CN101622425A - 在整体气化联合循环系统中分离氧气的系统和方法 - Google Patents
在整体气化联合循环系统中分离氧气的系统和方法 Download PDFInfo
- Publication number
- CN101622425A CN101622425A CN200880006375A CN200880006375A CN101622425A CN 101622425 A CN101622425 A CN 101622425A CN 200880006375 A CN200880006375 A CN 200880006375A CN 200880006375 A CN200880006375 A CN 200880006375A CN 101622425 A CN101622425 A CN 101622425A
- Authority
- CN
- China
- Prior art keywords
- heat exchanger
- air source
- heat
- air
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/80—Other features with arrangements for preheating the blast or the water vapour
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
- C10K1/004—Sulfur containing contaminants, e.g. hydrogen sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1643—Conversion of synthesis gas to energy
- C10J2300/165—Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
- C10J2300/1675—Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1678—Integration of gasification processes with another plant or parts within the plant with air separation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1869—Heat exchange between at least two process streams with one stream being air, oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1876—Heat exchange between at least two process streams with one stream being combustion gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1892—Heat exchange between at least two process streams with one stream being water/steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Industrial Gases (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明公开一种整体气化联合循环电能产生系统(100)。在一个实施方式中,如图1所示,气化器(108)构造成由碳质材料(106)和氧气源(109)产生合成气(117),并且清洁站(120)定位成从气化器(108)接收合成气(117)并从合成气中去除杂质。包括涡轮机(123)的燃气涡轮机燃烧系统(2)构造成接收来自气化器(108)的燃料和来自第一空气压缩机(130)的第一空气源(131)。蒸汽涡轮机系统(4)构造成通过从燃气涡轮机系统(2)产生的排放物(140)回收的热量来产生动力,并且离子迁移膜空气分离单元(110)包括用于产生第二空气源(113)的第二空气压缩机(114)。第一热交换器(118)构造成:在清洁站(120)中去除杂质之前,通过使第二空气源(113)流过第一热交换器(118)而使第二空气源(113)从合成气(117)中接收热量,从而冷却合成气(117)。
Description
技术领域
本发明总体上涉及电能产生系统,更具体地涉及整体气化联合循环系统。
背景技术
作为传统化石燃料发电站的替代方案,整体气化联合循环(“IGCC”)系统在经济性方面是有吸引力的。它们提供了以经济且清洁的方式开发利用煤——一种充沛的资源的机会,带来了比传统的煤燃烧蒸汽涡轮机发电更高的效率。
在IGCC系统中,诸如煤的碳质燃料被转化为称作合成气的合成气体燃料,一种在高温下通过部分氧化而形成的混合物。合成气包括一氧化碳、氢气以及其它气体组分。吹氧气化器通常从低温空气分离单元(ASU)或者从离子迁移膜(ITM)空气分离单元中获取氧气。低温ASU采用压缩机、热交换器、阀门以及蒸馏塔的组合,以便在非常低的温度下实现从空气中分离氧气的操作。低温空气分离过程消耗大量电能,从而减小了发电站的净输出并降低了效率。
在ITM空气分离过程中,大致在1400°F-1700°F(760-927C)范围内的高温空气中的氧分子在膜的阴极侧被转化为氧离子,并且在施加的电压或相对于膜的阳极侧的压力差的作用下被传输通过所述膜。氧离子在阳极侧失去电子,重整为氧分子,电子移动到膜的阴极侧从而再次电离氧气。由陶瓷材料制成的膜元件在高温下允许氧离子通过。
附图说明
当结合附图参阅下文的详细描述时,本发明的特征将会被最好地理解,其中,图1-5中的每个都示出了结合有根据本发明实施方式的ITMASU的IGCC。
