CN104602433A - 一种等离子体源阳极冷却结构 - Google Patents

一种等离子体源阳极冷却结构 Download PDF

Info

Publication number
CN104602433A
CN104602433A CN201510059014.5A CN201510059014A CN104602433A CN 104602433 A CN104602433 A CN 104602433A CN 201510059014 A CN201510059014 A CN 201510059014A CN 104602433 A CN104602433 A CN 104602433A
Authority
CN
China
Prior art keywords
anode body
cooling
anode
cooling structure
plasma source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510059014.5A
Other languages
English (en)
Inventor
王鹏飞
黄佳华
王井楠
杨超
赵华
任琼英
李向阳
李露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU PLASMAJET SCIENCE AND Technology Co Ltd
Original Assignee
CHENGDU PLASMAJET SCIENCE AND Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU PLASMAJET SCIENCE AND Technology Co Ltd filed Critical CHENGDU PLASMAJET SCIENCE AND Technology Co Ltd
Priority to CN201510059014.5A priority Critical patent/CN104602433A/zh
Publication of CN104602433A publication Critical patent/CN104602433A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种等离子体源阳极冷却结构,涉及等离子体源技术领域。本发明包括阳极本体(1),所述阳极本体(1)内部设置有冷却通道(2);所述阳极本体(1)上设置有进气口(3)和出气口(4);所述进气口(3)和出气口(4)分别与冷却通道(2)连通;所述冷却通道(2)上设置有冷却结构(21)。本发明可以实现等离子体源的自冷却,且利用阳极冷却过程中释放的热量,加热工作气体,减小电弧通道内外工作气体压力,稳定等离子体射流。

