CN101517460A - 电吸收调制器的干涉仪操作 - Google Patents

电吸收调制器的干涉仪操作 Download PDF

Info

Publication number
CN101517460A
CN101517460A CNA2007800351472A CN200780035147A CN101517460A CN 101517460 A CN101517460 A CN 101517460A CN A2007800351472 A CNA2007800351472 A CN A2007800351472A CN 200780035147 A CN200780035147 A CN 200780035147A CN 101517460 A CN101517460 A CN 101517460A
Authority
CN
China
Prior art keywords
eam
signal
component
modulation
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800351472A
Other languages
English (en)
Other versions
CN101517460B (zh
Inventor
I·康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CN101517460A publication Critical patent/CN101517460A/zh
Application granted granted Critical
Publication of CN101517460B publication Critical patent/CN101517460B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0155Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

描述了用于利用结合了光干涉仪的电吸收来调制光信号的方法和设备。通过将要调制的信号分解为多个光模式并且在用EAM调制这些模式中的至少一个之后干涉仪地合并这些模式,可以实现幅度调制器驱动信号比常规方法更低的相移键控调制。利用本发明,在给定的驱动电压下,可以显著改善ASK的消光比性能,或者可以以低很多的驱动电压实现要求的消光比。因此,通过克服消光比与带宽之间的折衷关系,可以增大EAM的光电带宽。而且,本发明可用于产生驱动电压低很多的其它调制格式,例如QPSK或QAM,从而降低用于调制的高速驱动电路的成本和功耗。

Description

电吸收调制器的干涉仪操作
技术领域
本发明涉及高速光通信领域,尤其是涉及电吸收调制方法和设备。
背景技术
半导体电吸收调制器(EAM)提供低驱动电压、小尺寸以及可与有源光器件集成的能力的优点。EAM集成激光器被广泛地用于都市距离(metro-distance)通信网络。EAM还是高度集成的光子电路的关键构件。EAM的低驱动电压要求特别有望用于新兴的高比特率(>100Gb/s)通信,在该高比特率通信中难以得到驱动铌酸锂调制器(LNM)所需的宽带电放大。
与一般利用结合了干涉仪结构的相位调制来操作的LNM不同,EAM被用作单独的幅度调制器件。考虑到包括正交相移键控(QPSK)的相移键控(PSK)调制和正交幅度调制(QAM)在高比特率、高频谱效率传输中的重要性,期望将EAM用于除了幅度调制的更大范围的调制格式。
发明内容
本发明涉及利用结合了光干涉仪的电吸收来调制光信号。在示例性的实施例中,利用干涉仪地操作的偏振敏感的电吸收调制器(EAM)来执行相移键控(PSK)调制。通过干涉仪地合并通过EAM的光信号的横电场(TE)模与横磁场(TM)模来实现PSK调制。
在另一示例性实施例中,EAM的干涉仪操作被用于执行幅移键控(ASK)调制,比如开关键控(OOK)。对于ASK调制,EAM的干涉仪操作提供相同驱动电压下的显著改善的消光比性能,或者其允许EAM在低很多的驱动电压下操作以获得要求的消光比。本发明可用于增大EAM的电光带宽,克服消光比与带宽之间的折衷关系。
在另外的示例性实施例中,EAM合并到干涉仪结构中,比如马赫-曾德尔干涉仪(MZI)。在一个这样的实施例中,EAM被包括在MZI的每条臂中,干涉仪地合并这些EAM的输出。根据本发明,可以将多个这种EAM-MZI结构进行组合以提供不同的调制格式。
除了上述内容以外,本发明还可用于各种各样的调制格式,包括,例如,QPSK和QAM。
下面将更为详细地描述本发明的上述和其它特征和方面。
附图说明
图1是根据本发明的包括电吸收调制器(EAM)的干涉仪型调制器件的示例性实施例的框图。
图2A-2C用图形示出根据本发明的EAM的干涉仪操作。
图3示出根据本发明的EAM马赫-曾德尔干涉仪(EAM-MZI)结构的示例性实施例。
图4A和4B示出用图3的EAM-MZI结构产生的OOK和PSK信号。
图5示出根据本发明的结合了半导体光放大器(SOA)的EAM-MZI结构的示例性实施例。
图6示出根据本发明的结合了多个EAM-MZI结构的调制器的示例性实施例。
图7A和7B分别示出在解调制之前和解调制之后根据本发明的调制器件的示例性实施例所产生的PSK信号的眼图。
图8A和8B分别示出没有干涉仪操作和有干涉仪操作的EAM所产生的开关键控(OOK)信号的眼图。
图9示出有干涉仪操作和没有干涉仪操作的EAM所产生的OOK信号的消光比和接收机灵敏度的曲线图。
具体实施方式
图1是根据本发明的包括干涉仪地操作的电吸收调制器(EAM)的系统100的示例性实施例的框图。在系统100中,具有标注为EL的电场的激光通过偏振控制器110发射到EAM 120中。发射的激光可以是任何合适的激光,并且可以是已调制的或未调制的,包括,例如,连续波(CW)激光或光脉冲序列。偏振控制器110控制激光的发射角θ。发射角θ是激光的电场EL相对于EAM 120的横电场(TE)轴的角度。在EAM 120的输出,相对于EAM 120的TE轴以取向角φ布置有分析偏振器130。
图2A用图形示出上述布置的操作原理。电场EL被示为向量,沿EAM120的TE和横磁场(TM)轴对其进行分解。在图2A中,将电场EL的TE和TM分量分别示为向量ETE(t)和ETM(t)。TE和TM分量ETE(t)和ETM(t)投影到分析偏振器130上,该分析偏振器130干涉仪地合并各投影。
EAM 120根据数据流(数据)对激光进行幅度调制。由于用数据调制激光并且激光的电场EL随着时间改变,TE和TM分量场ETE(t)和ETM(t)以及它们在分析偏振器130上的投影将相应地改变,如迹线210和220在图2A中沿t轴所示。
从图2A容易理解的是,通过分别控制发射角θ和分析器取向角φ,可以调节两个投影场210、220的相对幅度和调制深度。
基于量子阱的EAM表现出优先的TE偏振吸收,除非拉伸应变消除了各向异性。如图2A所示,TE调制深度比TM调制深度大很多。例如,对于2V驱动信号幅度和-1V偏置电压,例如OKI OM5753C-30B的商用EAM器件具有大概比TM调制深度大9dB的TE调制深度。
如分别由图2B和2C所示,通过适当地调节影响TE和TM投影的角度参数θ和φ,可实现PSK调制或幅移键控(ASK)调制,比如开关键控(OOK)。因此,虽然TE和TM模的“原始”调制深度是由EAM的属性以及偏置和驱动电压来设定的,本发明利用干涉仪操作,使得有可能通过调节角度参数θ和φ来实现PSK或改善幅度调制深度,即消光比。如图2B所示,当TM和TE投影场210和220的平均值大致相等时,可以实现PSK调制。
如图2C所示,当TE和TM投影场210和220的低幅度相等时,可以实现具有提高的消光比的OOK调制。
在另外的示例性实施例中,可采用其它布置来实现本发明的操作原理,这些布置包括,例如,在每个臂中具有EAM的马赫-曾德尔干涉仪(MZI),如图3所示。除了降低偏振敏感性以外,该实施例还可能有利于减少额外损耗,如下所述。
如图3所示,MZI 300包括第一臂中的第一EAM 301和第二臂中的第二EAM 302,在第二臂中布置有与EAM 302在一条线上的移相器305。(可以理解的是,移相器可被布置在第一臂而不是第二臂中,或在两条臂中,只要能提供两臂之间的适当的相位关系。)以各自的驱动信号,驱动信号1和驱动信号2,来驱动EAM 301和302。通过输入耦合器(或分束器)303将CW激光提供给EAM 301、302。用输出耦合器304合并EAM 301、302(通过移相器305)的输出。
可使用不同的驱动信号配置,这取决于调制格式的类型、EAM的规格以及输入和输出耦合器303、304的耦合比。
在第一个这种配置中,EAM驱动信号之一(例如,驱动信号1)是要调制的数据信号。另一EAM驱动信号(例如,驱动信号2)是DC偏置电压,选择该DC偏置电压,使得通过相应的EAM(302)的CW传输抵消另一EAM(301)中的调制信号的低幅度,如图4A所示。在图4A中,点线表示第一EAM 301中的NRZ-OOK调制信号,虚线表示被第二EAM 302衰减的CW传输信号,而实线表示由上述信号的相消干涉产生的输出信号。该配置提供了相比于常规操作的单个EAM产生的OOK的消光比改善。
要施加的DC偏置电压(如驱动信号2)将取决于第一EAM 301的动态消光比和耦合器303、304的耦合比。耦合比被优选地选择为降低EAM-MZI结构的传输损耗。影响最佳耦合比的因素包括第一EAM 301的原始消光比、计划的调制格式和两个EAM的插入损耗。如果目的是提高OOK的消光比,则在第二EAM 302具有与第一EAM 301相同的插入损耗并且没有向第二EAM 302施加电压的情况下,输入耦合器303的分功率比应当是ε/(1+ε),其中ε是原始消光比。如果要对第二EAM 302施加偏置以控制传输损耗,可使用其它的耦合比。由于可能难以预先知道所有的器件参数,可变耦合器是有优势的。然而,耦合比可以是固定的,并且通过调节对第二EAM 302施加的偏置电压来优化消光比。通过相应地调节DC偏置电压(驱动信号2),该单数据驱动信号配置还可用于产生PSK信号。
在第二驱动信号配置中,驱动信号1是数据信号D,而驱动信号2是互补的数据信号D。该配置可用于,例如,产生具有降低的光损耗的二相相移键控(BPSK)信号。图4B中示出该驱动配置中的信号,在该图4B中,点线表示第一EAM(由数据信号D驱动)的OOK信号输出,虚线表示第二EAM(由互补的数据信号D驱动)的OOK信号输出,而实线表示由两个EAM输出信号的相消干涉产生的PSK信号。与用单数据驱动信号产生PSK相比,该双驱动方案将光损耗降低了至少6dB。
图2A和2B与图4A和4B的比较显示了EAM-MZI结构在降低由相消干涉带来的光损耗方面的有益之处。对于产生PSK来说,由于在相消干涉的过程中减少的光功率至少要少6dB,图4B所示的布置优于图2B所示的。类似地,由于在相消干涉的过程中损耗的光功率更少,在产生消光提高的OOK信号的方面,图4A优于图2C。
用于根据本发明的原理产生信号的相消干涉导致光损耗。然而,像在图5中所示的示例性器件中那样,可通过提供放大来补偿该光损耗。在图5的器件中,优选将半导体光放大器(SOA)510集成到EAM-MZI器件500中,以补偿上述光损耗。为了最小化SOA的任何码型相关性的影响,优选地,对于产生PSK,将SOA安装在调制器的输出(如所示),或者对于产生OOK,将SOA安装在调制器的输入。本发明的易于将SOA与基于EAM的调制器集成的能力是相对于例如铌酸锂调制器的其它器件的优点。