在所有视图中相同的附图标记用于表示相同的特征。
具体实施方式
本发明包括IGCC系统,该IGCC系统集成有具有显热(sensibleheat)回收功能的空气分离单元。在一个实施方式中,图1中示出的电能产生系统100包括气化系统1、燃气涡轮机系统2、热量回收蒸汽发生器(HRSG)3和蒸汽涡轮机系统4,每个系统都以常规方式构造而成。气化系统1包括诸如煤浆的烃类燃料源106、气化器108、ITM空气分离单元110、空气压缩机114、合成气冷却器118以及气体清洁站120。燃气涡轮机系统2包括空气压缩机130、燃烧器132、燃气涡轮机134以及发电机136。HRSG3包括节约器(economizer)172、蒸汽鼓174、蒸发器176和过热器178。蒸汽涡轮机系统4包括蒸汽室152、蒸汽涡轮机160、发电机162、冷凝器164和送水泵166。
氧气109从ITM ASU110提供给气化器108,ITM ASU110从合成气冷却器118接收高温高压空气113。由马达116驱动的压缩机114吸入环境空气115,以便给合成气冷却器118提供高压空气113的来源。压缩空气113可以从图1中示出的独立压缩机114输送,或者从燃气涡轮机系统2的压缩机130输送,或者从其它空气源输送。ITM ASU110产生高纯度氧气109,同时在大约1400-1700°F(760-927C)的温度范围内运行,并且膜两侧的氧气分压差为200至400psia(1378.6kPa-2757.2kPa)。膜的工作温度通过如下方式获得:使空气流113流过合成气冷却器118,使得从气化器108排出的热合成气117中所含的显热对空气流113进行加热。氧气109在ASU110中与空气113分离以后,氧气109被输送到气化器108,并且如图所示,脱氧空气127可输送到燃料管线125,用于添加到燃料混合物128中。尽管没有示出,合成气冷却器118可包括附加的热交换器,以便由蒸汽涡轮机系统4排出的馈送水167的一部分产生蒸汽。
在气化器108中,烃类燃料106发生部分氧化,从而在放热反应中主要产生一氧化碳和氢气,通常在大约2000-2800°F(1093-1538C)温度范围内的热合成气117从气化器108中排出。为了满足空气质量要求,诸如硫磺、亚硝酸化合物和灰尘颗粒的杂质在气体清洁站120中被去除。合成气冷却器118在合成气117被引入气体清洁站120之前降低合成气的温度。清洁的合成气124与来自蒸汽室152的蒸汽126混合。通过改变蒸汽流率,蒸汽126可用于调节燃烧过程温度、内部燃烧器温度分布和燃烧器排放温度。蒸汽126和合成气124的混合物128通过燃料供给管线125流向燃料歧管123并进入燃气涡轮机系统2的燃烧器132中。混合物128也可包括来自空气分离单元110的氮气或脱氧空气127以减小火焰温度和氮氧化合物的形成。
在发电站100的工作过程中,压缩机130吸入环境空气129,产生被导向燃烧器132的压缩空气131。压缩空气131可以是富含氧气的。燃料混合物128进入歧管123并穿过其多个端口133而进入燃烧器132中,在燃烧器132中燃料混合物128与压缩空气131发生反应以产生进入燃气涡轮机134的热加压气体135,热加压气体135在燃气涡轮机134中膨胀,从而在转子轴138上产生动力以驱动压缩机130和发电机136。由于已经在涡轮机134中膨胀,低温低压气体140从涡轮机134中排出。从涡轮机134中排出的通常在850°F-1100°F(454-593C)范围内的已膨胀气体140被导向HRSG3,用于进一步回收热量。由泵166从蒸汽涡轮机系统4发送的馈送水167在HRSG3中被从中流过的相对较热的气体140加热。然后,离开HRSG3的受冷却的膨胀气体140经由烟囱156排放至大气。馈送水167首先流过节约器172的热量转移管,在所述热量转移管中馈送水167的温度升高至接近沸点,然后馈送水167被导向蒸汽鼓174。然后经过加热的水流过蒸发器176的热量转移管,在所述热量转移管中水被转化为饱和蒸汽177。当蒸汽在进入蒸汽室152之前流过过热器178时,蒸汽的温度进一步升高。来自蒸汽室152的蒸汽153被导向蒸汽涡轮机160。来自蒸汽室152的蒸汽126被注入燃料供给管线125,以便进入燃料歧管123,作为燃料混合物128的组分。
在蒸汽涡轮机160中,蒸汽153膨胀,从而在转子轴161上产生能量以驱动发电机162。在其它设计中,蒸汽涡轮机160可联接到燃气涡轮机系统2的转子轴138和发电机136。在穿过涡轮机160之后,已冷却且已膨胀的蒸汽163进入冷凝器164以便作为馈送水167循环。新鲜水165被供给冷凝器164以补偿系统100中的水损失。
在图2的实施方式中,电能产生系统200包括气化系统5以及参照图1描述的燃气涡轮机系统2、HRSG3和蒸汽涡轮机系统4。在系统200中,导向ITM ASU的压缩空气分两个阶段被预先加热。
气化系统5包括气化器208,气化器208接收燃料源206和来自ITMASU210的氧气源209,以产生合成气217。合成气217在冷却器218中被降低温度,然后进入气体清洁站220以去除诸如硫磺、亚硝酸化合物和灰尘颗粒等杂质。清洁燃气224与来自蒸汽室152的蒸汽126混合以形成燃料混合物228,燃料混合物228通过燃料供给管线225流向歧管123,并进入燃气涡轮机系统2的燃气燃烧器132中。
在气化系统5中,由马达216驱动的压缩机214通过环境空气源215提供压缩空气213。压缩空气213可以从图2中示出的独立压缩机214输送,或者从燃气涡轮机系统2的压缩机130输送,或者从某些其它空气源输送。压缩空气213流过空气预热器212以便从系统2的燃气涡轮机134中排出的热气体140中接收显热。从预热器212中排出的仍然相对较热(通常在482-583C范围内)的冷却气体140被导向HRSG3,用于进一步回收热量。在被加热到预定温度(通常在427-538C范围内)之后,压缩空气213离开预热器212并进入合成气冷却器218以帮助冷却合成气217。在冷却器218中发生的向压缩空气213的热量转移在压缩空气213进入ASU210之前进一步升高了压缩空气的温度。压缩空气213从合成气217接收足够的热量,以便根据将在ASU210中发生的ITM过程的需要来升高温度。
