CN101577420A - 一种限制耦合变压器推拉式功率转换电路的漏源电压的装置和方法 - Google Patents

一种限制耦合变压器推拉式功率转换电路的漏源电压的装置和方法 Download PDF

Info

Publication number
CN101577420A
CN101577420A CNA2009101390174A CN200910139017A CN101577420A CN 101577420 A CN101577420 A CN 101577420A CN A2009101390174 A CNA2009101390174 A CN A2009101390174A CN 200910139017 A CN200910139017 A CN 200910139017A CN 101577420 A CN101577420 A CN 101577420A
Authority
CN
China
Prior art keywords
vds
voltage
fet
maximum
stabilizing didoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009101390174A
Other languages
English (en)
Other versions
CN101577420B (zh
Inventor
圣杰·哈佛纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpha and Omega Semiconductor Ltd
Alpha and Omega Semiconductor Inc
Original Assignee
Alpha and Omega Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha and Omega Semiconductor Inc filed Critical Alpha and Omega Semiconductor Inc
Publication of CN101577420A publication Critical patent/CN101577420A/zh
Application granted granted Critical
Publication of CN101577420B publication Critical patent/CN101577420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3372Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12035Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)
  • Rectifiers (AREA)

Abstract

一种用于限制耦合变压器推拉式整流器的开关场效应晶体管(Field-Effect Transistor switching,switching FET)的最大漏源电压(drain-source voltage,简写VDS)的电路,该整流器具有一个最大DC供应电压VIN_MAX。所述VDS被推拉式晶体管和整流器电路的漏电感加强。所述限制电路桥连接开关晶体管的漏极并进一步包括一系列的相互连接的两个对立的稳压二极管(Zener diode),所述每一个稳压二极管都具有一个稳压电压Vzx(Zener voltage)。本发明适用于N沟槽场效应晶体管和P沟槽场效应晶体管。设定Vzx略微大于或等于2×VIN_MAX,因此两个对立的稳压二极管把最大VDS钳位在大约VIN_MAX+1/2Vzx的数值处。所述具有完整VDS钳位的功率开关装置包括:一个开关晶体管,所述开关晶体管具有一个源极引线、一个漏极引线和一个栅极引线;一个稳压二极管,所述稳压二极管具有一个稳压电压Vzx并且具有第一引线和第二引线,所述稳压二极管的第二引线进一步连接所述漏极引线。