尽管参照非归零(NRZ)信号格式进行了上述说明,相同的光调制器同样也可以用于RZ格式。获得用于产生RZ格式的驱动信号的示例性布置包括AND电路,该AND电路在NRZ数据信号和线路速率的时钟信号之间执行布尔操作。AND操作的结果可用于驱动EAM-MZI调制器,以产生RZ格式信号。由于低驱动电压以及与驱动电压成高非线性关系的光传输特性,基于EAM的调制器,例如本发明的基于EAM的调制器,比铌酸锂调制器更适合于采用该技术。在高比特率下,布尔AND操作易于引入信号畸变,尤其是对于大幅度信号。由于铌酸锂调制器的对于驱动电压的良好的线性传输响应,它们对这样的信号畸变更敏感。
通过组合多个根据本发明的EAM-干涉仪结构,可以实现产生更复杂的调制格式。图6中示出可用于产生QPSK信号的调制器的示例性实施例。图6所示的调制器包括布置在MZI结构600中的第一EAM-MZI结构610和第二EAM-MZI结构620。EAM-MZI结构610和620各自分别包括π移相器611、621,并且各自被数据信号及其互补信号(A、A和B、B,分别地)驱动,以产生相应的BPSK调制信号。通过在两路信号之间引入π/2的相对相移,将BPSK信号合并起来以产生QPSK信号。由移相器625提供该相移。
利用EAM干涉仪,比如通过图6的示例性实施例,来产生QPSK,享有降低了很多的驱动电压要求,从而降低了驱动电路的成本和功耗。
图6的器件可用于产生其它的信号格式,包括,例如,8-QAM信号。为了实现这个目的,例如,通过向要停用的EAM-MZI的两个驱动信号输入施加同样的电压,EAM-MZI 610、620中的一个(不是全部)被有效地停用1个比特周期。
现在将描述根据本发明的基于EAM的干涉仪器件的示例性实施例的性能。
在例如图1的示例性实施例的器件中,使用波长为1553nm的CW光,并且用HP8169A偏振控制器(110)控制该CW光进入EAM(120)的发射角。用片式偏振控制器(paddle polarization controller)控制EAM的输出的偏振,并且用光纤偏振器分析EAM的输出。EAM具有30GHz的3dB带宽,并且驱动信号的幅度是2.6V。
图7A示出由该系统产生的40Gb/s的PSK信号的电眼图。图7B示出在由25p s延迟的干涉仪进行解调制之后PSK信号的眼图。然后,解调制信号被电解复用,并且在噪声系数为5.6dB的掺铒光纤放大器(EDFA)和带宽为1nm的光滤波器之后测量10Gb/s下的误比特率(BER)。接收机在10-9BER的灵敏度是-24.3dBm。这比用使用零偏置的铌酸锂调制器产生的PSK所获得的接收机灵敏度大约差3dB。如解调制的眼图(图7B)所示,代价主要来自TE和TM场之间的不完全干涉所导致的波形畸变,由于两种模式对驱动信号有不同的响应,该波形畸变具有不相同的时间形态。
对于产生ASK调制信号来说,被EAM常规调制的ASK信号的消光比与驱动信号的幅度相关。对于降低功耗和驱动电路的复杂度,使用低电压驱动的操作是优选的。
图8A示出从常规地而不是以干涉仪模式操作的EAM直接获得的OOK信号的电眼图。在该情况下,当CW激光与EAM的TE轴对准时,获得最高消光比(ER),在该情况下,1.1V驱动电压下的最高消光比为5.7dB。
图7B示出以优化了角度θ和φ的干涉仪模式来操作EAM时的ER的明显改善。(对于图7B所示的示例性数据,角度是29度。)在相同的驱动电压1.1V下,测得改善的ER为12.5dB。
对于BER为10-9的情况,图9示出非干涉仪地操作和干涉仪地操作的EAM所产生的OOK信号的消光比(ER)和接收机灵敏度(RS)与驱动电压的关系。对于非干涉仪型EAM,空心圆和空心方块分别表示ER和RS,而对于干涉仪型EAM,实心圆和实心方块分别表示ER和RS。对于非干涉仪操作,当输入激光与EAM的TE轴对准时获得最佳的ER和RS。利用根据本发明的干涉仪操作,图9示出0.8V驱动电压下的8.7dB的ER改善和7dB的RS改善。有利的是,根据本发明,可以在不使用电放大器的情况下产生0.8V、40Gb/s的驱动信号。
应当理解的是,上述实施例说明了可以代表本发明的应用的少数可能的特定实施例。在不脱离本发明的精神和范围的前提下,本领域的技术人员可以构造各式各样的其它布置。