在ASU210中与空气213分离之后,氧气源209被输送到气化器208,同时如图所示,脱氧空气227被输送到燃料管线225,用于添加到燃料混合物228中。尽管没有示出,合成气冷却器218可包括附加的热交换器,以便由馈送水167的一部分来产生蒸汽。
在图3的实施方式中,电能产生系统300提供通过闭环热交换系统对压缩空气在进入ASU之前进行预加热的方法,该闭环热交换系统使用由燃气涡轮机排放物加热的中间工作流体。系统300包括气化系统6以及参照图1描述的燃气涡轮机系统2、HRSG3和蒸汽涡轮机系统4。气化系统6包括气化器308,气化器308接收燃料源306和来自ITM ASU310的氧气源309。在气化器308中产生的合成气317在合成气冷却器318中利用从蒸汽涡轮机系统4中排出的馈送水167的一部分191被冷却,然后该合成气进入气体清洁站320以去除例如硫磺、亚硝酸化合物和灰尘颗粒的杂质。在合成气冷却器318中,冷却水191被转化为蒸汽392,蒸汽392被送入蒸汽室152中。清洁的合成气324与来自蒸汽室152的蒸汽126混合以形成燃料混合物328,燃料混合物328通过燃料供给管线325流向歧管123,并进入燃气涡轮机系统2的燃气燃烧器132中。
在气化系统6中,由马达316驱动的压缩机314通过环境空气源315提供压缩空气313。压缩空气313可以从图3中示出的独立压缩机314输送,或者从燃气涡轮机系统2的压缩机130输送,或者从其它空气源输送。在热交换系统11中,压缩空气313流过空气预热器312以便与热工作流体394进行热交换。工作流体394在泵390的辅助下以闭环方式在空气预热器312和热交换器342之间循环。工作流体394可以是纯水或者可以主要包括水。其它合适的流体可包括油或乙二醇基溶液。某些有机物是不稳定的,因此由于工作温度的原因而不适于该应用场合。
在穿过空气预热器312的过程中,压缩空气313的温度升高从而在其进入ASU 310时实现氧气分离。ITM工作温度通过在空气预热器312中用一个或多个热源加热空气流313来达到,所述热源包括用工作流体394从热排放气体140中回收的显热。当流体394在热交换器342中循环时流体394接收显热,热排放气体140在从系统2的燃气涡轮机134中排出之后流过该热交换器342。在ASU 310中与空气313分离之后,所产生的氧气源309被输送到气化器308,并且如图所示,脱氧空气327可被输送到燃料管线325,用于添加到燃料混合物328中。尽管图中没有示出,合成气冷却器318可包括附加的热交换器,以便由从蒸汽涡轮机系统4排出的馈送水167的一部分来产生蒸汽。
从热交换系统11的热交换器342排出的冷却气体140仍旧相对较热,冷却气体140被导向HRSG3,用于进一步回收热量。然后,流过HRSG3之后被进一步冷却的排放气体140经由烟囱156被排放到大气中。
在图4的实施方式中,电能产生系统400提供通过闭环热交换系统对压缩空气在进入ASU之前进行预加热的方法,该闭环热交换系统使用由热合成气加热的中间工作流体。系统400包括气化系统7以及参照图1描述的燃气涡轮机系统2、HRSG 3和蒸汽涡轮机系统4。气化系统7包括气化器408,气化器408接收燃料源406和来自ITM ASU410的氧气源409并产生合成气。从气化器408排出的热合成气417在合成气冷却器418中通过热交换工作流体497被冷却,然后进入气体清洁站420以去除例如硫磺、亚硝酸化合物和灰尘颗粒的杂质。清洁的合成气424与来自蒸汽室152的蒸汽126混合以形成燃料混合物428,燃料混合物428通过燃料供给管线425流向歧管123并进入燃气涡轮机系统2的燃气燃烧器132中。
在气化系统7中,由马达416驱动的压缩机414通过环境空气源415提供压缩空气413。压缩空气413可以从图4中示出的独立压缩机414输送,或者从燃气涡轮机系统2的压缩机130输送,或者从其它空气源输送。在热交换系统12中,压缩空气413流过附加的热交换器、空气预热器412,以便与从合成气冷却器418返回的热工作流体497进行热交换。合成气冷却器418与空气预热器412彼此联接成使得工作流体497在泵493的辅助下以闭环方式在空气预热器412和合成气冷却器418之间循环。在穿过空气预热器412的过程中,压缩空气413的温度升高到ASU410的I TM工作温度。膜工作温度通过在空气预热器412中用一个或多个热源加热空气流413来达到,所述热源包括用工作流体497从由气化器408中排出的热合成气417回收的显热。在ASU410中与空气413分离之后,所产生的氧气源409被输送到气化器408,并且如图所示,脱氧空气427可被输送到燃料管线425,用于添加到燃料混合物428中。尽管图中没有示出,合成气冷却器418可包括附加的热交换器,以便由馈送水167的一部分来产生蒸汽。
在图5的实施方式中,电能产生系统500提供通过两个闭环热交换系统对压缩空气在进入ASU之前进行预加热的方法,所述两个闭环热交换系统从热合成气和热燃气涡轮机排放物回收显热。系统500包括气化系统8以及参照图1描述的燃气涡轮机系统2、HRSG3和蒸汽涡轮机系统4。气化系统8包括气化器508,气化器508在燃料源506和来自ITM ASU510的氧气源509的放热反应中产生合成气。在从气化器508排出的合成气517在合成气冷却器518中被冷却,然后进入气体清洁站520以去除例如硫磺、亚硝酸化合物和灰尘颗粒的杂质。清洁的合成气524与来自蒸汽室152的蒸汽126混合以形成燃料混合物528,燃料混合物528通过燃料供给管线525流向歧管123并进入燃气涡轮机系统2的燃气燃烧器132中。
在气化系统8中,由马达516驱动的压缩机514通过环境空气源515提供压缩空气513。压缩空气513可以从独立压缩机514输送,或者从燃气涡轮机系统2的压缩机130输送,或者从其它空气源输送。在进入ASU510之前,压缩空气513在第一空气预热器512和第二空气预热器515中分两级被加热。在第一空气预热器512中,压缩空气513通过与从热交换器542返回的第一热工作流体594进行热交换而被加热到预定温度。流体594从由系统2的燃气涡轮机134中排出的热排放气体140中接收显热。流体594在泵590的辅助下在闭环系统13中于空气预热器512和热交换器542之间循环。从第一空气预热器512中排出的压缩空气513在穿过第二空气预热器515时其温度被进一步升高到ITM工作温度。空气流513的温度通过一个或多个热源被升高,所述热源包括通过工作流体597从气化器508中排出的热合成气517中回收的热量。工作流体597在泵593的辅助下在闭环热交换系统14中于空气预热器515和合成气冷却器518之间循环。
在温度升高到氧气分离所需的温度时,热压缩空气513进入I TMASU510。在ASU10中与空气513分离之后,所产生的氧气源509被输送到气化器508,并且如图所示,脱氧空气527可被输送到燃料管线525,用于添加到燃料混合物428中。从热交换器542排出的仍旧相对较热的冷却气体140被导向HRSG3,用于进一步回收热量。然后在流过HRSG3之后被进一步冷却的气体140经由烟囱156被排放到大气中。尽管图中没有示出,合成气冷却器518可包括附加的热交换器,以便由馈送水167的一部分来产生蒸汽。
尽管已经阐述了本发明的示例性实施方式,但是本发明不限于此。在不偏离权利要求所述的本发明的精神和范围的情况下,多种改进、改型、变型、替代体或等同体对本领域技术人员而言是显而易见的。
Claims (21)
1.一种整体气化联合循环电能产生系统,包括:
气化器,其构造成由碳质材料和氧气源产生合成气;
清洁站,其定位成从所述气化器接收合成气并从合成气中去除杂质;
燃气涡轮机燃烧系统,其包括涡轮机并构造成接收来自所述气化器的燃料和来自第一空气压缩机的第一空气源;
蒸汽涡轮机系统,其构造成利用从所述燃气涡轮机系统产生的排放物回收的热量来产生动力;
离子迁移膜空气分离单元,其包括用于产生第二空气源的第二空气压缩机;以及
第一热交换器,其构造成:在所述清洁站中去除杂质之前,通过使所述第二空气源流过所述第一热交换器而使所述第二空气源从合成气中接收热量,从而冷却合成气。
2.如权利要求1所述的系统,还包括第二热交换器,所述第二热交换器构造成允许所述第二空气源流过并且从所述燃气涡轮机系统产生的排放物中接收显热。
3.如权利要求2所述的系统,其中,所述第二热交换器定位成在所述第二空气源流过所述第一热交换系统之前接收并加热所述第二空气源。
4.如权利要求2所述的系统,其中,来自所述燃气涡轮机系统产生的排放物的显热通过工作流体转移给所述第二空气源。
5.如权利要求4所述的系统,还包括第三热交换器,所述工作流体通过所述第三热交换器从所述排放物接收热量,并且其中,所述第二热交换器和所述第三热交换器构造成在闭环中循环所述工作流体。
6.如权利要求1所述的系统,还包括第二热交换器,所述第二热交换器联接到所述第一热交换器以便使工作流体循环流过,从而使所述工作流体能够将来自合成气的显热转移给所述第二空气源。
7.如权利要求2所述的系统,包括第三热交换器,所述第三热交换器联接到所述第一热交换器以便使工作流体循环流过,并由此将来自合成气的显热转移给所述第二空气源。
8.如权利要求7所述的系统,还包括第四热交换器,所述第四热交换器联接到所述第二热交换器以便在闭环中循环第二工作流体,从而所述第二工作流体从所述燃气涡轮机系统产生的排放物中接收热量并将所述热量转移给所述第二空气源。
9.如权利要求4所述的系统,其中,所述工作流体主要包括水。
10.如权利要求4所述的系统,其中,所述工作流体是纯水。
11.一种整体气化联合循环电能产生系统,包括:
气化器,其构造成由碳质材料和氧气源产生合成气;
第一热交换器,其构造成接收合成气;
第二热交换器,其在闭环中联接到所述第一热交换器以便循环第一工作流体,从而所述第一工作流体能够从合成气接收显热并将所述显热转移给第一空气源;
第一压缩机,其用于产生所述第一空气源;
燃气涡轮机燃烧系统,其包括涡轮机并构造成接收来自所述气化器的燃料和来自第二空气压缩机的第二空气源;
蒸汽涡轮机系统,其构造成利用从所述燃气涡轮机系统产生的排放物回收的热量来产生动力;
第三热交换器,其构造成使所述第一空气源流过并从所述燃气涡轮机系统产生的排放物中接收显热;
第四热交换器,其在闭环中联接到所述第三热交换器以便循环第二工作流体,从而所述第二工作流体能够从所述排放物接收显热并将所述显热转移给所述第一空气源;以及
离子迁移膜空气分离单元,其构造成在将显热从合成气和排放气体转移给所述第一空气源之后接收所述第一空气源。
12.如权利要求11所述的系统,其中,所述空气分离单元构造成为所述气化器提供氧气源。
13.一种整体气化联合循环电能产生系统,包括:
气化器,其构造成由碳质材料和氧气源产生合成气;
清洁站,其定位成从所述气化器接收合成气并从合成气中去除杂质;
燃气涡轮机燃烧系统,其包括涡轮机并构造成接收来自所述气化器的燃料和来自第一空气压缩机的第一空气源;
蒸汽涡轮机系统,其构造成利用从所述燃气涡轮机系统产生的排放物回收的热量来产生动力;
离子迁移膜空气分离单元,其包括第二空气压缩机,用于产生供分离氧气之用的第二空气源;以及
第一热交换器,其构造成在从所述第二空气源中分离氧气之前将显热从所述燃气涡轮机燃烧系统转移给所述第二空气源。
14.如权利要求13所述的系统,包括第二热交换器,所述第二热交换器构造成:在所述清洁站中去除杂质之前,通过使所述第二空气源流过所述第一热交换器而使所述第二空气源从合成气中接收热量,从而冷却合成气。
15.如权利要求14所述的系统,其中,所述第一热交换器和所述第二热交换器能够升高所述第二空气源的温度,以便在所述空气分离单元中实现氧气分离。
16.如权利要求13所述的系统,其中,所述第一热交换器设计成通过工作流体将显热转移给所述第二空气源。
17.如权利要求14所述的系统,其中,所述第二热交换器设计成通过工作流体将显热转移给所述第二空气源。
18.如权利要求16所述的系统,其中,所述工作流体包括水。
19.如权利要求13所述的系统,其中,所述第一热交换器从燃气涡轮机产生的排放气体中接收显热,所述系统还包括与其联接的热量回收蒸汽发生器,以便也从所述排放气体中接收显热。
20.一种用于在整体气化联合循环电能产生系统中产生氧气源的方法,包括:
提供气化器,所述气化器构造成由碳质材料和氧气源产生合成气;
清洁所述合成气以去除杂质;
通过第一压缩机产生第一空气源;
使合成气与所述第一空气源燃烧以产生热排放物;
通过第二压缩机产生第二空气源;
通过使所述第二空气源穿过离子迁移膜空气分离单元来提供所述氧气源;以及
利用从合成气中提取的显热来升高所述第二空气源的温度。
21.如权利要求20所述的方法,还包括利用从所述热排放物中提取的显热来升高所述第二空气源的温度的步骤。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/711,825 | 2007-02-27 | ||
US11/711,825 US8356485B2 (en) | 2007-02-27 | 2007-02-27 | System and method for oxygen separation in an integrated gasification combined cycle system |
PCT/US2008/000308 WO2008105982A1 (en) | 2007-02-27 | 2008-01-09 | System and method for oxygen separation in an integrated gasification combined cycle system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101622425A true CN101622425A (zh) | 2010-01-06 |
CN101622425B CN101622425B (zh) | 2012-11-28 |
Family
ID=39539493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008800063751A Expired - Fee Related CN101622425B (zh) | 2007-02-27 | 2008-01-09 | 在整体气化联合循环系统中分离氧气的系统和方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8356485B2 (zh) |
EP (1) | EP2118451A1 (zh) |
CN (1) | CN101622425B (zh) |
WO (1) | WO2008105982A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102653689A (zh) * | 2011-03-03 | 2012-09-05 | 刘红 | 加压移动床煤气化未分解蒸汽循环利用工艺 |
CN103328787A (zh) * | 2010-10-12 | 2013-09-25 | Gtl汽油有限公司 | 使用离子传输膜发电 |
CN103912385A (zh) * | 2014-04-03 | 2014-07-09 | 华北电力大学 | 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统 |
CN109790779A (zh) * | 2016-08-31 | 2019-05-21 | 八河流资产有限责任公司 | 包括离子迁移部件的用于发电的系统和方法 |
US20230296294A1 (en) * | 2020-08-12 | 2023-09-21 | Cryostar Sas | Simplified cryogenic refrigeration system |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2858398B1 (fr) * | 2003-07-30 | 2005-12-02 | Air Liquide | Procede et installation d'alimentation d'une unite de separation d'air au moyen d'une turbine a gaz |
CN101981162B (zh) | 2008-03-28 | 2014-07-02 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
CN102149463B (zh) * | 2008-09-10 | 2013-05-22 | 巴斯夫欧洲公司 | 制备羰基铁粉末和烃的一体化方法 |
JP5580320B2 (ja) | 2008-10-14 | 2014-08-27 | エクソンモービル アップストリーム リサーチ カンパニー | 燃焼生成物を制御するための方法およびシステム |
CN102597418A (zh) | 2009-11-12 | 2012-07-18 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
BR112012031153A2 (pt) | 2010-07-02 | 2016-11-08 | Exxonmobil Upstream Res Co | sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão |
JP5759543B2 (ja) | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
