CN101492183B - 羧基化的磁性碳纳米球及其制备方法 - Google Patents

羧基化的磁性碳纳米球及其制备方法 Download PDF

Info

Publication number
CN101492183B
CN101492183B CN2009101111725A CN200910111172A CN101492183B CN 101492183 B CN101492183 B CN 101492183B CN 2009101111725 A CN2009101111725 A CN 2009101111725A CN 200910111172 A CN200910111172 A CN 200910111172A CN 101492183 B CN101492183 B CN 101492183B
Authority
CN
China
Prior art keywords
benzene
carbon
ferrocene
core
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101111725A
Other languages
English (en)
Other versions
CN101492183A (zh
Inventor
张其清
刘晓清
翁建
盛卫琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN2009101111725A priority Critical patent/CN101492183B/zh
Publication of CN101492183A publication Critical patent/CN101492183A/zh
Application granted granted Critical
Publication of CN101492183B publication Critical patent/CN101492183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

羧基化的磁性碳纳米球及其制备方法,涉及一种磁性碳纳米球,尤其是涉及一种采用一步法合成羧基功能化的磁性碳纳米球的制备方法。提供一种所制备的材料具有尺寸均匀、纯度高、单分散的核壳结构等优点,制备过程所需设备相对廉价,温度低,可以保留反应物质表面的官能团的羧基化的磁性碳纳米球及其制备方法。羧基化的磁性碳纳米球包括核心和外层,外层包裹核心,核心为四氧化三铁核心,外层为碳壳层,碳壳层上连接有羧基。将铁盐溶解于溶剂中,得铁盐溶液;将卤代苯溶解于苯类溶剂,得卤代苯溶液;将铁盐溶液与卤代苯溶液混合,得混合溶液,反应,冷却后将反应器内的溶液倒出,离心收集不溶物,洗涤,干燥,得到羧基化的磁性碳纳米球。