Claims (10)

1.一种调制光信号的方法,包括步骤:
将要调制的光信号分解为至少两个光模式;
使用至少一个电吸收调制器(EAM)调制所述光模式中的至少一个的电场;以及
干涉仪地合并所述光模式,以产生调制光信号。
2.如权利要求1所述的方法,包括步骤:
将激光发射到所述的至少一个EAM中,所述激光的电场具有相对于所述EAM的轴的发射角,由此将所述激光分解为横电场(TE)和横磁场(TM)分量;
将所述TE和TM分量投影到具有相对于所述EAM的所述轴的取向角的分析偏振器上,由此产生TE分量投影和TM分量投影;以及
干涉仪地合并所述TE分量投影和TM分量投影,以产生调制信号。
3.如权利要求1所述的方法,其中调制光信号包括相移键控(PSK)调制信号和幅移键控(ASK)调制信号中的至少一种。
4.如权利要求2所述的方法,包括调节所述发射角和所述取向角中的至少一个以控制调制信号的步骤。
5.如权利要求2所述的方法,其中所述EAM的所述轴是所述EAM的TE轴。
6.一种用于调制光信号的设备,包括:
用于将要调制的光信号分解为至少两个光模式的装置;
用于调制所述光模式中的至少一个的电场的电吸收调制器(EAM)装置;以及
用于干涉仪地合并所述光模式以产生调制光信号的装置。
7.如权利要求6所述的设备,包括:
偏振控制器装置,用于控制激光的电场相对于所述EAM装置的轴的发射角,由此将所述激光分解为横电场(TE)和横磁场(TM)分量;以及
分析偏振器装置,所述分析偏振器装置具有相对于所述EAM的所述轴的取向角,由此产生TE分量投影和TM分量投影,干涉仪地合并所述TE分量投影和所述TM分量投影以产生调制光信号。
8.如权利要求6所述的设备,其中所述调制光信号包括相移键控(PSK)调制信号和幅移键控(ASK)调制信号中的至少一种。
9.如权利要求7所述的设备,其中所述发射角和所述取向角中的至少一个是可调节的,并且控制所述调制信号。
10.如权利要求7所述的设备,其中所述EAM装置的所述轴是所述EAM装置的TE轴。
CN2007800351472A 2006-09-21 2007-09-19 电吸收调制器的干涉仪操作 Expired - Fee Related CN101517460B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/534,029 US7583894B2 (en) 2006-09-21 2006-09-21 Interferometric operation of electroabsorption modulators
US11/534,029 2006-09-21
PCT/US2007/020299 WO2008036313A1 (en) 2006-09-21 2007-09-19 Interferometric operation of electroabsorption modulators

Publications (2)

Publication Number Publication Date
CN101517460A true CN101517460A (zh) 2009-08-26
CN101517460B CN101517460B (zh) 2013-10-16

Family

ID=38870315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800351472A Expired - Fee Related CN101517460B (zh) 2006-09-21 2007-09-19 电吸收调制器的干涉仪操作

Country Status (6)

Country Link
US (1) US7583894B2 (zh)
EP (1) EP2069857A1 (zh)
JP (1) JP5185939B2 (zh)
KR (1) KR101106933B1 (zh)
CN (1) CN101517460B (zh)
WO (1) WO2008036313A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722039A (zh) * 2011-03-31 2012-10-10 诺基亚西门子通信公司 光调制器
CN105790879A (zh) * 2014-12-25 2016-07-20 北京邮电大学 一种抑制瑞利噪声的波分复用无源光网络系统及方法
CN112910563A (zh) * 2021-01-26 2021-06-04 中国科学院半导体研究所 信号产生装置及方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860402B2 (en) * 2007-01-26 2010-12-28 Fujitsu Limited Modulating a signal according to 2n-PSK modulation
JP2010028741A (ja) * 2008-07-24 2010-02-04 Yokogawa Electric Corp 光送信装置
US8401405B2 (en) 2009-05-28 2013-03-19 Freedom Photonics, Llc. Monolithic widely-tunable coherent receiver
US9344196B1 (en) 2009-05-28 2016-05-17 Freedom Photonics, Llc. Integrated interferometric optical transmitter
US8639118B2 (en) * 2010-10-05 2014-01-28 Infinera Corporation Wavelength division multiplexed optical communication system having variable channel spacings and different modulation formats
US8655190B2 (en) 2010-10-05 2014-02-18 Infinera Corporation Wavelength division multiplexed optical communication system architectures
FR2967319B1 (fr) * 2010-11-04 2012-10-26 Alcatel Lucent Procede de conversion d'un signal numerique en impulsions optiques
JP2012119482A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 波長可変レーザ装置およびその制御方法
US20120237156A1 (en) * 2011-03-16 2012-09-20 Nokia Siemens Networks Oy Optical modulator, communication system, and communication method
US8908187B2 (en) 2011-11-02 2014-12-09 Honeywell International Inc. System and method for reducing errors in a resonator fiber optic gyroscope
US8849129B2 (en) 2012-07-20 2014-09-30 Finisar Corporation Method and apparatus for stabilization of optical transmitter
JP5945241B2 (ja) * 2013-04-17 2016-07-05 日本電信電話株式会社 光直交周波数多重分割信号生成器
JP6126521B2 (ja) * 2013-12-09 2017-05-10 日本電信電話株式会社 多値光強度変調器
CN107210816B (zh) * 2015-03-19 2019-11-12 华为技术有限公司 转换光信号的调制码型的器件和方法
US10634973B2 (en) * 2016-08-02 2020-04-28 University Of Southern California Two-dimensional optical phased array
CN106301554B (zh) * 2016-08-31 2019-01-22 武汉光迅科技股份有限公司 一种并联mzi电光调制器工作点电压的调试方法及调试装置
US10673530B2 (en) * 2016-10-05 2020-06-02 LGS Innovations LLC Inc. Free space optical communication system and method
CN106712844B (zh) * 2016-12-15 2019-06-11 武汉电信器件有限公司 一种无集成pd的100g eml tosa光功率上报的提取方法
US10320152B2 (en) 2017-03-28 2019-06-11 Freedom Photonics Llc Tunable laser
US10411807B1 (en) 2018-04-05 2019-09-10 Nokia Solutions And Networks Oy Optical transmitter having an array of surface-coupled electro-absorption modulators
US10727948B2 (en) 2018-04-05 2020-07-28 Nokia Solutions And Networks Oy Communication system employing surface-coupled optical devices
EP3648268A1 (en) * 2018-11-02 2020-05-06 Huawei Technologies Co., Ltd. Optical amplifier device
JP2020101599A (ja) * 2018-12-20 2020-07-02 日本電信電話株式会社 光スイッチ素子
WO2020221434A1 (en) * 2019-04-30 2020-11-05 Huawei Technologies Co., Ltd. Interferometric enhancement of an electroabsorptive modulated laser
US11899333B2 (en) 2019-09-19 2024-02-13 Nokia Solutions And Networks Oy Apparatus and method of generating multilevel quadrature amplitude modulated signal using electro-absorption modulators
WO2021102076A1 (en) * 2019-11-21 2021-05-27 Lightmatter, Inc. Interferometric modulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040052466A1 (en) * 2002-06-04 2004-03-18 Intel Corporation Polarization insensitive method and apparatus for switching and modulating an optical beam

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131825A (ja) * 1989-10-18 1991-06-05 Hitachi Ltd 光周波数シフタ
JPH0749473A (ja) * 1993-08-05 1995-02-21 Hitachi Ltd マッハツェンダ型変調器
JP4394166B2 (ja) * 1996-07-19 2010-01-06 ネクストジー・ネットワークス・インコーポレイテッド 光信号を同期して受信し、変調する遠隔通信システム
JP3569142B2 (ja) * 1998-12-08 2004-09-22 三菱電機株式会社 マイクロ波信号光伝送装置
US6335819B1 (en) * 1999-02-19 2002-01-01 University Of Maryland All-optical regeneration at high bit rates using an electroabsorption modulator
JP2000267053A (ja) * 1999-03-16 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> 光サブキャリア変調器の駆動方法および駆動回路
JP4235724B2 (ja) * 2001-11-05 2009-03-11 独立行政法人情報通信研究機構 光波干渉方法
DE10157218A1 (de) 2001-11-22 2003-06-18 Siemens Ag Modulator und dazugehöriges Verfahren für eine optische Modulation
US7321734B2 (en) * 2004-07-29 2008-01-22 Nortel Networks Limited Digital synthesis of readily compensated optical signals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040052466A1 (en) * 2002-06-04 2004-03-18 Intel Corporation Polarization insensitive method and apparatus for switching and modulating an optical beam

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.SHIN ET AL: "A novel BPSK Method using Multiple Quantum Well Electroabsorption Modulator integrated with MMI couplers", 《MICROWAVE PHOTONICS》 *
WEN-PIAO LIN ET.AL: "Optically Based Direct Sequence Binary Phase Shift Keying Modulation Scheme for Indoor Ultrawide-Band Wireless Systems", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722039A (zh) * 2011-03-31 2012-10-10 诺基亚西门子通信公司 光调制器
CN102722039B (zh) * 2011-03-31 2015-12-09 骁阳网络有限公司 光调制器
CN105790879A (zh) * 2014-12-25 2016-07-20 北京邮电大学 一种抑制瑞利噪声的波分复用无源光网络系统及方法
CN105790879B (zh) * 2014-12-25 2018-02-02 北京邮电大学 一种抑制瑞利噪声的波分复用无源光网络系统及方法
CN112910563A (zh) * 2021-01-26 2021-06-04 中国科学院半导体研究所 信号产生装置及方法

Also Published As

Publication number Publication date
US20080074722A1 (en) 2008-03-27
KR20090041445A (ko) 2009-04-28
JP5185939B2 (ja) 2013-04-17
EP2069857A1 (en) 2009-06-17
CN101517460B (zh) 2013-10-16
WO2008036313A1 (en) 2008-03-27
KR101106933B1 (ko) 2012-01-25
JP2010503894A (ja) 2010-02-04
US7583894B2 (en) 2009-09-01

Similar Documents

Publication Publication Date Title
CN101517460B (zh) 电吸收调制器的干涉仪操作
US7272271B2 (en) Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
CN102648434B (zh) 光调制器模块和调制光信号的方法
US7929813B2 (en) QAM optical modulators
CN101977076B (zh) 一种产生多种16qam码型的发射机
CN101515828B (zh) 光发射机、光发射方法及光传输系统
US10901153B2 (en) Null bias mach-zehnder interferometer with ring resonators
Kikuchi et al. High-speed InP-based Mach-Zehnder modulator for advanced modulation formats
CN103415800A (zh) 可调谐光学频率梳产生器
Velthaus et al. High performance InP-based Mach-Zehnder modulators for 10 to 100 Gb/s optical fiber transmission systems
EP1518142A2 (en) Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
CN103959144A (zh) 光调制器
US20110188800A1 (en) Optical modulation device and optical modulation method
US5911016A (en) Polarization scrambler and integrated optical circuit making use thereof
Talkhooncheh et al. A 100 Gb/s PAM-4 silicon photonic transmitter with two binary-driven EAMs in MZI structure
Nuccio et al. Modulation and chirp characterization of a 100-GHz EO polymer Mach-Zehnder modulator
Lange et al. Low switching voltage InP-based travelling wave electrode Mach-Zehnder modulator monolithically integrated with DFB-laser for 60 Gb/s NRZ
CN209657053U (zh) 一种低压负啁啾调制器
Wang et al. Photonic generation of microwave binary modulation signals with high frequency multiplication factors
EP1749357B1 (en) Method and apparatus for producing high extinction ratio data modulation formats
WO2023060412A1 (zh) 一种面向高速光通信的6.4Tbps硅基光引擎收发芯片组件
CN105634612B (zh) 基于偏振调制的线性光调制方法及装置
JP2013197815A (ja) 変調光源および変調信号の生成方法
Lu et al. High-speed DQPSK transmitter using a monolithically integrated quad Mach-Zehnder IQ modulator driven at quarter bit-rate
Chen et al. DAC-less PAM4 Signal Generation using Silicon Dual-Drive Push-Pull MZI

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131016

Termination date: 20140919

EXPY Termination of patent right or utility model