JP5906555B2 (ja) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
EP2593647A4 (en) | 2010-07-14 | 2017-05-17 | GTLPetrol, LLC | Generating power using an ion transport membrane |
US8752391B2 (en) | 2010-11-08 | 2014-06-17 | General Electric Company | Integrated turbomachine oxygen plant |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
US8943838B2 (en) | 2011-08-24 | 2015-02-03 | General Electric Company | Integrated turbomachine plant |
CN104428490B (zh) | 2011-12-20 | 2018-06-05 | 埃克森美孚上游研究公司 | 提高的煤层甲烷生产 |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
WO2014059524A1 (en) * | 2012-10-18 | 2014-04-24 | Bogdan Wojak | Systems and methods for sulphur combustion with multi-stage combustor |
US10161312B2 (en) | 2012-11-02 | 2018-12-25 | General Electric Company | System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
DE102015119915A1 (de) | 2015-11-18 | 2017-05-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit nasser Verbrennung |
CN107101458B (zh) * | 2017-05-05 | 2019-06-28 | 山东京博众诚清洁能源有限公司 | 一种空分与造气冷热量联用系统 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184322A (en) * | 1976-06-21 | 1980-01-22 | Texaco Inc. | Partial oxidation process |
CA1281246C (en) * | 1986-04-03 | 1991-03-12 | Thomas Fyles | Polymer membrane for proton driven ion transport |
US5041224A (en) * | 1988-03-28 | 1991-08-20 | Canon Kabushiki Kaisha | Ion permeable membrane and ion transport method by utilizing said membrane |
JPH04156265A (ja) | 1990-05-12 | 1992-05-28 | Yukio Nakagawa | 移動磁界起電装置、磁気淡化濃縮輸送装置並びにサンドイッチ型イオン変換膜、及びこれらを用いるカセイソーダ製造低濃度法 |
US5295350A (en) * | 1992-06-26 | 1994-03-22 | Texaco Inc. | Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas |
US5240473A (en) * | 1992-09-01 | 1993-08-31 | Air Products And Chemicals, Inc. | Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture |
EP0658366B1 (en) * | 1993-12-17 | 1998-06-03 | Air Products And Chemicals, Inc. | Integrated production of oxygen and electric power |
AU684648B2 (en) * | 1994-07-07 | 1997-12-18 | Industrial Research Limited | Ion transport apparatus and process |
US5740673A (en) | 1995-11-07 | 1998-04-21 | Air Products And Chemicals, Inc. | Operation of integrated gasification combined cycle power generation systems at part load |
US6235187B1 (en) * | 1996-12-31 | 2001-05-22 | Praxair Technology Inc. | Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane |
US5964922A (en) * | 1997-11-18 | 1999-10-12 | Praxair Technology, Inc. | Solid electrolyte ionic conductor with adjustable steam-to-oxygen production |