Description

一种等离子体源阳极冷却结构
技术领域
    本发明涉及等离子体源技术领域,更确切地说是一种等离子体源阳极冷却结构。
背景技术
    等离子体源是等离子体的产生装置,它是利用阴极与阳极之间的电弧能量,将工作气体加热并使其电离成等离子体,然后从通道射出形成等离子体射流。
阳极作为能量载体,若冷却不良,则造成等离子体源烧损失效,因此对阳极冷却至关重要。目前最常见的冷却方式是在等离子体源内部设计加工出水冷通道,利用冷却水把阳极上额外能量带走,降低阳极温度。
    国家知识产权局于2012年06月20日,公开了一件公开号为CN202282904U,名称为“低温等离子发生器的阳极装置”的实用新型专利,该实用新型专利公开了一种低温等离子发生器的阳极装置,包括阳极、阳极水套、阳极壳体及阳极旋流环;阳极壳体紧靠着上端部的内壁设置凹槽,阳极旋流环的外圆面与凹槽槽底相对设置的端部紧密配合封接,该阳极旋流环与凹槽槽底之间的空间形成进气室;阳极旋流环的圆周方向均布2个以上的切向流孔;阳极沿轴向开设喷管,且阳极置于阳极旋流环的下方,同时阳极的外表面与阳极壳体液密封连接;阳极水套置于阳极与阳极壳体之间,阳极水套将阳极与阳极壳体之间的空间隔成连通的冷却水出水室和冷却水进水室。
这种方法虽然能够保证等离子体源稳定、长时间工作,但是这些被冷却水带走的能量以热能形式散失在大气中,无法被再次利用,使得等离子体源的热效率不高。
然而等离子体发生器内部,气流通道中气体温度与电弧通道内气体温度相差很大,在一定空间体积内两个通道中气体压力不同,电弧通道内气体对气流通道内气体产生一个反向推力,由于层流等离子体射流的工作气体流量一般很小,大概只有1-30slpm,这个反向推力会造成气流通道内气流的短暂阻塞,之后由于反向推力减小直至消失,阻塞消除。在层流等离子体发生器工作时,这个反向推力会周期性的产生和消失,这就造成层流等离子体射流不稳定。
另外在常规等离子体源中的气流通道对外连接流量计和减压阀,对内连接电弧通道,等离子体源工作时,电弧通道中工作气体温度升高,进而气压升高,对气流通道中的气体产生一个反向作用力,引起气流通道中的气压波动,且二者压力相差越大,波动越明显,这也造成等离子体源射流不稳定性。
发明内容
为解决上述现有技术中的不足,本发明提供了一种等离子体源阳极冷却结构,本发明可以实现等离子体源的自冷却,且利用阳极冷却过程中释放的热量,加热工作气体,减小电弧通道内外工作气体压力,稳定等离子体射流。
为了解决上述现有技术中的不足,本发明是通过下述技术方案实现的:
一种等离子体源阳极冷却结构,包括阳极本体,其特征在于:所述阳极本体内部设置有冷却通道;所述阳极本体上设置有进气口和出气口;所述进气口和出气口分别与冷却通道连通;所述冷却通道上设置有冷却结构。
所述冷却结构为设置在阳极本体内部的空腔;所述空腔分别与进气口和出气口连通。
所述冷却结构是由所述冷却通道环状分布在阳极本体内部形成的冷却结构。
所述冷却结构是由所述冷却通道螺旋状分布在阳极本体内部形成的冷却结构。
冷却结构是由所述冷却通道呈竖直螺旋状分布在阳极本体内部形成的冷却结构。
冷却结构是由所述冷却通道呈水平螺旋状分布在阳极本体内部形成的冷却结构。
所述冷却通道上至少设置有一层冷却结构。
与现有技术相比,本发明所达到的有益技术效果表现在:
1、等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
2、为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
3、阳极本体内部的冷却通道呈螺旋状分布或环状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
附图说明
图1为多环状冷却通道阳极的结构示意图;
图2为螺旋状冷却通道阳极的结构示意图;
图3为等离子体源整体结构示意图;
附图标记:1、阳极本体,2、冷却通道,21、冷却结构,3、进气口,4、出气口,5、电弧通道,6、气流通道,7、阴极体。
具体实施方式
实施例1
作为本发明一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,参照说明书附图3,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
实施例2
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,参照说明书附图2,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。所述冷却结构21为设置在阳极本体1内部的空腔;所述空腔分别与进气口3和出气口4连通。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
实施例3
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,参照说明书附图1,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。所述冷却结构21是由所述冷却通道2环状分布在阳极本体1内部形成的冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
实施例4
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。所述冷却结构21是由所述冷却通道2螺旋状分布在阳极本体1内部形成的冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。阳极本体内部的冷却通道呈环状或螺旋状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
实施例5
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。冷却结构21是由所述冷却通道2呈竖直螺旋状分布在阳极本体1内部形成的冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
实施例6
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。冷却结构21是由所述冷却通道2呈水平螺旋状分布在阳极本体1内部形成的冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
所述阳极本体1内部设置有两层冷却通道2;其中一层冷却通道呈环状分布在阳极本体内部,且相邻两个环状冷却通道连通;另一层冷却通道呈螺旋状分布在阳极本体内部。为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。阳极本体内部的冷却通道呈环状或螺旋状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
实施例7
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。冷却结构21是由所述冷却通道2呈水平螺旋状分布在阳极本体1内部形成的冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
所述阳极本体1内部设置有两层冷却通道2;其中一层冷却通道呈环状分布在阳极本体内部,且相邻两个环状冷却通道连通;另一层冷却通道呈螺旋状分布在阳极本体内部。为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。阳极本体内部的冷却通道呈环状或螺旋状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
所述冷却通道2上设置两层冷却结构21。为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。阳极本体内部的冷却通道呈环状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
实施例8
作为本发明又一较佳实施例,本实施例公开了一种等离子体源阳极的冷却结构,本实施例包括阳极本体1,所述阳极本体1内部设置有冷却通道2;所述阳极本体1上设置有进气口3和出气口4;所述进气口3和出气口4分别与冷却通道2连通;所述冷却通道2上设置有冷却结构21。
等离子体源工作时工作气体由进气口进入阳极本体内部,气体在冷却通道中带走阳极本体能量,最后由出气口进入等离子体源的气流通道内,最后进入电弧通道内;工作气体在经过阳极本体内部的冷却通道时,吸收阳极本体释放的能量,温度升高,气压增加,使得电弧通道内外气体压力差减小,气流波动减小,能够稳定等离子体射流;同时阳极本体上额外的能量部分被用于气体电离,提高了等离子体源的热效率。
所述阳极本体1内部设置有两层冷却通道2;其中一层冷却通道呈环状分布在阳极本体内部,且相邻两个环状冷却通道连通;另一层冷却通道呈螺旋状分布在阳极本体内部。为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。阳极本体内部的冷却通道呈环状或螺旋状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。
所述冷却通道2上设置两层冷却结构21。其中一层冷却结构21是由冷却通道2呈环状分布在阳极本体1内部形成的冷却结构21,且相邻两个环状冷却通道连通;另一层冷却结构21是由冷却通道2呈竖直螺旋状分布在阳极本体1内部形成的冷却结构21。为了进一步提高冷却效果,阳极本体内部可以设置多层冷却通道,增大工作气体与阳极本体的接触面积,从而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。阳极本体内部的冷却通道呈环状或螺旋状分布,都是为了增大工作气体与阳极本体的接触面积,而进一步提高了冷却阳极和吸收阳极本体上额外能量的效果。

Claims (7)

1.一种等离子体源阳极冷却结构,包括阳极本体(1),其特征在于:所述阳极本体(1)内部设置有冷却通道(2);所述阳极本体(1)上设置有进气口(3)和出气口(4);所述进气口(3)和出气口(4)分别与冷却通道(2)连通;所述冷却通道(2)上设置有冷却结构(21)。
2.如权利要求1所述的一种等离子体源阳极冷却结构,其特征在于:所述冷却结构(21)为设置在阳极本体内部的空腔;所述空腔分别与进气口(3)和出气口(4)连通。
3.如权利要求1所述的一种等离子体源阳极冷却结构,其特征在于:所述冷却结构(21)是由所述冷却通道(2)环状分布在阳极本体(1)内部形成的冷却结构(21)。
4.如权利要求1所述的一种等离子体源阳极冷却结构,其特征在于:所述冷却结构(21)是由所述冷却通道(2)螺旋状分布在阳极本体(1)内部形成的冷却结构(21)。
5.如权利要求1或4所述的一种等离子体源阳极冷却结构,其特征在于:冷却结构(21)是由所述冷却通道(21)呈竖直螺旋状分布在阳极本体(1)内部形成的冷却结构(21)。
6.如权利要求1或4所述的一种等离子体源阳极冷却结构,其特征在于:冷却结构(21)是由所述冷却通道(21)呈水平螺旋状分布在阳极本体(1)内部形成的冷却结构(21)。
7.如权利要求1-4任意一项所述的一种等离子体源阳极冷却结构,其特征在于:所述阳极本体(1)内部至少设置有一层冷却结构(21)。
CN201510059014.5A 2015-02-05 2015-02-05 一种等离子体源阳极冷却结构 Pending CN104602433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510059014.5A CN104602433A (zh) 2015-02-05 2015-02-05 一种等离子体源阳极冷却结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510059014.5A CN104602433A (zh) 2015-02-05 2015-02-05 一种等离子体源阳极冷却结构

Publications (1)

Publication Number Publication Date
CN104602433A true CN104602433A (zh) 2015-05-06

Family

ID=53127816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510059014.5A Pending CN104602433A (zh) 2015-02-05 2015-02-05 一种等离子体源阳极冷却结构

Country Status (1)