Description

一种限制耦合变压器推拉式功率转换电路的漏源电压的装置和方法
技术领域
本发明属于功率电子技术领域,具体涉及在功率开关电路中对电压过冲的控制和抑制。
背景技术
功率转换电路目前正被普遍的应用于电子领域,例如开关电源、直流电-直流电(DC-DC)电压转换及直流电-交流电(DC-AC)电压转换。
在操作这种转换电路时,经常遇到的一种情况是:当功率转换装置,例如关闭MOSFET(金属氧化物场效应晶体管,Metal-Oxide-Semiconductor Field-EffectTransistor)防止非钳位或部分钳位电感负载,在关闭时,由于功率MOSFET装置的栅极驱动器,负载电流变化的高比率(简写di/dt)通常被电感负载所影响。这通常导致相应过冲电压和振荡,这是因为储存在非钳位电路电感中的漏电感能量在减弱消失前与寄生电路电容发生共振。过度的振荡可能导致功率损耗,过冲电压的过度峰值电压可能导致功率MOSFET装置雪崩击穿并产生永久性的装置故障。此外,过冲电压和共振还可能导致高强度的EMI/RFI(电磁干扰/射频干扰)控制和/或辐射,从而导致对邻近的其他敏感电子系统的操作产生不利干扰。
现在已经对过冲电压和共振现行进行了诸多研究,以尽可能减少其不利影响。其解决方案包括增加MOSFET的缓冲、通过减少栅极关闭电流以减小关闭速度等等。上述解决方案通常需要许多额外的组件和/或效率很低。因此现在需要有效降低由高比率的负载电流变化di/dt所导致的过冲电压和共振。以下是本发明的参考文献:
1、F Merienne,J Roudet,J.L Schanen,“Switching disturbance due to sourceinductance for a power MOSFET:analysis and solutions”,IEEE Power ElectronicsSpecialists Conference,PESC 1996年第20卷第1743~1747页;
2、G Nobauer,D Ahlers和J Ruiz-Sevillano,“A method to determine parasiticinductances in Buck Converter topologies”,Infineon Application Note,2004年6月;
3、Qun Zhao,Goran Stojcic,“Characterization of Cdv/dt induced power loss inSynchronous Buck DC-DC converters”,IEEE Applied Power Electronics Conference,APEC,2004年第1卷第292~297页;
4、Bo Yang,Jason Zhang“Effect and Utilization of Common Source Inductancein Synchronous Rectification”,IEEE Applied Power Electronics Conference,APEC2005,1996年第3卷第1449~1453页;
5、W Teulings,J.L.Schanen,J Roudet,“MOSFET switching behavior underinfluence of PCB stray inductance”,IEEE Industry Applications Conference,1996年第3卷第1449~1453页。
发明内容
本发明公开了一种用于限制耦合变压器推拉式整流器的开关场效应晶体管(Field-Effect Transistor switching,switching FET)的最大漏源电压(drain-sourcevoltage,简写VDS)的电路,该整流器具有一个最大DC供应电压VIN_MAX。所述VDS被推拉式晶体管和整流器电路的漏电感加强。所述限制电路桥连接开关晶体管的漏极并进一步包括一系列的相互连接的两个对立的稳压二极管(Zener diode),所述每一个稳压二极管都具有一个稳压电压Vzx(Zener voltage)。本发明适用于N沟槽场效应晶体管和P沟槽场效应晶体管。
在一些具体实施例中,设定Vzx略微大于或等于2×VIN_MAX,因此两个对立的稳压二极管把最大VDS钳位在大约VIN_MAX+1/2Vzx的数值处。
在另一个实施例中,具有完整VDS钳位的功率开关装置包括:
一个开关晶体管,所述开关晶体管具有一个源极引线、一个漏极引线和一个栅极引线;
一个稳压二极管,所述稳压二极管具有一个稳压电压Vzx并且具有第一引线和第二引线,所述稳压二极管的第二引线进一步连接所述漏极引线。
连接具有完整VDS钳位的功率开关装置中的两个,作为一个耦合变压器推拉式整流器的一对开关场效应晶体管,其中所述耦合变压器推拉式整流器具有一个最大DC供应电压VIN_MAX,所述两个稳压二极管的第一引线相互连接,从而使得所述两个具有完整VDS钳位的功率开关装置在最大VDS被钳位在大约VIN_MAX+1/2Vzx的情况下,执行推拉式功率开关的相应任务。
在一个进一步实施例中,所述开关FET是一个N沟槽FET并且所述稳压二极管的第二引线是其负极。
在一个可选实施例中,所述开关FET是一个P沟槽FET并且所述稳压二极管的第二引线是其正极。
在一个具有N沟槽开关FET的实施例中,所述开关FET是一个底部漏极沟槽FET,所述稳压二极管是一个底部负极装置,并且共享他们的相应底部漏极和底部负极,在一个单一晶片上形成所述开关FET和稳压二极管,所述晶片具有普通的位于晶片基底顶部的N层(N-layer)。
本发明公开了一种用于限制耦合变压器推拉式整流器的开关场效应晶体管(Field-Effect Transistor switching,switching FET)的最大漏源电压(drain-sourcevoltage,简写VDS)的方法,该整流器具有一个最大DC供应电压VIN_MAX。所述VDS被推拉式晶体管和整流器电路的漏电感加强。该方法包括基于所述VDS超过VDS最大值(VDSmax)的倾向,自动生成一个内部漏极电流,所述内部漏极电路在开关FET的漏极间流动并具有相应的电能损耗,因此限制了最大VDS。
在一个进一步实施例中,自动生成内部漏极电流的过程进一步包括提供一个电路以桥连接开关FET的各漏极。所述桥连接电路具有一种基于任一开关FET的VDS超过一个预先确定限制值的倾向的非破坏性击穿。
在一个进一步实施例中,提供桥连接电路的过程进一步包括提供一系列的相互连接的两个对立的稳压二极管,所述每一个稳压二极管都具有一个稳压电压Vzx,该Vzx被设定略微大于或等于2×VIN_MAX,因此最大VDS的值大约为VIN_MAX+1/2Vzx
本发明的以上各方面以及其众多的实施例将在下文中进一步叙述,以便于本领域技术人员对其的理解。
附图说明
为了更全面的描述本发明的众多实施例,参考以下附图做进一步说明。然而,这些附图仅用于描述,并不用于限定本发明的保护范围。
图1A和1B描述了现有技术的一种耦合变压器推拉式整流器电路及其内信号波形。
图2A和2B描述了本发明的一种耦合变压器推拉式整流器电路及其内信号波形。
图3A、3B和3C描述了现有技术的开关N沟槽FET及其相应半导体晶片结构的顶视图。
图4A和4B描述了本发明的一种使用N沟槽FET且具有完整VDS钳位的功率开关装置以及其相应半导体晶片结构的顶视图。
图4C描述了本发明的一种使用N沟槽FET且具有完整VDS钳位的功率开关装置的相应半导体晶片结构的截面视图。
图5A描述了本发明的采用P沟槽FET的具有完整VDS钳位的一个桥连接电路,该电路用于限制耦合变压器推拉式整流器的一个开关FET的最大VDS。
图5B描述了本发明的采用P沟槽FET的具有完整VDS钳位的功率开关装置的相应半导体晶片的截面视图。
图6描述了两个堆叠半导体晶片的顶视图,所述每一半导体晶片具有本发明的具有完整VDS钳位的功率开关装置。
具体实施方式
以上和以下的描述连同附图仅仅描述了本发明的部分较佳实施例以及可选实施例。该描述及附图仅用于阐述,并不用于限制本发明。因此,本领域技术人员一旦理解本发明就会得出本发明实施例的变形、修改及可选方式,然而对本发明的任何变形、修改和可选实施方式都仍未脱离本发明的保护范围。
图1A和1B描述了现有技术的一种耦合变压器推拉式整流器电路及其内信号波形。一对开关FET Q1 10和开关FET Q2 20轮流开关高边缘荷载电流,首先通过具有电压Vin的DC电源6供电,相应地通过一个推拉式晶体管4地初级线圈PMW-1和PMW-2。相应开关功率磁耦合第二线圈SCW-1和SCW-2,以转移一个外荷载(图中未示出)。所述开关FET Q1 10和Q2 20的轮流开关顺序