US5954859A (en) * | 1997-11-18 | 1999-09-21 | Praxair Technology, Inc. | Solid electrolyte ionic conductor oxygen production with power generation |
US6293084B1 (en) * | 2000-05-04 | 2001-09-25 | Praxair Technology, Inc. | Oxygen separator designed to be integrated with a gas turbine and method of separating oxygen |
AU2001276823A1 (en) * | 2000-05-12 | 2001-12-03 | Clean Energy Systems, Inc. | Semi-closed brayton cycle gas turbine power systems |
FR2825119B1 (fr) * | 2001-05-23 | 2003-07-25 | Air Liquide | Procede et installation d'alimentation d'une unite de separation d'air au moyen d'une turbine a gaz |
US6868677B2 (en) * | 2001-05-24 | 2005-03-22 | Clean Energy Systems, Inc. | Combined fuel cell and fuel combustion power generation systems |
US20030039601A1 (en) * | 2001-08-10 | 2003-02-27 | Halvorson Thomas Gilbert | Oxygen ion transport membrane apparatus and process for use in syngas production |
WO2003049122A2 (en) | 2001-12-03 | 2003-06-12 | Clean Energy Systems, Inc. | Coal and syngas fueled power generation systems featuring zero atmospheric emissions |
US6565632B1 (en) * | 2001-12-17 | 2003-05-20 | Praxair Technology, Inc. | Ion-transport membrane assembly incorporating internal support |
JP4156265B2 (ja) | 2002-04-30 | 2008-09-24 | 日本クラウンコルク株式会社 | 開封性及び流量制御に優れたキャップ |
US20040011057A1 (en) * | 2002-07-16 | 2004-01-22 | Siemens Westinghouse Power Corporation | Ultra-low emission power plant |
US7358010B2 (en) * | 2002-07-22 | 2008-04-15 | Lodestar Inc. | Fluorinated carbon for metal/fluorinated carbon batteries |
US7338624B2 (en) * | 2002-07-31 | 2008-03-04 | Praxair Technology Inc. | Ceramic manufacture for a composite ion transport membrane |
US6916362B2 (en) | 2003-05-06 | 2005-07-12 | Praxair Technology, Inc. | Ion transport membrane isolation device |
CA2531811A1 (en) | 2003-07-10 | 2005-03-17 | Praxair Technology, Inc. | Method of forming ion transport membrane structure |
US7179323B2 (en) * | 2003-08-06 | 2007-02-20 | Air Products And Chemicals, Inc. | Ion transport membrane module and vessel system |
DE102006035790B3 (de) | 2006-07-28 | 2008-03-27 | Siemens Ag | Verfahren zum Betrieb einer Kraftwerksanlage mit integrierter Kohlevergasung sowie Kraftwerksanlage |
US7947115B2 (en) * | 2006-11-16 | 2011-05-24 | Siemens Energy, Inc. | System and method for generation of high pressure air in an integrated gasification combined cycle system |
-
2007
- 2007-02-27 US US11/711,825 patent/US8356485B2/en not_active Expired - Fee Related
-
2008
- 2008-01-09 EP EP08713081A patent/EP2118451A1/en not_active Withdrawn