Country Link
CN (1) CN104602433A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211533A (zh) * 2016-08-31 2016-12-07 成都真火科技有限公司 一种层流等离子发生器
CN111741582A (zh) * 2020-07-02 2020-10-02 安徽纯源镀膜科技有限公司 用于等离子体传送的传输通道装置及镀膜设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT296449B (de) * 1968-12-30 1972-02-10 British Railways Board Plasmabrenner
JP2568126B2 (ja) * 1988-09-26 1996-12-25 ハイパーサーム,インコーポレイテッド プラズマアーク電極を冷却するための装置及び方法
CN1194889A (zh) * 1997-03-14 1998-10-07 林肯电气公司 等离子电弧喷枪
CN101463763A (zh) * 2009-01-09 2009-06-24 哈尔滨工程大学 磁稳等离子流点火发生器
CN101632328A (zh) * 2007-02-16 2010-01-20 海别得公司 气体冷却的等离子体电弧割炬
CN103269558A (zh) * 2013-06-05 2013-08-28 南京理工大学 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪
CN203378130U (zh) * 2013-06-05 2014-01-01 南京理工大学 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪
CN204466029U (zh) * 2015-02-05 2015-07-08 成都真火科技有限公司 一种等离子体源阳极冷却结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT296449B (de) * 1968-12-30 1972-02-10 British Railways Board Plasmabrenner
JP2568126B2 (ja) * 1988-09-26 1996-12-25 ハイパーサーム,インコーポレイテッド プラズマアーク電極を冷却するための装置及び方法
CN1194889A (zh) * 1997-03-14 1998-10-07 林肯电气公司 等离子电弧喷枪
CN101632328A (zh) * 2007-02-16 2010-01-20 海别得公司 气体冷却的等离子体电弧割炬
CN101463763A (zh) * 2009-01-09 2009-06-24 哈尔滨工程大学 磁稳等离子流点火发生器
CN103269558A (zh) * 2013-06-05 2013-08-28 南京理工大学 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪
CN203378130U (zh) * 2013-06-05 2014-01-01 南京理工大学 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪
CN204466029U (zh) * 2015-02-05 2015-07-08 成都真火科技有限公司 一种等离子体源阳极冷却结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211533A (zh) * 2016-08-31 2016-12-07 成都真火科技有限公司 一种层流等离子发生器
CN111741582A (zh) * 2020-07-02 2020-10-02 安徽纯源镀膜科技有限公司 用于等离子体传送的传输通道装置及镀膜设备

Similar Documents

Publication Publication Date Title
CN104602432A (zh) 阳极自冷却等离子体源
TWI495829B (zh) Exhaust gas treatment device
CN104602433A (zh) 一种等离子体源阳极冷却结构
CN204466029U (zh) 一种等离子体源阳极冷却结构
CN105764227B (zh) 一种高束流直流空心阴极等离子体源
CN104264128A (zh) 一种用于mocvd反应器的格栅式气体分布装置
CN104602429A (zh) 一种暖等离子体发生器
CN204377240U (zh) 一种阳极自冷却等离子体源
CN104602431A (zh) 一种稳定层流等离子体射流的方法
CN104084683B (zh) 等离子水雾切割枪
CN202282904U (zh) 低温等离子发生器的阳极装置
CN206042498U (zh) 一种层流等离子发生器
CN113151806A (zh) 一种低压化学气相沉积炉进气装置
CN105792496A (zh) 一种常压等离子体喷枪
CN206328462U (zh) 一种用于等离子体增强化学气相沉积的进气电极板
CN202322893U (zh) 一种高蓄热顶燃式热风炉
CN202738246U (zh) 一种用于etp pecvd的扩展热等离子体发生装置
CN202697018U (zh) 一种用于直流弧放电高密度等离子体发生器的阳极底座
CN101415293B (zh) 等离子体头结构及具有该结构的等离子体放电装置
CN204577417U (zh) 可控硅水冷散热器
CN102438386A (zh) 低温等离子发生器的阳极装置
CN206310788U (zh) 空调
CN110519903A (zh) 空气筒状等离子发生器间隙结构
CN204373435U (zh) 耐火材料窑炉的排气通道
CN204614759U (zh) 电感耦合等离子体喷枪及等离子体设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150506

RJ01 Rejection of invention patent application after publication