Description

羧基化的磁性碳纳米球及其制备方法
技术领域
本发明涉及一种磁性碳纳米球,尤其是涉及一种采用一步法合成羧基功能化的磁性碳纳米球的制备方法。
背景技术
碳的合成方法有很多,目前制备碳主要有化学气相沉积法、溶剂热法和模板法。除了以上常用制备方法之外,还有其它合成碳的方法,如超声法、电弧放电法和热解金属有机化合物法等。核-壳结构碳纳米颗粒的主要制备方法有电弧放电、化学气相沉积法、热解法、液相浸渍、爆炸法和水热法等。水(溶剂)热法制备碳材料的优点是可以使用较低的反应温度,在这种情况下,碳源分子中剩余的功能基团就可以保留下来(如淀粉和葡萄糖分子中的羟基),得到具有功能化表面的碳材料,这种一步功能化的反应路线是用其他合成方法难以实现的。本发明在相对传统方法的温度低的情况下合成碳材料包覆的纳米氧化铁颗粒的过程中,最重要的是实现了一步法羧基功能化的核-壳结构,其核为强的磁性四氧化三铁材料。突出的优点是可以一步引入表面功能化基团,避开了由碳材料的高化学惰性引起的修饰难题。
碳纳米材料的应用范围非常广泛,其在物理、化学、材料、机械、航空、军事和生物医药等领域都具有应用前景。碳材料的化学稳定性很高,这一特点使其在催化和生物医药领域有广泛的应用前景,但碳材料表面的高疏水性限制了其应用范围,表面修饰改性是有效的解决办法。碳纳米材料具有很高的化学惰性,产物的表面功能化和修饰改性研究取得的成果相对较少。
本申请人(1、Xiaofeng Wang et al.Adv.Funct.Mater.2008,18,1809-1823;2、中国专利CN101279730)报道了磁性碳微管材料的制备和氨基化的磁性碳管的制备方法及其在生物传感器中的应用。
发明内容
本发明的目的在于提供一种所制备的材料具有尺寸均匀、纯度高、单分散的核壳结构等优点,制备过程所需设备相对廉价,温度低,可以保留反应物质表面的官能团的羧基化的磁性碳纳米球及其制备方法。
本发明的技术方案是借鉴水热法的优点,采用一步法直接实现在合成过程中一步得到表面具有羧基官能团的碳纳米球结构,其中碳球内部还填充了具有强磁性的四氧化三铁纳米球,形成了核-壳结构。
本发明所述羧基化的磁性碳纳米球包括核心和外层,外层包裹核心,核心为四氧化三铁核心,外层为碳壳层,碳壳层上连接有羧基。
所述羧基化的磁性碳纳米球的粒径为55~65nm的单分散颗粒,所述四氧化三铁核心为4~6nm的四氧化三铁核心,所述碳壳层中的碳为石墨碳和无定形碳的混合物,按质量比,石墨碳与无定形碳的比例为1∶1.72。所述羧基化的磁性碳纳米球具有强磁性和超顺磁性。
本发明所述羧基化的磁性碳纳米球的制备方法包括以下步骤:
1)将铁盐溶解于溶剂中,得铁盐溶液;
2)将卤代苯溶解于苯类溶剂,得卤代苯溶液;
3)将铁盐溶液与卤代苯溶液混合,得混合溶液,铁盐与卤代苯的摩尔比为1∶(0.3~3);
4)将混合溶液倒入反应器中反应,冷却后将反应器内的溶液倒出,离心收集不溶物,洗涤,干燥,得到羧基化的磁性碳纳米球。
铁盐溶液的浓度按质量百分比为0.4%~8%;所述铁盐最好为二茂铁及二茂铁的衍生物;二茂铁的衍生物选自叔丁基二茂铁、N,N-二甲基氨甲基二茂铁、甲酸二茂铁、乙腈二茂铁、1,1′-二茂铁二甲酸或1,1′-二溴二茂铁等;所述溶剂为D,D-二甲基甲酰胺(DMF)或低级醇,所述低级醇为甲醇、乙醇、丙醇、聚乙二醇等中的至少一种。聚乙二醇的分子量最好为200~400。
卤代苯溶液的浓度按质量百分比为0.05%~2%的卤代苯溶液;所述卤代苯选自三氯苯甲酸、二氯苯甲酸、一氯苯甲酸、三溴苯甲酸等卤代苯甲酸。
将混合溶液倒入反应器中反应的温度最好为160~250℃,反应的时间最好为1~72h。
产物经透射电镜、扫描电镜表征,所得的羧基化的磁性碳纳米球的直径为55nm~65nm。经X射线衍射表征并与标准数据库对照,证实产物主要为碳包覆的四氧化三铁;经X射线衍射光电子能谱表征及拉曼光谱数据相互印证,表明产物外围碳壳层主要是石墨碳和部分无定形碳;经高分辨透射电镜表征内部的核心为四氧化三铁,外层具有碳包覆氧化铁的核壳结构;红外光谱数据证实碳壳层表面带有羧基。
由于本发明借鉴水热法的优点,采用一步法直接实现在合成过程中一步得到表面具有羧基官能团的碳纳米球结构,其中碳球的内部还填充具有强磁性的四氧化三铁纳米球,形成核-壳结构。所得羧基化的磁性碳纳米球有尺寸均匀、纯度高、单分散的核壳结构等优点。制备过程所需设备廉价,温度低,可保留反应物质表面的官能团。另外使用本发明所制备的羧基功能化的磁性碳纳米球结构材料具有超顺磁性的优点,可望应用在磁共振成像领域。
附图说明
图1为本发明实施例1制备的产物的扫描电镜图。在图1中的标尺为1μm。