控制信号波形栅极源极电压VG1-S1(在开关FET Q1 10的栅极G1和源极S1中使用,所述开关FET Q1 10同样具有一个嵌入式体二极管BD1和漏极D1)并且栅极源极电压VG2-S2(在开关FET Q2 20的栅极G2和源极S2中使用,所述开关FET Q2 20同样具有一个嵌入式体二极管BD2和漏极D2)。现有技术的推拉式整流器电路1具有多个沿负载电路路径的漏电感。如图所示,所述漏电感包括所述初级线圈PMW-1的一个初级漏电感LPRI1、所述初级线圈PMW-2的一个初级漏电感LPRI2和一个印刷电路板(PCB)电路路径的相应路径电感LPCB,从而组成负载电流路径。对于本领域技术人员,当所述开关FETQ110的开关突然关闭,变压器储存磁能的浪费和漏电感将会导致其漏源电压VD1-S1的出现尖峰并与一个峰值漏源电压Max VD1-S1振荡。如前所述,开关FET Q1 10突然关闭并导致栅极源极电压VG1-S1向下转变。应当注意,所述耦合变压器推拉式整流器电路的内在操作(即便具有的电压峰值钳位)将导致漏源电压VD1-S1变至2×Vin。然而,FET Q1 10的突然关闭诱导了一个电压峰值,其形成所述最大漏源电压Max VD1-S1,比两倍的最高DC电源电压VIN_MAX高的多。所述漏源电压VD1-S1的尖峰和振荡是不利的,因为其导致了EMI/RFI,当振幅过大时候,将会导致所述开关FET Q1 10的漏极-源极(D1-S1)的雪崩击穿。同样地,所述开关FET Q2 20的开关突然关闭,变压器储存磁能的浪费和漏电感将会导致其漏源电压VD2-S2的出现尖峰并与一个峰值漏源电压Max VD2-S2振荡。为了确保安全运行,必须设定所述FET具有比2×VIN_MAX高的多的损坏额定电压,这种方式低效并需要更高的电阻(Rdson)和/或成本。
图2A和2B描述了本发明的一种用于限制最大开关FET的VDS的耦合变压器推拉式整流器电路100及其内信号波形。使用一个桥连接电路110,桥连接开关FET Q1 10和Q2 20。所述桥连接电路110进一步包括一系列的相互连接的两个对立的稳压二极管Z1 112和Z2 114,所述每一个稳压二极管都具有一个稳压电压Vzx(Zener voltage)。
一个稳压二极管,所述稳压二极管具有一个稳压电压Vzx并且具有第一引线和第二引线,所述稳压二极管的第二引线进一步连接所述漏极引线。稳压二极管Z1 112的第一引线112a连接稳压二极管Z2 114的第一引线114a。稳压二极管Z1 112的第二引线112b连接开关FET Q110的漏极D1。稳压二极管Z2 114的第二引线114b连接开关FET Q220的漏极D2。包括开关FET Q1 10和Q2 20、桥连接电路110的桥连接的FET电路101可以与转换电路110分开制造。
基于所述VDS超过一个预定最大VDS最大值(VDSmax)的倾向,所述桥连接电路110自动产生一个内部漏极电流,所述内部漏极电路在主开关FET Q1 10和Q2 20的相应漏极D1和D2之间流动。因此根据稳压电压Vzx的设定,当漏源电压VD1-S1超过VDSmax时,VD1-S1将会导致一个稳压二极管Z1112的击穿,并伴随漏电感储存磁能的释放,因此限制了最大VD1-S1至VDSmax。所述桥连接电路110限制最大开关FETVDS的能力可以清楚的看到,通过对比图1B和图2B中关闭时的VD1-S1的波形。需要指出的是,由于两个对立的稳压二极管Z1 112和Z2 114的自身电压的限制,桥连接电路110展现了一种基于稳压二极管Z1 112的稳压电压的非破坏性击穿。需要进一步指出的是,由于VDS保持在VDSmax之下,所述稳压二极管Z1112相反向下偏离稳压电压Vzx,因此实质保持绝缘。因此,桥连接电路110也实质保持绝缘,故其不干涉本发明推拉式整流器电路100的其他操作。作为一个列举参数的本发明实施例,所述DC电源6被限制至一个最大值VIN_MAX,稳压二极管电压Vzx被设定略微大于或等于2×VIN_MAX,因此最大VDS的值大约为VIN_MAX+1/2Vzx。这比现有技术低了很多。因此,FET具有一个较现有技术低的多的击穿额定电压,允许更好的效率和较低的电阻Rdson和/或成本。所述稳压二极管Z2114和FETQ220采用同样的方式工作,当FETQ2被突然关闭时并具有一个突然下降的栅极源极电压VG2-S2。对于本领域技术人员而言,现在可以清楚的了解,由于稳压二极管Z1 112和Z2 114相对反极性的连接在桥连接电路110上。换而言之,稳压二极管Z1 112和Z2 114的几项可以同时反置,而不影响桥连接电路110的任何功能(然而,如果稳压二极管112时和FETQ1 110在同一晶片上时,如图4A~4C所述,二极管极性不应反转)。进一步而言,如图2A所示,可以采用N沟槽开关FETQ1 10和Q2 20,本发明可以经过相应修改,使用P沟槽FET,正如前文所述。
