CN101511750A - 基本无微裂纹的高强度堇青石蜂窝体及其制造方法 - Google Patents

基本无微裂纹的高强度堇青石蜂窝体及其制造方法 Download PDF

Info

Publication number
CN101511750A
CN101511750A CN200780032414.0A CN200780032414A CN101511750A CN 101511750 A CN101511750 A CN 101511750A CN 200780032414 A CN200780032414 A CN 200780032414A CN 101511750 A CN101511750 A CN 101511750A
Authority
CN
China
Prior art keywords
green stone
honeycomb
cyanines green
cyanines
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200780032414.0A
Other languages
English (en)
Inventor
M·K·费伯
缪卫国
T·陶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN101511750A publication Critical patent/CN101511750A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

制备了一种具有高强度、高应变耐受性和高耐热冲击性的无微裂纹多孔堇青石陶瓷体,该陶瓷体可由控制了粉末粒度的堇青石粉末批料混合物按照能防止不利的堇青石晶粒生长、保持小的堇青石晶畴以防止产物中产生微裂纹或使微裂纹最少的方式烧制而成。

Description

基本无微裂纹的高强度菁青石蜂窝体及其制造方法
相关发明
本申请要求2006年8月29日提交的标题为“高强度菁青石体”的美国专利申请60/840,799的优先权和权益,该专利申请通过参考结合于本文。
发明领域
本发明涉及陶瓷体,更具体地,涉及多孔菁青石陶瓷体及其制造方法。
发明背景
为将低热膨胀菁青石陶瓷蜂窝体用作诸如过滤器和催化剂的载体,以对卡车和轿车排放的废气进行处理,而对所述蜂窝体所作的开发已经持续进行了近30年。作为高度微裂和高度取向的物体,广泛使用的这类蜂窝体的特征在于,存在于蜂窝体中的菁青石晶体在烧制后的冷却期间发生微裂,并因蜂窝体挤出成形过程而发生优选排列。这两个特征综合起来,明显减小了热膨胀系数并提高了所形成的蜂窝体对热冲击损害的耐受性。
但是,随着对发动机排放的严格要求,需要进一步提高过滤器和催化剂载体的机械性质和热性质。例如,由于构成过滤器和催化剂载体材料的菁青石相具有高度微裂的特性,目前的蜂窝体产品的机械强度在一定程度上受到限制。随着具有更薄蜂窝壁和/或明显更高的壁孔隙率的新型蜂窝体基材的开发,需要提高蜂窝体的强度。
存在微裂纹还可能导致其他方面的问题。例如,用于将控制排放的催化剂负载在这些蜂窝体上的高表面积商业氧化铝修补基面涂层(washcoating)材料能容易地渗透通过菁青石中存在的微裂纹,在某些情况下会导致涂覆后的产品的热膨胀系数(CTE)和弹性模量增加到不能接受的程度。此外,存在于内燃机排放物流中的烟炱和灰粒也能穿透微裂的结构,会对热膨胀性和弹性产生类似的影响。这些性质变化导致的最不利的结果是蜂窝体的耐热冲击性,即在经历快速温度变化时的抗碎裂性下降。
发明概述
本发明提供了制造菁青石蜂窝体产品的方法,该产品中主菁青石相基本没有微裂纹。所得产品具有提高的强度和相应提高的耐热冲击性,以及对由修补基面涂层材料或通常积累在蜂窝体壁上面或里面的烟炱和/或灰沉积物导致的热性质和机械性质变化的耐受性。
第一方面,本发明提供了具有高应变耐受性的高强度多孔菁青石体的制造方法,该菁青石体基本上避免了微裂纹和菁青石晶体的优选取向。该方法的主要步骤包括:第一步,将细粒度的菁青石粉末与液体载剂以及至少一种选自粘结剂、润滑剂、表面活性剂和成孔剂的有机添加剂混合,形成塑性批料混合物。细粒度菁青石粉末优选由氧化镁、氧化铝和氧化硅的菁青石前体源通过预反应形成的细粉末组成。通常存在粘结剂、润滑剂、表面活性剂等,以改进批料的塑性或其他加工特性。
然后,将这样得到的塑性批料混合物成形为蜂窝形状,并干燥除去部分或所有液体载剂。成形通常可采用使塑性批料混合物从挤出模头通过来实现。可采用常规的辐射加热方法来加速干燥。
最后,将这样得到的成形并干燥的蜂窝体在一定温度下烧制一定的时间,足以将菁青石粉末烧结成高强度的整体菁青石体,但不足以形成具有优选取向或者微裂纹的晶体特性的菁青石晶畴(crystal domain)。烧制步骤是该方法特别重要的方面,因为该步骤必须在足以达到所需蜂窝体强度的温度下进行足够短的时间,以避免物理或化学的相互作用,这些相互作用可在烧制后产生具有微裂纹的结构。经过适当烧制后,该方法的产物将是主要由细晶粒的菁青石组成的陶瓷制品,其特征是没有微裂纹和菁青石晶粒的优选取向。
上述微结构产生具有以下性质的菁青石陶瓷蜂窝体,所述性质为高耐热冲击性、低弹性模量,以及可针对宽范围的废气过滤和催化剂载体应用进行调整的孔隙率和孔径分布。这些蜂窝体的高耐热冲击性部分地归功于其具有的低室温弹性模量,低室温弹性模量使烧制后的材料具有高应变耐受性,即断裂模量(MOR)强度与室温弹性模量的比值高。
依据本发明方法提供的产品包括多孔、高强度、超薄壁的菁青石陶瓷催化剂载体,高强度、高孔隙率的陶瓷催化剂载体(该催化剂载体适合于负载用于对含氮氧化物的废气流进行SCR(选择性催化还原)处理的催化剂),以及高强度、高孔隙的壁流过滤器结构(该结构适合于从柴油发动机废气去除颗粒)。所有这些产品都不具有微裂纹,没有菁青石晶粒的优选取向,并提供了高强度、高应变耐受性和相应的对热冲击损害的高耐受性。
发明详述
如上所述,无微裂纹的菁青石陶瓷的优异的耐热冲击性很大程度上缘于这些材料所具有的高强度和在高温时相当低的弹性模量的综合作用。表1列出了两种具有大致相同的几何形状和孔隙率的不同陶瓷蜂窝体产品的性质。所述陶瓷产品具有合适的几何形状和足够高的孔隙率,能用于通过壁流方式过滤来自柴油发动机废气的微粒。蜂窝体的几何参数按照式[孔密度(cd)/孔壁厚度(wt)]给出,式中单位分别是孔数/平方英寸蜂窝体横截面和孔壁厚度英寸/1000。
表1-菁青石蜂窝体性质
 
