CN101514927A - 弹性微牛级小推力测量系统 - Google Patents

弹性微牛级小推力测量系统 Download PDF

Info

Publication number
CN101514927A
CN101514927A CNA2009100805476A CN200910080547A CN101514927A CN 101514927 A CN101514927 A CN 101514927A CN A2009100805476 A CNA2009100805476 A CN A2009100805476A CN 200910080547 A CN200910080547 A CN 200910080547A CN 101514927 A CN101514927 A CN 101514927A
Authority
CN
China
Prior art keywords
electrode
thruster
seat
thrust
measuring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100805476A
Other languages
English (en)
Other versions
CN101514927B (zh
Inventor
汤海滨
王安良
钟凌伟
胡晓亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Beijing University of Aeronautics and Astronautics
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2009100805476A priority Critical patent/CN101514927B/zh
Publication of CN101514927A publication Critical patent/CN101514927A/zh
Application granted granted Critical
Publication of CN101514927B publication Critical patent/CN101514927B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及弹性微牛级小推力测量系统,包括:推力架框架,框架下底面安装有调整支架;测量主体,包括:主梁为一整体成开口向下的F型,两边安装在推力架框架上;横向移动座安装在主梁较长的分支上,纵向移动座装配在横向移动座下方,传感器座横向安装在纵向移动座上半部;位移传感器安装在传感器座前端;电极座安装在纵向移动座下半部;标定电极负极安装在电极座前端,标定电极负极与电极座绝缘连接;弹簧片顶端固定在主梁较短的分支上;绝缘板悬挂在弹簧片下端;标定电极正极与推力器安装在绝缘板两边;标定电极正极正对标定电极负极;推力器供给系统包括一固定块,安装在推力架框架上方,该固定块上方外接推进剂管路和电线,下方接入推力器。

Description

弹性微牛级小推力测量系统
技术领域:
本发明涉及一种弹性微牛级小推力测量系统,属于空间微小推力发动机技术领域。
背景技术:
微、电推进等空间用微小推力发动机技术在航空航天等许多领域都有广泛的应用,发动机地面试验中微小推力测量技术是一项关键技术,只有获得实测的推力,才能获取发动机的实际性能参数(发动机实际比冲),并开展进一步的设计和研制工作。
由于微小推力发动机工作时的推力非常小(mN级或μN级),推进剂气路、电路的连接又对推力的测量产生很大的影响,而整个发动机必须在真空下工作,因而给推力的直接测量带来很大困难。
针对发动机微小推力的测量,根据推力性质的不同,国外采用了不同方法和推力架进行了测量,其结构包括目标靶、弹性元件、天平、悬摆和光学测量系统等,但测量架均含有非弹性部分,测量精度只能通过多次实验测量的方法得到,或测量系统复杂,许多重要细节均不公开报道。
就国内而言,北航研制出的名称为《一种适用于空间微小推力发动机的推力测量系统》已经获得发明专利,专利号为ZL 2006 1 0089041.8。这种推力测量系统采用叉簧支撑来消除摩擦,采用各种弹性元件来消除干扰,但是只能测量毫牛级推力。这种系统方案无法满足更进一步的对微牛级发动机推力的测量。
清华大学采用电子天平的方法测量发动机工作的小推力,(陈黎明,赵文华,刘岩松。低功率电弧加热发动机的实验研究。Vol.10,No.2,2002),属于非弹性支撑和连接。
中科院空间中心采用扭摆测量了小推力,(吴汉基,冯学章,等。氮氢混合气电弧加热发动机的性能试验,中国空间科学技术,2002年,第4期),但未采用弹性连接和电磁控制。
本发明装置以悬挂的薄片弹性元件(弹簧片)作为敏感元件,使系统符合虎克定律,将μN级推力施加到薄片弹性元件上,通过弹性元件末端位移量的转换,最终测量出发动机稳态微小推力。
发明内容:
本发明的目的在于提供一种弹性微牛级小推力测量系统,针对目前国内微牛级推力测量装置的问题,主要是支撑元件和附件连接影响微小推力的准确测量和微小推力的标定问题,而采用以弹簧片作为关键弹性敏感元件,通过位移量的转换和静电力标定的方法,较精确地测量出微小推力发动机稳态微小推力,推力测量范围为0~500μN。
本发明一种弹性微牛级小推力测量系统,其技术方案如下:
1、测量原理
弹性元件受力会变形,发生一定角度的偏转。在弹性元件的弹性形变范围内,变形程度将与它所受力的大小对应。我们的测量方案利用的就是敏感弹性元件的这种弹性形变的可重复性。已知的标定力会让弹性元件发生偏转,偏转的程度由位移传感器读取,将每个已知力对应的偏转位移记录下来,通过各标定点,可以绘制“力-位移”标定曲线;当实际测量时,推力器的作用导致同样的弹性元件发生偏转,参照之前得到的标定曲线,根据实际测量的偏转位移大小,就能得到要测量的推力。
以上所谓的已知力是指,两标定电极间加电压产生的相互作用力。这个力可以由极板大小,电压差和极板间距离计算,也可以采用直接的方法测量。再用这个静电力来标定推力测量系统,得到一组弹簧片位移和作用力之间的关系曲线。这个曲线即为标定曲线。在实际测量过程中,只需读出推力器的实时推力造成的弹簧片的位移变化。根据标定曲线即可以得到推力测量结果。测量原理如图1所示。
2、具体机械结构
本发明是一种弹性微牛级小推力测量系统,其具体包括:推力架框架、测量主体、推力器供给系统。
所述的推力架框架由10号角钢焊接而成,整体喷塑;框架上底面相对边打两对位置对称的孔;框架下底面,在一条边的中点及其对边中心线两侧安装3个调整支架,用于调节框架的水平姿态。
所述的测量主体包括:主梁、横向移动座、纵向移动座、弹簧片、推力器、位移传感器、标定电极、传感器座、电极座、推力器、绝缘板等。
主梁为一整体成开口向下的F型,两边安装在推力架框架上,梁厚度较大,保证了整个下部推力测量主体的稳定。横向移动座,上端为槽形并安装在主梁较长的分支上,装配螺纹孔成横向放置的长方形,用于调节横向移动。纵向移动座装配在横向移动座下方,装配螺纹孔成纵向放置的长方形,用于调节纵向移动。传感器座横向安装在纵向移动座上半部,由调节螺杆和锁紧螺母构成,调节水平方向的伸缩。
位移传感器安装在传感器座前端。电极座同样由调节螺杆和锁紧螺母构成,安装在纵向移动座下半部,材料也是硬铝,电极座调节水平方向的伸缩。标定电极负极安装在电极座前端,标定电极负极与电极座绝缘连接。
弹簧片安装在主梁上,顶端固定在主梁较短的分支上。绝缘板悬挂在弹簧片下端。传感器的探头指向弹簧片下端绝缘板稍上方位置。标定电极正极与推力器分别安装在绝缘板两边。标定电极正极正对标定电极负极,标定电极正极与绝缘板之间有螺杆连接,在螺杆上安装配重。
推力器供给系统包括一个固定块,安装在推力架框架上方,该固定块上方外接推进剂管路和电线,下方通过弹性管路接入推力器。
其中,所述的位移传感器采用从天津大学定制的电容式高精度位移传感器,该传感器在位移测量时,理论上可以达到输出电压与位移之间具有良好的线性关系。传感器可在真空环境下工作,真空度<1000Pa,输出信号为0v~+5V电压或4mA~20mA电流,量程为1mm,精度为1um,传感器分辨率0.1μm。
本发明一种弹性微小推力测量系统,其有益效果在于:采用新型的弹性微小推力测量系统,针对胶质微推力器做了相关实验,得到了发动机的工作推力,且测试过程的操作、控制和使用简便,易于掌握。
附图说明:
图1所示为本发明的推力测量原理图。
图2所示为本发明的推力测量系统总装配图。
图3所示为本发明的推力测量主体装配图。
图4所示为调整支架装配图
图5所示为是实际测量的标定电压与位移曲线,
图6所示为是静电力测量试验曲线。
下面说明各个部件名称:
1——横向移动座;2——电极座;3——固定轴;4——移动轴;5——调整螺杆;
6——纵向移动座;7——垫圈端盖;8——锁紧螺母;9——手柄;10——固定螺钉;
11——标定电极负极;12——标定连接件;13——传感器座;
14——位移传感器;15——移动长轴;16——主梁;17——弹簧片;18——推力器;
19——绝缘板;20——配重转接杆;21——配重;22——标定电极正极;
23——弹簧片上固定片;24——弹簧片下固定片;25——推力架框架;
26——调整支架;27——固定块;28——推进剂管路和电线。
具体实施方式:
下面结合附图和实施例,对本发明的技术方案做进一步的说明。
如图2、3所示,本发明一种弹性微牛级小推力测量系统,包括推力架框架、测量主体、推力器供给系统。
推力架框架25全部由10号角钢焊接而成,尺寸为350mm×250mm×400mm,材料为45#钢,整体喷塑。
在推力架框架上底面相对边打两对位置对称的孔用于安装其它部件。推力架框架下底面,在一条边的中点和对边中心线两侧安装3个调整支架26,调整支架结构分为两部分(如图4所示):调整圆脚和支脚。支脚下部为一不锈钢圆板底座,底座上方为一个螺杆立柱。调整圆脚为一中央开螺纹孔的圆板,螺纹大小应与支脚的螺杆立柱相配合。通过与支脚上部螺杆立柱的螺纹连接,调整圆脚可以沿螺杆立柱上下缓慢移动,调整圆脚每旋转一周,它自身上下移动一个螺距的距离。三个支架都可以分别单独调节,从而完成对推力架的水平姿态调节。
测量主体是指主梁16、横向移动座1、纵向移动座6、弹簧片17、位移传感器14、标定电极11和22、传感器座13、电极座2、推力器18、绝缘板19等。
主梁16为整体成开口向下的F型,两边安装在推力架框架上,材料为不锈钢。横向移动座1材料为不锈钢,上端加工成槽形安装在主梁较长的分支上,装配螺纹孔成横向放置的长方形,用于调节横向移动。纵向移动座6装配在横向移动座下方,材料也是不锈钢,装配螺纹孔成纵向放置的长方形,用于调节纵向移动。传感器座13横向安装在纵向移动座上半部,材料为硬铝,由调节螺杆5和锁紧螺母8等构成,通过固定轴3、移动长轴15和手柄9调节水平方向的伸缩。位移传感器14通过垫圈端盖7、锁紧螺母8、手柄9和固定螺钉10安装在纵向移动座6上。
电极座2的结构与传感器座相似,对应位置处的零件相同,其安装在纵向移动座6下半部,材料也是硬铝,同样由调节螺杆5和锁紧螺母8构成,通过固定轴3、移动轴4和手柄9调节水平方向的伸缩。标定电极负极11安装在电极座前端,电极负端与标定电极座2绝缘连接。标定电极正极22、标定电极负极11采用相同的材料,或都为硬铝,或都为铜块。
弹簧片17为青铜材料,厚0.01mm。作为本系统的关键部件,加工必须精细,且在使用前需良好保存,不可使折叠或者受力变形。弹簧片17顶端开有3个螺纹孔,通过弹簧片上固定片23固定在主梁16较短的分支上,弹簧片自然下垂。绝缘板19与弹簧片下固定片24通过三个螺纹孔固定悬挂在弹簧片下端。位移传感器14的探头指向弹簧片下端绝缘板稍上方位置。标定电极正极22与推力器18分别安装在绝缘板19两边。标定电极正极22与标定电极负极11中心轴线重合,标定电极正极与绝缘板19之间用螺杆连接,在螺杆上通过配重转接件20安装配重21。两标定电极距离一般在3mm左右。
主梁上方安装一个固定块27,固定块上方用于外接推进剂管路和电线28,下方采用弹性管路接入推力器18。
由于推力器本身需要几kV的高电压,标定电极用电也接近1kV,设计装配必须检查各部分的绝缘。
关于标定方法
我们的标定方案是通过标定电极实现的,在标定电极两个极板间施加电压后,由于负电极是固定的,正电极会受到一个向负极板方向的吸力作用,并将之传递到相连的绝缘板上,这个力在绝缘板上的作用点与推力器工作时对绝缘板的作用点一致。而作用效果相同时,就表明作用力大小也是相同的。
因此,实际工作中只要知道了标定电极的力,就可以进一步推出推力的大小。标定工作的关键是对标定电极力的确定。
这里采用两种方法对电极力进行标定,一种是理论计算的方法,两个电极间的静电力可以通过静电力方程计算得到,而且已有的相关文献和我们的试验检验表明,这种理论计算比较简单,而且计算的结果与实际力误差很小。公式如下:
F q = 1 2 ϵ 0 ( U L ) 2 A
其中,ε0=8.854×10-12F/m。
另一种是直接测量方法,采用高精度的电子天平,动态测量孤立电极的重量,同时,用另外一块电极置于该孤立电极的上方,对两个电极加电施加静电力,观察天平上的孤立电极重量的变化,这个变化就是实际测得的静电力。两种方法进行对比参考,以直接测得的值为实际的标定电极力。
如图5、6所示,图5是实际测量的标定电压与位移曲线,图6是静电力测量试验曲线。图5,图6中标定电极距离相等,都为3mm,均处于大气环境下。
图5显示的是力(标定电极电压)与位移(传感器输出电压)的几组标定曲线。曲线1、2分别是在单独对标定电极施加静电力时的试验结果,横坐标是施加在正负极间的电压,纵坐标是位移传感器的输出信号。两条曲线结果略有偏差,这里取两者的平均值得到曲线3,作为实际参考用标定曲线(图5中粗曲线)。虚线4为推力器工作时,得到的位移传感器输出信号(如图,0.38V、0.35V、0.33V),这个信号和标定曲线3的交点对应的横坐标,就是静电力的大小(电压785V、805V、825V),这个静电力的实际大小就是所要求的推力,如图中虚线6。由此,我们知道了实际推力对应标定电极的工况。
图6描述了静电力与电极间电压的关系。横坐标是在电极间施加的电压,纵坐标是电极力的大小。曲线1、2、3、4分别是4次试验的结果,曲线5是通过理论计算得到的结果,通过这5条曲线可以看出,试验结果与理论计算的误差在10%以内。将图5中静电力的电压大小代入图6,如图中虚线所示。就可以得出实际推力大小了(342μN、328μN、309μN)。

Claims (6)

1、一种弹性微牛级小推力测量系统,其特征在于:该系统具体包括:推力架框架、测量主体、推力器供给系统;
所述的推力架框架由10号角钢焊接而成,整体喷塑;框架上底面相对边打有两对位置对称的孔;框架下底面安装有调整支架,用于调节框架的水平姿态;
所述的测量主体包括:主梁、横向移动座、纵向移动座、弹簧片、推力器、位移传感器、标定电极、传感器座、电极座、推力器、绝缘板;
主梁为一整体成开口向下的F型,两边安装在推力架框架上;横向移动座的上端为槽形并安装在主梁较长的分支上,纵向移动座装配在横向移动座下方,传感器座横向安装在纵向移动座上半部,由调节螺杆和锁紧螺母构成,调节水平方向的伸缩;位移传感器安装在传感器座前端;电极座同样由调节螺杆和锁紧螺母构成,安装在纵向移动座下半部;标定电极负极安装在电极座前端,标定电极负极与电极座绝缘连接;弹簧片安装在主梁上,顶端固定在主梁较短的分支上;绝缘板悬挂在弹簧片下端;传感器的探头指向弹簧片下端、绝缘板稍上方的位置;标定电极正极与推力器分别安装在绝缘板两边;标定电极正极正对标定电极负极,标定电极正极与绝缘板之间有螺杆连接,在螺杆上安装配重;
所述的推力器供给系统包括一个固定块,安装在推力架框架上方,该固定块上方外接推进剂管路和电线,下方通过弹性管路接入推力器。
2、根据权利要求1所述的弹性微牛级小推力测量系统,其特征在于:所述的主梁、横向移动座、纵向移动座的材料为不锈钢。
3、根据权利要求1所述的弹性微牛级小推力测量系统,其特征在于:所述的传感器座、电极座材料为硬铝。
4、根据权利要求1所述的弹性微牛级小推力测量系统,其特征在于:所述的标定电极正极、标定电极负极采用相同的材料,都为硬铝,或都为铜块。
5、根据权利要求1所述的弹性微牛级小推力测量系统,其特征在于:所述的弹簧片为青铜材料,厚0.01mm。
6、根据权利要求1所述的弹性微牛级小推力测量系统,其特征在于:所述的两标定电极距离为3mm。
CN2009100805476A 2009-03-20 2009-03-20 弹性微牛级小推力测量系统 Expired - Fee Related CN101514927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100805476A CN101514927B (zh) 2009-03-20 2009-03-20 弹性微牛级小推力测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100805476A CN101514927B (zh) 2009-03-20 2009-03-20 弹性微牛级小推力测量系统

Publications (2)

Publication Number Publication Date
CN101514927A true CN101514927A (zh) 2009-08-26
CN101514927B CN101514927B (zh) 2011-01-19

Family

ID=41039471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100805476A Expired - Fee Related CN101514927B (zh) 2009-03-20 2009-03-20 弹性微牛级小推力测量系统

Country Status (1)

Country Link
CN (1) CN101514927B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936806A (zh) * 2010-07-21 2011-01-05 北京航空航天大学 姿控发动机羽流对大型太阳能电池翼气动力的测量装置
CN102169035A (zh) * 2010-12-22 2011-08-31 中国科学院广州能源研究所 扭摆式高精度微推力测量系统
CN102680216A (zh) * 2012-04-11 2012-09-19 上海市特种设备监督检验技术研究院 一种电力液压推动器的室内试验检测装置
CN104535239A (zh) * 2014-12-24 2015-04-22 北京航空航天大学 一种具有圆柱形靶的微小推力测量装置
CN104535256A (zh) * 2014-12-24 2015-04-22 北京航空航天大学 一种用于微小推力测量的测量装置
CN104535240A (zh) * 2014-12-24 2015-04-22 北京航空航天大学 一种具有热防护系统的微小推力测量装置
CN106248281A (zh) * 2016-09-20 2016-12-21 哈尔滨工业大学 一种平面扭转式微冲量测量方法
CN107091705A (zh) * 2017-05-22 2017-08-25 河南理工大学 一种微推力测量方法及装置
CN107543642A (zh) * 2017-08-24 2018-01-05 北京航空航天大学 一种标靶法测量电推力器推力的装置及毫牛级真空羽流气动力测量系统
CN107543636A (zh) * 2016-10-31 2018-01-05 北京卫星环境工程研究所 微小力的动态旋转测量系统及测量与标定方法
CN108303206A (zh) * 2017-01-11 2018-07-20 南京理工大学 模拟真空环境下的微推力器推力测量系统
CN109764989A (zh) * 2018-11-02 2019-05-17 北京航空航天大学 可自锁定与标定的推力架
CN109960831A (zh) * 2017-12-22 2019-07-02 中国人民解放军战略支援部队航天工程大学 用于扭摆系统的微推力平滑降噪优化还原方法
CN110220712A (zh) * 2019-06-24 2019-09-10 西北工业大学 一种火箭发动机推力测试装置
CN112050988A (zh) * 2020-05-29 2020-12-08 北京机械设备研究所 推力测量装置及方法
CN112284589A (zh) * 2020-09-02 2021-01-29 上海新力动力设备研究所 一种对称钟摆式微推力测量装置
CN112781766A (zh) * 2020-12-29 2021-05-11 上海空间推进研究所 带微推进模块的火箭发动机微小推力测量系统和方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936806A (zh) * 2010-07-21 2011-01-05 北京航空航天大学 姿控发动机羽流对大型太阳能电池翼气动力的测量装置
CN101936806B (zh) * 2010-07-21 2012-05-23 北京航空航天大学 姿控发动机羽流对大型太阳能电池翼气动力的测量装置
CN102169035A (zh) * 2010-12-22 2011-08-31 中国科学院广州能源研究所 扭摆式高精度微推力测量系统
CN102169035B (zh) * 2010-12-22 2012-06-27 中国科学院广州能源研究所 扭摆式高精度微推力测量系统
CN102680216A (zh) * 2012-04-11 2012-09-19 上海市特种设备监督检验技术研究院 一种电力液压推动器的室内试验检测装置
CN102680216B (zh) * 2012-04-11 2014-09-03 上海市特种设备监督检验技术研究院 一种电力液压推动器的室内试验检测装置
CN104535239A (zh) * 2014-12-24 2015-04-22 北京航空航天大学 一种具有圆柱形靶的微小推力测量装置
CN104535256A (zh) * 2014-12-24 2015-04-22 北京航空航天大学 一种用于微小推力测量的测量装置
CN104535240A (zh) * 2014-12-24 2015-04-22 北京航空航天大学 一种具有热防护系统的微小推力测量装置
CN104535239B (zh) * 2014-12-24 2017-02-22 北京航空航天大学 一种具有圆柱形靶的微小推力测量装置
CN106248281A (zh) * 2016-09-20 2016-12-21 哈尔滨工业大学 一种平面扭转式微冲量测量方法
CN106248281B (zh) * 2016-09-20 2018-12-11 哈尔滨工业大学 一种平面扭转式微冲量测量方法
CN107543636A (zh) * 2016-10-31 2018-01-05 北京卫星环境工程研究所 微小力的动态旋转测量系统及测量与标定方法
CN108303206A (zh) * 2017-01-11 2018-07-20 南京理工大学 模拟真空环境下的微推力器推力测量系统
CN107091705A (zh) * 2017-05-22 2017-08-25 河南理工大学 一种微推力测量方法及装置
CN107543642A (zh) * 2017-08-24 2018-01-05 北京航空航天大学 一种标靶法测量电推力器推力的装置及毫牛级真空羽流气动力测量系统
CN107543642B (zh) * 2017-08-24 2018-09-21 北京航空航天大学 一种标靶法测量电推力器推力的装置及毫牛级真空羽流气动力测量系统
CN109960831A (zh) * 2017-12-22 2019-07-02 中国人民解放军战略支援部队航天工程大学 用于扭摆系统的微推力平滑降噪优化还原方法
CN109960831B (zh) * 2017-12-22 2023-02-28 中国人民解放军战略支援部队航天工程大学 用于扭摆系统的微推力平滑降噪优化还原方法
CN109764989A (zh) * 2018-11-02 2019-05-17 北京航空航天大学 可自锁定与标定的推力架
CN110220712A (zh) * 2019-06-24 2019-09-10 西北工业大学 一种火箭发动机推力测试装置
CN110220712B (zh) * 2019-06-24 2020-08-07 西北工业大学 一种火箭发动机推力测试装置
CN112050988A (zh) * 2020-05-29 2020-12-08 北京机械设备研究所 推力测量装置及方法
CN112050988B (zh) * 2020-05-29 2022-04-19 北京机械设备研究所 推力测量装置及方法
CN112284589A (zh) * 2020-09-02 2021-01-29 上海新力动力设备研究所 一种对称钟摆式微推力测量装置
CN112284589B (zh) * 2020-09-02 2021-12-07 上海新力动力设备研究所 一种对称钟摆式微推力测量装置
CN112781766A (zh) * 2020-12-29 2021-05-11 上海空间推进研究所 带微推进模块的火箭发动机微小推力测量系统和方法

Also Published As

Publication number Publication date
CN101514927B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101514927B (zh) 弹性微牛级小推力测量系统
CN101514928B (zh) 一种微小推力的标定方法
CN101561334B (zh) 三维微触觉力传感器的标定方法
CN202903617U (zh) 原位三点弯曲试验装置
CN108896271B (zh) 一种直升机旋翼气动试验五分量测力天平原位加载校准装置
CN201233218Y (zh) 一种电池厚度测试仪
CN204101217U (zh) 一种基于静电力原理的微纳力值标准装置
CN101319980A (zh) 微牛/纳牛级超微力值测量装置及力值溯源方法
CN103245458A (zh) 一种力传感器的半正弦准静态标定装置
CN102012292B (zh) 一种测量发动机微小推力的装置
CN104111138A (zh) 一种大型导弹发动机六分量测力及校准装置
CN110618516B (zh) 用于超高真空中的反射镜无应力夹持及面形调整装置
CN101694436B (zh) 一种悬臂弯曲加载低周疲劳试验应变控制的方法
CN105334106A (zh) 一种电池检测用挤压机
CN102175137B (zh) 测量构件微小变形的引伸计
CN102689171A (zh) 一种仪表机芯间隙精密自动调节系统
CN107182257B (zh) 一种微小推力测量系统的校准装置和方法
CN103983526A (zh) 跨尺度微纳米级原位剪切力学性能测试平台
CN107290085A (zh) 基于弹性吊承的微小扭矩校准测量装置
CN201593964U (zh) 轴类零件的直径测量装置
CN207197712U (zh) 基于弹性吊承的微小扭矩校准测量装置
CN112146805A (zh) 一种基于等效载荷测量法的水下爆炸测量系统
CN204881972U (zh) 一种高精度非接触式三维微小力发生装置
CN103398805B (zh) 一种螺旋片簧弹性支承的三维纳米测头
CN203455118U (zh) 微力测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110119

Termination date: 20110320