为了从半导体晶片水平描述本发明,图3A~3C描述了现有技术的N沟槽FET11及其相应半导体晶片结构的顶视图。图3A时一个具有源极S1、栅极G1、漏极D1和内置体二极管BD1的N沟槽FET11电路简图。图3B是一个除去顶部钝化层12k以暴露两个钝化窗口12g和12h的相应N沟槽FET晶片12的顶视图,其还具有一个源极金属12a被一个栅极金属12d所环绕,后者具有一个栅极衬垫12e用于进行外部电连接。所述源极金属12a和栅极金属12d被一个金属缺口12f相互分隔。源极金属12a下面的区域包含有效区域,晶体管位于该区域。在表面之下,栅极滑道沟槽12b及其两个末端栅极滑道金属连接点12c在源极金属下面并从栅极金属12d处向有效区域的晶体管栅极提供电连接。所述栅极结构具有多个相对平行的栅极滑道沟槽,以相应增加电流容量,为避免过于繁琐,此处图中仅仅示出一条滑道沟槽。所述N沟槽FET11的漏极D1位于N沟槽FET晶片12底部,因此顶视图中未示出。图3C是相应N沟槽FET晶片12的顶视图,其具有一个有钝化窗口12g和12h的钝化层12k。
图4A和4B描述了本发明具有完整VDS钳位115的具有主开关N沟槽FET11以及稳压二极管Z1 112的功率开关装置,以及其相应半导体晶片116的顶视图。所述N沟槽FET11具有一个源极S1、一个漏极D1和一个栅极G1。所述稳压二极管Z1 112具有一个第一引线112a作为其正极、一个第二引线112b作为其负极。稳压二极管Z1 112的第二引线112b连接N沟槽FET11的漏极D1。参考图2A本发明的推拉式功率整流器电路100,两个功率开关装置连接完整VDS钳位115作为耦合变压器推拉式整流器的一对主开关FET,该整流器具有一个最大DC供应电压VIN_MAX,并且两个功率开关装置的第一引线112a相互连接,具有完整VDS钳位115的两个功率开关装置一起操作相应推拉式功率开关,以把最大VDS钳位至大于VIN_MAX+1/2Vzx(其中设定Vzx略微大于或等于2×VIN_MAX)。在图4B中,稳压二极管Z1 112的稳压二极管正极金属116p通过钝化层12k从源极金属12a处孤立,然而稳压二极管金属在底表面连接漏极D1,此处图中未示出。
图4C描述图4B沿B-B方向的一个截面视图,其描述了本发明具有完整VDS钳位115的开关装置的一个具有完整VDS钳位的半导体晶片116的FET。为了便于描述,等效电路图用虚线绘于半导体晶片结构上。具有完整VDS钳位晶片116的FET具有一个N+基底12n,其位于底部漏极金属12m顶部。一个普通N层,一个用于设置各种装置元件的N-外延层12p位于N+基底12n的顶部。未避免不需要的细节,只绘出两个平行的源极金属12a,两个平行的沟槽栅极116c和三个平行的稳压二极管Z1 112。因此,比如,两个源极金属12a通过一个三维(3D)源极金属连接件116a相互连接。两个沟槽栅极116c通过一个3D栅极连接件116d相互连接。然而三个平行的稳压二极管Z1 112的正极金属统一连接到一个稳压电阻正极金属116p。应该可以理解,实际操作中,大量平行的沟槽栅极和稳压电阻中的任一个可以被具有完整VDS钳位晶片116的FET执行。多种平行沟槽栅极116c和平行稳压电阻Z1 112进一步从场氧化物去116q上分别相对孤立。因此,开关FET位于底部漏极沟槽FET中、稳压二极管表现为底部负极、所述FET和稳压二极管在同一单一晶片116上形成,通过与N-外延层12p和N+基底12n,共享他们的相应底部漏极和底部负极。
如前所述,本发明可以改进适用于P沟槽FET。为此,图5A展示了本发明稳压钳位P沟槽开关装置130的一个电路图,其用于限制开关P沟槽FETQ1 132和Q2 134的最大VDS,当其被用于耦合变压器推拉式整流器中。注意,稳压电极Z1 112的第一引线112a为其正极,并与P沟槽FET Q1 132漏极D1相连,等等。图5B描述了,相对应具有P沟槽FET的稳压钳位P沟槽开关装置130的,具有完整VDS钳位晶片136的FET的截面视图。所述P沟槽FET Q1 132和稳压二极管Z1 112位于P-外延层136p中,后者位于P+基底136n顶部,并具有一个漏极金属连接点12m。图5B中的元件通图4C中一致,除了极性相反以外。
进一步介绍本发明优选实施例,图6描述了一个两个联合封装N沟槽FET晶片系统的顶视图,二者分别具有完整VDS钳位140。该封装的FET晶片是具有完整VDS钳位晶片-1142a的FET和具有完整VDS钳位晶片-2142b的FET,二者相应焊接至传导引线架衬垫146。传导引线架衬垫146进一步位于绝缘平台148顶部并具有大量引线架引线引脚150外延出其边缘。连接现144用于相互连接两个FET晶片和连接两个联合封装FET晶片至引线架引脚150。最后,两个封装FET晶片系统被环氧材料152封装,并提供引线架引脚150的位置。