样品编号 1 2
蜂窝体几何参数[cd/wt] 200/19 100/17
陶瓷类型 有微裂纹 无微裂纹
孔隙率(%) 44 44
归一化MOR(psi) 1397 3751
500℃时E-Mod(106psi) 1.20 0.91
平均CTE(10-7/℃,25-800℃) 6 19
耐热冲击性(℃) 1150 1050
如表1中数据表明,无微裂纹的蜂窝体的断裂模量(MOR)强度(归一化,以消除几何差异的影响)是有微裂纹的蜂窝体的两倍以上。此外,无微裂纹的材料的高温弹性模量(E-mod)明显小于有微裂纹蜂窝体的弹性模量,所述弹性模量都是在500℃测量的。
陶瓷体的耐热冲击性(TSR)通过以下表达式与断裂应力(stress atfracture)(相应于断裂模量(MOR)强度)、弹性模量(E)以及断裂应变(strain atfracture)关联,断裂应变是材料的热膨胀系数(α)和该材料体内的热梯度(ΔT)的乘积:
TSR ∝ MOR E · α · ΔT
陶瓷蜂窝体结构的耐热冲击性一般报道为阈值温度,蜂窝体结构在该温度和低于该温度时快速冷却至室温不会产生裂纹或其他蜂窝体损伤。
通常试图获得极低的热膨胀系数α,或者通过降低高温使用时的热梯度的方法来实现高水平的耐热冲击性。但是,由以上表示式可以知道,使用具有足够高的强度和足够低的体积弹性模量(bulk elastic modulus)(这些性质可提供提高的应变耐受性[MOR/E])的材料能为某些应用提供充分的耐热冲击性。因此,在表1所示实例的情况中,虽然无微裂纹的蜂窝体的平均热膨胀系数(25-800℃,10-7/℃)比有微裂纹的蜂窝体大两倍,但是高MOR和低弹性模量E使无微裂纹的蜂窝体在高达1050℃的温度(TSR=1050℃)下也具有耐热冲击性,该值非常接近于有微裂纹的蜂窝体高达1150℃的耐热冲击性。因此,本发明的无微裂纹的蜂窝体能够提供TSR≥1000℃甚至TSR≥1000℃。
本发明方法使用的菁青石粉末可适当包含合成的粉末,所述合成的粉末是由粘土-滑石-氧化铝批料混合物经反应烧结以完全形成主菁青石晶体相而产生的。典型的粉末平均粒度(直径)在5-60微米范围,更优选在10-50微米范围。干批料的菁青石粉末组分一般至少为70重量%,优选足够高,使得烧制的菁青石体包含至少90重量%的菁青石。
如上所述,重要的是在烧制温度下处理相对较短的时间,使干燥的蜂窝状成形体固结成为高强度的整体菁青石体,以确保菁青石晶畴足够小,以避免冷却时产生微裂纹。为此,蜂窝体优选在不超过约1420℃的峰值温度下烧制,在高于1405℃的烧制温度下烧制时间限于不超过约8小时。该烧制时间内的烧制温度可能产生菁青石晶粒的粒径不超过约30微米的菁青石蜂窝体产品。
按照本发明制备菁青石陶瓷蜂窝体的示例性步骤如下。首先通过以下方式制备细菁青石粉末:将合成的菁青石(2MgO.2Al2O5SiO2)陶瓷粉碎并研磨,继续研磨粉碎的菁青石,直到平均粉末粒度约为10微米。将形成的细菁青石粉末与甲基纤维素粘结剂、金属硬脂酸盐润滑剂和任选的淀粉成孔剂混合,形成粉末化的批料混合物。这种类型的代表性批料混合物列于下面表2中,其中,各批料组分的比例是基于最终干混合物的重量的重量份数。
表2-无微裂纹菁青石批料混合物
 
         \ 批料ID批料组成  \ A B
菁青石粉末(10微米) 100 100
淀粉 - 25
甲基纤维素粘结剂 7 7
金属硬脂酸盐润滑剂 1 1
然后,在各批料混合物中以足以形成糊料稠度的比例加入水载剂,粉末/水混合物通过进一步混合进行塑化。然后,通过挤出机对增塑的混合物进行加工,形成蜂窝状成形体,之后将挤出的蜂窝体干燥,从中去除大部分的水。
然后,对干燥的成形蜂窝体进行烧制,除去有机组分,并将菁青石粉末烧结成高强度的整体蜂窝体陶瓷制品。为防止粉末晶粒过度烧结和/或粉末晶粒中的相互化学作用受到促进,烧制处理在约1405℃的峰值温度下进行,并且在该峰值温度下保持约6小时。烧结后,将蜂窝体冷却至室温并进行检测。
下面表3列出了由表2中的A批料和B批料制成的陶瓷蜂窝体结构的孔隙率和孔径数据。表3中列出了每种类型的蜂窝体的孔隙率(按开孔的体积%计)和中值孔径d50(表示孔径,以微米,即10-6米计),中值孔径表示材料的总孔体积的50%在采用常规水银孔隙测定法测定的较小直径的孔内。
表3-无微裂纹菁青石的孔隙率
 
       \ 孔隙率特性批料ID  \ 孔隙率(%) 中值孔径(微米)
批料A的蜂窝体 20.1 1.8
批料B的蜂窝体 48.6 9.0
如上所述制备的蜂窝体产品因为基本上不含微裂纹,一般具有相对高的热膨胀系数。但是,与由MgO、Al2O3和SiO2前体通过延长烧制的反应烧结处理制备的有微裂纹的陶瓷蜂窝体相比,这些产品具有高强度和相对较低的高温弹性模量。因此,这些产品对热冲击损害的耐受性明显大于根据其高热膨胀系数所预期的耐受性。
依据本发明方法制造的蜂窝体产品在某些情况下提供的性能明显优于具有类似设计的、根据常规方法制造的蜂窝体。该范围包括要在使用之前涂覆修补基面涂料或催化剂制剂的蜂窝体产品,如用作汽油发动机废气处理系统中的催化剂载体的所谓超薄壁菁青石蜂窝体。依据本发明制造的这类菁青石蜂窝体,其蜂窝孔道壁厚度为25-100微米,中值孔径不超过约5微米,在25-800℃的温度范围内的平均热膨胀系数在16-20×10-7/℃的范围内。此外,产品的应变耐受性(MOR/E)大于10-3,E是蜂窝体材料在500℃时的弹性模量,MOR是该材料在室温时的断裂模量强度,采用常规的四点弯曲测定。
不存在微裂纹同样有益于高孔隙率蜂窝体,它能应用于诸如催化型柴油机废气过滤器或基材,包括用于控制氮氧化物废气排放的SCR催化剂的基材。按照本发明制造的产品的特性特征包括:除了在25-800℃的温度范围内平均热膨胀系数在16-20×10-7/℃的范围内外,还具有大于10微米至最多20微米的中值孔径和45-65%的总孔隙率。
对在这些范围内的柴油机过滤器,优选的孔径分布会较窄。窄孔径分布使得陶瓷的d-因子小于0.60,在此d-因子定义为以下比值:(d50-d10)/d50,其中,d50和d10分别是多孔堇青石陶瓷的总孔容的50%或10%是小直径孔的孔容。对孔隙率特别高的产品,即产品的孔隙率在55-65%的范围内,中值孔径应大于15微米。
当然,上面的详细描述仅用于说明目的,很明显,使本发明适应于特定应用而对所述特定实施方式进行的各种修改和变动在权利要求书的范围之内。

Claims (13)

1.一种制造高强度多孔菁青石蜂窝体的方法,该方法包括以下步骤:
a)将细粒度菁青石粉末与液体载剂和至少一种选自粘结剂、润滑剂、表面活性剂和成孔剂的添加剂混合,形成塑性批料混合物;
b)将塑性批料混合物形成为蜂窝状成形体,并干燥该蜂窝状成形体;和
c)将该蜂窝状成形体在一定温度下干燥一定的时间,足以使菁青石粉末烧结成高强度的整体菁青石体,但不足以形成具有优选取向的菁青石晶畴,上述菁青石体基本上避免了微裂纹,菁青石的晶体中值粒径不大于30微米。
2.如权利要求1所述的方法,其特征在于,菁青石粉末的中值粒径在5-60微米范围。
3.如权利要求1所述的方法,其特征在于,菁青石粉末的中值粒径在10-50微米范围。
4.如权利要求1所述的方法,其特征在于,峰值烧制温度不超过1420℃,在超过1400℃的峰值烧制温度下的烧制时间不超过8小时。
5.如权利要求1所述的方法,该方法还包括甲基纤维素粘结剂和淀粉成孔剂。
6.如权利要求1所述的方法,其特征在于,烧制体的应变耐受性至少为10-3
7.一种按照权利要求1所述的方法制造的菁青石蜂窝体,具有以下性质:
蜂窝体孔道壁厚度为25-100微米,
陶瓷的中值孔径不大于5微米;
在25-800℃温度范围内的平均热膨胀系数在16-20×10-7/℃范围内;和
应变耐受性(MOR/E)大于10-3
8.一种按照权利要求1所述的方法制造的菁青石蜂窝体,具有以下性质:
在25-800℃温度范围内的平均热膨胀系数在16-20×10-7/℃范围内;
应变耐受性(MOR/E)大于10-3
中值孔径d50在10微米<d50≤20微米的范围内;和
总孔隙率为45-65%。
9.如权利要求8所述的菁青石蜂窝体,其特征在于,菁青石陶瓷的孔径分布的特征是d-因子小于0.60,d-因子=(d50-d10)/d50
10.如权利要求8所述的菁青石蜂窝体,其特征在于,孔隙率在55-65%范围内。
11.如权利要求8所述的菁青石蜂窝体,其特征在于,孔隙率在55-65%范围内,中值孔径大于15微米。
12.如权利要求8所述的菁青石蜂窝体,其特征在于,在25-800℃温度范围内的平均热膨胀系数在16-20×10-7/℃范围内。
13.如权利要求8所述的菁青石蜂窝体,其特征在于,TSR≥1000℃。
CN200780032414.0A 2006-08-29 2007-08-29 基本无微裂纹的高强度堇青石蜂窝体及其制造方法 Pending CN101511750A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84079906P 2006-08-29 2006-08-29
US60/840,799 2006-08-29

Publications (1)

Publication Number Publication Date
CN101511750A true CN101511750A (zh) 2009-08-19

Family

ID=38720471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780032414.0A Pending CN101511750A (zh) 2006-08-29 2007-08-29 基本无微裂纹的高强度堇青石蜂窝体及其制造方法

Country Status (5)

Country Link
US (1) US7575794B2 (zh)
EP (1) EP2069262A2 (zh)
JP (1) JP2010502547A (zh)
CN (1) CN101511750A (zh)
WO (1) WO2008027424A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO797897A0 (en) * 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd Media device (ART18)
CA2412436C (en) * 2000-06-05 2013-05-21 The Trustees Of Columbia University In The City Of New York Identification and use of human bone marrow-derived endothelial progenitor cells to improve myocardial function after ischemic injury
CN101575204B (zh) * 2008-03-21 2013-03-20 株式会社电装 堇青石成形体和制备所述成形体的方法
JP2010022785A (ja) * 2008-07-22 2010-02-04 Shinwa Corp 脱臭フィルタ
US8007557B2 (en) * 2008-11-26 2011-08-30 Corning Incorporated High-strength low-microcracked ceramic honeycombs and methods therefor
US8389101B2 (en) * 2009-05-29 2013-03-05 Corning Incorporated Lanthanum-containing cordierite body and method of manufacture
US8148297B2 (en) * 2009-11-30 2012-04-03 Corning Incorporated Reticular cordierite composition, article and manufacture thereof
US9856177B2 (en) 2010-05-28 2018-01-02 Corning Incorporated Cordierite porous ceramic honeycomb articles
US9334191B2 (en) 2010-05-28 2016-05-10 Corning Incorporated Methods for forming ceramic honeycomb articles
US8609032B2 (en) 2010-11-29 2013-12-17 Corning Incorporated Porous ceramic honeycomb articles and methods for making the same
US8999224B2 (en) 2010-11-30 2015-04-07 Corning Incorporated Cordierite porous ceramic honeycomb articles with delayed microcrack evolution
DE102020203924A1 (de) * 2020-03-26 2021-09-30 Hug Engineering Ag Formkörper, Verbundkörper, Verfahren zur Herstellung eines Formkörpers und Verfahren zur Herstellung eines Verbundkörpers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4428322A1 (de) * 1993-08-11 1995-02-23 Technology Co Ag Cordieritaggregat mit geringer thermischer Ausdehnung und daraus hergestellter Verbundkörper
JP2938740B2 (ja) * 1993-12-14 1999-08-25 日本碍子株式会社 コージェライト質セラミックフィルタとその製造方法
WO2000040521A1 (en) * 1998-12-31 2000-07-13 Corning Incorporated Low sintering temperature cordierite batch and cordierite ceramic produced therefrom
US6736875B2 (en) * 2001-12-13 2004-05-18 Corning Incorporated Composite cordierite filters
AU2003279633A1 (en) * 2002-06-26 2004-01-19 Corning Incorporated Magnesium aluminum silicate structures for dpf applications
JP4216174B2 (ja) * 2003-01-09 2009-01-28 日本碍子株式会社 コート材、セラミックスハニカム構造体及びその製造方法
US7442425B2 (en) * 2003-09-30 2008-10-28 Corning Incorporated High porosity honeycomb and method

Also Published As

Publication number Publication date
US7575794B2 (en) 2009-08-18
WO2008027424A3 (en) 2008-04-17
WO2008027424A2 (en) 2008-03-06
EP2069262A2 (en) 2009-06-17
JP2010502547A (ja) 2010-01-28
US20080057269A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
CN101511750A (zh) 基本无微裂纹的高强度堇青石蜂窝体及其制造方法
JP6324472B2 (ja) 多孔質セラミックハニカム物品およびその作製方法
KR100543734B1 (ko) 다공질 세라믹체의 제조 방법
JP6625596B2 (ja) 多孔性セラミック物品およびその製造方法
JP5552061B2 (ja) 安定化された低微小亀裂セラミックハニカムおよびその方法
JP5890548B2 (ja) コージエライト形成バッチ組成物およびそれから製造されたコージエライト体
JP5199111B2 (ja) 細孔径分布の狭いコージエライトセラミックハニカム物品およびその製造方法
EP1979290B1 (en) Batch composition for the manufacture of a porous cordierite ceramic article and method for making a porous cordierite ceramic article
JP4495152B2 (ja) ハニカム構造体及びその製造方法
JP6149304B2 (ja) 低密度コージエライト体およびその製造方法
EP1483221A1 (en) Strontium feldspar aluminum titanate for high temperature applications
JP2010501467A (ja) 低背圧の多孔質コージエライトセラミックハニカム物品およびその製造方法
CN105473532A (zh) 多孔陶瓷制品及其制造方法
WO2009145910A1 (en) Low back pressure porous honeycomb and method for producing the same
CN105408283A (zh) 多孔陶瓷制品及其制造方法
CN102015579A (zh) 使用磨碎的坚果壳制造蜂窝体的方法和由此制得的蜂窝体
US20230358154A1 (en) High porosity ceramic honeycomb structure and method of manufacturing
JP6611707B2 (ja) コージエライト対ムライトの比率が高いコージエライト・ムライト・チタン酸アルミニウムマグネシウム組成物およびそれから構成されたセラミック物品
US20240116819A1 (en) Cordierite-indialite-pseudobrookite structured ceramic bodies, batch composition mixtures, and methods of manufacturing ceramic bodies therefrom
US20110171099A1 (en) Process for manufacturing a porous sic material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090819