图2为本发明实施例1制备的产物的红外光谱图。在图2中,横坐标为波数Wavenumber/cm-1,纵坐标为透光率Transmittance/%;由红外光谱表征确定了产物表面的羧基;3414cm-1为特征峰O-H伸缩振动峰;1656cm-1则归属为-C=O的吸收峰;1628cm-1为C=C伸缩振动峰;2970、2924和2896cm-1归属为饱和C-H的震动峰;1046和1089cm-1归属为C-O伸缩振动;图中562cm-1处的强吸收峰,则归属为Fe3O4中Fe-O键。
图3为本发明实施例1制备的产物的拉曼光谱图。在图3中,横坐标为波数Wavenumber/cm-1,纵坐标为强度Intensity(a.u.);拉曼光谱峰从左到右依次为1360(cm-1)、1550(cm-1),二者均为宽峰,可分别称为D带和G带,分别对应于无定形碳的拉曼谱峰和石墨碳的拉曼谱峰;D带和G带的谱峰强度比值为1.72∶1,显示产物实心碳纳米球中以无定形碳为主要组成部分。
图4为本发明实施例1制备的产物的透射电镜照片图。在图4中,(a)的标尺为100nm,(b)的标尺为20nm,(c)的标尺为5nm;由图(a)可以看到,产物是分散均一纳米粒子,其粒子直径分布在55~65nm;图(b)是单个空心碳纳米球核壳结构的放大照片,可以看到球壁厚度在5~20nm之间,核心的四氧化三铁的粒子为4~6nm;其中图(c)是图(b)的高分辨照片,由图(c)可以看出,四氧化三铁由不同生长方向的晶面构成,其中标示出的0.241nm、0.253nm和0.296nm的晶面间距分别对应于四氧化三铁的(222)、(311)和(220)晶面。
图5为本发明实施例1制备的产物的X射线衍射谱图。在图5中,横坐标为衍射角2-Theta(degree),纵坐标为强度Intensity(a.u.);经过与标准图谱(JCPDS:01-1111)对照,产物相应的2Theta角为35.31°,62.73°,29.96°,57.12°,74.00°和43.25°,得出四氧化三铁的指标峰从左到右依次为(311),(440),(220),(511),(533)和(400)。
图6为本发明实施例1制备的产物的磁滞回线图。在图中,横坐标为磁场强度Hc,纵坐标为强度磁化强度Ms,图(a)为原始图,图(b)为局部放大图,由图可知磁饱和强度为59emu/g,剩磁为0.3emu/g和矫顽力为7.5Oe,得知此磁性材料具有超顺磁效应。
具体实施方式
下面通过实施例结合附图对本发明作进一步说明。
实施例1:在室温条件下,将二茂铁20mg溶解于5ml D,D-二甲基甲酰胺(DMF),形成质量百分比为0.4%的溶液;将2,4,6-三氯苯甲酸13.5mg溶解于15ml乙醇,形成质量百分比为0.90%的溶液。将上述两种溶液混合均匀。将混合溶液倒入聚四氟乙烯反应器,密闭于不锈钢反应釜中。将反应釜在250℃并保温反应24h。冷却后将反应器内的溶液倒出,离心收集不溶物,并用乙醇洗涤至少3次,干燥得到约60nm的羧基功能化的纳米球状碳核壳结构磁性材料(如图1)。图2是产物的红外光谱图印证了表面羧基的存在;图3是产物的拉曼光谱图,证明了碳壳层由石墨碳和部分无定形碳构成;图4是产物的高分辨透射电镜图,证明了核壳结构;图5是产物的X射线衍射谱图,证明了产物含有四氧化三铁;图6是产物的磁滞回线,说明了材料的矫顽力和剩磁都很小,产物具有超顺磁性。
实施例2:在室温条件下,将二茂铁20mg溶解于5ml D,D-二甲基甲酰胺(DMF),形成质量百分比为0.4%的溶液;将2,4,6-三氯苯甲酸135mg溶解于15ml乙醇,形成质量百分比为9%的溶液,反应时间为12小时。其余条件同实施例1,得到羧基功能化的碳纳米球结构磁性材料。
实施例3:将铁盐叔丁基二茂铁24mg溶解于5ml D,D-二甲基甲酰胺(DMF),形成质量百分比为0.48%的溶液;将2,4,6-三氯苯甲酸13.5mg溶解于15ml甲醇,形成质量百分比为9%的溶液。反应温度为160℃,反应时间为73小时,其余条件同实施例1。
实施例4:将铁盐N,N-二甲基氨甲基二茂铁24.3mg溶解于5ml D,D-二甲基甲酰胺(DMF),形成质量百分比为0.49%的溶液;将三溴苯甲酸35.8mg溶解于15ml乙醇,形成质量百分比为0.24%的溶液,反应时间为1小时,其余条件同实施例1。
实施例5:将铁盐羟甲基二茂铁21.6mg溶解于5ml聚乙二醇(分子量为500g/mol),形成质量百分比为0.43%的溶液;将一氯苯甲酸15.5mg溶解于15ml乙苯,形成质量百分比为0.13%的溶液,反应时间为72h,其余条件同实施例1。
实施例6:将铁盐甲酸二茂铁23mg与二氯苯甲酸19mg溶解于20ml乙醇,形成溶液,其余条件同实施例1。
实施例7:将铁盐改为乙腈二茂铁22.5mg,其余条件同实施例1。
实施例8:将铁盐改为1,1′-二茂铁二甲酸24.2mg,其余条件同实施例1。
实施例9:将铁盐改为1,1′-二溴二茂铁34.4mg,其余条件同实施例1。

Claims (4)

1.羧基化的磁性碳纳米球,其特征在于包括核心和外层,外层包裹核心,核心为四氧化三铁核心,外层为碳壳层,碳壳层上连接有羧基。
2.如权利要求1所述的羧基化的磁性碳纳米球,其特征在于所述羧基化的磁性碳纳米球的粒径为55~65nm的单分散颗粒,所述四氧化三铁核心为4~6nm的四氧化三铁核心,所述碳壳层中的碳为石墨碳和无定形碳的混合物,按质量比,石墨碳与无定形碳的比例为1∶1.72。
3.如权利要求1所述羧基化的磁性碳纳米球的制备方法,其特征在于包括以下步骤:
1)将铁盐溶解于溶剂中,得铁盐溶液;
2)将卤代苯溶解于苯类溶剂,得卤代苯溶液;
3)将铁盐溶液与卤代苯溶液混合,得混合溶液,铁盐与卤代苯的摩尔比为1∶(0.3~3);
4)将混合溶液倒入反应器中反应,冷却后将反应器内的溶液倒出,离心收集不溶物,洗涤,干燥,得到羧基化的磁性碳纳米球;
所述铁盐溶液的浓度按质量百分比为0.4%~8%;
所述铁盐为二茂铁及二茂铁的衍生物;
所述溶剂为D,D-二甲基甲酰胺或低级醇,所述低级醇为甲醇、乙醇、丙醇、聚乙二醇中的至少一种,所述聚乙二醇的分子量为200~400;
所述卤代苯溶液的浓度按质量百分比为0.05%~2%的卤代苯溶液;
所述卤代苯选自三氯苯甲酸、二氯苯甲酸、一氯苯甲酸或三溴苯甲酸;
将混合溶液倒入反应器中反应的温度为160~250℃,反应的时间为1~72h。
4.如权利要求3所述羧基化的磁性碳纳米球的制备方法,其特征在于二茂铁的衍生物选自叔丁基二茂铁、N,N-二-甲基氨甲基二茂铁、甲酸二茂铁、乙腈二茂铁、1,1′-二茂铁二甲酸或1,1′-二溴二茂铁。
CN2009101111725A 2009-03-05 2009-03-05 羧基化的磁性碳纳米球及其制备方法 Expired - Fee Related CN101492183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101111725A CN101492183B (zh) 2009-03-05 2009-03-05 羧基化的磁性碳纳米球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101111725A CN101492183B (zh) 2009-03-05 2009-03-05 羧基化的磁性碳纳米球及其制备方法

Publications (2)