Claims (12)

1、一种用于限制耦合变压器推拉式整流器的主要开关场效应晶体管(switching FET)的最大漏源电压(VDS)的电路,所述整流器具有一个最大DC供应电压VIN_MAX,所述VDS被推拉式晶体管和整流器电路的漏电感加强,所述用于限制最大VDS的电路包括一个电路桥连接主要开关FET的漏极,其特征在于,所述桥连接电路进一步包括一系列的相互连接的两个对立的稳压二极管(Zener diode),所述每一个稳压二极管都具有一个稳压电压Vzx(Zener voltage)。
2、如权利要求1所述的用于限制最大VDS的电路,其特征在于,为确保电压范围,设定所述Vzx略微大于或等于2×VIN_MAX,因此两个对立的稳压二极管把最大VDS钳位在大约VIN_MAX+1/2Vzx的数值处。
3、如权利要求1所述的用于限制最大VDS的电路,其特征在于,所述主开关FET是N沟槽FET。
4、如权利要求1所述的用于限制最大VDS的电路,其特征在于,所述主开关FET是P沟槽FET。
5、一种具有完整VDS钳位的功率开关装置,其特征在于,包括:
一个开关晶体管,所述开关晶体管具有一个源极引线、一个漏极引线和一个栅极引线;
一个稳压二极管,所述稳压二极管具有一个稳压电压Vzx并且具有第一引线和第二引线,所述稳压二极管的第二引线进一步连接所述漏极引线;
其中,连接具有完整VDS钳位的功率开关装置中的两个,作为一个耦合变压器推拉式整流器的一对开关场效应晶体管,其中所述耦合变压器推拉式整流器具有一个最大DC供应电压VIN_MAX,所述两个稳压二极管的第一引线相互连接,从而使得所述两个具有完整VDS钳位的功率开关装置在最大VDS被钳位在大约VIN_MAX+1/2Vzx的情况下,执行推拉式功率开关的相应任务。
6、如权利要求5所述的具有完整VDS钳位的功率开关装置,其特征在于,所述主开关FET是一个N沟槽FET,所述稳压二极管是其负极。
7、如权利要求5所述的具有完整VDS钳位的功率开关装置,其特征在于,所述主开关FET是一个P沟槽FET,所述稳压二极管是其正极。
8、如权利要求6所述的具有完整VDS钳位的功率开关装置,其特征在于,所述主开关FET是一个底部漏极沟槽FET,所述稳压二极管是一个底部负极装置,并且二者共享其相应底部漏极和底部负极,在一个单一晶片上形成所述开关FET和稳压二极管,所述晶片具有普通的位于晶片基底顶部的N层(N-layer)。
9、如权利要求7所述的具有完整VDS钳位的功率开关装置,其特征在于,所述N层是一个N外延层。
10、一种用于限制耦合变压器推拉式整流器的主开关场效应晶体管(switching FET)的最大漏源电压(VDS)的方法,所述整流器具有一个最大DC供应电压VIN_MAX,所述VDS被推拉式晶体管和整流器电路的漏电感加强,其特征在于,该方法包括基于所述VDS超过VDS最大值(VDSmax)的倾向,自动生成一个内部漏极电流,所述内部漏极电路在开关FET的漏极间流动并具有相应的电能损耗,因此限制了最大VDS。
11、如权利要求10所述的一种用于限制最大VDS的方法,其特征在于,自动生成内部漏极电流的过程进一步包括提供一个电路以桥连接开关FET的各漏极;
所述桥连接电路具有一种任一主开关FET的VDS超过所述最大VDS的倾向的非破坏性击穿。
12、如权利要求11所述的一种用于限制最大VDS的方法,其特征在于,提供桥连接电路的过程进一步包括提供一系列的相互连接的两个对立的稳压二极管,所述每一个稳压二极管都具有一个稳压电压Vzx,该Vzx被设定略微大于或等于2×VIN_MAX,因此最大VDS的值大约为VIN_MAX+1/2Vzx
CN2009101390174A 2008-05-09 2009-05-08 一种限制耦合变压器推拉式功率转换电路的漏源电压的装置和方法 Active CN101577420B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/118,295 2008-05-09
US12/118,295 US7898831B2 (en) 2008-05-09 2008-05-09 Device and method for limiting drain-source voltage of transformer-coupled push pull power conversion circuit