- 2008-01-09 CN CN2008800063751A patent/CN101622425B/zh not_active Expired - Fee Related
- 2008-01-09 WO PCT/US2008/000308 patent/WO2008105982A1/en active Application Filing
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103328787A (zh) * | 2010-10-12 | 2013-09-25 | Gtl汽油有限公司 | 使用离子传输膜发电 |
CN102653689A (zh) * | 2011-03-03 | 2012-09-05 | 刘红 | 加压移动床煤气化未分解蒸汽循环利用工艺 |
CN102653689B (zh) * | 2011-03-03 | 2015-11-25 | 李宁 | 加压移动床煤气化未分解蒸汽循环利用工艺 |
CN103912385A (zh) * | 2014-04-03 | 2014-07-09 | 华北电力大学 | 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统 |
CN103912385B (zh) * | 2014-04-03 | 2016-08-17 | 华北电力大学 | 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统 |
CN109790779A (zh) * | 2016-08-31 | 2019-05-21 | 八河流资产有限责任公司 | 包括离子迁移部件的用于发电的系统和方法 |
US20230296294A1 (en) * | 2020-08-12 | 2023-09-21 | Cryostar Sas | Simplified cryogenic refrigeration system |
Also Published As
Publication number | Publication date |
---|---|
US8356485B2 (en) | 2013-01-22 |
EP2118451A1 (en) | 2009-11-18 |
CN101622425B (zh) | 2012-11-28 |
WO2008105982A1 (en) | 2008-09-04 |
US20080202123A1 (en) | 2008-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101622425B (zh) | 在整体气化联合循环系统中分离氧气的系统和方法 | |
US8371099B2 (en) | Power generation system incorporating multiple Rankine cycles | |
CN100462531C (zh) | 一种提高联合循环电厂效率的系统和方法 | |
CN101287893B (zh) | 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法 | |
US20110185701A1 (en) | Turbine equipment and power generating plant | |
CN109266396B (zh) | 一种采用超临界co2底循环的整体煤气化燃料电池发电系统及方法 | |
CN108439336B (zh) | 一种零排放氢电联产系统 | |
JP5196482B2 (ja) | 炭酸アルカリ併産タービン設備 | |
CN102451605A (zh) | 二氧化碳回收方法及二氧化碳回收型火力发电系统 | |
CA2715493C (en) | Methods and systems for integrated boiler feed water heating | |
CN106224099A (zh) | 一种双燃料热电联供注水正逆燃气轮机联合循环系统 | |
CN114744264A (zh) | 一种基于生物质气化和固体氧化物燃料电池的多联供系统 | |
CN109611171A (zh) | 零碳排放的整体煤气化-超临界co2联合循环发电工艺 | |
CN111894735B (zh) | 一种无NOx排放的氢燃气轮机联合循环多联产方法 | |
CN111102073B (zh) | 一种适用煤气化的超临界二氧化碳循环系统及其操作方法 | |
CN109350988B (zh) | 一种co2液化过程与深冷空分耦合的igfc发电系统及方法 | |
KR950011694B1 (ko) | 석탄가스화 복합발전 시스템 | |
RU2651918C1 (ru) | Способ и установка для выработки механической и тепловой энергии | |
US4387561A (en) | Utilization of coal powering a gas turbine engine | |
CN110905611B (zh) | 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统 | |
JPH0131012B2 (zh) | ||
RU2272915C1 (ru) | Способ работы газопаровой установки | |
JP2004150356A (ja) | 発電プラント | |
JP2015500934A (ja) | 窒素を燃焼室に供給する方法及び装置 | |
CN113864019B (zh) | 一种空气-超临界rc318联合循环热电联产系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121128 Termination date: 20170109 |