Publication Number Publication Date
CN101492183A CN101492183A (zh) 2009-07-29
CN101492183B true CN101492183B (zh) 2011-07-20

Family

ID=40922999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101111725A Expired - Fee Related CN101492183B (zh) 2009-03-05 2009-03-05 羧基化的磁性碳纳米球及其制备方法

Country Status (1)

Country Link
CN (1) CN101492183B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794652B (zh) * 2010-03-10 2012-05-09 中国科学技术大学 碳包覆超顺磁性四氧化三铁胶体球的制备方法
CN102649046B (zh) * 2011-02-24 2014-08-06 中国科学院合肥物质科学研究院 纳米四氧化三铁芯-碳介孔空心壳复合体及其制备方法和用途
CN103205413B (zh) * 2013-03-26 2016-12-07 上海应用技术学院 一种碳-Fe3O4纳米细胞固定材料及其制备方法和应用
CN105442351B (zh) * 2015-10-30 2018-07-31 嘉兴市金宇达染整有限公司 一种棉纺织品的酸性染料染色方法
CN109095450B (zh) * 2018-11-05 2022-03-15 西北工业大学 一种高比表面磁性多孔碳颗粒及制备方法
CN110523386A (zh) * 2019-09-19 2019-12-03 陕西科技大学 二乙烯三胺改性磁性碳核壳吸附剂及其制备方法和在吸附三价铬离子和酸性染料中的应用
CN111517372A (zh) * 2020-05-11 2020-08-11 山西医科大学 一种富勒烯包覆Fe3O4复合纳米材料及其制备方法

Also Published As

Publication number Publication date
CN101492183A (zh) 2009-07-29

Similar Documents

Publication Publication Date Title
CN101492183B (zh) 羧基化的磁性碳纳米球及其制备方法
CN101794652B (zh) 碳包覆超顺磁性四氧化三铁胶体球的制备方法
Wang et al. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction
US20130105397A1 (en) Magnetic dye-adsorbent catalyst
CN105879842A (zh) 一种磁性PAFs固相萃取剂及其制备方法和应用
Wang et al. Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres
CN104925845B (zh) 一种多层核壳结构CeO2纳米空心球的无模板合成方法
CN102649046B (zh) 纳米四氧化三铁芯-碳介孔空心壳复合体及其制备方法和用途
CN102623125B (zh) 一种含多磁性内核的Fe3O4/SiO2纳米粒的制备方法
Zhu et al. Fe3O4@ chitosan‐bound boric acid composite as pH‐responsive reusable adsorbent for selective recognition and capture of cis‐diol‐containing shikimic acid
Zhang et al. Mechanochemical synthesis of Fe3O4@(Mg-Al-OH LDH) magnetic composite
Wang et al. In situ synthesis of Ag–Fe3O4 nanoparticles immobilized on pure cellulose microspheres as recyclable and biodegradable catalysts
CN109705575B (zh) 铁酸钴/聚多巴胺/银复合纳米立方体抗菌剂的制备方法
CN102807254B (zh) 氨基功能化的超顺磁性碳纳米球及其制备方法
CN104399415B (zh) 一种核壳式氧化石墨烯/银复合材料的制备方法
Chen et al. Magnetically separable Fe 3 O 4@ TiO 2 nanospheres: preparation and photocatalytic activity
CN110527039A (zh) 一种磁性表面分子印迹聚合物及其制备方法和应用
Chen et al. Preparation and adsorbability of magnetic composites based on cellulose nanofiber/graphene oxide
CN102285691A (zh) 一种磁性铁氧体纳米颗粒的制备方法
CN104625044B (zh) 一种四氧化三铁/银复合材料及其制备方法和应用
Ni et al. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features
Zhang et al. One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity
CN103111257A (zh) 磁性介孔碳材料的制备方法
CN101596435B (zh) 耐酸性的单分散碳-金属氧化物磁性复合微球的制备方法及磁性复合微球
Wang et al. Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20140305