Publications (2)

Publication Number Publication Date
CN101577420A true CN101577420A (zh) 2009-11-11
CN101577420B CN101577420B (zh) 2013-01-16

Family

ID=41266743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101390174A Active CN101577420B (zh) 2008-05-09 2009-05-08 一种限制耦合变压器推拉式功率转换电路的漏源电压的装置和方法

Country Status (3)

Country Link
US (3) US7898831B2 (zh)
CN (1) CN101577420B (zh)
TW (1) TWI425730B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898831B2 (en) * 2008-05-09 2011-03-01 Alpha and Omega Semiconductor Inc. Device and method for limiting drain-source voltage of transformer-coupled push pull power conversion circuit
JP5431193B2 (ja) * 2010-02-10 2014-03-05 Tone株式会社 電動工具
KR20140022518A (ko) * 2012-08-13 2014-02-25 삼성전자주식회사 반도체 장치 및 그 제조 방법
CN108258912B (zh) * 2015-09-11 2020-04-28 万国半导体(开曼)股份有限公司 脉冲变压器
KR102369553B1 (ko) * 2015-12-31 2022-03-02 매그나칩 반도체 유한회사 저전압 트렌치 반도체 소자
CN108282092B (zh) * 2017-01-05 2020-08-14 罗姆股份有限公司 整流ic以及使用该整流ic的绝缘型开关电源
US10491096B2 (en) 2017-08-22 2019-11-26 General Electric Company System and method for rapid current sensing and transistor timing control
CN113257906B (zh) * 2021-06-10 2021-11-02 微龛(广州)半导体有限公司 基于隧穿晶体管的esd保护器件结构及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741447A3 (en) * 1995-05-04 1997-04-16 At & T Corp Method and device for controlling a synchronous rectifier converter circuit
JP3247618B2 (ja) * 1996-09-12 2002-01-21 インターナショナル・ビジネス・マシーンズ・コーポレーション 充電装置及び充電機能付き電子機器
US5932995A (en) * 1998-03-03 1999-08-03 Magnetek, Inc. Dual buck converter with coupled inductors
US6128206A (en) * 1999-03-12 2000-10-03 Ericsson, Inc. Clamping circuit and method for synchronous rectification
US6246592B1 (en) * 1999-08-10 2001-06-12 Texas Instruments Incorporated Unique power supply architecture with cascaded converters for large input-to-output step-down ratio
US6275401B1 (en) * 2000-01-10 2001-08-14 Power-One, Inc. Self-driven synchronous rectification circuit for low output voltage DC-DC converters
US6538905B2 (en) * 2000-04-04 2003-03-25 Artesyn Technologies, Inc. DC-to-DC power converter including at least two cascaded power conversion stages
CN1324798C (zh) * 2003-11-11 2007-07-04 南京航空航天大学 双路双管正激变换器拓扑
JP4055206B2 (ja) * 2004-03-16 2008-03-05 横河電機株式会社 直流電源回路
JP4406929B2 (ja) * 2005-02-08 2010-02-03 Tdkラムダ株式会社 スイッチング電源装置
CN200980041Y (zh) * 2006-12-12 2007-11-21 浙江大学 一种无源箝位软开关高增益升压型交错并联变换器
CN201017255Y (zh) * 2007-03-09 2008-02-06 山东新风光电子科技发展有限公司 一种大功率高精度电源装置
US7511357B2 (en) * 2007-04-20 2009-03-31 Force-Mos Technology Corporation Trenched MOSFETs with improved gate-drain (GD) clamp diodes
US7898831B2 (en) * 2008-05-09 2011-03-01 Alpha and Omega Semiconductor Inc. Device and method for limiting drain-source voltage of transformer-coupled push pull power conversion circuit
US7936014B2 (en) * 2009-05-18 2011-05-03 Force Mos Technology Co., Ltd. Power semiconductor devices integrated with clamp diodes having separated gate metal pads to avoid breakdown voltage degradation

Also Published As

Publication number Publication date
TW200947821A (en) 2009-11-16
US20120205745A1 (en) 2012-08-16
TWI425730B (zh) 2014-02-01
US20110149620A1 (en) 2011-06-23
US8633512B2 (en) 2014-01-21
CN101577420B (zh) 2013-01-16
US7898831B2 (en) 2011-03-01
US20090279330A1 (en) 2009-11-12
US8264861B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
US11888332B2 (en) Half-bridge circuit using monolithic flip-chip GaN power devices
US9621044B2 (en) Zero voltage soft switching scheme for power converters
CN101577420B (zh) 一种限制耦合变压器推拉式功率转换电路的漏源电压的装置和方法
TWI748284B (zh) 共振電路及操作一共振電路之方法
US10224817B1 (en) Power transistor control signal gating
US10404256B2 (en) Capacitively coupled level shifter
Kinzer et al. Monolithic HV GaN power ICs: performance and application
JPWO2016067835A1 (ja) パワーモジュールおよびパワー回路
US10778219B2 (en) Level shifting in a GaN half bridge circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant