-07-14 张孟荣 低压直流引弧切割机割炬
US5308949A (en) * 1992-10-27 1994-05-03 Centricut, Inc. Nozzle assembly for plasma arc cutting torch
CN1194889A (zh) * 1997-03-14 1998-10-07 林肯电气公司 等离子电弧喷枪
CN1316021A (zh) * 1998-08-03 2001-10-03 东京电子株式会社 静电屏蔽的射频室冷却系统和方法

Also Published As

Publication number Publication date
US20080217305A1 (en) 2008-09-11
EP2022299B1 (en) 2014-04-30
WO2008101226A1 (en) 2008-08-21
CN101632328A (zh) 2010-01-20
US8089025B2 (en) 2012-01-03
EP2022299A1 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
CN101632328B (zh) 气体冷却的等离子体电弧割炬
JP4795241B2 (ja) 冷却プラズマトーチ及びトーチを冷却するための方法
CN201543958U (zh) 等离子弧割炬
CN102388681A (zh) 用于电弧等离子喷枪的冷却管、电极容纳部和电极以及由它们组成的装置和包括这些部件的电弧等离子喷枪
CN103269558A (zh) 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪
US5859403A (en) Plasma torch without high-frequency ignition, with improved electrode air-cooling devices
US3375392A (en) Plasma generator utilizing a ribbonshaped stream of gas
BRPI1002138B1 (pt) trocador de calor para refrigeração de gás de reação
EP0072409B1 (en) Plasma spray gun nozzle
JPH04306486A (ja) 冶金用容器
CN106695087B (zh) 分体式水冷防飞溅气保焊枪
CN113438792A (zh) 一种智能可控等离子火焰装置
CN220805444U (zh) 一种抽芯组件及抽芯机构
CN219425905U (zh) 一种双流道等离子切割枪
CN219913987U (zh) 一种三氯化铝熔化炉
CN111770624A (zh) 一种纳米粉体制造用带有放电保护装置的射频等离子炬
CN220372418U (zh) 一种等离子割枪
CN217290852U (zh) 等离子割枪
CN213150707U (zh) 一种断路器灭弧装置
CN212692546U (zh) 一种电弧炉石墨电极
CN2084403U (zh) 具有环流冷却电极的等离子割炬
CN202726298U (zh) 等离子割炬喷嘴
CN219818480U (zh) 一种焊枪水冷结构
CN212719712U (zh) 一种加装风冷套管的喷枪
CN107959999A (zh) 非转移弧等离子枪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant