CN101473037A - 具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法 - Google Patents

具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法 Download PDF

Info

Publication number
CN101473037A
CN101473037A CNA2007800222081A CN200780022208A CN101473037A CN 101473037 A CN101473037 A CN 101473037A CN A2007800222081 A CNA2007800222081 A CN A2007800222081A CN 200780022208 A CN200780022208 A CN 200780022208A CN 101473037 A CN101473037 A CN 101473037A
Authority
CN
China
Prior art keywords
seq
plant
nucleic acid
sequence
motif
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800222081A
Other languages
English (en)
Other versions
CN101473037B (zh
Inventor
崔良壽
金周坤
南伯熙
郑镇瑞
吴世俊
韩昌德
朴盛韩
郑弼中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CropDesign NV
Crop Functional Genomics Center
Original Assignee
CropDesign NV
Crop Functional Genomics Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CropDesign NV, Crop Functional Genomics Center filed Critical CropDesign NV
Priority to CN201510422859.6A priority Critical patent/CN105087634A/zh
Priority claimed from PCT/EP2007/005292 external-priority patent/WO2007144190A2/en
Publication of CN101473037A publication Critical patent/CN101473037A/zh
Application granted granted Critical
Publication of CN101473037B publication Critical patent/CN101473037B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及通过调节特定类型的NAC转录因子在植物中表达在植物中增强产量相关性状的方法。特定类型的NAC转录因子是具有这样的氨基酸序列的NAC转录因子,即当其用于构建NAC系统树时,趋向聚簇于包含SEQ ID NO:2、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ ID NO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。本发明还涉及具有编码此类NAC转录因子的核酸的受调节表达的植物,所述植物相对于对照植物具有增强的产量相关性状。本发明还涉及通过调节编码AP2-2多肽的核酸在植物中表达而在植物中增强产量相关性状的方法。本发明还涉及具有编码AP2-2多肽的核酸的受调节表达的植物,所述植物相对于对照植物具有增强的产量相关性状。本发明还涉及通过调节编码APETELA2-70-样(AP2-70-样)多肽的核酸在植物中表达而在植物中增强产量相关性状的方法。本发明还涉及具有编码AP2-70-样多肽的核酸的受调节表达的植物,所述植物相对于对照植物具有增强的产量相关性状。本发明还提供用于实施本发明方法的迄今未知的NAC、AP2-2多肽和AP2-70-样多肽的编码核酸和包含这些核酸的构建体。本发明还提供用于本发明方法中的构建体。

Description

具有增强的产量相关性状的NAC转录因子受调节表达的植物和用于产生该植物的方法
本发明一般涉及分子生物学领域并涉及用于在植物中增强多种经济上重要的产量相关性状的方法。更具体地,本发明涉及在植物中通过调节编码特定类型的NAC转录因子的核酸在植物中表达而在植物中增强产量相关性状的方法。本发明还涉及具有编码NAC转录因子的核酸的受调节表达的植物,所述植物相对于对照植物具有增强的产量相关性状。
另外,本发明涉及在植物中通过调节编码Apetala 2-2(AP2-2)多肽的核酸在植物中表达而增强产量相关性状的方法。本发明还涉及具有编码AP2-2多肽的核酸的受调节表达的植物,所述植物相对于对照植物具有增强的产量相关性状。本发明涉及在植物中通过调节编码APETALA2-70-样(AP2-70-样)多肽的核酸在植物中表达而增强产量相关性状的方法。本发明还涉及具有编码AP2-70-样多肽的核酸的受调节表达的植物,所述植物相对于对照植物具有增强的产量相关性状。本发明还提供用于实施本发明方法的迄今未知的AP2-70-样编码核酸,和包含此核酸的构建体。
持续增长的世界人口和农业用可耕地供应萎缩刺激了有关增加农业效率的研究。常规的作物及园艺学改良手段利用选择育种技术以鉴定具有受欢迎特性的植物。然而,此类选择育种技术具有几个缺陷,即这些技术一般耗费很多劳动并且产生这样的植物,其经常含有异源性遗传组分,其可能不总是导致从亲代植物中传递的所希望性状。分子生物学进展已经允许人类改良动物及植物的种质。植物的遗传工程使得可以分离和操作遗传物质(一般以DNA或RNA的形式)并且随后引入该遗传物质至植物中。此类技术具有产生具备多种经济学、农学和园艺学改良性状的作物或植物的能力。
具有特殊经济意义的性状是增加的产量。产量通常定义为来自作物的经济价值的可测量结果。该结果可以就数量和/或品质方面进行定义。产量直接取决于几个因素,例如器官的数目和大小、植物构造(例如枝条的数目)、种子产生、叶衰老等。根发育、养分摄入量、胁迫耐受性和早期生长势(early vigor)也可以是决定产量的重要因素。优化前述因素因而可以对增加作物产量有贡献。
种子产量是特别重要的性状,因为许多植物的种子对于人和动物的营养是非常重要的。无论是通过直接的种子本身的消费还是通过建立在加工的种子上的肉产品的消费,农作物例如玉米、稻、小麦、卡诺拉油菜(canola)和大豆占据了总的人热量摄入的一半以上。它们还是糖、油和许多种类的用于工业加工的代谢产物的来源。种子包含胚(新的芽和根的来源)和胚乳(在萌发和幼苗的早期生长中用于胚生长的营养来源)。种子的发育牵涉许多基因,且需要将代谢产物从根、叶和茎转移入生长的种子。胚乳,特别可以同化糖类、油和蛋白质的代谢前体,将其合成为贮藏大分子充填种子。
对于众多作物的另一个经济上重要的性状是早期生长势。改进早期生长势是现代稻育种计划在温带和热带稻品种上的重要目标。长根在水栽稻中对于正确土壤固定是重要的。在将稻直接播种至被淹没田地的情况下,以及在植物必须从水中迅速出苗的情况下,较长的苗与生长势相关。在实施条播的情况下,较长的中胚轴和胚芽鞘对于良好出苗是重要的。早期生长势也可由增加的植物适应性而导致,所述植物适应性的增加可以归因于例如植物对其环境的更好适应化(即更能够应对各种非生物或生物的胁迫因素)。具有早期生长势的植物还显示更好的作物齐苗(establishment of thecrop)(农作物以更均一的方式生长,即大部分植物在基本上相同的时间达到发育的各阶段),和显示更好的生长和通常更高的产量。
又一个重要性状是改进的非生物胁迫耐受性。非生物胁迫是世界范围作物损失的主要原因,对于大多数主要作物植物而言降低平均产量超过50%(Wang等人,Planta(2003)218:1-14)。非生物胁迫可以由干旱、盐、极端温度、化学毒性和氧化胁迫引起。对于世界范围的农民,提高植物耐受非生物胁迫的能力具有巨大的经济优势,其使得可在不利的条件下和在原本可能不能栽培农作物的地区栽培农作物。
在植物中操纵非生物胁迫耐受性或早期生长势的能力将对农业非常重要,其将成为增加植物种子产量的能力(无论是否通过种子数、种子生物量、种子发育、种子饱满(seed filling)或其他任何种子相关性状)。除了在诸如观赏植物的生产、树木栽培(aboriculture)、园艺学和林业中的多种农业用途之外,增加的产量还具有多种非农业用途,例如用于在生物反应器中使用的藻类生产(用于诸如药物、抗体或疫苗的物质的生物技术生产,或用于有机废物的生物转化)及其他这类领域。
转录因子通常定义为显示序列特异性DNA结合,和能够激活和/或抑制转录的蛋白质。拟南芥基因组编码至少1533个转录调节子,这占其估计的基因总数的~5.9%。报导大约45%的这些转录因子来自植物特异性家族(Riechmann等人,2000(Science Vol.290,2105-2109)).
本发明涉及特定类型的NAC转录因子在植物中增强产量相关性状的用途。
NAC是取自首次描述为包含NAC结构域的三个基因的首字母的缩写词,所述三个基因即NAM(无顶端分生组织)、ATAF1,2和CUC2(杯状子叶)。NAC蛋白质似乎在植物中广泛分布,估计拟南芥基因组至少含有100个NAC-编码基因,但是至今没有在其他真核生物中发现任何实例(Riechmann等人,2000).
NAC蛋白质家族包含多个植物蛋白质,它们通过存在高度保守的N-末端NAC结构域以及不同的C-末端结构域鉴定。NAC蛋白质的DNA-结合能力通常定位在NAC结构域,C-末端区组成转录活化结构域。已发现几个NAC基因是激素诱导的。已提示NAC结构域与其他蛋白质相互作用,所述蛋白质例如病毒蛋白质和环指蛋白(RING finger protein)。还已提示NAC蛋白质在多种植物过程的转录控制(中起作用),所述植物过程包括茎端分生组织和花器官的发育,以及侧根的形成。还已提示NAC蛋白质响应胁迫和病毒感染,Ernst等人,2004(EMBO Reports 5,3,297-303)。
US专利6,844,486描述了分离自拟南芥的NAC家族成员、NACI。据报道NACl涉及子叶和侧生根的发育调控。据报导nacI基因的超表达产生相对于野生型植物的更大的植物,其具有更大的根和更多的侧生根。
令人惊讶的是,现已发现在植物中调节编码特定类型的NAC转录因子的核酸的表达产生相对于对照植物,具有增强的产量相关性状的植物。适合于在植物中增强产量相关性状的特定类型的NAC转录因子详述于下。
本发明提供相对于对照植物,在植物中增强产量相关性状的方法,其包括在植物中调节编码特定类型的NAC转录因子的核酸的表达。
另外,本发明涉及Apetala型转录因子AP2-2用于在植物中增强产量相关性状的用途。
AP2(APETALA2)和EREBP(乙烯响应元件结合蛋白,或ERF,乙烯响应因子)是植物独有的转录因子家族的原型成员(prototypic member),其区别性特征是其含有所谓的AP2DNA-结合结构域。AP2/EREBP基因来自大的多基因家族(AP2/ERF超家族),且在植物的生命周期中发挥多种作用:从几个发育过程的关键调节物(例如花器官识别鉴定(floral organidentity determination)或控制叶表皮细胞识别),至成为植物响应多种类型的生物和环境胁迫中使用的机制的部分。在AP2/ERF超家族中,区分了3个大的家族:具有两个AP2/ERF结构域的AP2家族、具有单个AP2/ERF结构域的ERF家族和包含B3-型DNA结合结构域的RAV家族。Nakano等人(Plant Physiology 140,411-432,2006)在拟南芥和稻中研究了ERF基因家族,并将拟南芥ERF基因家族划分为12个组(命名为I组至X组,和VI-样组和Xb-样组),而在稻中区分为15个组。拟南芥VII组蛋白质特征在于保守的N-末端基序,称为保守基序VII-1(CMVII-1)。在稻中,VII组包含的蛋白质超过拟南芥的VII组中的蛋白质,并且虽然在稻和拟南芥的VII组中共有许多保守基序,对于缺乏这种典型的CMVII-1基序的序列产生单独的稻的VIIb组。功能上的,VII组的成员被描述为参与渗透胁迫和疾病响应(例如在WO 2003007699中)。番茄JERF3在烟草中的异位超表达增加转基因物(transgenics)的盐耐受(Wang等人,Plant Molecular Biology 58,183-192,2004),以及胡椒转录因子CaPF1的超表达导致松树中渗透耐受的增加(Tang等人,Plant Cell Rep.26,115-124,2007),但是也增加拟南芥中的病原体抗性(Yi等人,Plant Physiol.136,2862-2874,2004)。大麦HvRAF具有相似的观察结果(Jung等人,PlantaEpub 26,2006年8月)。此外,VII组型ERF蛋白质可用于制备甲硫氨酸的方法中(EP2005003297)。
令人惊讶的是,现已发现在植物中调节编码VII组ERF蛋白质(此后称为AP2-2多肽)的核酸的表达产生相对于对照植物,具有增强的产量相关性状的植物。这些增强的产量相关性状不是增加的胁迫抗性的结果。
ERF(乙烯响应因子)家族是转录因子的大的基因家族,并且是AP2/ERF超家族(还含有AP2和RAV家族)的部分。AP2/ERF超家族通过AP2/ERF结构域定义,所述AP2/ERF结构域由60-70个氨基酸组成,并参与DNA结合。已定义了下面的三个家族。AP2家族的蛋白质包含两个重复的AP2/ERF结构域、ERF家族的蛋白质包含单个AP2/ERF结构域,且RAV家族的蛋白质包含B3结构域,所述B3结构域是除了单个AP2/ERF结构域外在其他植物特异性转录因子中保守的DNA-结合结构域,包括VP1/ABI3。ERF家族有时还可以划分为两个主要的亚家族,ERF亚家族和CBF/DREB亚家族。已在拟南芥基因组的AP2/ERF超家族中鉴定了147个基因,包括ERF家族中的122个基因。AP2结构域首次鉴定为拟南芥AP2蛋白质中的重复基序,所述AP2蛋白质参与花的发育。Nakano等人,2006(Plant Physiol.,140卷,411-432页).
Nakano等人,2006还报导AP2家族中的基因已显示参与发育过程的调节,所述发育过程例如花的发育、小穗分生组织确定、叶表皮细胞识别和胚的发育。已经鉴定ERF家族中的几个蛋白质,它们涉及细胞过程中的一些不同功能,例如激素信号转导、响应生物和非生物胁迫,以及调节代谢,并且涉及多种植物物种的发育过程。
令人惊讶的是,现已发现在植物中调节编码AP2-70-多肽的核酸的表达产生相对于对照植物,具有增强的产量相关性状的植物。
文中所述的可用于在植物中增强产量相关性状的AP2-70-多肽根据Nakano等人,2006的分类系统,属于Ib组(A-6)。Nakano报导,在瞬时转化的玉米胼胝体中来自玉米(玉蜀黍)的DBF1——Ib组的成员,显示激活ABA-响应rab17的干旱响应元件2(DRE2)-依赖性转录。据报导Ib组的另一成员,蒺藜苜蓿WXP1的超表达激活wax在转基因苜蓿中的产生。
定义
多肽/蛋白质
术语“多肽”和“蛋白质”在文中可互换使用并且指处于任意长度聚合形式,以肽键连接的氨基酸。
多核苷酸/核酸/核酸序列/核苷酸序列
术语"多核苷酸"、"核酸序列"、"核苷酸序列"、“核酸”、“核酸分子”在文中可互换使用并且指处于任意长度聚合、无分支形式中的核苷酸,即核糖核苷酸或脱氧核糖核苷酸或这二者组合。
对照植物
选择合适的对照植物是实验设置的常规部分,并且可以包括对应的野生型植物或无目的基因的对应植物。对照植物一般是与待评估植物相同的植物物种或甚至是相同的变种。对照植物也可以是待评估植物的失效合子。失效合子是由于分离丢失转基因的个体。如文中所用的“对照植物”不仅指整株植物,还指植物部分,包括种子及种子部分。
同源物
蛋白质的“同源物”包括这样的肽、寡肽、多肽、蛋白质及酶,它们相对于非修饰的上述蛋白质具有氨基酸置换、缺失和/或插入并且与所述肽、寡肽、多肽、蛋白质及酶来源的非修饰蛋白质具有相似生物学活性和功能活性。
缺失指从蛋白质中移除一个或多个氨基酸。
插入指一个或多个氨基酸残基在蛋白质中预定位点内的引入。插入可以包含单个或多个氨基酸的氨基端融合和/或羧基端融合以及序列内插入。通常,在氨基酸序列内部的插入会比氨基端融合或羧基端融合更小,约1-10个残基级别。氨基端或羧基端融合蛋白或融合肽的实例包括如酵母双杂交系统中所用转录激活物的结合结构域或激活结构域、噬菌体外壳蛋白、(组氨酸)-6-标签、谷胱甘肽S-转移酶-标签、蛋白A、麦芽糖结合蛋白、二氢叶酸还原酶、Tag·100表位、c-myc表位、FLAG
Figure A200780022208D0021083947QIETU
-表位、lacZ、CMP(钙调蛋白结合肽)、HA表位、蛋白C表位和VSV表位。
置换指以具有相似特性(如相似疏水性、亲水性、抗原性、形成或破坏α-螺旋结构或β-折叠结构的倾向)的其他氨基酸替换蛋白质的氨基酸。氨基酸置换一般是单个残基的,不过可以是簇集性的,这取决于置于多肽的功能性约束;插入通常会是约1-10个氨基酸残基级别。氨基酸置换优选地是保守性氨基酸置换。保守性置换表是本领域众所周知的(见例如Creighton(1984)Proteins.W.H.Freeman and Company(编著)和下表1)。
表1:保守性氨基酸置换的实例
 
残基 保守性置换 残基 保守性置换
Ala Ser Leu Ile;Val
Arg Lys Lys Arg;Gln
Asn Gln;His Met Leu;Ile
Asp Glu Phe Met;Leu;Tyr
Gln Asn Ser Thr;Gly
Cys Ser Thr Ser;Val
Glu Asp Trp Tyr
Gly Pro Tyr Trp;Phe
His Asn;Gln Val Ile;Leu
Ile Leu,Val
氨基酸置换、缺失和/或插入可以使用本领域众所周知的肽合成技术如固相肽合成法等或通过重组DNA操作而轻易地进行。用于操作DNA序列以产生蛋白质的置换、插入或缺失变体的方法是本领域众所周知的。例如,用于在DNA中的预定位点处产生置换突变的技术是本领域技术人员众所周知的并且包括M13诱变法、T7-Gen体外诱变法(USB,Clevelaand,OH)、QuickChange位点定向诱变法(Stratagene,San Diego,CA)、PCR-介导的位点定向诱变或其他位点定向诱变法。
衍生物
“衍生物”包括这样的肽、寡肽、多肽,其中与天然存在形式的蛋白质(如目的蛋白)的氨基酸序列相比,它们包含以非天然存在的氨基酸残基对氨基酸的置换或非天然存在的氨基酸残基的添加。蛋白质的“衍生物”也包含这样的肽、寡肽、多肽,其中与多肽的天然存在形式的氨基酸序列相比,它们包含天然存在的改变(糖基化、酰化、异戊二烯化、磷酸化、肉豆蔻酰化、硫酸盐化等)氨基酸残基或非天然的改变氨基酸残基。与衍生物所来源的氨基酸序列相比,该衍生物可以也包含与所述氨基酸序列共价或非共价结合的一个或多个非氨基酸取代基或添加(例如报道分子或其他配体),如为促进检测该衍生物而结合的报道分子,和与天然存在的蛋白质的氨基酸序列相对比的非天然存在的氨基酸残基。另外,“衍生物”也包括天然发生的蛋白质形式和诸如FLAG、HIS6或硫氧还蛋白(标签肽的综述参见Terpe,Appl.Microbiol.Biotechnol.60,523-533,2003)的标签肽的融合物。
直向同源物/旁系同源物
直向同源物和旁系同源物包含用来描述基因祖先关系的进化概念。旁系同源物是相同物种内起源于先祖基因复制的基因;直向同源物是通过物种起源来自不同生物的基因,也源自相同的先祖基因。
结构域
术语”结构域"指沿进化相关蛋白质的序列比对结果而在特定位置处保守的一组氨基酸。尽管在其他位置处的氨基酸可以在同源物之间变动,然而在特定位置处的高度保守的氨基酸指示在蛋白质的结构、稳定性或功能方面可能是必需的氨基酸。结构域因通过在蛋白质同源物家族的比对序列中的高保守程度而被鉴定,它们可以用作鉴定物以确定任意的所讨论多肽是否属于先前已鉴定的多肽家族。
基序/共有序列/标签
术语”基序”或“共有序列”或“标签”指在进化相关蛋白质的序列中的短保守区。基序往往是结构域的高度保守部分,不过也可以仅包括结构域的部分,或可以位于保守结构域之外(若基序的全部氨基酸位于定义的结构域之外)。
杂交
如文中所定义的术语”杂交"是其中基本上同源的互补核苷酸序列相互复性的过程。杂交过程可以完全在溶液中进行,即两种互补性核酸均处于溶液中。杂交过程也可以在互补性核酸之一固定到基质如磁珠、琼脂糖(Sepharose)珠或任何其他树脂的情况下发生。杂交过程也可以在互补性核酸之一固定至固相支持体如硝酸纤维素膜或尼龙膜上或通过例如照相平版印刷术固定至例如硅酸玻璃支持物(后者称作核酸阵列或微阵列或称作核酸芯片)上的情况下进行。为使杂交发生,通常将核酸分子热变性或化学变性以使双链解链成为两条单链和/或去除来自单链核酸的发夹或其他二级结构。
术语”严格性”指在其中发生杂交的条件。杂交的严格性受条件如温度、盐浓度、离子强度和杂交缓冲液组成影响。通常,将低严格性条件选择为在确定的离子强度及pH时低于特定序列热解链温度(Tm)约30℃。中等严格性条件是此时温度低于Tm约20℃并且高严格性条件是此时温度低于Tm约10℃。高严格性杂交条件一般用于分离与靶核酸序列具有高序列相似性的杂交序列。然而,核酸可以在序列上偏离并且因遗传密码子的简并性而依旧编码基本上相同的多肽。因而有时候可能需要中等严格性杂交条件以鉴定此类核酸分子。
Tm是在确定的离子强度及pH时的温度,在所述温度下50%的靶序列与完全匹配的探针杂交。Tm取决于溶液条件和探针的碱基组成及长度。例如,较长的序列在较高温度下特异性地杂交。从低于Tm约16℃直至32℃获得最大杂交速率。一价阳离子在溶液中的存在降低了两条核酸链间的静电排斥,因而促进杂交分子形成;这种作用对于高达0.4M的钠浓度是明显的(对于更高浓度,这种效应可以忽略)。甲酰胺降低DNA-DNA和DNA-RNA双链体的解链温度,每百分数甲酰胺降低0.6-0.7℃,并且添加50%甲酰胺允许在30-45℃进行杂交,虽然杂交速率会降低。碱基对错配降低了杂交速率及双链体的热稳定性。平均而言并且对于大的探针来说,每%碱基错配Tm下降约1℃。取决于杂交分子的类型,Tm可以使用下列等式计算:
1)DNA-DNA杂交分子(Meinkoth和Wahl,Anal.Biochem.,138:267-284,1984):
Tm=81.5℃+16.6xlog10[Na+]a+0.41x%[G/Cb]-500x[Lc]-1-0.61x%甲酰胺
2)DNA-RNA或RNA-RNA杂交分子
Tm=79.8+18.5(log10[Na+]a)+0.58(%G/Cbb)+11.8(%G/Cb)2-820/Lc
3)寡DNA或寡RNAd杂交分子:
对于<20个核苷酸:Tm=2(ln)
对于20-35个核苷酸:Tm=22+1.46(ln)
a或对于其他一价阳离子,但是仅在0.01-0.4M范围内是精确的。
b仅对于%GC在30%-75%范围内是精确的。
cL=双链体的长度(以碱基对计)。
doligo,寡核苷酸;ln,=引物的有效长度=2×(G/C数)+(A/T数)。
可以众多已知技术的任何一种控制非特异性结合,例如用含蛋白质的溶液封闭薄膜、添加异源性RNA、异源性DNA及SDS至杂交缓冲液并且用RNA酶处理。对于非同源性探针,一系列杂交可以通过改变以下条件之一进行:(i)渐进地降低复性温度(例如从68℃至42℃)或(ii)渐进地降低甲酰胺浓度(例如从50%至0%)。技术人员了解杂交期间可以加以改变和将维持或改变严格性条件的多种参数。
除杂交条件之外,杂交特异性一般还取决于杂交后洗涤的功能。为除去因非特异性杂交所致的背景,样品用稀释的盐溶液洗涤。此类洗涤的关键因素包括最终洗涤溶液的离子强度及温度:盐浓度越低并且洗涤温度越高,则洗涤的严格性越高。洗涤条件一般在杂交严格性上或低于杂交严格性而进行。阳性杂交产生至少两倍于背景信号的信号。通常,用于核酸杂交分析法或基因扩增检测方法的合适严格性条件如上所述。也可以选择更严格或更不严格的条件。技术人员了解洗涤期间可以加以改变和将维持或改变严格性条件的多种参数。
例如,用于长度大于50个核苷酸的DNA杂交分子的常见高严格性杂交条件包括在65℃于1×SSC中或在42℃于1×SSC和50%甲酰胺中杂交,随后在65℃于0.3×SSC中洗涤。用于长度大于50个核苷酸的DNA杂交分子的中等严格性杂交条件的实例包括在55℃于4×SSC中或在40℃于6×SSC和50%甲酰胺中杂交,随后在50℃于2×SSC中洗涤。杂交分子的长度是杂交核酸的预期长度。当序列已知的核酸杂交时,可以通过比对序列并鉴定文中所述的保守区而确定杂交分子长度。1×SSC是0.15M NaCl和15mM柠檬酸钠;杂交溶液和洗涤溶液可以额外地包含5×Denhardt试剂、0.5-1.0%SDS、100μg/ml变性的片段化鲑精DNA、0.5%焦磷酸钠。
为了定义严格性水平的目的,可以参考Sambrook等人(2001)Molecular Cloning:a laboratory manual,第三版Cold Spring HarborLaboratory Press,CSH,New York或参考Current Protocols in MolecularBiology,John Wiley & Sons,N.Y.(1989和每年更新版本)。
剪接变体
如文中所用的术语”剪接变体”包含其中已经切除、替换、移位或添加所选内含子和/或外显子或其中内含子已经缩短或加长的核酸序列的变体。此类变体将是其中基本上保留了蛋白质的生物学活性的一种变体;这可以通过选择性保留蛋白质的功能性片段而实现。此类剪接变体可以在自然界中找到或可以人工制造。用于预测和分离此类剪接变体的方法是本领域众所周知的(见例如Foissac和Schiex(2005)BMC Bioinformatics,6:25)。
等位变体
等位基因或等位变体是给定基因的取代形式,位于相同染色体位置内。等位变体包含单核苷酸多态性(SNP)和小插入/缺失多态性(INDEL)。INDEL的尺寸通常小于100bp。SNP和INDEL形成在大部分生物的天然存在性多态性株系中序列变体的最大集合。
基因改组/定向进化
基因改组或定向进化的组成为:反复DNA改组,随后适当筛选和/或选择以产生编码具有改良生物学活性的蛋白质的核酸或其部分的变体(Castle等人,(2004)Science 304(5674):1151-4;美国专利5,811,238和6,395,547)。
调节元件/调控序列/启动子
术语“调节元件”、“调控序列”和“启动子”均在文中可互换使用并且在广义上意指能够实现与之连接的序列表达的调节性核酸序列。术语”启动子”一般指位于基因转录起点上游并参与识别及结合RNA聚合酶和其他蛋白质,因而指导有效连接的核酸转录的核酸调控序列。前述术语包括从典型的真核基因组基因(包括对于精确转录启动所需的TATA盒,具有或没有CCAAT盒序列)中衍生的转录调节序列和应答发育刺激和/或外部刺激或以组织特异性方式改变基因表达的额外调节元件(如,上游激活序列、增强子和沉默子)。本术语还包括典型的原核基因的转录调节序列,在此情况下它可以包括-35盒序列和/或-10盒转录调节序列。术语“调节元件”也包含赋予、激活或增强核酸分子在细胞、组织或器官中表达的合成的融合分子或衍生物。
“植物启动子”包含介导编码序列区段在植物细胞中表达的调节元件。因此,植物启动子不需要是植物来源的,而是可以源自病毒或微生物,例如来自侵袭植物细胞的病毒。“植物启动子”也可以源自植物细胞,例如来自用待于本发明方法中表达及在文中描述的核酸序列所转化的植物。这也适用于其他“植物”调节性信号,如“植物”终止子。用于本发明方法中的核苷酸序列的启动子上游可以由一个或多个核苷酸置换、插入和/或缺失而受到修饰,但不干扰启动子、可读框(ORF)或3′调节区如终止子或远离ORF的其他3′调节区的功能性或活性。启动子的活性还有可能因修饰该启动子的序列或由更活跃的启动子、甚至来自异源生物的启动子彻底替换该启动子而增加。为在植物中表达,如上所述,核酸分子必须有效连接至或包含合适的启动子,其中所述的启动子在正确时间点上并以所需要的空间表达模式表达基因。
为鉴定功能性等效启动子,候选启动子的启动子强度和/或表达模式可以通过将该启动子与报道基因有效连接并分析该报道基因在植物多种组织的表达水平和模式而进行分析。合适的公知报道基因包括例如β-葡糖醛酸糖苷酶或β-半乳糖苷酶。启动子活性通过测量β-葡糖醛酸糖苷酶或β-半乳糖苷酶的酶活性进行分析。启动子强度和/或表达模式随后可以与参考启动子(如本发明方法中所用的一种启动子)的启动子强度和/或表达模式比较。备选地,启动子强度可以使用本领域已知方法如Northern印迹法及放射自显影图的密度计分析法、定量实时PCR或RT-PCR(Heid等人,1996Genome Methods 6:986-994),通过定量mRNA水平或通过将本发明方法中所用核酸的mRNA水平与持家基因(如18S rRNA)的mRNA水平比较而分析。通常“弱启动子”意指驱动编码序列在低水平上表达的启动子。“低水平”意指在每个细胞约1/10,000转录物至约1/100,000转录物、至约1/500,0000转录物的水平上。相反,“强启动子”驱动编码序列在高水平、或在每个细胞约1/10转录物至约1/100转录物、至约1/1,000转录物上表达。
有效连接
如文中所用的术语”有效连接”指启动子序列与目的基因之间功能性地连接,以至于启动子序列能够启动目的基因转录。
组成型启动子
“组成型启动子”指在生长和发育的大部分、但不必全部阶段期间和在大部分环境条件下在至少一个细胞、组织或器官内有转录活性的启动子。下表2a给出组成型启动子的实例。
表2a:组成型启动子的实例
 
基因来源 参考文献
肌动蛋白 McElroy等人,Plant Cell,2:163-171,1990
HMGP WO 2004/070039
CAMV 35S Odell等人,Nature,313:810-812,1985
CaMV 19S Nilsson等人,Physiol.Plant.100:456-462,1997
GOS2 de Pater等人,Plant J Nov;2(6):837-44,1992,WO 2004/065596                                
遍在蛋白 Christensen等人,Plant Mol.Biol.18:675-689,1992
稻亲环蛋白 Buchholz等人,Plant Mol Biol.25(5):837-43,1994
玉米H3组蛋白 Lepetit等人,Mol.Gen.Genet.231:276-285,1992
苜蓿H3组蛋白 Wu等Plant Mol.Biol.11:641-649,1988
肌动蛋白2 An等人,Plant J.10(1);107-121,1996
34S FMV Sanger等人,Plant.Mol.Biol.,14,1990:433-443
Rubisco小亚基 US 4,962,028
OCS Leisner(1988)Proc Natl Acad Sci美国85(5):2553
SAD1 Jain等人,Crop Science,39(6),1999:1696
SAD2 Jain等人,Crop Science,39(6),1999:1696
nos Shaw等人(1984)Nucleic Acids Res.12(20):7831-7846
V-ATP酶 WO 01/14572
超级启动子 WO 95/14098
G盒蛋白质 WO 94/12015
遍在启动子
遍在启动子在生物基本上所有组织或细胞内有活性。
发育调节性启动子
发育调节性启动子在某个发育期期间或在经历发育变化的植物部分内有活性。
诱导性启动子
诱导性启动子在应答化学品(综述见Gatz1997,Annu.Rev.PlantPhysiol.Plant Mol.Biol.,48:89-108)、环境刺激或物理刺激时具有受诱导或增加的转录启动,或可以是“胁迫诱导性的”,即当植物暴露于多种胁迫条件时受到激活,或是“病原体诱导性的”,即当植物暴露于多种病原体时受到激活。
器官特异性/组织特异性启动子
器官特异性或组织特异性启动子是能够优先在某些器官官或组织如叶、根、种子组织等内启动转录的启动子。例如,“根特异性启动子”是在植物根中优势地具有转录活性的启动子,在植物的任何其他部分内基本上无活性,尽管在植物的这些其他部分内允许任何渗漏表达。能够仅在某些细胞中启动转录的启动子在文中称作“细胞特异的”。
根特异性启动子列于下表2b:
表2b:根特异性启动子的实例
 
基因来源 参考文献
RCc3 Plant Mol Biol.1995年1月Jan;27(2):237-48
拟南芥磷酸转运蛋白PHT1 Kovama等人,2005
苜蓿磷酸转运蛋白 Xiao等人,2006
拟南芥Pyk10 Nitz等人,(2001)Plant Sci161(2):337-346
种子特异性启动子主要在种子组织中转录激活,但不必仅在种子组织中激活(渗漏表达的情况下)。种子特异性启动可以在种子发育和/或萌发期间激活。
如文中所定义的绿色组织特异性启动子是主要在绿色组织中具有转录活性的启动子,在植物的任何其他部分内基本上无活性,尽管在植物的这些其他部分内允许任何渗漏表达。
可以用来实施本发明方法的绿色组织特异性启动子的实例在下表2c中显示。
表2c:绿色组织特异性启动的实例
 
基因 表达 参考文献
玉米正磷酸二激酶(orthophosphate dikinase) 叶特异性 Fukavama等人,2001
玉米磷酸烯醇式丙酮酸羧化酶 叶特异性 Kausch等人,2001
稻磷酸烯醇式丙酮酸羧化酶 叶特异性 Liu等人,2003
稻Rubisco小亚基 叶特异性 Nomura等人,2000
稻β扩展蛋白EXBP9 苗特异性 WO2004/070039
木豆(Pigeonpea)Rubisco小亚基 叶特异性 Panguluri等人,2005
豌豆RBCS3A 叶特异性
组织特异性启动子的另一个实例是分生组织特异性启动子,其主要在分生性组织中具有转录活性,在植物的任何其他部分内基本上无活性,尽管在植物的这些其他部分内允许任何渗漏表达。
终止子
术语”终止子”包括这样的调控序列,其是在转录单位末端的DNA序列,发出对初级转录物进行3’加工并多聚腺苷化以及终止转录的信号。终止子可以衍生自天然基因、来自多种其他植物基因或来自T-DNA。待添加的终止子可以来自例如胭脂碱合酶或章鱼碱合酶基因或备选地来自其他植物基因或较不优选地来自任何其他真核基因。
调节
术语”调节”就表达或基因表达而言意指这样的过程,其中表达水平与对照植物相比因所述基因的表达而改变,优选地,表达水平增加。原先未受调节的表达可以是结构RNA(rRNA、tRNA)或mRNA的任何类型表达,随后是翻译。术语“调节活性”应当意指本发明核酸序列或所编码蛋白质的表达的任何变化,这导致植物增加的产量和/或增加的生长。
表达
术语“表达”或“基因表达”意指因特定一种或多种基因,或特定基因构建体的转录。术语“表达”或“基因表达”尤其意指一种或多种基因,或特定基因构建体转录成结构RNA(rRNA、tRNA)或mRNA,(可有可无的)随后mRNA翻译成蛋白质。此过程包括DNA转录、加工得到的mRNA产物。
增加的表达/过量表达
如文中所用的术语“增加的表达”或“过量表达”意指对于原有野生型表达水平是额外的任何形式表达。
在本领域内详细记载了用于增加基因或基因产物表达的方法并且它们包括例如,由适宜启动子驱动的过量表达、使用转录增强子或翻译增强子。可以在非异源形式的多核苷酸的适宜位置(一般是上游)内引入作为启动子或增强子元件的分离核酸,以便上调编码目的多肽的核酸的表达。例如,内源性启动子可以通过突变、缺失和/或置换而在体内改变(见Kmiec,美US5,565,350;Zarling等人,WO9322443),或可以将分离的启动子以相对于本发明基因的正确方向及距离引入植物细胞,以便控制基因表达。
若需要多肽表达,通常希望在多核苷酸编码区的3’末端包括多聚腺苷化区。多聚腺苷化区可以来自天然基因、来自多种其他植物基因或来自T-DNA。待添加的3’末端序列可以来自例如胭脂碱合酶或章鱼碱合酶基因或备选地来自另一植物基因或更不优选来自任何其他真核基因。
内含子序列也可以添加至5′非翻译区(UTR)或部分编码性序列的编码序列上,以增加在胞浆内积累的成熟信息的量。已经证实可剪接内含子在植物表达构建体和动物表达构建体中转录单位内的包含在mRNA水平及蛋白质水平上增加基因表达至多达1000倍(Buchman和Berg(1988)Mol.Cell biol.8:4395-4405;Callis等人(1987)Gens Dev 1:1183-1200)。基因表达的此类内含子增强作用一般在位于转录单位5′末端附近时最强烈。使用玉米内含子Adh1-S内含子1、2和6、Bronze-1内含子是本领域已知的。对于一般信息,见:《玉米手册》,第116章,编者Freeling和Walbot,Springer,N.Y.(1994)。
任选地,一种或多种终止子序列可以在引入植物的构建体中使用。额外的调节元件可以包括转录增强子以及翻译增强子。其他调控序列(除启动子、增强子、沉默子、内含子序列、3’UTR和/或5’UTR区之外)可以是蛋白质和/或RNA稳定元件。本领域技术人员会知道或可以轻易地获得此类序列。
本发明的遗传构建体还可以包括需要用于在特定细胞类型中维持和/或复制的复制序列起点。一个实例是当需要将遗传构建体在细菌细胞中维持为附加型遗传元件(例如质粒或粘粒分子)时。优选的复制起点包括但不限于f1-ori和colE1。
内源基因
文中提及的“内源”基因不仅仅指如在植物中以其天然形式(即没有任何人类干预)存在的所讨论基因,还指处于分离形式的随后(再)引入植物(转基因)的相同基因(或基本上同源的核酸/基因)。例如,含有这种转基因的转基因植物可以遭遇转基因表达大幅降低和/或内源基因表达的大幅降低。分离的基因可分离自生物体或为人造的,例如通过化学合成。
降低的表达
文中提及的“降低的表达”或表达的降低或基本去除意指内源基因表达和/或多肽水平和/或多肽活性相对于对照植物的降低。与对照植物相比,降低或基本去除以递增优选顺序是至少10%、20%、30%、40%或50%、60%、70%、80%、85%、90%,或95%、96%、97%、98%、99%或更多的降低。表达的降低或基本去除可以使用本领域已知的常规工具和技术完成。
选择标记(基因)/报道基因
“选择标记”、“选择标记基因”或“报道基因”包括向细胞赋予表型的任何基因,其中在所述的细胞内表达所述基因以促进鉴定和/或选择用本发明的核酸构建体所转染或转化的细胞。这些标记基因能够通过一系列不同原理鉴定核酸分子的成功转移。合适的标记可以选自赋予抗生素耐药性或除草剂抗性、引入新代谢性状或允许目视选择的标记。选择标记基因的实例包括赋予抗生素耐药性的基因(如使新霉素和卡那霉素磷酸化的nptII或使潮霉素磷酸化的hpt或赋予对例如博来霉素、链霉素、四环素、氯霉素、氨苄青霉素、庆大霉素、遗传霉素(Geneticin)(G418)、壮观霉素或杀稻瘟素的抗性的基因)、赋予除草剂抗性的基因(例如提供
Figure A200780022208D0033081819QIETU
抗性的bar;提供草甘膦抗性的aroA或gox或赋予对例如咪唑啉酮、膦丝菌素或磺脲类的抗性的基因)或提供代谢性状的基因(如允许植物使用甘露糖作为唯一碳源的manA或利用木糖的木糖异构酶或抗营养标记如2-脱氧葡萄糖抗性)。目视标记基因的表达导致形成颜色(例如β-葡糖醛酸糖苷酶、GUS或β-半乳糖苷酶与其有色底物例如X-Gal)、发光(如萤光素/萤光素酶系统)或荧光(绿色荧光蛋白GFP及其衍生物)。这个名单仅代表少数的可能标记。技术人员熟悉此类标记。取决于生物和选择方法,优选不同的标记。
已知当核酸稳定或瞬时整合至植物细胞时,仅小部分的细胞摄取外来DNA并且根据需要将其整合至细胞基因组,这取决于所用表达载体和使用的转染技术。为鉴定并选择这些整合子,通常将编码选择标记(如上文所述之一)的基因连同目的基因一起引入宿主细胞。这些标记可以在其中这些基因因例如常规方法所致的缺失而无功能的突变体中使用。此外,编码选择标记的核酸分子可以引入宿主细胞中,与在包含编码本发明多肽或本发明方法中所用多肽的序列在同一载体上,或在单独的载体上。已经用引入的核酸稳定转染的细胞可以通过选择进行鉴定(例如具有整合的选择标记的细胞存活而其他细胞死亡)。
因为一旦已经成功引入了核酸,则转基因宿主细胞中不再需要或不希望有标记基因,尤其抗生素耐药性基因和除草剂抗性基因,因此用于引入核酸的本发明方法有利地使用能够去掉或切除这些标记基因的技术。一种如此方法称作共转化法。共转化法使用同时用于转化的两种载体,一种载体携带本发明的核酸而另一种载体携带标记基因。高比例的转化体接受,或在植物的情况下,包含(高达40%或更多的转化体)这两种载体。在用农杆菌(Agrobacterium)转化的情况下,转化体通常仅接受载体的一部分,即侧翼有T-DNA的序列,它通常代表表达盒。标记基因随后可以通过进行杂交而从转化的植物中去掉。在另一种方法中,整合至转座子的标记基因用来与想要的核酸一起进行转化(称作Ac/Ds技术)。转化体可以与转座酶来源植物杂交或转化体用导致转座酶表达的核酸构建体瞬时或稳定地转化。在一些情况下(大约10%),转座子在已经成功发生转化时跳出宿主细胞的基因组并丢失。在其他更多情况下,转座子跳至不同位置。在这些情况下,标记基因必须通过进行杂交而去除。在微生物学中,开发了实现或促进检测这类事件的技术。又一个有利的方法依赖于重组系统;此方法的优势在于不必通过杂交去除。该类型的最知名系统称作Cre/lox系统。Cre1是去掉位于loxP序列之间序列的重组酶。若标记基因整合于loxP序列之间,则通过重组酶表达已经成功发生转化时,标记基因被去除。其他重组系统是HIN/HIX、FLP/FRT和REP/STB系统(Tribble等人,J.Biol.Chem.,275,2000:22255-22267;Velmurugan等人,J.Cell Biol.,149,2000:553-566)。有可能将本发明核酸序列以位点特异性方式整合至植物基因组。这些方法自然也可以应用至微生物如酵母、真菌或细菌。
转基因的/转基因/重组
为本发明目的,"转基因的"、”转基因”或"重组"就核酸序列而言意指包含此核酸序列的表达盒、基因构建体或载体或用本发明的核酸序列、表达盒或载体转化的生物,这些构建均通过重组方法产生,其中
a)编码用于本发明方法中的蛋白质的核酸序列,或
b)与本发明核酸序列有效连接的遗传调控序列,例如启动子,或
c)a)和b)
不处于其天然遗传环境中或已经通过遗传操作方法修饰,修饰有可能采用例如置换、添加、缺失、倒位或插入一个或多个核苷酸残基的形式。天然遗传环境理解为意指来源植物中的天然基因组基因座或染色体基因座或在基因组文库中存在。在基因组文库的情况下,核酸序列的天然遗传环境优选地得到保留,至少部分地得以保留。该环境分布在核酸序列的至少一侧并且具有至少50bp,优选至少500bp,特别优选至少1000bp,最优选至少5000bp的序列长度。天然存在的表达盒-例如核酸序列的天然启动子与编码本发明方法中所用多肽的对应核酸序列的天然存在的组合,如上文所定义-在这种表达盒通过非天然的合成(“人工”)方法(如诱变处理)而受到修饰时,变成转基因表达盒。合适方法例如在US 5,565,350或WO00/15815中描述。
为本发明目的,转基因植物因此如上理解为意指本发明方法中所用的核酸不位于所述植物基因组中该核酸的天然基因座内,所述核酸有可能同源或异源地表达。然而如所提及,转基因还意指尽管本发明核酸或在本发明方法中所用核酸处于植物基因组中该核酸的天然位置内,然而其序列相对于天然序列而言已经受到修饰,和/或所述天然序列的调节序列已经受到修饰。转基因优选地理解为意指本发明核酸在基因组中的非天然基因座内表达,即发生核酸的同源表达或优选异源表达。在文中提到了优选的转基因植物。
转化
如文中所提及的术语“引入”或“转化”包括外源性多核苷酸转移至宿主细胞内,无论用于转化的方法是什么。能够后续克隆性增殖(无论通过器官发生或胚胎发生)的植物组织可以用本发明的遗传构建体转化并且可以从中再生整株植物。选择的具体组织将取决于可用于并且最适于正进行转化的具体物种的克隆性增殖系统。示例性组织靶包括叶盘、花粉、胚、子叶、下胚轴、大配子体、愈伤组织、现存分生组织(例如顶端分生组织、腋芽和根分生组织)和诱导的分生组织(例如子叶分生组织和下胚轴分生组织)。多核苷酸可以瞬时或稳定地引入宿主细胞并且可以非整合地维持,例如作为质粒。备选地,多核苷酸可以整合至宿主基因组内。产生的转化植物细胞随后可以用来以本领域技术人员已知的方式再生出转化植物。
外来基因转化至植物基因组内称作转化。植物物种的转化现在是相当常规的技术。有利地,几种转化方法中的任一方法可以用来将目的基因引入合适的祖先细胞。用于从植物组织或植物细胞中转化并再生出植物所述的方法可以用于瞬时转化或用于稳定转化。转化方法包括使用脂质体、电穿孔法、增加游离DNA摄入的化学品、DNA直接注射至植物、粒子枪轰击法、使用病毒或花粉的转化法和显微投射法(microprojection)。转化方法可以选自用于原生质体的钙/聚乙二醇法(Krens,F.A.等人,(1982)Nature296,72-74;Negrutiu I等人(1987)Plant Mol Biol 8:363-373);原生质体的电穿孔法(Shillito R.D.等人(1985)Bio/Technol 3,1099-1102);对植物材料的微量注射法(Crossway A等人,(1986)Mol.Gen Genet 202:179-185);DNA或RNA涂布的粒子轰击法(Klein TM等人,(1987)Nature 327:70)、(非整合性)病毒感染法等。转基因植物,包括转基因作物植物,优选地通过农杆菌介导的转化法产生。有利的转化方法是在植物中(in planta)的转化法。为此目的,例如有可能使农杆菌作用于植物种子或有可能用农杆菌接种植物的分生组织。根据本发明已经证明使转化的农杆菌混悬液作用于完整植物或至少作用于花原基是特别有利的。植物随后继续培育直至获得所处理植物的种子(Clough和Bent,Plant J.(1998)16,735-743)。用于农杆菌介导的稻转化的方法包括用于稻转化的公知方法,如在任一以下文献中描述的那些方法:欧洲专利申请EP 1198985 A1,Aldemita和Hodges(Planta 199:612-617,1996);Chan等人(Plant Mol Biol 22(3):491-506,1993),Hiei等人(Plant J 6(2):271-282,1994),其公开内容在文中引入作为参考,如同完全给出那样。在玉米转化的情况下,优选的方法如Ishida等人(Nat.Biotechnol 14(6):745-50,1996)或Frame等人(PlantPhysiol 129(1):13-22,2002)描述,其公开内容在文中如充分所述那样引入作为参考。所述方法通过举例方式进一步由B.Jenes等人,Techniquesfor Gene Transfer,在:Transgenic Plants,第1卷,Engineering andUtilization,S.D.Kung和R.Wu编著,Academic Press(1993)128-143及在Potrykus Annu.Rev.Plant Physiol.Plant Molec.Biol.42(1991)205-225)中描述。待表达的核酸或构建体优选地克隆至适于转化根癌农杆菌(Agrobacterium tumefaciens)的载体,例如pBin19(Bevan等人,Nucl.AcidsRes.12(1984)8711)。由这种载体转化的农杆菌随后可以按照已知方式用于转化植物,例如作为模型使用的植物,如拟南芥(拟南芥属于本发明的范围,不视为作物植物)或作物植物,例如烟草植物,通过在农杆菌溶液中浸泡擦伤的叶或切碎的叶并随后将它们在合适的培养基内培育。植物通过根癌农杆菌的转化例如由
Figure A200780022208D0036081931QIETU
和Willmitzer在Nucl.Acid Res.(1988)16,9877中描述或尤其从F.F.White,Vectors for Gene Transfer in Higher Plants;在Transgenic Plants,第1卷,Engineering and Utilization,S.D.Kung和R.Wu编著,Academic Press,1993,第15-38页中获知。
除了转化体细胞(其随后必须再生成完整植物)之外,还有可能转化植物分生组织的细胞及特别转化发育成配子的那些细胞。在这种情况下,转化的配子遵循天然的植物发育过程,产生转基因植物。因此,例如拟南芥种子用农杆菌处理并且从发育植物中获得种子,其中一定比例的所述植物受到转化并且因此是转基因的[Feldman,KA和Marks MD(1987)Mol GenGenet 208:274-289;Feldmann K(1992)。在:C Koncz编著,N-H Chua和J Shell,Methods in Arabidopsis Research.Word Scientific,Singapore,第274-289页]。替代性方法基于反复去掉花序并使莲座叶丛中心中的切除部位与转化的农杆菌温育,因而转化的种子同样可以在较晚的时间点获得(Chang(1994)Plant J.5:551-558;Katavic(1994)Mol Gen Genet,245:363-370)。然而,尤其有效的方法是改良的真空渗入法,如“花浸染”法。在拟南芥真空渗入法的情况下,完整植物在减压下用农杆菌混悬液处理[Bechthold,N(1993)。C R Acad Sci Paris Life Sci,316:1194-1199],而在“花浸染法”的情况下,正在发育的花组织与表面活性剂处理的农杆菌混悬液短暂温育[Clough,SJ和Bent,AF(1998)The Plant J.16,735-743]。在两种情况下收获了一定比例的转基因种子,并且这些种子可以通过在如上所述的选择条件下培育而与非转基因种子区分。此外,质体的稳定转化是有利的,因为质体在大部分作物中以母体方式遗传,降低或消除了转基因经花粉流动风险。叶绿体基因组的转化一般通过已在Klaus等人,2004[Nature Biotechnology 22(2),225-229]中示例性加以展示的方法实现。简而言之,待转化的序列连同选择标记基因一起克隆至与叶绿体基因组同源的侧翼序列之间。这些同源的侧翼序列指导位点特异性整合至原质体系内。已经对众多不同植物物种描述了质体转化并且综述可以出自Bock(2001)Transgenic plastids in basic research and plant biotechnology.J Mol Biol.2001年9月21日;312(3):425-38或Maliga,P(2003)Progress towardscommercialization of plastid transformation technology.Trends Biotechnol.21,20-28。进一步生物技术进展最近已经以无标记质体转化体的形式作了报道,所述无标记质体转化体可以通过瞬时共整合的标记基因产生(Klaus等人,2004,Nature Biotechnology 22(2),225-229)。
T-DNA激活标签化
T-DNA激活标签化(Hayashi等人Science(1992)1350-1353)涉及在目的基因的基因组区域内或基因编码区上游或下游10kb处以如此结构插入T-DNA(通常含有启动子(也可以是翻译增强子或内含子)),使得启动子指导被靶定基因的表达。通常,由靶定基因的天然启动子对所述靶定基因表达的调节作用遭到破坏并且该基因处在新引入的启动子控制下。启动子一般嵌入在T-DNA中。这种T-DNA随机地插入植物基因组,例如通过农杆菌感染,并导致在所插入T-DNA附近的基因的改良表达。因靠近所引入启动子的基因的改良表达,产生的转基因植物表现显性表型。
TILLING
术语“TILLING”是“基因组内定向诱导的局部损伤”的缩写词,意指用于产生和/或鉴定核酸的诱变技术,其中所述的核酸编码具有修饰表达和/或活性的蛋白质。TILLING还允许选择携带此类突变变体的植物。这些突变变体可以显示在强度方面或在位置方面或在时间方面改良的表达(例如若突变影响启动子)。这些突变变体可以显示比由处于其天然形式的基因所显出活性更高的活性。TILLING将高密度诱变与高通量筛选方法组合。一般在TILLING中遵循的步骤是:(a)EMS诱变(Redei GP和KonczC(1992)在Methods in Arabidopsis Research,Koncz C,Chua NH,SchellJ,Singapore编著,World Scientific Publishing Co,第16-82页;Feldmann等人,(1994)在Meyerowitz EM,Somerville CR编著,Arabidopsis.ColdSpring Harbor Laboratory Press,Cold Spring Harbor,NY,第137-172页;Lightner J和Caspar T(1998)在J Martinez-Zapater,J Salinas编者,Methods on Molecular Biology第82卷.Humana Press,Totowa,NJ,第91-104页);(b)个体的DNA制备和汇集;(c)PCR扩增目的区;(d)变性和复性以允许形成异源双链体;(e)DHPLC,其中将异源双链体是否在汇集物中的存在检测为色谱图中的一个额外峰;(f)鉴定突变个体;和(g)对突变PCR产物测序。用于TILLING的方法是本领域众所周知的(McCallum等人,(2000)Nat Biotechnol 18:455-457;综述见Stemple(2004)Nat Rev Genet5(2):145-50)。
同源重组
同源重组允许选择的核酸在基因组中于确定的所选择位置内引入。同源重组是在生物科学中常规地用于低等生物如酵母或苔藓剑叶藓(Physcomitrella)的标准技术。用于在植物中开展同源重组的方法已经不仅对模式植物(Offringa等人(1990)EMBO J 9(10):3077-84)而且对作物植物例如稻(Terada等人(2002)Nat Biotech 20(10):1030-4;Iida和Terada(2004)Curr Opin Biotech 15(2):132-8)进行了描述。
产量
术语“产量”通常意指经济价值的可测量结果,一般与指定作物、与面积并与时间段有关。单个植物部分基于它们的数目、大小和/或重量而直接对产量有贡献,或实际产量是对于某作物和一年的每英亩产量,这通过总产量(包括收获的和评估的产量)除以种植的英亩数而确定。术语植物的“产量”涉及所述植物的营养性生物量(根和/或茎干生物量)、生殖器官和/或繁殖体(例如种子)。
以谷物(corn)为例,产率增加可以表现为如下一个或多个方面:每公顷或每英亩植物数量的增加、每株植物谷穗数量的增加、行数、行粒数、粒重、千粒重、谷穗长度/直径的增加,种子饱满率(为饱满种子数除以种子总数并乘以100)的增加,等等。以稻为例,产率增加可以表现为如下一个或多个方面的增加:每公顷或每英亩的植物数量、每株植物的圆锥花序数、每个圆锥花序的小穗数、每个圆锥花序的花(小花)数(表达为饱满种子数占初期圆锥花序的比率)、种子饱满率(为饱满种子数除以种子总数并乘以100)的增加、千粒重的增加,等等。
早期生长势
“早期生长势”意指尤其在植物生长早期期间活跃、健康、良好平衡的生长,并可以因植物适应性增加而产生,其原因在于例如植物更好地适应其环境(即优化能源的使用和苗与根之间的分配)。具有早期生长势的植物也显示增加的幼苗存活和更好的作物建立,这往往导致高度均匀的田块(作物整齐地生长,即大多数植物在基本上相同的时间上达到发育的各阶段)和往往更好及更高的产量。因而,早期生长势可以通过多种因子如千粒重、萌发百分数、出苗百分数、幼苗生长、幼苗高度、根长度、根及苗生物量和众多其他因素而确定。
增加/改善/增强
术语“增加”,”改善”或“增强”是可互换的并且应当在本申请含义上指与如文中定义的对照植物相比至少3%、、4%、、5%、6%、7%、8%、9%或10%、优选至少15%或20%、更优选地25%、30%、35%或40%更多的产量和/或生长。
绿度指数
文中所用的“绿度指数”计算自植物的数字图像。对于属于图像上对应的植物目标的每一像素,计算绿度值与红度值的比值(在编码颜色的RGB模式中)。绿度指数表示为绿与红的比值超过给定阈值的像素百分比。在正常生长条件下、在盐胁迫生长条件下以及在可获得营养物减少的生长条件下,植物的绿度指数在开花前的末次取像时测量。与之相反,在干旱胁迫生长条件下,植物的绿度指数在干旱前的初次取像时测量。
种子产量
增加的种子产量本身可以表现为下列一种或多种指标:a)种子生物量(种子总重量)增加,这可以基于单粒种子和/或每株植物和/或每公顷或每英亩;b)每株植物增加的花数;c)增加的(饱满)种子数;d)增加的种子饱满率(其表述为饱满种子数与种子总数之间的比率);e)增加的收获指数,其表述为可收获部分(如种子)产量与总生物量的比率;和f)增加的千粒重(TKW),这从计数的饱满种子数及其总重量外推而来。增加的TKW可以因增加的种子大小和/或种子重量所致,并且也可以因胚和/或胚乳尺寸的增加所致。
种子产量的增加也可以表现为种子大小和/或种子体积的增加。此外,种子产量的增加本身也可以自我表现为种子面积和/或种子长度和/或种子宽度和/或种子周长的增加。增加的产量也可以产生改良的结构,或可以因改良的结构而出现。
增加的生长速率
由于本发明的转基因植物具有增加的产量,因而相对于对照植物的生长速率,这些植物有可能在其生活周期中的对应阶段上(在其生活周期的至少部分期间)表现增加的生长速率。除了增加产量的能力,增加的营养摄取效率也有助于产量增加。据观察本发明的植物显示更高的营养摄取效率。增加的营养摄取效率使得植物生长更好,无论植物是否处于胁迫条件下。
增加的生长速率可以对于植物的一个或多个部分(包括种子)是特异性的,或可以基本上遍及整株植物。具有增加的生长速率的植物甚至可以显示提早开花。生长速率的增加可以在植物生活周期中的一个或多个阶段上或在基本上整个植物生活周期期间发生。在植物生活周期中的早期期间增加的生长速率可以反映增强的生长势(萌发时增加的幼苗势)。生长速率的增加可以改变植物的收获周期,允许植物较晚播种和/或较早收获,否则这将不可能。若生长速率充分地增加,可以允许进一步播种相同植物物种的种子(例如播种并收获稻植物,随后播种并收获其他稻植物,全部稻植物均在一个常规生长时段内)。类似地,若生长速率足够地增加,可以允许进一步播种不同植物物种的种子(例如播种并收获稻植物,随后例如播种并任选收获大豆、马铃薯或任何其他合适植物)。从相同的根茎中收获额外次数在一些作物植物的情况中也是可能的。改变植物的收获周期可以导致每英亩的年生物量产量的增加(因任何特定植物可以生长并收获的次数(如在一年中)增加)。生长速率的增加也可以允许比其野生型对应物在更广泛的地理区域内培育转基因植物,因为对培育作物的区域限制往往由栽种时节(早季)或在收获时期(晚季)的不利环境条件所决定。若缩短收获周期,则可以避开这类不利条件。生长速率可以通过从生长曲线中得到多种参数而确定,此类参数可以是:T-Mid(植物达到其50%最大尺寸所花费的时间)和T-90(植物达到其50%最大尺寸所花费的时间),等等。
与对照植物相比,无论植物处于非胁迫条件下还是植物暴露于多种胁迫下,都发生产量和/或生长速率的增加。植物一般通过生长得更慢而对暴露于胁迫作出应答。在严重胁迫条件下,植物甚至可以完全停止生长。另一方面,轻微胁迫在文中定义为植物对其暴露的任何胁迫,其中所述的胁迫未导致植物完全停止生长而没有恢复生长的能力。与非胁迫条件下的对照植物相比,轻微胁迫在本发明意义中导致受胁迫植物生长降低小于40%、35%或30%,优选小于25%、20%或15%,更优选小于14%、13%、12%、11%或10%或更低。由于农业实践(灌溉、施肥、杀虫剂处理)上的进步,在栽培作物植物中并不经常遇到严重胁迫。因此,由轻微胁迫诱导的受损生长往往是农业上不希望的特征。轻微胁迫是植物暴露的常见生物性和/或非生物性(环境)胁迫。非生物性胁迫可以因干旱或水涝、厌氧胁迫、盐胁迫、化学毒性、氧化胁迫和热、寒冷或冰冻温度所致。非生物性胁迫可以是由水胁迫(尤其因为干旱)、盐胁迫、氧化胁迫或离子胁迫引起的渗透胁迫。生物胁迫一般是由病原体如细菌、病毒、真菌和昆虫引起的那些胁迫。
尤其,本发明的方法可以在非胁迫条件下实施以产生相对于对照植物而具有增加的产量的植物。如在Wang等人(Planta(2003)218:1-14)中报道,非生物性胁迫导致不利地影响植物生长及生产力的一系列形态学变化、生理学变化、生物化学变化和分子变化。已知干旱、盐、极端温度和氧化胁迫是相互联系的并可以通过相似机制而诱导生长损害及细胞损害。Rabbani等人(Plant Physiol(2003)133:1755-1767)描述了干旱胁迫与高盐胁迫间极高程度的“串话”。例如,干旱和/或盐化作用主要表现为渗透胁迫,导致细胞内稳态和离子分布的破坏。经常伴随高温或低温、盐或干旱胁迫的氧化胁迫可以造成功能性蛋白和结构蛋白变性。因此,这些多样的环境胁迫常常激活相似的细胞信号途径和细胞应答,如产生胁迫蛋白质、上调抗氧化物质、积累相容性溶质和生长抑制。如文中所用的术语”非胁迫”条件是允许植物最佳生长的环境条件。本领域技术人员清楚对于给定地点的正常土壤条件和气候条件。
植物
如文中所用的术语”植物”包含整株植物、植物的祖先及后代和植物部分,包括种子、枝条、茎、叶、根(包括块茎)、花和组织及器官,其中每种所提及对象包含目的基因/核酸。术语”植物”也包含植物细胞、悬浮培养物、愈伤组织、胚、分生组织区、配子体、孢子体、花粉和小孢子,同样每种提及的对象包含目的基因/核酸。
特别用于本发明方法中的植物包括属于植物界(Viridiplantae)超家族的全部植物,尤其单子叶植物和双子叶植物,包括选自以下的饲用或饲料豆类、观赏植物、粮食作物、树或灌木:金合欢属物种(Acacia spp.)、槭树属物种(Acer spp.)、猕猴桃属物种(Actinidia spp.)、七叶树属物种(Aesculus spp.)、新西兰贝壳杉(Agathis australis)、Albizia amara、三色桫椤(Alsophila tricolor)、须芒草属物种(Andropogon spp.)、落花生属物种(Arachis spp)、槟榔(Areca catechu)、Astelia fragrans、黄芪(Astragaluscicer)、秋葵属物种(Abelmoschus spp.)、剑麻(Agave sisalana)、冰草属物种(Agropyron spp.)、匍匐剪股颖(Agrostis stolonifera)、葱属物种(Alliumspp.)、苋属物种(Amaranthus spp.)、欧洲海滨草(Ammophila arenaria)、凤梨(Ananas comosus)、番荔枝属物种(Annona spp.)、芹菜(Apiumgraveolens)、木波罗属物种(Artocarpus spp.)、石刁柏(Asparagusofficinalis)、燕麦属物种(Avena spp.)(例如燕麦(Avena sativa)、野燕麦(Avena fatua)、比赞燕麦(Avena byzantina)、Avena fatua var.sativa、杂种燕麦(Avena hybrida)、阳桃(Averrhoa carambola)、Baikiaea plurijuga、桦木属物种(Betula spp.)、木榄(Bruguiera gymnorrhiza)、Burkea africana、紫铆(Butea frondosa)、箣竹属(Bambusa sp.)、冬瓜(Benincasa hispida)、巴西栗(Bertholletia excelsea)、甜菜(Beta vulgaris)、芸苔属物种(Brassicaspp.)(例如欧洲油菜(Brassica napus)、芜青物种(Brassica rapa ssp.)[卡诺拉油菜、油菜(oilseed rape)、蔓青(turnip rape)])、Cadaba farinosa、朱缨花属物种(Calliandra spp)、茶(Camellia sinensis)、美人蕉(Canna indica)、辣椒属物种(Capsicum spp.)、决明属物种(Cassia spp.)、距瓣豆(Centroemapubescens)、木瓜属物种(Chaenomeles spp.)、肉桂(Cinnamomum cassia)、小果咖啡(Coffea arabica)、Colophospermum mopane、变异小冠花(Coronillia varia)、枸子(Cotoneaster serotina)、山楂属物种(Crataegusspp.)、香瓜属物种(Cucumis spp.)、柏木属物种(Cupressus spp.)、Cyatheadealbata、木梨(Cydonia oblonga)、圆球柳杉(Cryptomeria japonica)、香茅属物种(Cymbopogon spp.)、Cynthea dealbata、木梨(Cydonia oblonga)、Cadaba farinosa、茶(Camellia sinensis)、大麻(Cannabis sativa)、辣椒属物种(Capsicum spp.)、Carex elata、番木瓜(Carica papaya)、大果假虎刺(Carissa macrocarpa)、山核桃属物种(Carya spp.)、红花(Carthamustinctorius)、栗属物种(Castanea spp.)、美洲木棉(Ceiba pentandra)、苦苣(Cichorium endivia)、樟属物种(Cinnamomum spp.)、西瓜(Citrulluslanatus)、柑桔属物种(Citrus spp.)、椰子属物种(Cocos spp.)、咖啡属物种(Coffea spp.)、芋头(Colocasia esculenta)、非洲梧桐属物种(Cola spp.)、黄麻属(Corchorus sp.)、芫荽(Coriandrum sativum)、榛属物种(Corylus spp.)、山楂属物种(Crataegus spp.)、番红花(Crocus sativus)、南瓜属物种(Cucurbita spp.)、菜蓟属(Cynara spp.物种)、Dalbergia monetaria、大叶骨碎补(Davallia divaricata)、山马蝗属物种(Desmodium spp.)、迪卡兰(Dicksonia squarosa)、Diheteropogon amplectens、Dioclea spp、镰扁豆属物种(Dolichos spp.)、Dorycnium rectum、野胡萝卜(Daucus carota)、龙眼(Dimocarpus longan)、薯蓣属物种(Dioscorea spp.)、柿树属物种(Diospyros spp.)、锥穗稗(Echinochloa pyramidalis)、Ehrartia spp.、穇子(Eleusine coracana)、Eragrestis spp.、刺桐属物种(Erythrina spp.)、桉属物种(Eucalyptus spp.)、Euclea schimperi、金茅(Eulalia villosa)、油棕属(Elaeis)(例如油棕(Elaeis guineensis)、美洲油棕Elaeis(oleifera))、蔗茅属(Erianthus sp.)、枇杷(Eriobotrya japonica)、红仔果(Eugenia uniflora)、荞麦属物种(Fagopyrum spp.)、费约罗(Feijoa sellowiana)、草雷属物种(Fragaria spp.)、千斤拔属物种(Flemingia spp)、Freycinetia banksii、水青冈属物种(Fagus spp.)、苇状羊茅(Festuca arundinacea)、无花果(Ficuscarica)、金桔属物种(Fortunella spp.)、草莓属物种(Fragaria spp.)、Geranium thunbergii、银杏(Ginkgo biloba)、大豆属(Glycine spp.)(例如大豆、大豆(Soja hispida)或大豆(Soja max))、Glycine javanica、Gliricidia spp、陆地棉(Gossypium hirsutum)、银桦属物种(Grevillea spp.)、Guibourtiacoleosperma、陆地棉(Gossypium hirstum)、向日葵属(Helianthus spp.)(例如向日葵(Helianthus annuus))、长管萱草(Hemerocallis fulva)、岩黄芪属物种(Hedysarum spp.)、牛鞭草(Hemarthia altissima)、扭黄茅(Heteropogoncontortus)、木槿属物种(Hibiscus spp.)、大麦属(Hordeum spp.)(例如大麦(Hordeum vulgare))、Hyparrhenia rufa、小连翅(Hypericum erectum)、Hyperthelia dissoluta、白花庭蓝(Indigo incarnata)、鸢尾属物种(Iris spp.)、甘薯(Ipomoea batatas)、核桃属物种(Juglans spp.)、Leptarrhenapyrolifolia、胡枝子属物种(Lespediza spp.)、莴苣属物种(Lettuca spp.)、Leucaena leucocephala、Loudetia simplex、Lotonus bainesii、百脉根属物种(Lotus spp.)、莴苣(Lactuca sativa)、山黧豆属物种(Lathyrus spp.)、兵豆(Lens culinaris)、亚麻(Linum usitatissimum)、荔枝(Litchi chinensis)、棱角丝瓜(Luffa acutangula)、羽扇豆属物种(Lupinus spp.)、Luzula sylvatica、番茄属(Lycopersicon spp.)(例如番茄(Lycopersicon esculentum、Lycopersicon lycopersicum、Lycopersicon pyriforme))、硬皮豆属物种(Macrotyloma spp.)、硬皮豆(Macrotyloma axillare)、苹果属物种(Malusspp.)、苹果属物种(Malus spp.)、凹缘金虎尾(Malpighia emarginata)、牛油果(Mammea americana)、芒果(Mangifera indica)、木薯属物种(Manihotspp.)、Manihot esculenta、紫花苜蓿(Medicago sativa)、水杉(Metasequoiaglyptostroboides)、人心果(Manilkara zapota)、苜蓿(Medicago sativa)、草木樨属物种(Melilotus spp.)、薄荷属物种(Mentha spp.)、芒(Miscanthussinensis)、苦瓜属物种(Momordica spp.)、黑桑(Morus nigra)、芭蕉属物种(Musa spp.)、大蕉(Musa sapientum)、烟草属物种(Nicotianum spp.)、驴食草属物种(Onobrychis spp.)、鸟足豆属物种(Ornithopus spp.)、非洲双翼豆(Peltophorum africanum)、狼尾草属物种(Pennisetum spp.)、木犀榄属物种(Olea spp.)、仙人掌属物种(Opuntia spp.)、稻属(Oryza spp.)(例如稻、阔叶稻(Oryza latifolia))、稷(Panicum miliaceum)、柳枝稷(Panicumvirgatum)、鸡蛋果(Passiflora edulis)、欧防风(Pastinaca sativa)、狼尾草属物种(Pennisetum sp.)、鳄梨属物种(Persea spp.)、鳄梨(Persea gratissima)、碧冬茄属物种(Petunia spp.)、菜豆属物种(Phaseolus spp.)、槟榔竹(Phoenixcanariensis)、Phormium cookianum、石楠属物种(Photinia spp.)、白云杉(Picea glauca)、松属物种(Pinus spp.)、豌豆(Pisum sativum)、新西兰罗汉松(Podocarpus totara)、Pogonarthria fleckii、Pogonarthria squarrosa、芹菜(Petroselinum crispum)、虉草(Phalaris arundinacea)、菜豆属物种(Phaseolus spp.)、猫尾草(Phleum pratense)、刺葵属物种(Phoenix spp.)、南方芦苇(Phragmites australis)、酸浆属物种(Physalis spp.)、松属物种(Pinus spp.)、阿月浑子(Pistacia vera)、豌豆属物种(Pisum spp.)、早熟禾属物种(Poa spp.)、杨属物种(Populus spp.)、牧豆草属物种(Prosopis spp.)、牧豆树(Prosopis cineraria)、李属物种(Prunus spp.)、番石榴属物种(Psidiumspp.)、石榴(Punica granatum)、西洋梨(Pyrus communis)、栎属物种(Quercus spp.)、Rhaphiolepsis umbellata、美味棒花棕(Rhopalostylissapida)、Rhus natalensis、欧洲醋粟(Ribes grossularia)、茶子属物种(Ribesspp.)、洋槐(Robinia pseudoacacia)、蔷薇属物种(Rosa spp.)、萝卜(Raphanus sativus)、波叶大黄(Rheum rhabarbarum)、蓖麻(Ricinuscommunis)、悬钩子属物种(Rubus spp.)、柳属物种(Salix spp.)、Schyzachyrium sanguineum、金松(Sciadopitys verticillata)、北美红杉(Sequoia sempervirens)、巨杉(Sequoiadendron giganteum)、甘蔗属物种(Saccharum spp.)、接骨木属物种(Sambucus spp.)、黑麦(Secale cereale)、胡麻属物种(Sesamum spp.)、白芥属物种(Sinapis sp.)、茄属(Solanumspp.)(例如马铃薯(Solanum tuberosum)、红茄(Solanum integrifolium)或番茄(Solanum lycopersicum))、两色蜀黍(Sorghum bicolor)、菠菜属物种(Spinacia spp.)、Sporobolus fimbriatus、Stiburus alopecuroides、Stylosanthos humilis、蒲桃属物种(Syzygium spp.)、葫芦茶属物种(Tadehagispp)、落羽杉(Taxodium distichum)、阿拉伯黄背草(Themeda triandra)、车轴草属物种(Trifolium spp.)、小麦属(Triticum spp.)(例如普通小麦(Triticum aestivum)、硬粒小麦(Triticum durum)、圆柱小麦(Triticumturgidum)、Triticum hybernum、马卡小麦(Triticum macha)、普通小麦(Triticum sativum)或普通小麦(Triticum vulgare))、万寿菊属物种(Tagetesspp.)、酸豆(Tamarindus indica)、可可树(Theobroma cacao)、Triticosecalerimpaui、异叶铁杉(Tsuga heterophylla)、小金莲花(Tropaeolum minus)、金莲花(Tropaeolum majus)、越桔属物种(Vaccinium spp.)、野碗豆属物种(Vicia spp.)、葡萄(Vitis vinifera)、豇豆属物种(Vigna spp.)、香堇(Violaodorata)、葡萄属物种(Vitis spp.)、锥穗沃森花(Watsonia pyramidata)、马蹄莲(Zantedeschia aethiopica)、玉蜀黍(Zea mays)、沼生菰(Zizaniapalustris)、枣属物种(Ziziphus spp.)、苋属植物(amaranth)、洋蓟(artichoke)、天门冬属(asparagus)、椰菜(broccoli)、孢子甘蓝(Brusselssprouts)、甘蓝、芸苔(canola)、胡萝卜、花椰菜、芹菜、羽衣甘蓝(collardgreens)、亚麻、无头甘蓝(kale)、兵豆属(lentil)、油菜(oilseed rape)、秋葵(okra)、洋葱、马铃薯、稻、大豆、草莓、甜菜、甘蔗、向日葵、番茄、南瓜(squash)、茶和藻类等等。
序列比对
为比较而进行序列比对的方法是本领域众所周知的,此类方法包括GAP、BESTFIT、BLAST、FASTA和TFASTA。GAP使用Needleman和Wunsch的算法((1970)J.Mol.Biol.48:443-453)来寻找两序列之间匹配数最大化且空位数最小化的总体(即跨越整个序列)比对。BLAST算法(Altschul等人(1990)J Mol Biol 215:403-10)计算序列同一性百分比,并对两序列之间的相似性进行统计学分析。执行BLAST分析的软件可通过美国国家生物技术信息中心(NCBI)公开地获得。例如,同源物可以使用ClustalW多重序列比对算法(1.83版),采用默认的双比对参数以及百分比的记分方法而容易地鉴定。利用可获自MatGAT软件包(Campanella等BMCBioinformatics.2003年7月10日4:29.MatGAT:an application thatgenerates similarity/identitymatrices using protein or DNA sequences)的方法之一,也可以确定总体相似性和同一性百分比。可以进行微小的人工编辑以优化保守基序之间的比对,这对于所属领域的技术人员而言将是显而易见的。此外,除了利用全长序列进行同源物鉴定以外,还可以利用特定结构域。如下文实施例3所示,序列同一性值为百分比,是通过上述程序使用默认参数针对完整核酸或氨基酸序列,和/或选择的结构域或保守基序确定的。
交互blast搜索
交互BLAST通常包括以查询序列(例如,利用实施例9的表1、表2、表14和实施例18的表18中所列的任一序列)针对任何序列数据库如可公共可获得的NCBI数据库进行BLAST的一次BLAST。当从核苷酸序列开始时,通常使用BLASTN或TBLASTX(利用标准默认值),而当从蛋白质序列开始时,则使用BLASTP或TBLASTN(利用标准默认值)。BLAST结果可以任选地过滤。接着使用过滤的结果或者未过滤的结果中的全长序列针对查询序列来源生物的序列进行反向BLAST(二次BLAST)(在查询序列为SEQID NO:1或SEQ ID NO:2、SEQ ID NO:50至SEQ ID NO:59、SEQID NO:131、SEQ ID NO:132、SEQ ID NO:257或SEQ ID NO:258中任一个的情况下,二次BLAST将会针对稻序列)。然后比较一次和二次BLAST的结果。如果一次BLAST中分值靠前的命中事件来自查询序列源自的相同物种,则找到了旁系同源物,反向BLAST结果随即理想地以查询序列作为最高命中事件;如果一次BLAST中分值靠前的命中事件不是来自查询序列源自的相同物种,则找到了直系同源物,且优选反向BLAST后的结果是查询序列处于最高命中事件之列。
分值靠前的命中事件是E值低的命中事件。E值越低,分值越具有显著性(或者换句话说,偶然发现此命中事件的几率越低)。E值的计算是本领域众所周知的。除了E值之外,还对比较进行同一性百分比记分。同一性百分比是指两比较核酸(或多肽)序列之间在特定长度上的相同核苷酸(或氨基酸)数。在大家族的情况下可以使用ClustalW,继之以邻近连接树来辅助相关基因的聚类可视化,以鉴定直系同源物和旁系同源物。
扩增
用于遗传和物理作图的多种基于核酸扩增的方法可以使用所述核酸进行。实例包括等位基因特异性扩增(Kazazian(1989)J.Lab.Clin.Med11:95-96)、PCR扩增片段的多态性(CAPS;Sheffield等人,(1993)Genomics16:325-332)、等位基因特异性连接(Landegren等人,(1988)Science 241:1077-1080)、核苷酸延伸反应(Sokolov(1990)Nucleic Acid Res.18:3671)、放射杂交作图(Walter等人,(1997)Nat.Genet.7:22-28)和Happy作图(Dear和Cook,(1989)Nucleic Acid Res.17:6795-6807)。为实施这些方法,使用核酸序列设计和产生用于扩增反应或引物延伸反应的引物对。这类引物的设计是本领域技术人员众所周知的。使用基于PCR的遗传作图的方法,可能需要鉴定跨越相应于本发明核酸序列区域作图的亲本之间DNA序列的差异。然而,这对作图方法通常不是必要的。
发明详述
本发明提供相对于对照植物在植物中增强产量相关性状的方法,其包括在植物中调节NAC转录因子的编码核酸的表达。调节(优选增加)NAC转录因子的编码核酸表达的优选方法是通过在植物中引入和表达如下进一步定义的特定类型NAC转录因子的编码核酸。
另外,本发明提供相对于对照植物在植物中增强产量相关性状的方法,其包括在植物中调节AP2-2多肽的编码核酸的表达。本发明还提供相对于对照植物在植物中增强产量相关性状的方法,其包括在植物中调节AP2-70-样多肽的编码核酸的表达。
关于NAC转录因子,待引入植物(并因此用于实施本发明的方法)的核酸是编码文中所述类型的NAC转录因子的任意核酸。文中定义的“NAC转录因子”意指任何氨基酸序列,当其用于构建NAC系统树(例如图1所示的)时,趋向聚簇于包含SEQ ID NO:2、SEQ ID NO:51、SEQID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ ID NO:59中任一个所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
本领域技术人员可容易地利用制作此类系统树的已知技术和软件,例如GCG、EBI或CLUSTAL软件包,利用默认参数来确定任何所研究的氨基酸序列是否落入“NAC转录因子”的定义中。图1的系统树来自Ooka等人,2003(DNA Research 10,239-247,2003)。建立此类系统树的方法由Ooka等人,2003描述。在图1的系统树中,发现SEQ ID NO:2位于从下往上的第3组中,标记为“OsNAC7”,发现SEQ ID NO:51、SEQ IDNO:53、SEQ ID NO:55、SEQ ID NO:57和SEQ ID NO:59在始于(包括)该页右手侧标记为“ONAC022”的组,止于(包括)该页右手侧标记为“OsNAC3”的组的范围中。任何聚簇于这些范围中的序列(一方面包括SEQID NO:2,另一方面包括SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57和SEQ ID NO:59)将被认为落入上述NAC转录因子的定义并适用于本发明的方法中。
或者,文中定义的“NAC转录因子”包含任意一个或多个下述基序。
基序I:KIDLDIIQELD,或与基序I的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序I优选是K/P/R/G I/S/M D/A/E/Q L/I/V D I/V/F I Q/V/R/K E/DL/I/V D。
基序II:CKYGXGHGGDEQTEW,或与基序II的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%,其中“X”是任意氨基酸或空位。
基序II优选是C K/R Y/L/I G XXX G/Y/N D/E E Q/R T/N/S EW,其中“X”是任意氨基酸或空位。
基序III:GWVVCRAFQKP,或与基序III的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序III优选是GWVVCR A/V F X1K X2,其中“X1”和“X2”可以是任意氨基酸,优选X1是Q/R/K,优选X2是P/R/K。
基序I至III见于SEQ ID NO:2所示的NAC中,并一般也见于聚簇于包含SEQ ID NO:2的NAC组(在NAC系统树中)而不聚簇于任何其他NAC组的NAC中。
基序IV:PVPIIA,或与基序IV的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序IV优选是A/P/S/N V/L/I/A P/S/D/V/Q V/I I A/T/G。
基序V:NGSRPN,或与基序V的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序V优选是N G/S S/Q/A/V RP N/S。
基序VI:CRLYNKK,或与基序VI的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序VI优选是C/Y R/K L/I Y/H/F N/K K K/N/C/S/T。
基序III至VI一般见于SEQ ID NO:51、SEQ ID NO:53、SEQ IDNO:55、SEQ ID NO:57和SEQ ID NO:59的NAC中,且见于聚簇于上述SEQ ID NO所代表的NAC组(在NAC系统树中)而不聚簇于任何其他NAC组的NAC中。
基序VII:NEWEKMQ,或与基序VII的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序VII优选是N E/Q/T WEK M/V Q/R/K。
基序VIII:WGETRTPESE,或与基序VIII的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序VIII优选是WGE T/A RTPES E/D。
基序IX:VPKKESMDDA,或与基序IX的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序IX优选是V/L PK K/E E S/R/A/V M/V/A/Q/R D/E D/E/L A/G/D。
基序X:SYDDIQGMYS,或与基序X的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序X优选是S L/Y DD L/I Q G/S L/M/P G/Y S/N。
基序VII、VIII、IX和X一般见于SEQ ID NO:51的NAC中,且见于聚簇于SEQ ID NO:51的NAC组(在NAC系统树中)而不聚簇于任何其他NAC组的NAC中。
基序XI:DSMPRLHADSSCSE,或与基序XI的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
基序XI优选是DS M/V/I P R/K L/I/A H T/A/S D/E SS C/G SE。
基序XI一般见于SEQ ID NO:53和SEQ ID NO:55的NAC中,且见于聚簇于上述SEQ ID NO所代表的NAC组(在NAC系统树中)而不聚簇于任何其他NAC组的NAC中。
基序I至XI中的任一个在任何位置均可包含一个或多个保守氨基酸的取代。
文中定义的NAC转录因子(即,任意氨基酸序列,当其用于用于构建NAC系统树(例如图1所示的)时,趋向聚簇于SEQ ID NO:2、SEQID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ IDNO:59中任一个所示的NAC的组,而不是聚簇于任何其他NAC组)的实例示于下表3和4中。
表3:(在系统树中)聚簇于SEQ ID NO:2所示的NAC组,而不是聚簇于任何其他NAC组的NAC转录因子的实例
 
核酸 氨基酸 NCBI登录号 其他名称(如果有) 来源
SEQ ID NO:1 SEQ ID NO:2 XM_479673.1 NAM2(在图2的比对中也称为CDS4054)
SEQ ID NO:3 SEQ ID NO:4 AK106313
SEQ ID NO:5 SEQ ID NO:6 NM_187584.1
SEQ ID NO:7 SEQ ID NO:8 XM_467007.1
SEQ ID NO:9 SEQ ID NO:10         XM_473322.1
SEQ ID NO:11         SEQ ID NO:12         ABE89364 蒺藜苜蓿(Me dicagotruncatula)
SEQ ID NO:13         SEQ ID NO:14         NM_101098.2 ANAC007/EMB2749 拟南芥
SEQ ID NO:15         SEQ ID NO:16         NM_104947.1 ANAC026 拟南芥
SEQ ID NO:17         SEQ ID NO:18         XM_476289.1
SEQ ID NO:19         SEQ ID NO:20         NM_127362.1 ANAC037 拟南芥
SEQ ID NO:21         SEQ ID NO:22         NM_119783.2 ANAC076 拟南芥
SEQ ID NO:23         SEQ ID NO:24         NM_187584.1
SEQ ID NO:25         SEQ ID NO:26         NM_125632.1 ANAC101 拟南芥
SEQ ID NO:27         SEQ ID NO:28         NM_126028.1 ANAC105 拟南芥
SEQ ID NO:29         SEQ ID NO:30         AK071064.1
SEQ ID NO:31         SEQ ID NO:32         NM_105851.1 ANAC030 拟南芥
SEQ ID NO:33         SEQ ID NO:34         NM_197511.1
SEQ ID NO:35        SEQ ID NO:36         AB217775.1 百日菊(Zinnia elegans)
SEQ ID NO:37         SEQ ID NO:38         AJ833965.1 玉蜀黍
表4:(在系统树中)聚簇于SEQ ID NO:51、SEQ ID NO:53、SEQID NO:55、SEQ ID NO:57或SEQ ID NO:59中任一个所示的NAC组,而不是聚簇于任何其他NAC组的NAC转录因子的实例
 
SEQ ID NO:50 SEQ ID NO:51 XM_470088.1 NAC1(在图2的比对中也称为CDS4035)        
SEQ ID NO:52 SEQ ID NO:-53 AB028185.1BAA89800.1 NAC4(在图2的比对中也称为OsNAC6)          
SEQ ID NO:54 SEQ ID NO:55 AB028184.1BAA89799.1 NAC6(在图2的比对中也称为OsNAC5)          
SEQ ID NO:56 SEQ ID NO:57 AK107330.1 NAC7(在图2的比对中也称为ONAC24)          
SEQ ID NO:58 SEQ ID NO:59 AK069257.1 NAC3(在图2的比对中也称为CDS4034)        
SEQ ID NO:60 SEQ ID NO:61 AY625683.1AAU08786.1 NAC2-样TaNAC2  普通小麦
SEQ ID NO:62 SEQ ID NO:63 AY103772.1 PCO133091 玉蜀黍
SEQ ID NO:64 SEQ ID NO:65 AJ010829.1CAA09371.1 GRAB1TACAA09371.1 普通小麦
SEQ ID NO:66 SEQ ID NO:67 NM_186659.2NP_911548.1 NAC3-样RiceNP_911548.1
SEQ ID NO:68 SEQ ID NO:69 DQ267442.1ABB72844.1 NAC1样油棕   油棕
SEQ ID NO:70 SEQ ID NO:71 AB028183.1BAA89798.1 NAC4-样OsNAC4  
SEQ ID NO:72 SEQ ID NO:73 DQ028770.1AAY46122.1 NAC2-样GmNAC2AAY46122.1 大豆
SEQ ID NO:74 SEQ ID NO:75 AY498713.1AAR88435.1 NAC样番茄NAC 番茄
SEQ ID NO:76 SEQ ID NO:77 AY245883.1AAP35052.1 NAC5-8BrassicaNAC5-8"NAC-结构域           欧洲油菜
 
SEQ ID NO:78 SEQ ID NO:79 XM_475238.1XP_475238.1 NAC48AK068392"推定的
SEQ ID NO:80 SEQ ID NO:81 AJ401151.1CAC42087.1 NAC阳芋"推定的 阳芋(Solanumtuberosum) 
SEQ ID NO:82 SEQ ID NO:83 NM_147856.2NP_680161.1 ATAF2AT5G08790"="ATAF2"NP_680161.1"      拟南芥
SEQ ID NO:84 SEQ ID NO:-85 AF509873.1AAM34773.1 NH10PetuniaNH10="nam-样                  碧冬茄(Petunia xhybrida)       
SEQ ID NO:86 SEQ ID NO:87 AB218789BAE48667.1 NACPrunusPm74"NAC 梅(Prunus mume)
SEQ ID NO:88 SEQ ID NO:89 AY245885.1AAP35054.1 NAC18BnNAC18"NAC-结构域                欧洲油菜
SEQ ID NO:90 SEQ ID NO:91 NM_125774.3NP_201184.2 ANAC102 拟南芥
SEQ ID NO:92 SEQ ID NO:93 AY714222.1AAW48094.1 NACCaNAC1 辣椒(Capsicumannuum)      
SEQ ID NO:94 SEQ ID NO:95 NM_100054.2NP_171677   ATAF1 拟南芥
SEQ ID NO:96 SEQ ID NO:97 AY573802.1AAU43922.1 NAC-NORLeNAC-NOR"转录 番茄
SEQ ID NO:98 SEQ ID NO:99 NM_118875.2NP_567773.1 RD26拟南芥 拟南芥
SEQ ID NO:100        SEQ ID NO:101        DQ022843.1AAY44098.1 NAC69-3NAC69-3"TaNAC69-3""NAC        普通小麦
SEQ ID NO:102        SEQ ID NO:103        A625682.1AAU08785.1 NAC69-1NAC69-1"TaNAC69""NAC                      普通小麦
SEQ ID NO:104        SEQ ID NO:105        AY742218.1AAW62955.1 NAC23甘蔗  甘蔗(Saccharaumofficinarum)   
SEQ ID NO:106        SEQ ID NO:107        AK063406.1 NAC10ONAC10AK063406
SEQ ID NO:108        SEQ ID NO:109        AC145753.1 NAM苜蓿NAC样 蒺藜苜蓿
本发明通过用由SEQ ID NO:1代表的编码多肽序列SEQ ID NO:2的稻序列、由SEQ ID NO:50代表的编码多肽序列SEQ ID NO:51的稻序列、由SEQ ID NO:52代表的编码多肽序列SEQ ID NO:53的稻序列、由SEQID NO:54代表的编码多肽序列SEQ ID NO:55的稻序列、由SEQ ID NO:56代表的编码多肽序列SEQ ID NO:57的稻序列,和由SEQ ID NO:58代表的编码多肽序列SEQ ID NO:59的稻序列转化的植物加以说明,然而,本发明的实施不限于这些序列。本发明方法可以使用编码如文中所定义的NAC转录因子的任何核酸进行,例如表3和4中给出的任何核酸序列。
在表3中给出的NAC氨基酸序列可以视为由SEQ ID NO:2代表的NAC的直向同源物和旁系同源物。在表4中给出的NAC氨基酸序列可以视为由SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57和SEQ ID NO:59中任一个代表的NAC的直向同源物和旁系同源物。
直向同源物和旁系同源物可以通过开展所谓交互性blast搜索(如文中“定义”部分所述)而容易地找到。其中查询序列是SEQ ID NO:1、SEQID NO:2,或SEQ ID NO:50至SEQ ID NO:59中的任意序列,因此第二次BLAST将针对稻序列。
表3给出SEQ ID NO:2代表的NAC的直向同源物和旁系同源物。表4中给出SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57和SEQ ID NO:59代表的NAC的直向同源物和旁系同源物。其他直向同源物和旁系同源物可使用上述BLAST方法和实施例部分给出的以下方法容易地鉴定。
NAC蛋白质由于存在高度保守的N-末端NAC结构域(示于表5)以及不同的C-末端结构域,是可以鉴定的。
也存在用于鉴定结构域的特定数据库。NAC转录因子中的NAC结构域可如“定义”部分解释的鉴定。
NAC结构域也可使用常规技术鉴定,例如文中“定义”部分解释的序列比对。
本发明也提供迄今未知的NAC-编码核酸和NAC多肽。
根据本发明的另一实施方案,因此提供分离的核酸分子,其包含:
(i)SEQ ID NO:347、SEQ ID NO:349、SEQ ID NO:351、SEQ IDNO:353、SEQ ID NO:355、SEQ ID NO:357、SEQ ID NO:359、SEQ IDNO:361或SEQ ID NO:363中的一个所示的核酸;
(ii)SEQ ID NO:347、SEQ ID NO:349、SEQ ID NO:351、SEQ IDNO:353、SEQ ID NO:355、SEQ ID NO:357、SEQ ID NO:359、SEQ IDNO:361或SEQ ID NO:363中的一个所示的核酸的互补物;
(iii)核酸,其编码与SEQ ID NO:348、SEQ ID NO:350、SEQ ID NO:352、SEQ ID NO:354、SEQ ID NO:356、SEQ ID NO:358、SEQ ID NO:360、SEQ ID NO:362或SEQ ID NO:364中的一个所示的氨基酸序列具有一定序列同一性的NAC多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
根据本发明的另一实施方案,也提供分离的多肽,其包含:
(i)SEQ ID NO:348、SEQ ID NO:350、SEQ ID NO:352、SEQ IDNO:354、SEQ ID NO:356、SEQ ID NO:358、SEQ ID NO:360、SEQ IDNO:362或SEQ ID NO:364中的一个所示的氨基酸序列;
(ii)与SEQ ID NO:348、SEQ ID NO:350、SEQ ID NO:352、SEQ IDNO:354、SEQ ID NO:356、SEQ ID NO:358、SEQ ID NO:360、SEQ IDNO:362或SEQ ID NO:364中的一个所示的氨基酸序列具有一定序列同一性的氨基酸序列,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;
(iii)如上(i)或(ii)中给出的氨基酸序列的衍生物。
编码文中定义的NAC转录因子的核酸不需要是全长核酸,因为本发明方法的实施不依赖于全长核酸序列的使用。适用于实施本发明的方法的核酸的实例包括表3和4中给出的核酸序列,但并不限于这些序列。核酸变体也可用于实施本发明的方法。此类核酸变体的实例包括编码文中定义的NAC转录因子的核酸的部分、编码文中定义的NAC转录因子的核酸的剪接变体、编码文中定义的NAC转录因子的核酸的等位变体,以及通过基因改组获得的编码文中定义的NAC转录因子的核酸的变体。术语部分、剪接变体、等位变体和基因改组现将描述。
本发明提供在植物中增强产量相关性状的方法,其包括在植物中引入和表达表3和4中给出的核酸序列中任一个的部分,或表3和4中给出的氨基酸序列中任一个的直向同源物、旁系同源物或同源物的编码核酸的部分。
用于本发明方法中的部分编码属于文中定义的NAC转录因子的定义范围的多肽,所述多肽具有与表3和4中给出的任意氨基酸序列所代表的NAC转录因子基本相同的生物学活性。该部分一般具有至少600个连续核苷酸长度、优选至少700个连续核苷酸长度、更优选至少800个连续核苷酸长度并且最优选至少900个连续核苷酸长度,其中所述的连续核苷酸是在表3和4中给出的任何一种核酸序列。优选地,此部分是在表3和4中给出的任何一种核酸的部分。最优选地,该部分是核酸SEQ ID NO:1、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56或SEQ ID NO:58的部分。优选地,该部分编码包含如文中所定义的基序I至XI中的一个或多个的氨基酸序列。
编码如文中所定义的NAC转录因子的核酸的部分可以例如通过对该核酸产生一个或多个缺失而制备。所述的部分可以以分离的形式加以使用或它们可以与其他编码性(或非编码性)序列融合,以便例如产生组合几种活性的蛋白质。当与其他编码序列融合时,翻译时产生的所得多肽可以比对NAC转录因子部分所预测的产物更大。
用于本发明方法中的另一核酸变体是能够在降低的严格条件下、优选在严格条件下与编码如文中所定义的NAC转录因子的核酸杂交,或与如文中所定义的部分杂交的核酸。
用于本发明方法中的杂交序列编码具有NAC结构域(如上所述)并且具有与表3和4中给出的任意氨基酸序列所代表的NAC转录因子的基本相同的生物学活性的多肽。该杂交序列一般具有至少600个连续核苷酸长度、优选至少700个连续核苷酸长度、更优选至少800个连续核苷酸长度并且最优选至少900个连续核苷酸长度。优选地,杂交序列是能够与表3和4中给出的任意核酸杂交或与任意这些序列的部分杂交的序列,其中所述的部分如上文所定义。最优选地,杂交序列能够与如SEQ ID NO:1、SEQID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56或SEQ IDNO:58所代表的核酸或与其部分杂交。优选地,能够杂交的序列编码包含任何一种或多种如文中所定义的基序I至XI的多肽。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达能够与表3和4中给出的任何一种核酸杂交的核酸,或包括在植物中引入并表达如此核酸,其能够与表3和4中给出的任意核酸序列的直向同源物、旁系同源物或同源物的编码核酸杂交。
用于本发明方法中的另一核酸变体是编码如上文所定义的NAC转录因子的剪接变体。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达表3和4中给出的任何一种核酸的剪接变体,或表3和4中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的剪接变体。
优选的剪接变体是由SEQ ID NO:1、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56或SEQ ID NO:58代表的核酸的剪接变体,或编码表3和4中给出的任意氨基酸序列的直向同源物或旁系同源物的剪接变体。优选地,由所述剪接变体编码的多肽包含任何一种或多种如文中所定义的基序I至XI。
用于实施本发明方法的另一种核酸变体是编码如上文所定义的NAC转录因子的核酸的等位变体。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达表3和4中给出的任何一种核酸的等位变体,或包括在植物中引入并表达如此核酸的等位变体,其中所述的核酸编码表3和4中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物。
优选的等位变体是SEQ ID NO:1、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56或SEQ ID NO:58的等位变体,或编码SEQ ID NO:1、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQID NO:56或SEQ ID NO:58的任意直向同源物或旁系同源物的等位变体。优选地,由所述等位变体编码的多肽包含任何一种或多种如文中所定义的基序I至XI。
用于本发明方法中的又一核酸变体是通过基因改组而获得的核酸变体。基因改组或定向进化也可以用来产生编码如上文定义的NAC转录因子的核酸的变体。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达表3和4中给出的任何一种核酸的变体,或包括在植物中引入并表达如此核酸的变体,其中所述的核酸编码表3和4中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物,所述变体核酸通过基因改组获得。优选地,通过基因改组获得的变体核酸编码的多肽包含任何一种或多种如文中所定义的基序I至XI。
另外,核酸变体也可以通过位点定向诱变获得。几种方法可用于实现位点定向诱变,最常见的是基于PCR的方法(Current Protocols inMolecular Biology.Wiley编著)。
同样可用于本发明方法中的是表3和4中给出的任何一种氨基酸序列的同源物的编码核酸。
同样可用于本发明方法中的是表3中给出的任何一种氨基酸序列的衍生物,或前述任意SEQ ID NO的直向同源物或旁系同源物的编码核酸。优选的衍生物是SEQ ID NO:2、SEQ ID NO:51、SEQ ID NO:53、SEQID NO:55、SEQ ID NO:57或SEQ ID NO:59所代表的蛋白质的衍生物。
另外,NAC转录因子(至少以其天然形式)一般具有DNA结合活性和激活结构域。本领域技术人员可以使用常规工具和技术容易地确定激活结构域和DNA-结合活性的存在。
编码NAC转录因子的核酸可以来自任何自然来源或人工来源。核酸可以从其天然形式就组成和/或基因组环境方面通过人类有意操作而加以修饰。编码NAC转录因子的核酸优选地来自植物,还优选来自单子叶植物,更优选来自禾本科,该核酸最优选来自稻。
因此文中对NAC转录因子的任一引用意指如上文定义的NAC转录因子。编码如此NAC转录因子的任何核酸适用于实施本发明的方法。
本发明还包含通过本发明的方法获得的植物或植物部分(包括种子)。此植物或植物部分包含编码文中定义的NAC转录因子的核酸转基因。
本发明还提供遗传构建体和载体以促进在植物中引入和/或表达用于本发明方法中的核酸序列。
因而,提供基因构建体,其包含:
i.编码如上文所定义的NAC转录因子的核酸;
ii.与(i)的核酸有效连接的一种或多种调控序列。
本发明方法中所用的构建体可以使用本领域技术人员众所周知的重组DNA技术构建。该基因构建体可以插入适于转化至植物内并适于在转化的细胞中表达目的基因的市售的载体。本发明因而提供如上文所定义的基因构建体在本发明方法中的用途。
植物用包含目的序列(即编码NAC转录因子的核酸)的载体转化。本领域技术人员非常了解为成功转化、选择和增殖含有目的序列的宿主细胞而必须于载体上存在的遗传元件。目的序列与一种或多种调控序列(至少与启动子)有效连接。
根据本发明的一个优选特征,编码NAC转录因子的核酸与组成型启动子有效连接。组成型启动子在生长和发育的大部分、但实际上并非全部阶段期间有转录活性,并且基本上遍在地表达。该组成型启动子优选地是GOS2启动子,更优选地,该组成型启动子是稻GOS2启动子,该组成型启动子还优选地由基本上与SEQ ID NO:39或SEQ ID NO:339相似的核酸序列代表,该组成型启动子最优选地如SEQ ID NO:39或SEQ ID NO:339所代表。
应当明白本发明的适用性不限于由SEQ ID NO:1、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56或SEQ ID NO:58代表的编码NAC转录因子的核酸,同时本发明的适用性也不限于由GOS2启动子驱动时编码NAC转录因子的这类核酸的表达。也可以用来实施本发明方法的其他组成型启动子的实例在文中“定义”部分中的表2a中显示。
根据本发明的另一优选特征,编码NAC-型转录因子的核酸与幼绿组织(young green tissue)特异性启动子有效连接。文中定义的幼绿组织特异性启动子主要在幼绿组织中有转录活性,基本在任何其他植物部分没有转录活性,同时仍然允许在这些其他植物部分的任何渗漏表达。幼绿组织特异性启动子优选是原叶绿素酸酯还原酶启动子,更优选是由基本上与SEQ ID NO:40相似的核酸序列代表的原叶绿素酸酯还原酶启动子,最优选是如SEQ ID NO:40所代表的启动子。
应当明白本发明的适用性不限于由SEQ ID NO:1代表的编码NAC转录因子的核酸,同时本发明的适用性也不限于由原叶绿素酸酯还原酶启动子驱动时编码NAC转录因子的这类核酸的表达。
也可以用来实施本发明方法的其他原叶绿素酸酯还原酶启动子的实例在上面的表2c中显示。
根据本发明的另一优选特征,编码NAC-型转录因子的核酸与根特异性启动子(内参pro0110)有效连接。文中定义的根特异性启动子主要在植物的根中有转录活性,基本在任何其他植物部分没有转录活性,同时仍然允许在这些其他植物部分的任何渗漏表达。根特异性启动子优选是RCc3启动子(Plant Mol Biol.1995年1月;27(2):237-48),更优选是来自稻的RCc3启动子,进一步优选是由基本上与SEQ ID NO:110相似的核酸序列代表的RCc3启动子,最优选是如SEQ ID NO:110所代表的启动子。
应当明白本发明的适用性不限于由SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56或SEQ ID NO:58代表的编码NAC转录因子的核酸,同时本发明的适用性也不限于由RCc3启动子驱动时编码NAC转录因子的这类核酸的表达。
也可用于实施本发明方法的其他根特异性启动子的实例示于上表2b。
任选地,一种或多种终止子序列可以在引入植物的构建体中使用。额外的调节元件可以包括转录增强子以及翻译增强子。本领域技术人员会知道适用于实施本发明的终止子序列和增强子序列。内含子序列也可以添加至5′非翻译区(UTR)或编码序列内,以增加在胞浆内积累的成熟信息的量,如定义部分所述。其他调控序列(除启动子、增强子、沉默子、内含子序列、3’UTR和/或5’UTR区之外)可以是蛋白质和/或RNA稳定化元件。本领域技术人员会知道或可以轻易地获得此类序列。
本发明的遗传构建体还可以包括需要用于在特定细胞类型中维持和/或复制的复制序列起点。一个实例是当需要将遗传构建体在细菌细胞中维持为附加型遗传元件(例如质粒或粘粒分子)时。优选的复制起点包括但不限于f1-ori和colE1。遗传构建体可任选包含选择标记基因。文中的“定义”部分更加详细的描述了选择标记。该标记基因当其不再需要时,可从转基因细胞移除或切除。移除标记的技术是本领域已知的,有用的技术描述于上面的“定义”部分。
本发明也提供制备转基因植物的方法,其中所述转基因植物相对于对照植物具有增强的产量相关性状,其包括在植物中引入和表达任意编码如文中所定义的NAC转录因子的核酸。
更具体地,本发明提供用于产生具有增强的产量相关性状的转基因植物的方法,所述方法包括:
i.在植物细胞中引入和表达编码NAC转录因子(如文中所定义)的核酸;和
ii.在促进植物生长和发育的条件下培育植物细胞。
核酸可以直接引入植物细胞或引入植物本身(包括引入组织、器官或植物的任何其他部分)。根据本发明的优选特征,核酸优选地通过转化引入植物。
遗传修饰的植物细胞可通过本领域技术人员熟悉的所有方法再生。合适的方法可见于S.D.Kung和R.Wu、Potrykus或
Figure A200780022208D0063085919QIETU
和Willmitzer的上述出版物。
通常在转化后,选择一种或多种标记存在的植物细胞或细胞群体,其中所述的标记由与目的基因一起共转移的植物可表达的基因编码,随后将转化的材料再生成整株植物。为了选择转化的植物,在转化中获得的植物材料原则上接受选择条件处理,以至于转化的植物可以与未转化的植物区分。例如,以上文所述方式获得的种子可以播种,在初始培育时期后,通过喷雾进行合适的选择。又一种可能性包括在使用合适选择剂的琼脂平板上生长种子(根据需要在消毒之后),使得仅转化的种子可以生长成植物。或者,转化的植物通过上述那些选择标记的存在筛选。
在DNA转移和再生后,推测的转化植物可以例如使用Southern分析对目的基因的存在、拷贝数和/或基因组构造进行评价。备选或额外地,新引入DNA的表达水平可以使用Northern和/或Western分析进行监测,这两种技术是本领域技术人员众所周知的。
产生的转化植物可以通过多种方法加以增殖,如通过克隆增殖法或经典育种技术。例如,第一代(或T1)转化植物可以进行自交,选择纯合的第二代(或T2)转化体,并且T2植物通过经典育种技术进一步增殖。产生的转化生物可以采取多种形式。例如,它们可以是转化细胞和非转化细胞的嵌合体;克隆转化体(例如被转化以含有表达盒的全部细胞);转化组织和未转化组织的移植体(例如在植物中,与未转化嫩枝嫁接的转化的根状茎)。
本发明明确地扩展至通过文中所述的任意方法产生的任何植物细胞或植物,并扩展至全部植物部分及其繁殖体。本发明进一步扩展至包含已经通过任意前述方法产生的原代转化或转染细胞、组织、器官或整株植物的后代,唯一要求是后代表现与通过本发明方法中的亲代所产生的那些后代相同的一种或多种基因型特征和/或表型特征。
本发明也包括宿主细胞,其含有编码NAC转录因子的分离的核酸。本发明优选的宿主细胞是植物细胞。
本发明也扩展至植物的可收获部分如,但不限于种子、叶、果实、花、茎、根茎、块茎和球茎。本发明进一步涉及衍生自、优选直接衍生自此类植物的可收获部分中的产物,如干燥颗粒或粉末、油、脂肪及脂肪酸、淀粉或蛋白质。
根据本发明的优选特征,调节的表达是增加的表达。增加核酸、基因或基因产物的表达的方法在本领域充分记载。增加表达的方法的实施在文中“定义”部分给出。
如上所述,用于调节(优选增加)编码NAC转录因子的核酸表达的优选方法是在植物中引入并表达编码NAC转录因子的核酸;但是实施该方法的效果(即增强产量相关的性状)还可使用其他熟知的技术达到,例如T-DNA活化、TILLING、同源重组或定向进化。这些技术中的一些的描述在文中“定义”部分给出。
根据本发明的优选特征,本发明方法的实施产生的这样的植物,其相对于对照植物而具有增加生长速率,导致早期生长势,尤其在植物发育早期(在稻和玉米的情况下一般在萌发后3周,但是这将依物种而不同)。因而,本发明提供用于增加植物生长速率的方法,所述方法包括调节编码文中定义的NAC转录因子的核酸在植物中的表达,优选增加表达。本发明也提供相对于对照植物用于获得具有早期生长势的植物的方法,所述方法包括调节、优选增加编码文中定义的NAC转录因子的核酸在植物中的表达。
早期生长势也可以因相对于对照植物增加的植物适应性引起或表现为相对于对照植物增加的植物适应性,其原因在于例如植物更好地适应其环境(即更能够对付多种非生物性或生物性胁迫因素)。具有早期生长势的植物也显示出作物更好的建立(作物整齐地生长,即大多数植物在基本上相同的时间上达到发育各阶段),并显示更好的生长和往往更好的产量。因而,早期生长势可以通过测定多种因子如幼苗生长速率、千粒重、萌发百分数、出苗百分数、幼苗高度、根长度和苗生物量以及众多其他因素而确定。
本发明方法的实施相对于在相当条件下生长的对照植物,赋予在非胁迫条件下或在轻微干旱条件下生长的植物增加的产量。因而根据本发明,提供用于增加在非胁迫条件下或在轻微干旱条件下生长的植物中产量的方法,所述方法包括增加编码NAC转录因子的核酸在植物中的表达。
本发明方法的实施产生相对于在相当条件下生长的对照植物,在营养物缺乏条件下、尤其在氮缺乏条件下生长的具有增加产量的植物。因而根据本发明,提供用于在营养物缺乏条件下生长的植物中增加产量的方法,所述方法包括增加编码POI多肽的核酸在植物中的表达。营养物缺乏可以因营养物的缺乏所致,如氮、磷酸盐及其他含磷化合物、钾、钙、镉、镁、锰、铁和硼等。
在本发明方法中使用编码NAC4转录因子的核酸(例如,SEQ ID NO:52)和NAC4转录因子自身(例如,SEQ ID NO:53)的情况下,发现与对照植物相比,在基本没有胁迫的条件下和胁迫条件下,植物中出现产量和/或种子产量和/或生长速率的增加。
文中定义的“NAC4转录因子”意指任意氨基酸序列,当其用于构建构建NAC系统树(例如图1所示的)时,趋向聚簇于包含SEQ ID NO:53所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
NAC4转录因子也包含基序XI:DSMPRLHADSSCSE,或与基序XI的序列具有一定同一性的基序,所述同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%序列同一性。
Motif XI优选是DS M/V/I P R/K L/I/A H T/A/S D/E SS C/G SE。
Motif XI一般见于SEQ ID NO:53和SEQ ID NO:55的NAC,以及(在系统树中)聚簇于前述SEQ ID NO所代表的NAC,而不是聚簇于任何其他NAC组的NAC。Motif XI可在任何位置包含一个或多个保守氨基酸的取代。
通常植物通过更加缓慢的生长来应答胁迫接触。在重度胁迫条件下,植物甚至可以完全停止生长。另一方面,轻度胁迫在文中定义为当植物接触时不导致植物完全停止与生长丧失重新开始生长能力的任何胁迫。本发明意义上的轻度胁迫导致胁迫植物的生长与非胁迫条件下的对照植物相比,下降不到40%、35%或30%,优选不到25%、20%或15%,更优选不到14%、13%、12%、11%或10%或更低。由于耕作方法(灌溉、施肥、杀虫剂处理)的发展,栽培的作物植物常常不会遇到重度胁迫。因此,由轻度胁迫诱导的受损的生长通常成为农业中不期望的因素。轻度胁迫是植物可能接触的典型胁迫。这些胁迫可以是植物接触的日常的生物和/或非生物(环境)胁迫。典型的非生物或环境胁迫包括由反常的热或冷/冰冻温度产生的温度胁迫;盐胁迫;水胁迫(干旱或过量的水);无氧胁迫;化学毒性和氧化胁迫。非生物性胁迫可以是由水胁迫(尤其因为干旱)、盐胁迫、氧化胁迫或离子胁迫引起的渗透胁迫。化学物质(例如矿物质或营养物质的过高或过低浓度)也可以引起非生物胁迫。生物胁迫一般是由病原如细菌、病毒、真菌和昆虫引起的那些胁迫。文中所用的术语“非胁迫条件”为植物可能遇到的那些允许植物最佳生长的、不显著背离正常气候的条件及其他非生物胁迫条件。本领域技术人员知晓给定地理位置的正常土壤条件和气候条件。
非生物性胁迫导致不利地影响植物生长及生产力的一系列形态学变化、生理学变化、生物化学变化和分子变化(Wang等人,(Planta(2003)218:1-14)。已知干旱、盐、极端温度和氧化胁迫是相互联系的并可以通过相似机制而诱导生长损害及细胞损害。例如,干旱和/或盐化作用主要表现为渗透胁迫,导致细胞内稳态和离子分布的破坏。经常伴随高温或低温、盐或干旱胁迫的氧化胁迫可以造成功能性蛋白和结构蛋白变性。因此,这些多样的环境胁迫常常激活相似的细胞信号途径和细胞应答,如产生胁迫蛋白质、上调抗氧化物质、积累相容性溶质和生长抑制。
既然多种多样的环境胁迫激活相似的路径,本发明关于干旱胁迫的举例说明(编码NAC4转录因子的核酸和NAC4转录因子本身在本发明方法中的用途的情况下)不应视为局限于干旱胁迫,而更应视为表明NAC4编码核酸和NAC4转录因子总体而言参与非生物胁迫的屏显信息(screen)。此外,本发明的方法可以在非胁迫条件下或者轻度干旱条件下实施,以提供相对于对照植物具有增强的产量相关特性(特别是增加的产量和种子产量)的植物。
据报道在干旱胁迫和高盐胁迫之间存在特别高程度的“对话”(Rabbani等人(2003)Plant Physiol 133:1755-1767)。例如,证实干旱和/或盐碱化主要是渗透胁迫,导致细胞中的体内稳态和离子分布的破坏。因此,很明显NAC4转录因子的编码核酸以及NAC4转录因子自身以及其在赋予植物干旱抗性中的用途,也同样可以用于保护植物免受多种其他渗透胁迫。与之相似,很明显NAC4转录因子的编码核酸以及NAC4转录因子自身以及其在赋予植物盐耐受中的用途也可以用于保护植物免受多种其他非生物胁迫的侵害。另外,经常伴随高温或低温、盐或干旱胁迫的氧化胁迫可以造成功能性蛋白和结构蛋白变性。因此,这些多样的环境胁迫常常激活相似的细胞信号途径和细胞应答,如产生胁迫蛋白质、上调抗氧化物质、积累相容性溶质和生长抑制。此外,Rabbani等人(2003,Plant Physiol 133:1755-1767)报导在双子叶植物和单子叶植物之间存在相似的胁迫耐受和应答的分子机制。因此,本发明的方法有利地可用于任何植物。
文中定义的术语“非生物胁迫”用于指水胁迫(由于干旱或过多的水引起的)、缺氧胁迫、盐胁迫、营养物胁迫、温度胁迫(由于热、冷或冰冷温度引起的)、化学毒性胁迫和氧化胁迫中的任一种或多种胁迫。根据本发明的一个方面,非生物胁迫是渗透胁迫,选自水胁迫、盐胁迫、氧化胁迫和离子胁迫。优选,水胁迫是干旱胁迫。术语盐胁迫不限于普通的盐(NaCl),还可以是NaCl、KCl、LiCl、MgCl2、CaCl2、亚磷酸盐等等中的任一种或多种盐。营养物胁迫可由营养物缺乏或过剩导致,所述营养物例如氮、磷酸盐和含有磷的其他化合物、钾、钙、镉、镁、锰、铁和硼等。
增加的对非生物胁迫的耐受表现于在如上定义的非生物胁迫条件下增加的植物产量。在本发明涉及NAC4转录因子和其编码核酸的用途的范围内,这类增加的产量可包括一个或多个下列方面(每一方面均与对照植物相比而言):增加的种子尺寸、增加的种子重量、增加的地上部分生物量、增加的植物高度、增加的根生物量、增加的每圆锥花序的花的数目和增加的第一圆锥花序(first panicle)的数目。
根据本发明,提供了相对于对照植物,在非生物胁迫条件下生长的植物中增强产量相关性状的方法,该方法包括在植物中调节编码NAC4转录因子的核酸的表达。根据本发明的一个方面,非生物胁迫是选自水胁迫、盐胁迫、氧化胁迫、营养物胁迫和离子胁迫中的一种或多种的渗透胁迫。优选,水胁迫是干旱胁迫。
本发明的方法有利地应用于任意植物。
特别用于本发明方法中的植物包括属于植物界超家族的全部植物,尤其单子叶植物和双子叶植物,包括饲用或饲料豆类、观赏植物、粮食作物、树或灌木。根据本发明优选的实施方案,植物是作物植物。作物植物的实例包括大豆、向日葵、卡诺拉油菜、苜蓿、油菜、棉花、番茄、马铃薯和烟草。还优选地,植物是单子叶植物。单子叶植物的实例包括甘蔗。更优选地,植物是谷物。谷物的实例包括稻、玉米、小麦、大麦、粟、黑小麦、黑麦、高粱和燕麦。早期生长势是尤其优选的性状的植物包括稻、玉米、小麦、向日葵、高粱。
本发明也包括编码NAC转录因子的核酸的用途和NAC转录因子多肽的用途,用于增强产量相关性状。
编码NAC转录因子的核酸或NAC转录因子本身可以用于育种程序中,其中鉴定到可以遗传地与编码NAC转录因子的基因连接的DNA标记。所述的核酸/基因或NAC转录因子本身可以用来定义分子标记。这种DNA或蛋白质标记随后可以在育种程序中用来选择具有本发明方法中如上文所定义的增强的产量相关性状的植物。
编码NAC转录因子的核酸/基因的等位变体也可以用于标记辅助的育种程序中。这类育种程序有时需要通过使用例如EMS诱变法对植物作诱变处理而引入等位基因变异;备选地,该程序可以从非人为引起的所谓“自然”起源的一组等位变体开始。随后进行等位变体的鉴定,例如通过PCR法。此后是用于选择所讨论及导致增加产量的序列的优异等位变体的步骤。一般通过监测含有所讨论序列的不同等位变体的植物的生长性能而实施选择。可以在温室中或田间监测生长性能。其他任选步骤包括将鉴定了优异等位变体的植物与另一种植物杂交。这可以用来例如产生目标表型特征的组合。
编码NAC转录因子的核酸也可以用作探针以便对基因进行遗传作图或物理作图,所述探针作为所述基因的一部分及与这些基因关联的性状的标记。此类信息可以用于植物育种中,以便开发具有想要表型的株系。编码NAC转录因子的核酸的这类用途仅需要具有至少15个核苷酸长度的核酸序列。编码NAC转录因子的核酸可以用作限制性片段长度多态性(RFLP)标记。限制性消化的植物基因组DNA的Southern印迹(Sambrook J,Fritsch EF和Maniatis T(1989)Molecular Cloning,A Laboratory Manual)可以用编码NAC转录因子的核酸探测。产生的结合图式随后可以使用计算机程序如MapMaker(Lander等人(1987)Genomics 1:174-181)进行遗传分析以构建遗传图。此外,该核酸可以用来探测含有经限制性内切核酸酶处理的一组个体的基因组DNA的Southern印迹,其中所述的一组个体代表具有确定的遗传杂交的亲代和后代。DNA多态性的分离被标出并用来计算编码NAC转录因子的核酸在使用这个群体先前所获得的遗传图中的位置(Botstein等人(1980)Am.J.Hum.Genet.32:314-331)。
在Bematzky和Tanksley(1986)Plant Mol.Biol.Reporter 4:37-41中描述了植物基因衍生的探针的产生和其在遗传作图中的用途。众多出版物描述了使用以上所提及的方法学或其改良方法对特定cDNA克隆的遗传作图。例如,F2互交群、回交群、随机交配群、邻近纯合系和其他个体群体可以用于作图。此类方法学是本领域技术人员众所周知的。
所述核酸探针也可以用于物理作图(即序列在物理图上的排列;见Hoheisel等在:Non-mammalian Genomic Analyasis:A Practical Guide,Academic press 1996,第319-346页及其中引用的参考文献)。
在另一实施方案中,核酸探针可以在直接荧光原位杂交(FISH)作图法(Trask(1991)Trends Genet.7:149-154)中使用。尽管当前的FISH作图法支持使用大型克隆(几个kb至几百个kb;见Laan等人(1995)Genome Res.5:13-20),然而灵敏度的改善可以允许使用更短探针进行FISH作图。
本发明还提供相对于对照植物在植物中增强产量相关性状的方法,其包括在植物中调节编码AP2-2多肽的核酸的表达。
用于调节(优选增加)编码AP2-2多肽的核酸的表达的优选方法是在植物中引入并表达编码AP2-2多肽的核酸。
根据Nakano等人(2006)的定义,文中定义的术语“AP2-2多肽”意指分类为ERF蛋白质的转录因子,更具体地是分类为ERF蛋白质VII组的成员。ERF蛋白质VII组除了存在单个AP2/ERF结构域(是所有ERF蛋白质的部分),还由其他基序表征,例如CMVII-1至CMVII-8(Nakano等人,2006)。这些CMVII基序基于拟南芥和稻序列的分析描述,是拟南芥和/或稻序列的部分(图2),但也存在于其他物种的ERF蛋白质VII组。
可用于本发明方法中的AP2-2多肽包含保守序列基序XII(SEQ IDNO:133):
(R/I/V/L/K)(R/K/Q/D/E/A)(I/L)(R/Y/H)G(A/S/R/K/T/D/G/H/L/N)(K/T/R/N/G)A(K/R/E)(V/L/P/T)NF(P/V)。
优选地,基序XII是
(R/I/K)(R/K/Q/D/A)(I/L)(R/Y/H)G(A/S/R/K/T/D/E/G/H/L/N)(K/T/R/N/G)A(K/R/E)(V/L/P/T)NF(P/V/A)。
优选地,可用于本发明方法中的AP2-2多肽还包含一个或多个以下基序:
基序XIII(SEQ ID NO:134):
MCGG(A/S)(I/V/L)(I/L)(S/H/A/Y/G/P/E)(D/G/H/Y/E/Q/N)。
优选地,基序XIII是MCGG(A/S)I(I/L)(S/H/A/Y)(D/G/H/Y/E)。
更优选基序XIII是MCGG(A/S)I(I/L)(S/H)(D/G/H/E)。
基序XIV(SEQ ID NO:135)
(K/N/R/S/H/M/Q/P/A/E)(R/K/H/A/G/E/V/P/M)(E/K/A/R/S/Q/T/V/G/H/P)(R/K/Q/S/G)(K/G/P/S/R/T/A/N)(T/N/R/S/A/Y/H/G)(L/Q/H/V/R/K/A/P/G)(Y/F)(R/W/K/L/M)G(I/V)(R/Q/H)(R/Q/W/K)R(P/K/T)。
优选地,基序XIV是:
(K/N/R/S/H/M)(R/K/H/A/G/E/V/P)(E/K/A/R/S/Q)(R/K/Q/S)(K/G/P/S/R/T)(T/N/R/S/A/Y/H/G)(L/Q/H/V/R/K/A/P/G/F/I)(Y/F/L)(R/W/K/L/M/H)G(I/V)(R/Q/H)(R/Q/W/K)R(P/K/T)。
更优选地,基序XIV是:
(K/N/R/S)(R/K/H)(E/K/A/R)(R/K/Q)(K/G/P/S)(T/N/R/S/A)(L/Q/H/V/R/K)(Y/F)(R/W/K)G(I/V)R(R/Q)RP。
最优选地,基序XIV是:(K/N)(R/H)KRKNQ(Y/F)RGIRQRP。
基序XV(SEQ ID NO:136):
SD(Q/T/E/V)(G/S)SNSF(G/D/E/S/N)(C/S)S(D/E)(F/Y/L)(G/S)(W/Q/L)(E/G/S)(N/E/D)。
优选地,基序XV是:
SD(Q/T)(G/S/A)SNS(F/I)(G/D)(C/S)S(D/E)F(G/S)(W/Q/L)(E/S)(N/D)。
基序XVI(SEQ ID NO:137):
(L/I/F/M)W(S/T/N/M)(F/Y/L/I)(D/E/Q/G)(N/D/H/E)(I/Y/F/S/M/L/V/D/H/N/E/G)。
优选地,基序XVI是
(L/I/M)W(S/T/M)(F/Y/L/I)(D/E/Q/G)(N/D/E)(I/Y/F/S/M/L/V/D)。
更优选地,基序XVI是(L/I/M)W(S/M)(F/L/I)D(D/E)(I/M/L/V)。
基序XVII(SEQ ID NO:138):
(D/E/S)(F/A/W/D)(E/A)(A/D/L)(D/A/G/E)(F/G/L)(N/E/R/G/Q/W)(E/G/V/D/R)F(E/K/V/Y/G/D/L/I)(V/R/D/S/N/A/E)(D/G/T/E/R/A/Y/L/F)。
优选地,基序XVII是
(D/E/S)(F/A/W/D)(E/A)(A/D)(D/A)(F/G)(E/R/Q/W)(E/G/D/R)F(E/K/Y/G/D/L/I)(V/R/D/S/N/A/E)(D/G/T/E/R)。
进一步优选地,基序XVII是
(D/E/S)(F/A)(E/A)(A/D)(D/A)F(E/R/Q/W)(E/G/D/R)F(E/K/Y/G/D)(V/R/D/S/N)(D/G/T/E)。
更优选地,基序XVII是
(D/E/S)(F/A)(E/A)(A/D)DF(E/R/Q/W)(E/G)F(E/K/Y)(V/R/D/S)(D/G/T)。
最优选地,基序XVII是(D/E)FEADF(E/R/Q)EF(E/K)(V/R/D)(D/G)。
这些基序主要来自拟南芥和稻序列,因此允许在来自其他植物物种的AP2-2序列的这些基序中有一个或多个保守取代。
此外,AP2-2多肽(至少以它们天然的形式)可具有DNA-结合活性。测定DNA-结合活性的工具和技术是本领域公知的。
术语“结构域”和“基序”定义在文中的“定义”部分。存在鉴定结构域的特定数据库。实例在文中的“定义”部分给出。
在SMART数据库中对SEQ ID NO:132多肽序列的分析表明存在AP2结构域(SMART登录号SM00380,图2)。此结构域是植物特有的,且已知发挥蛋白质-DNA相互作用的作用(结合GCC-盒,主要响应乙烯)。
本发明通过用由SEQ ID NO:131代表的编码多肽序列SEQ IDNO:132的核酸序列转化的植物加以说明,然而,本发明的实施不限于这些序列;本发明的方法可以使用如文中所定义的任意AP2-2-编码核酸或AP2-2多肽有利地进行。
编码AP2-2多肽的核酸的实例在文中实施例9的表14中给出。这类核酸用于实施本发明的方法。实施例9的表14中给出的氨基酸序列是SEQID NO:132所代表的AP2-2多肽的直向同源物和旁系同源物的实例序列,术语“直向同源物”和“旁系同源物”如文中所定义。其他直向同源物和旁系同源物通过开展所谓交互性blast搜索而容易地鉴定。
本发明还提供迄今未知的AP2-2编码核酸和AP2-2多肽。
根据本发明的另一实施方案,因此提供分离的核酸分子,其包含:
(i)SEQ ID NO:341、SEQ ID NO:343或SEQ ID NO:345中的一个所示的核酸;
(ii)SEQ ID NO:341、SEQ ID NO:343或SEQ ID NO:345中的一个所示的核酸的互补物;
(iii)核酸,其编码与SEQ ID NO:341、SEQ ID NO:343或SEQ IDNO:3454中的一个所示的氨基酸序列具有一定序列同一性的POI多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
根据本发明的另一实施方案,也提供分离的多肽,其包含:
(i)SEQ ID NO:342、SEQ ID NO:344或SEQ ID NO:346中的一个所示的氨基酸序列;
(ii)与SEQ ID NO:342、SEQ ID NO:344或SEQ ID NO:346中的一个所示的氨基酸序列具有一定序列同一性的氨基酸序列,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;
(iii)如上(i)或(ii)中给出的氨基酸序列的衍生物。
核酸变体也可用于实施本发明的方法。此类核酸变体的实例包括编码实施例9的表14中给出的任一氨基酸序列的同源物和衍生物的核酸,术语“同源物”和“衍生物”如文中所定义。也可用于本发明方法中的是编码实施例9的表14中给出的任一氨基酸序列的直向同源物或旁系同源物的同源物和衍生物的核酸。用于本发明方法中的同源物和衍生物与它们衍生自的未修饰的蛋白质具有基本相同的生物和功能活性。
用于实施本发明方法的其他核酸变体包括编码AP2-2多肽的核酸的部分、与编码AP2-2多肽的核酸杂交的核酸、编码AP2-2多肽的核酸的剪接变体、编码AP2-2多肽的核酸的等位变体,以及通过基因改组获得的编码AP2-2多肽的核酸的变体。术语杂交序列、剪接变体、等位变体和基因改组如文中所述。
编码AP2-2多肽的核酸不需要是全长核酸,因为本发明方法的实施不依赖使用全长核酸序列的使用。本发明提供在植物中增强产量相关性状的方法,其包括在植物中引入和表达实施例9表14中给出的核酸序列中任一个的部分,或实施例9表14中给出的氨基酸序列中任一个的直向同源物、旁系同源物或同源物的编码核酸的部分。
核酸的部分可以例如通过对该核酸产生一个或多个缺失而制备。所述的部分可以以分离的形式加以使用或它们可以与其他编码性(或非编码性)序列融合,以便例如产生组合几种活性的蛋白质。当与其他编码序列融合时,翻译时产生的所得多肽可以比对该蛋白质部分所预测的多肽更大。
用于本发明方法中的部分编码文中定义的AP2-2多肽,且具有与实施例9表14中给出的氨基酸序列基本相同的生物学活性。优选地,此部分是在实施例9表14中给出的任何一种核酸的部分,或实施例9表14中给出的氨基酸序列中任一个的直向同源物或旁系同源物的编码核酸的部分。此部分的长度按照增加的优选顺序为至少600、800、900或1000个连续核苷酸,其中所述的连续核苷酸是实施例9表14中给出的任何一种核酸序列,或是实施例9表14中给出的氨基酸序列中任一个的直向同源物或旁系同源物的编码核酸。最优选地,此部分是核酸SEQ ID NO:131的部分。优选地,此部分编码包含如文中所定义一个或多个结构域或基序的氨基酸序列。优选地,此部分编码氨基酸序列,所述氨基酸序列当其用于构建系统树时,趋向聚类于包含SEQ ID NO:132所示的氨基酸序列的AP2-2多肽组,而不是聚类于任何其他组。
用于本发明方法中的另一核酸变体是能够在降低的严格条件下、优选在严格条件下与编码如文中所定义的AP2-2多肽的核酸杂交,或与如文中所定义的部分杂交的核酸。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达能够与实施例9表14中给出的任何一种核酸杂交的核酸,或包括在植物中引入并表达如此核酸,其能够与实施例9表14中给出的任意核酸序列的直向同源物、旁系同源物或同源物的编码核酸杂交的核酸。
用于本发明方法中的杂交序列编码文中定义的AP2-2多肽,且具有与实施例9表14中给出的氨基酸序列的基本相同的生物学活性。优选地,杂交序列能够与实施例9表14中给出的任一核酸杂交或与任一这些序列的部分杂交,其中所述的部分如上文所定义,或者其中杂交序列能够与实施例9表14中给出的任意氨基酸序列的直向同源物或旁系同源物的编码核酸杂交。最优选地,杂交序列能够与如SEQ ID NO:131所代表的核酸或与其部分杂交。优选地,杂交序列编码包含任何一种或多种如文中所定义的基序或结构域的氨基酸序列。优选地,杂交序列编码氨基酸序列,所述氨基酸序列当其用于构建系统树时,趋向聚类于包含SEQ ID NO:132所示的氨基酸序列的AP2-2多肽组,而不是聚类于任何其他组。
用于本发明方法中的另一种核酸变体是编码如上文所定义的AP2-2多肽的剪接变体,剪接变体如文中所定义。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达实施例9表14中给出的任何一种核酸的剪接变体,或实施例9表14中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的剪接变体。
优选的剪接变体是由SEQ ID NO:131代表的核酸的剪接变体,或编码SEQ ID NO:132的直向同源物或旁系同源物的核酸的剪接变体。优选地,由所述剪接变体编码的氨基酸序列包含任何一种或多种如文中所定义的基序或结构域。优选地,剪接变体编码的氨基酸序列当其用于构建系统树时,趋向聚类于包含SEQ ID NO:132所示的氨基酸序列的AP2-2多肽组,而不是聚类于任何其他组。
用于实施本发明方法的另一种核酸变体是编码如上文所定义的AP2-2多肽的核酸的等位变体,等位变体如文中所定义。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达实施例9表14中给出的任何一种核酸的等位变体,或包括在植物中引入并表达实施例9表14中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的等位变体。
用于本发明方法中的等位变体具有与AP2-2多肽SEQ ID NO:132和实施例9表14中所示的任意氨基酸基本相同的生物学活性。等位变体天然存在,且包含在本发明方法中的是这些天然等位基因的用途。优选地,等位变体是等位变体SEQ ID NO:131或编码SEQ ID NO:132的直向同源物或旁系同源物的核酸的等位变体。优选地,由所述等位变体编码的氨基酸包含任何一种或多种如文中所定义的基序或结构域。优选地,等位变体编码的氨基酸序列当其用于构建系统树时,趋向聚类于包含SEQ ID NO:132所示的氨基酸序列的AP2-2多肽组,而不是聚类于任何其他组。
基因改组或定向进化也可以用来产生编码如上文定义的AP2-2多肽的核酸的变体;术语“基因改组”如文中所定义。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达实施例9表14中给出的任何一种核酸的变体,或包括在植物中引入并表达实施例9表14中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的变体,所述变体核酸通过基因改组获得。
优选地,通过基因改组获得的变体核酸编码的氨基酸包含任何一种或多种如文中所定义的基序或结构域。优选地,编码通过基因改组获得的变体核酸的氨基酸序列当其用于构建系统树时,趋向聚类于包含SEQ ID NO:132所示的氨基酸序列的AP2-2多肽组,而不是聚类于任何其他组。
另外,核酸变体也可以通过位点定向诱变获得。几种方法可用于实现位点定向诱变,最常见的是基于PCR的方法(Current Protocols inMolecular Biology.Wiley编著)。
编码AP2-2多肽的核酸可以来自任何自然来源或人工来源。核酸可以从其天然形式就组成和/或基因组环境方面通过人类有意操作而加以修饰。编码AP2-2多肽的核酸优选地来自植物,还优选来自双子叶植物,更优选来自禾本科,进一步优选来自稻属,最优选来自稻。
本发明方法的实施产生具有增强的产量相关性状的植物。尤其本发明方法的实施产生相对于对照植物而具有增加的产量、尤其增加的种子产量的植物。在文中的“定义”部分中更详细地描述了术语“产量”和“种子产量”。但是,应当注意的是术语“产量相关性状”不包含植物细胞的代谢物,增强的产量相关性状不是增加的胁迫抗性的结果。
本发明提供相对于对照植物增加植物的产量、尤其增加植物的种子产量的方法,所述方法包括在植物中调节编码文中定义的AP2-2多肽的核酸的表达,优选增加其表达。
根据本发明的一个优选特征,本发明方法的实施产生相对于对照植物而具有增加的生长速率的植物。因而根据本发明,提供用于增加植物生长速率的方法,所述方法包括在植物中调节编码文中定义的AP2-2多肽的核酸的表达,优选增加其表达。
本发明方法的实施相对于在相当条件下生长的合适对照植物,赋予在非胁迫条件下或在轻微干旱条件下生长的植物增加的产量。因而根据本发明,提供用于增加在非胁迫条件下生长的植物中产量的方法,所述方法包括增加编码AP2-2多肽的核酸在植物中的表达。
本发明方法的实施产生相对于在相当条件下生长的对照植物,在营养物缺乏条件下、尤其在氮缺乏条件下生长的植物增加的产量。因而根据本发明,提供用于在营养物缺乏条件下生长的植物中增加产量的方法,所述方法包括增加编码POI多肽的核酸在植物中的表达。营养物缺乏可以因营养物的缺乏所致,如氮、磷酸盐及其他含磷化合物、钾、钙、镉、镁、锰、铁和硼等。
本发明包含通过本发明的方法获得的植物或植物部分(包括种子)。此植物或植物部分包含编码文中定义的AP2-2多肽的核酸转基因。
本发明还提供遗传构建体和载体以促进在植物中引入和/或表达编码AP2-2多肽的核酸。该基因构建体可以插入适于转化至植物内并适于在转化的细胞中表达目的基因的市售载体。本发明也提供文中定义的基因构建体在本发明方法中的用途。
更具体地本发明提供了构建体,其包含:
(a)编码如上定义的AP2-2多肽的核酸;
(b)能够驱动(a)的核酸序列表达的一种或多种调控序列;和任选地
(c)转录终止序列。
术语“对照序列”和“终止序列”如中所定义。用包含上述任意核酸的载体转化植物。技术人员非常了解为成功转化、选择和增殖含有目的序列的宿主细胞而必须于载体上存在的遗传元件。目的序列有效地与一种或多种调控序列(至少与启动子)连接。
有利地,任何类型的启动子可以用来驱动核酸序列的表达。组成型启动子尤其可用于本发明的方法,组成型启动子优选是强组成型启动子。应当明白本发明的适用性不限于由SEQ ID NO:131所代表的AP2-2多肽的编码核酸,同时本发明的适用性也不限于由组成型启动子驱动时编码AP2-2多肽的核酸的表达。
该组成型启动子优选地是GOS2启动子,更优选地,该组成型启动子是稻GOS2启动子。组成型启动子的其他实例参见文中“定义”部分的表2a。
其他调控序列(除启动子、增强子、沉默子、内含子序列、3’UTR和/或5’UTR区之外)可以是蛋白质和/或RNA稳定化元件。本领域技术人员会知道或可以轻易地获得此类序列。
本发明的遗传构建体还可以包括需要用于在特定细胞类型中维持和/或复制的复制起点序列。一个实例是当需要将遗传构建体在细菌细胞中维持为附加型遗传元件(例如质粒或粘粒分子)时。优选的复制起点包括,但不限于f1-ori和colE1。
为检测本发明方法中所用核酸序列的成功转移和/或选择含有这些核酸的转基因植物,最好使用标记基因(或报道基因)。因此,遗传构建体可以任选地包含选择标记基因。选择标记在文中的“定义”部分进一步详述。一旦不再需要标记基因,它们可从转基因细胞中除去或切除。标记(基因)除去或切除的技术是本领域已知的,可用的技术描述于上面的定义部分。
本发明也提供相对于对照植物产生具有增强的产量相关性状的转基因植物的方法,其包括在植物中引入并表达编码如上定义的AP2-2多肽的任意核酸。
更具体地,本发明提供用于产生具有增加的产量的转基因植物的方法,所述方法包括:
(i)在植物或植物细胞中引入并表达编码AP2-2多肽的核酸;和
(ii)在促进植物生长和发育的条件下培育植物细胞。
核酸可以直接引入植物细胞或引入植物本身(包括引入组织、器官或植物的任何其他部分)。根据本发明的优选特征,核酸优选地通过转化而引入植物。术语“转化”在文中的“定义”部分进一步详述。
遗传修饰的植物细胞可以通过技术人员熟悉的所有方法加以再生。合适的方法可以在S.D.Kung和R.Wu,Potrykus或
Figure A200780022208D0080090347QIETU
和Willmitzer的前述出版物中找到。
通常在转化后,对植物细胞或细胞群体选择一种或多种标记的存在,其中所述的标记由与目的基因一起共转移的植物可表达基因编码,随后将转化的材料再生成整株植物。为选择转化的植物,在转化中获得的植物材料原则上接受选择条件处理,以至于转化的植物可以与未转化的植物区分。例如。以上文所述方式获得的种子可以播种,在初始培育时期后,通过喷雾进行合适的选择处理。又一种可能性包括在使用合适选择剂的琼脂平板上培育种子(根据需要在消毒之后),以至于仅转化的种子可以生长成植物。备选地,对转化的植物筛选选择标记(如上文所述的那些选择标记)的存在。
在DNA转移和再生后,推测的转化植物可以例如使用Southern分析对目的基因的存在、拷贝数和/或基因组构造进行评价。备选或额外地,新引入DNA的表达水平可以使用Northern和/或Western分析监测,这些技术是本领域技术人员众所周知的。
产生的转化植物可以通过多种方法加以增殖,如通过克隆性增殖法或经典育种技术。例如,第一代(或T1)的转化植物可以进行自交并选择纯合的第二代(或T2)转化体,并且T2植物随后可以通过经典育种技术进一步繁殖。产生的转化生物可以采取多种形式。例如,它们可以是转化细胞和非转化细胞的嵌合体;克隆性转化体(例如受转化以含有表达盒的全部细胞);转化组织和未转化组织的移植体(例如在植物中,与未转化嫩枝嫁接的转化的根茎)。
本发明明确地扩展至通过文中所述的任一方法产生的任何植物细胞或植物,并扩展至全部植物部分及其繁殖体。本发明进一步扩展至包含已经通过任一前述方法产生的原代转化或转染细胞、组织、器官或整株植物的后代,唯一要求是后代表现与通过本发明方法中的亲代所产生的那些后代相同的基因型特征和/或表型特征。
本发明也包括宿主细胞,其含有编码如上文所定义的AP2-2多肽的分离核酸。本发明优选的宿主细胞是植物细胞。宿主植物对于本发明方法中所用核酸或载体、表达盒或构建体或载体而言原则上有利地是能够合成本发明方法中所用多肽的全部植物。
本发明方法有利地适用于任何植物。特别用于本发明方法中的植物包括属于植物界超家族的全部植物,尤其单子叶植物和双子叶植物,包括饲用或饲料豆类、观赏植物、粮食作物、树或灌木。根据本发明优选的实施方案,植物是作物植物。作物植物的实例包括大豆、向日葵、卡诺拉油菜、苜蓿、油菜、棉花、番茄、马铃薯和烟草。还优选地,植物是单子叶植物。单子叶植物的实例包括甘蔗。更优选地,植物是谷物。谷物的实例包括稻、玉米、小麦、大麦、粟、黑麦、黑小麦、高粱和燕麦。
本发明也扩展至植物的可收获部分如,但不限于种子、叶、果实、花、茎、根状茎、块茎和球茎。本发明进一步涉及来自自、优选直接来自这种植物的可收获部分中的产物,如干燥颗粒或粉末、油、脂肪及脂肪酸、淀粉或蛋白质。
根据本发明的优选特征,受调节的表达是增加的表达。增加核酸、基因或基因产物的表达的方法在现有技术中充分记载。增加表达的方法的实例在文中“定义”部分给出。
如上文提及,用于调节(优选增加)编码AP2-2多肽的核酸表达的优选方法是在植物中引入并表达编码AP2-2多肽的核酸;然而实施所述方法的作用即增强产量相关性状也可以使用众所周知的其他技术实现。下文是对这些技术中某些的描述。
本发明的作用也可以使用T-DNA激活或TILLING(基因组内定向诱导的局部损伤)再现,其描述同样参见“定义”部分。
本发明的作用也可以使用同源重组再现,其描述同样参见“定义”部分。
本发明也包括编码文中所述AP2-2多肽的核酸的用途和这些AP2-2多肽的用途,其用于增强植物中的任意上述产量相关性状。
编码文中所述AP2-2多肽的核酸或AP2-2多肽本身可以用于育种程序中,其中鉴定到可以遗传地与编码AP2-2多肽的基因连接的DNA标记。所述的核酸/基因或AP2-2多肽本身可以用来定义分子标记。这种DNA或蛋白质标记随后可以在育种程序中用来选择具有本发明方法中如上文所定义的增强的产量相关性状的植物。
编码AP2-2多肽的核酸/基因的等位变体也可以用于标记辅助的育种程序中。这种育种程序有时需要通过使用例如EMS诱变法对植物进行诱变处理而引入等位基因变异;备选地,该程序可以从非人为引起的所谓“自然”起源的一组等位变体开始。随后进行等位变体的鉴定,例如通过PCR法。此后是用于选择所讨论及导致增加产量的序列的优异等位变体的步骤。一般通过监测含有所讨论序列的不同等位变体的植物的生长性能而实施选择。可以在温室中或田间监测生长性能。其他任选步骤包括将鉴定了优异等位变体的植物与另一种植物杂交。这可以用来例如产生目标表型特征的组合。
编码AP2-2多肽的核酸也可以用作探针以便对基因进行遗传作图或物理作图,所述探针作为所述基因的一部分及与这些基因关联的性状的标记。此类信息可以用于植物育种中,以便开发具有想要表型的株系。编码AP2-2多肽的核酸的这种用途仅需要具有至少15个核苷酸长度的核酸序列。编码AP2-2多肽的核酸可以用作限制性片段长度多态性(RFLP)标记。限制性消化的植物基因组DNA的Southern印迹(Sambrook J,Fritsch EF和Maniatis T(1989)Molecular Cloning,A Laboratory Manual)可以用编码AP2-2多肽的核酸探测。产生的结合图式随后可以使用计算机程序如MapMaker(Lander等人(1987)Genomics 1:174-181)进行遗传分析以构建遗传图。此外,该核酸可以用来探测含有经限制性内切核酸酶处理的一组个体的基因组DNA的Southern印迹,其中所述的一组个体代表具有确定的遗传杂交的亲代和后代。DNA多态性的分离被标出并用来计算编码AP2-2多肽的核酸在使用这个群体先前所获得的遗传图中的位置(Botstein等人(1980)Am.J.Hum.Genet.32:314-331)。
在Bernatzky和Tanksley(1986)Plant Mol.Biol.Reporter 4:37-41中描述了植物基因衍生的探针的产生和其在遗传作图中的用途。众多出版物描述了使用以上所提及的方法学或其改良方法对特定cDNA克隆的遗传作图。例如,F2互交群、回交群、随机交配群、邻近纯合系和其他个体群体可以用于作图。此类方法学是本领域技术人员众所周知的。
所述核酸探针也可以用于物理作图(即序列在物理图上的排列;见Hoheisel等在:Non-mammalian Genomic Analyasis:A Practical Guide,Academic press 1996,第319-346页及其中引用的参考文献)。
在另一实施方案中,核酸探针可以在直接荧光原位杂交(FISH)作图法(Trask(1991)Trends Genet.7:149-154)中使用。尽管当前的FISH作图法支持使用大型克隆(几个kb至几百个kb;见Laan等人(1995)Genome Res.5:13-20),然而灵敏度的改善可以允许使用更短探针进行FISH作图。
用于遗传作图及物理作图的多种基于核酸扩增的方法可以使用所述核酸而实施。实例可见于文中的“定义”部分。
本发明还提供相对于对照植物在植物中增强产量相关性状的方法,其包括在植物中调节编码AP2-70-样多肽的核酸的表达。
本发明还提供迄今未知的AP2-70-样编码核酸和AP2-70-样多肽。
根据本发明的另一实施方案,因此提供分离的核酸分子,其包含:
(i)SEQ ID NO:257所示的核酸;
(ii)SEQ ID NO:257所示的核酸的互补物;
(iii)核酸,其编码与SEQ ID NO:258所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;以及其编码与SEQ ID NO:331:PFLMQWLNLLPLPVLDSSSWCPEHFHNSESDALP(其代表SEQ IDNO:258的C末端区)所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
根据本发明的另一实施方案,也提供分离的多肽,其包含:
(i)SEQ ID NO:258所示的氨基酸序列;
(ii)与SEQ ID NO:258所示的氨基酸序列具有一定序列同一性的氨基酸序列,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;以及与SEQ ID NO:331:PFLMQWLNLLPLPVLDSSSWCPEHFHNSESDALP(其代表SEQ ID NO:258的C末端区)所示的氨基酸序列具有一定序列同一性的氨基酸序列,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
(iii)如上(i)或(ii)中给出的氨基酸序列的衍生物。
用于调节(优选增加)编码AP2-70-样多肽的核酸的表达的优选方法是在植物中引入并表达编码AP2-70-样多肽的核酸。
下文中“本发明方法中所用的蛋白质”的任何引用意指文中定义的AP2-70-样多肽。下文中“本发明方法中所用的核酸”的任何引用意指能够编码此类AP2-70-样多肽的核酸。待引入植物(并且因而用于实施本发明方法中)的核酸是编码现在所述类型蛋白质的任意核酸,下文又称作“AP2-70-样核酸”或“AP2-70-样基因”。
根据Nakano等人,2006的分类,下文定义的AP2-70-样多肽落入Ib组(A-6)的范围。
下文定义的“AP2-70-样多肽”意指包含下列的任意多肽:
(i)SEQ ID NO:332:YRGVRQRHWGKWVAEIRLPRNRTRLWLGTFDTAEEAALAYDSAAFRLRGESARLNF所示的AP2DNA-结合结构域,或与SEQ ID NO:332所示的结构域具有一定序列同一性的结构域,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和
(ii)与SEQ ID NO:258所示的(稻)多肽序列具有一定序列同一性的多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和
(iii)包含SEQ ID NO:333:RLPXNX1RXRXWLGT F/YD/E T/S所示基序XVIII的多肽,其中X是任意氨基酸,且X1是0、1或更多,最多至30、空位;和
(iv)包含SEQ ID NO:334:RG D/E所示基序XIX的多肽。
上面(i)项描述的AP2DNA-结合结构域中的YRG和LAYD(如下突出显示)是优选的特定DNA-结合盒。
SEQ ID NO:332:YRGVRQRHWGKWVAEIRLPRNRTRLWLGTFDTAEEAALAYDSAAFRLRGESARLNF。
优选地,上面(i)项描述的AP2DNA-结合结构域至少包含残基LPRNRTRLWLGTFDT。
基序XVIII(SEQ ID NO:333)优选是RLP K/R/Q NX1R T/V/M RL/V WLGT F/Y D/E T/S,其中X1是0、1或更多,最多至30、空位。
更优选地,基序XVIII(SEQ ID NO:333)是RLPRNX1RTRLWLGTFDT,其中X1是0、1或更多,最多至30、空位。
文中定义的AP2-70多肽还可以包含一个或多个以下基序:
基序XX/SEQ ID NO:335:WDESESFLLHKYPSLEIDWDAILS,或与基序XX具有一定的序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高。改编自Nakano等人,2006(CMI-1)。
基序XXI/SEQ ID NO:336:GPPLHAAVDAKLHAICH,或与基序XXI具有一定的序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高。改编自Nakano等人,2006(CMI-2)。
基序XXII/SEQ ID NO:337:GANYLTPAQVLHVQAQLQRLRRP,或与基序XXII具有一定的序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高。改编自Nakano等人,2006(CMI-3)。
基序XXIII/SEQ ID NO:338:VDSKELMGALAPSMVSFSYPCSEQSASS,或与基序XXIII具有一定的序列同一性,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高。改编自Nakano等人,2006(CMI-4)。
上述任意基序XVIII,和XX至XXIII可在任意位置包含一个、两个或三个保守和/或非保守改变和/或缺失。
术语“结构域”和“基序”定义在文中的“定义”部分。存在鉴定结构域的特定数据库。实例在文中的“定义”部分给出。
另外,AP2-70-样多肽(至少以其天然形式)一般具有DNA结合活性。测定DNA结合活性的工具和技术是本领域已知的。
本发明通过用由SEQ ID NO:257代表的编码多肽序列SEQ IDNO:258的核酸序列转化的植物加以说明,然而,本发明的实施不限于这些序列。本发明方法可以使用如文中所定义的任意AP2-70-样编码核酸或AP2-70-样多肽有利地进行。
编码AP2-70-样多肽的核酸序列的实例在文中实施例18的表18中给出。这类核酸可用于实施本发明的方法。实施例18的表18中给出的氨基酸序列是SEQ ID NO:258所代表的AP2-70-样多肽的直向同源物和旁系同源物的实例序列,术语“直向同源物”和“旁系同源物”如文中所定义。
核酸变体也可用于实施本发明的方法。此类核酸变体的实例包括编码实施例18的表18中给出的任一氨基酸序列的同源物和衍生物的核酸,术语“同源物”和“衍生物”如文中所定义。也可用于本发明方法中的是编码实施例18的表18中给出的任一氨基酸序列的直向同源物或旁系同源物的同源物和衍生物的核酸。用于本发明方法中的同源物和衍生物与它们衍生自的未修饰的蛋白质具有基本相同的生物和功能活性。
用于实施本发明方法的其他核酸变体包括编码AP2-70-样多肽的核酸的部分、与编码AP2-70-样多肽的核酸杂交的核酸、编码AP2-70-样多肽的核酸的剪接变体、编码AP2-70-样多肽的核酸的等位变体,以及通过基因改组获得的编码AP2-70-样多肽的核酸的变体。术语杂交序列、剪接变体、等位变体和基因改组如文中所述。
编码AP2-70-样多肽的核酸不需要是全长核酸,因为本发明方法的实施不依赖使用全长核酸序列的使用。本发明提供在植物中增强产量相关性状的方法,其包括在植物中引入和表达实施例18表18中给出的核酸序列中任一个的部分,或实施例18表18中给出的氨基酸序列中任一个的直向同源物、旁系同源物或同源物的编码核酸的部分。
核酸的部分可以例如通过对该核酸产生一个或多个缺失而制备。所述的部分可以以分离的形式加以使用或它们可以与其他编码性(或非编码性)序列融合,以便例如产生组合几种活性的蛋白质。当与其他编码序列融合时,翻译时产生的所得多肽可以比对该蛋白质部分所预测的多肽更大。
用于本发明方法中的部分编码文中定义的AP2-70-样多肽,所述多肽具有与实施例18表18中给出的氨基酸序列基本相同的生物学活性。优选地,此部分是在实施例18表18中给出的任何一种核酸的部分,或实施例18表18中给出的氨基酸序列中任一个的直向同源物或旁系同源物的编码核酸的部分。此部分的长度按照增加的优选顺序为至少600、650、700、750个连续核苷酸,其中所述的连续核苷酸是实施例18表18中给出的任何一种核酸序列,或是实施例18表18中给出的氨基酸序列中任一个的直向同源物或旁系同源物的编码核酸。最优选地,此部分是核酸SEQ ID NO:257的部分。优选地,此部分编码氨基酸序列,所述氨基酸序列当其用于构建系统树(例如图3和4所示)时,趋向聚类于包含SEQ ID NO:258所示的氨基酸序列的AP2-70-样多肽(I组(A-6),尤其是Ib组:参见Nakanao等人,2006的分类)组,而不是聚类于任何其他组。
用于本发明方法中的另一核酸变体是能够在降低的严格条件下、优选在严格条件下与编码如文中所定义的AP2-70-样多肽的核酸杂交的核酸,或与如文中所定义的部分杂交的核酸。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达能够与实施例18表18中给出的任何一种核酸杂交的核酸,或包括在植物中引入并表达如此核酸,其能够与实施例18表18中给出的任意核酸序列的直向同源物、旁系同源物或同源物的编码核酸杂交。
用于本发明方法中的杂交序列编码文中定义的AP2-70-样多肽,且具有与实施例18表18中给出的氨基酸序列的基本相同的生物学活性。优选地,杂交序列是能够与实施例18表18中给出的任一核酸杂交或与任一这些序列的部分杂交的序列,其中所述的部分如上文所定义,或者其中杂交序列能够与实施例18表18中给出的任一氨基酸序列的直向同源物或旁系同源物的编码核酸杂交。最优选地,杂交序列能够与如SEQ ID NO:257所代表的核酸或与其部分杂交。
优选地,杂交序列编码氨基酸序列,所述氨基酸序列当其用于构建系统树(例如图3和4所示)时,趋向聚类于包含SEQ ID NO:258所示的氨基酸序列的AP2-70-样多肽(I组(A-6),尤其是Ib组:参见Nakanao等人,2006的分类)组,而不是聚类于任何其他组。
用于本发明方法中的另一种核酸变体是编码如上文所定义的AP2-70-样多肽的剪接变体,剪接变体如文中所定义。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达实施例18表18中给出的任何一种核酸的剪接变体,或实施例18表18中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的剪接变体。
优选的剪接变体是由SEQ ID NO:257代表的核酸的剪接变体,或编码SEQ ID NO:258的直向同源物或旁系同源物的核酸的剪接变体。优选地,剪接变体编码的氨基酸序列当其用于构建系统树(例如图3和4所示)时,趋向聚类于包含SEQ ID NO:258所示的氨基酸序列的AP2-70-样多肽(I组(A-6),尤其是Ib组:参见Nakanao等人,2006的分类)组,而不是聚类于任何其他组。
用于实施本发明方法的另一种核酸变体是编码如上文所定义的AP2-70-样多肽的核酸的等位变体,等位变体如文中所定义。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达实施例18表18中给出的任何一种核酸的等位变体,或包括在植物中引入并表达实施例18表18中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的等位变体。
用于本发明方法中的等位变体具有与AP2-70-样多肽SEQ ID NO:258和实施例18表18中所示的任意氨基酸基本相同的生物学活性。等位变体天然存在,且包含在本发明方法中的是这些天然等位基因的用途。优选地,等位变体是等位变体SEQ ID NO:257或编码SEQ ID NO:258的直向同源物或旁系同源物的核酸的等位变体。优选地,等位变体编码的氨基酸序列当其用于构建系统树(例如图3和4所示)时,趋向聚类于包含SEQ ID NO:258所示的氨基酸序列的AP2-70-样多肽(I组(A-6),尤其是Ib组:参见Nakanao等人,2006的分类)组,而不是聚类于任何其他组。
基因改组或定向进化也可以用来产生编码如上文定义的AP2-70-样多肽的核酸的变体;术语“基因改组”如文中所定义。
本发明提供用于在植物中增强产量相关性状的方法,其包括在植物中引入并表达实施例18表18中给出的任何一种核酸的变体,或包括在植物中引入并表达实施例18表18中给出的任意氨基酸序列的直向同源物、旁系同源物或同源物的编码核酸的变体,所述变体核酸通过基因改组获得。
优选地,编码通过基因改组获得的变体核酸的氨基酸序列当其用于构建系统树(例如图3和4所示)时,趋向聚类于包含SEQ ID NO:258所示的氨基酸序列的AP2-70-样多肽(I组(A-6),尤其是Ib组:参见Nakanao等人,2006的分类)组,而不是聚类于任何其他组。
另外,核酸变体也可以通过位点定向诱变获得。几种方法可用于实现位点定向诱变,最常见的是基于PCR的方法(Current Protocols inMolecular Biology.Wiley编著)。
编码AP2-70-样多肽的核酸可以来自任何自然来源或人工来源。核酸可以从其天然形式就组成和/或基因组环境方面通过人类有意操作而加以修饰。编码AP2-70-样多肽的核酸优选地来自植物,还优选来自单子叶植物,更优选来自禾本科,最优选是来自稻的核酸。
本发明方法的实施产生具有增强的产量相关性状的植物。尤其本发明方法的实施产生相对于对照植物而具有增加的产量、尤其增加的种子产量的植物。在文中的“定义”部分中更详细地描述了术语“产量”和“种子产量”。
本发明提供相对于对照植物增加植物的产量、尤其增加植物的种子产量的方法,所述方法包括在植物中调节编码文中定义的AP2-70-样多肽的核酸的表达,优选增加其表达。
根据本发明的一个优选特征,本发明方法的实施产生相对于对照植物而具有增加的生长速率的植物。因而根据本发明,提供用于增加植物生长速率的方法,所述方法包括在植物中调节编码文中定义的AP2-70-样多肽的核酸的表达,优选增加其表达。
本发明方法的实施相对于在相当条件下生长的合适对照植物,赋予在非胁迫条件下或在轻微干旱条件下生长的植物增加的产量。因而根据本发明,提供用于增加在非胁迫条件下或在轻微干旱条件下生长的植物中产量的方法,所述方法包括增加编码AP2-70-样多肽的核酸在植物中的表达。
本发明方法的实施产生相对于在相当条件下生长的对照植物,在营养物缺乏条件下、尤其在氮缺乏条件下生长的具有增加产量的植物。因而根据本发明,提供用于在营养物缺乏条件下生长的植物中增加产量的方法,所述方法包括增加编码AP2-70-样多肽的核酸在植物中的表达。营养物缺乏可以因营养物的缺乏或过剩所致,如氮、磷酸盐及其他含磷化合物、钾、钙、镉、镁、锰、铁和硼等。
本发明包含通过本发明的方法获得的植物或植物部分(包括种子)。此植物或植物部分包含编码文中定义的AP2-70-样多肽的核酸转基因。
本发明还提供遗传构建体和载体以促进在植物中引入和/或表达编码AP2-70-样多肽的核酸。该基因构建体可以插入适于转化至植物内并适于在转化的细胞中表达目的基因的市售载体。本发明也提供文中定义的基因构建体在本发明方法中的用途。
更具体地本发明提供了构建体,其包含:
(a)编码如上定义的AP2-70-样多肽的核酸;
(b)能够驱动(a)的核酸序列表达的一种或多种调控序列;和任选地
(c)转录终止序列。
优选地,编码AP2-70-样多肽的核酸是:
(i)SEQ ID NO:257所示的核酸;
(ii)SEQ ID NO:257所示的核酸的互补物;
(iii)核酸,其编码与SEQ ID NO:258所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;以及与SEQ ID NO:331:PFLMQWLNLLPLPVLDSSSWCPEHFHNSESDALP(其代表SEQ ID NO:258的C末端区)所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
术语“对照序列”和“终止序列”如中所定义。
用包含上述任意核酸的载体转化植物。技术人员非常了解为成功转化、选择和增殖含有目的序列的宿主细胞而必须于载体上存在的遗传元件。目的序列有效地与一种或多种调控序列(至少与启动子)连接。
有利地,任何类型的启动子(天然的或合成的)可以用来驱动核酸序列的表达。组成型启动子尤其可用于本发明的方法。参见文中“定义”部分中各种启动子类型的定义。也可用于本发明方法中的是根特异性启动子。
应当明白本发明的适用性不限于由SEQ ID NO:257所代表的AP2-70-样多肽的编码核酸,同时本发明的适用性也不限于由组成型启动子或根特异性启动子驱动时编码AP2-70-样多肽的核酸的表达。
该组成型启动子优选地是GOS2启动子,更优选地,GOS2启动子来自稻。更优选该组成型启动子由基本上与SEQ ID NO:39或SEQ ID NO:339相似的核酸序列代表,最优选该组成型启动子由SEQ ID NO:39或SEQ ID NO:339代表。组成型启动子的其他实例参见文中定义部分的表2a。
根据本发明的一个优选特征,编码AP2-70-样多肽的核酸与根特异性启动子有效连接。根特异性启动子优选是RCc3启动子(Plant Mol Biol.1995年1月;27(2):237-48),更优选是来自稻的RCc3启动子,进一步优选是由基本上与SEQ ID NO:110或SEQ ID NO:340相似的核酸序列代表的RCc3启动子,最优选是如SEQ ID NO:110所代表的启动子。也可用于实施本发明方法的其他根特异性启动子的实例参见文中的表2b。
为检测本发明方法中所用核酸序列的成功转移和/或选择含有这些核酸的转基因植物,最好使用标记基因(或报道基因)。因此,遗传构建体可以任选地包含选择标记基因。选择标记在文中的“定义”部分进一步详述。
本发明也提供相对于对照植物产生具有增强的产量相关性状的转基因植物的方法,包括在植物中引入并表达编码定义的如上的AP2-70-样多肽的任意核酸。
更具体地,本发明提供用于产生具有增强的产量相关性状,尤其是增加的(种子)产量的转基因植物的方法,所述方法包括:
(i)在植物或植物细胞中引入并表达编码AP2-70-样多肽的核酸;和
(ii)在促进植物生长和发育的条件下生长植物细胞。
(i)中的核酸可以是能够编码文中定义的AP2-70-样多肽的任意核酸。优选地,该核酸是:
(i)SEQ ID NO:257所示的核酸;
(ii)SEQ ID NO:257所示的核酸的互补物;
(iii)核酸,其编码与SEQ ID NO:258所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;并且与SEQ ID NO:331:PFLMQWLNLLPLPVLDSSSWCPEHFHNSESDALP(其代表SEQ IDNO:258的C末端区)所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
核酸可以直接引入植物细胞或引入植物本身(包括引入组织、器官或植物的任何其他部分)。根据本发明的优选特征,核酸优选地通过转化而引入植物。术语“转化”在文中的“定义”部分进一步详述。
遗传修饰的植物细胞可以通过技术人员熟悉的所有方法加以再生。合适的方法可以在S.D.Kung和R.Wu,Potrykus或
Figure A200780022208D0093090809QIETU
和Willmitzer的前述出版物中找到。
通常在转化后,对植物细胞或细胞群体选择一种或多种标记的存在,其中所述的标记由与目的基因一起共转移的植物可表达基因编码,随后将转化的材料再生成整株植物。为选择转化的植物,在转化中获得的植物材料原则上接受选择条件处理,以至于转化的植物可以与未转化的植物区分。例如。以上文所述方式获得的种子可以播种,在初始培育时期后,通过喷雾进行合适的选择处理。又一种可能性包括在使用合适选择剂的琼脂平板上培育种子(根据需要在消毒之后),以至于仅转化的种子可以生长成植物。备选地,对转化的植物筛选选择标记(如上文所述的那些选择标记)的存在。
在DNA转移和再生后,推测的转化植物可以例如使用Southern分析对目的基因的存在、拷贝数和/或基因组构造进行评价。备选或额外地,新引入DNA的表达水平可以使用Northern和/或Western分析监测,这些技术是本领域技术人员众所周知的。
产生的转化植物可以通过多种方法加以增殖,如通过克隆性增殖法或经典育种技术。例如,第一代(或T1)的转化植物可以进行自交并选择纯合的第二代(或T2)转化体,并且T2植物随后可以通过经典育种技术进一步繁殖。产生的转化生物可以采取多种形式。例如,它们可以是转化细胞和非转化细胞的嵌合体;克隆性转化体(例如受转化以含有表达盒的全部细胞);转化组织和未转化组织的移植体(例如在植物中,与未转化嫩枝嫁接的转化的根茎)。
本发明明确地扩展至通过文中所述的任一方法产生的任何植物细胞或植物,并扩展至全部植物部分及其繁殖体。本发明进一步扩展至包含已经通过任一前述方法产生的原代转化或转染细胞、组织、器官或整株植物的后代,唯一要求是后代表现与通过本发明方法中的亲代所产生的那些后代相同的基因型特征和/或表型特征。
本发明也包括宿主细胞,其含有编码如上文所定义的AP2-70-样多肽的分离核酸。本发明优选的宿主细胞是植物细胞。宿主植物对于本发明方法中所用核酸或载体、表达盒或构建体或载体而言原则上有利地是能够合成本发明方法中所用多肽的全部植物。
本发明方法有利地适用于任何植物。特别用于本发明方法中的植物包括属于植物界超家族的全部植物,尤其单子叶植物和双子叶植物,包括饲用或饲料豆类、观赏植物、粮食作物、树或灌木。根据本发明优选的实施方案,植物是作物植物。作物植物的实例包括大豆、向日葵、卡诺拉油菜、苜蓿、油菜、棉花、番茄、马铃薯和烟草。还优选地,植物是单子叶植物。单子叶植物的实例包括甘蔗。更优选地,植物是谷物。谷物的实例包括稻、玉米、小麦、大麦、粟、黑麦、黑小麦、高粱和燕麦。
本发明也扩展至植物的可收获部分如,但不限于种子、叶、果实、花、茎、根状茎、块茎和球茎。本发明进一步涉及来自自、优选直接来自这种植物的可收获部分中的产物,如干燥颗粒或粉末、油、脂肪及脂肪酸、淀粉或蛋白质。
根据本发明的优选特征,受调节的表达是增加的表达。增加核酸、基因或基因产物的表达的方法在现有技术中充分记载。实例在文中“定义”部分给出。
如上文提及,用于调节(优选增加)编码AP2-70-样多肽的核酸表达的优选方法是在植物中引入并表达编码AP2-70-样多肽的核酸;然而实施所述方法的作用即增强产量相关性状也可以使用众所周知的其他技术实现。对这些技术中某些的描述可见于“定义”部分。
本发明的作用也可以使用T-DNA激活或TILLING(基因组内定向诱导的局部损伤)再现,其描述参见“定义”部分。
本发明的作用也可以使用同源重组再现,其描述参见“定义”部分。
本发明也包括编码文中所述AP2-70-样多肽的核酸的用途和这些AP2-70-样多肽的用途,其用于增强植物中的任意上述产量相关性状。
编码文中所述AP2-70-样多肽的核酸AP2-70-样多肽本身可以用于育种程序中,其中鉴定到可以遗传地与编码AP2-70-样多肽的基因连接的DNA标记。所述的核酸/基因或AP2-70-样多肽本身可以用来定义分子标记。这种DNA或蛋白质标记随后可以在育种程序中用来选择具有本发明方法中如上文所定义的增强的产量相关性状的植物。
编码AP2-70-样多肽的核酸/基因的等位变体也可以用于标记辅助的育种程序中。这种育种程序有时需要通过使用例如EMS诱变法对植物进行诱变处理而引入等位基因变异;备选地,该程序可以从非人为引起的所谓“自然”起源的一组等位变体开始。随后进行等位变体的鉴定,例如通过PCR法。此后是用于选择所讨论及导致增加产量的序列的优异等位变体的步骤。一般通过监测含有所讨论序列的不同等位变体的植物的生长性能而实施选择。可以在温室中或田间监测生长性能。其他任选步骤包括将鉴定了优异等位变体的植物与另一种植物杂交。这可以用来例如产生目标表型特征的组合。
编码AP2-70-样多肽的核酸也可以用作探针以便对基因进行遗传作图或物理作图,所述探针作为所述基因的一部分及与这些基因关联的性状的标记。此类信息可以用于植物育种中,以便开发具有想要表型的株系。编码AP2-70-样多肽的核酸的这种用途仅需要具有至少15个核苷酸长度的核酸序列。编码AP2-70-样多肽的核酸可以用作限制性片段长度多态性(RFLP)标记。限制性消化的植物基因组DNA的Southern印迹(Sambrook J,Fritsch EF和Maniatis T(1989)Molecular Cloning,A Laboratory Manual)可以用编码AP2-70-样多肽的核酸探测。产生的结合图式随后可以使用计算机程序如MapMaker(Lander等人(1987)Genomics 1:174-181)进行遗传分析以构建遗传图。此外,该核酸可以用来探测含有经限制性内切核酸酶处理的一组个体的基因组DNA的Southern印迹,其中所述的一组个体代表具有确定的遗传杂交的亲代和后代。DNA多态性的分离被标出并用来计算编码AP2-70-样多肽的核酸在使用这个群体先前所获得的遗传图中的位置(Botstein等人(1980)Am.J.Hum.Genet.32:314-331)。
在Bernatzky和Tanksley(1986)Plant Mol.Biol.Reporter 4:37-41中描述了植物基因衍生的探针的产生和其在遗传作图中的用途。众多出版物描述了使用以上所提及的方法学或其改良方法对特定cDNA克隆的遗传作图。例如,F2互交群、回交群、随机交配群、邻近纯合系和其他个体群体可以用于作图。此类方法学是本领域技术人员众所周知的。
所述核酸探针也可以用于物理作图(即序列在物理图上的排列;见Hoheisel等人在:Non-mammalian Genomic Analyasis:A Practical Guide,Academic press 1996,第319-346页及其中引用的参考文献)。
在另一实施方案中,核酸探针可以在直接荧光原位杂交(FISH)作图法(Trask(1991)Trends Genet.7:149-154)中使用。尽管当前的FISH作图法支持使用大型克隆(几个kb至几百个kb;见Laan等人(1995)Genome Res.5:13-20),然而灵敏度的改善可以允许使用更短探针进行FISH作图。
本发明方法产生具有如前文所述的增强的产量相关性状的植物。这些性状也可以与经济上有利的其他性状组合,如其他的产量增加性状,对其他非生物性胁迫和生物性胁迫的耐受性,调节多种构造性特征和/或生物化学特征和/或生理学特征的性状。
附图描述
本发明现在将参考下列附图进行描述,其中:
图1显示来自Ooka等人,2003(DNA Research 10,239-247)的系统树。倒数第三个,标记为“OsNAC7”的虚线框是包含序列SEQ ID NO:2的组。始于ONAC022终于OsNAC3的NAC的簇代表包含序列SEQ IDNO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57和SEQ ID NO:59的簇。认为聚类在这些组中的氨基酸序列(例如表3和4中给出的氨基酸序列)可用于本发明的方法中。
图2显示序列SEQ ID NO:132,其具有(A):推定的核定位信号、(B):AP2/ERF DNA结合结构域、(1):CMVII-1基序、(3):CMVII-3基序、(4):CMVII-4基序、(5):CMVII-5基序、(6):CMVII-6基序、(7):CMVII-7基序、(8):CMVII-8基序。The CMVII基序根据Nakano等人(2006)鉴定。
图3显示来自Nakano等人(Plant Physiol.第140卷,2006)的系统树,其中示为I(A-6)的组包括文中定义的AP2-70-样多肽的组。
图4显示包含文中定义的AP2-70-样多肽序列,且延伸至Nakano等人中示为组I(A-6)的组的系统树的部分。该系统树使用来自Vector NTI(Invitrogen)的AlignX程序中提供的邻近连接聚类算法构建。
图5显示文中如上定义的NAC转录因子的比对。序列使用来自VectorNTI软件包(InforMax,Bethesda,MD)的AlignX程序进行比对。多重比对用空位开口罚分10和空位延伸0.01进行。需要时,实施细微手工编辑以便更好地定位一些保守区。示出NAC结构域以及基序I至III。
图6显示文中如上定义的NAC转录因子的比对。序列使用来自Vector NTI软件包(InforMax,Bethesda,MD)的AlignX程序进行比对。多重比对用空位开口罚分10和空位延伸0.01进行。需要时,实施细微手工编辑以便更好地定位一些保守区。示出NAC结构域以及基序IV至XI。
图7显示了来自拟南芥和稻的AP2-2多肽的CLUSTAL W多重序列比对。SEQ ID NO:132(Os06g09390)以黑体示出,且保守区(基序XII至XVII,SEQ ID NO:133至SEQ ID NO:138)以下划线示出。
图8显示AP2-70-样多肽与基序XVIII和XIX的比对,其中指出基序XVIII和XIX,以及AP2DNA-结合结构域。
图9显示双元载体p163,其用于增加在GOS2启动子(内参PRO0129)控制下的稻NAC转录因子编码核酸在稻中的表达。
图10显示双元载体p164,其用于增加在GOS2启动子(内参PRO0129)控制下的稻NAC1转录因子(SEQ ID NO:50)编码核酸在稻中的组成型表达。
图11显示双元载体p165,其用于增加在GOS2启动子(内参PRO0129)控制下的稻NAC4转录因子(SEQ ID NO:52)编码核酸在稻中的组成型表达。
图12显示双元载体p166,其用于增加在RCc3启动子(内参PRO0110)控制下的稻NAC4转录因子(SEQ ID NO:52)编码核酸在稻中的根特异性表达。
图13显示双元载体p167,其用于增加在原叶绿素酸酯还原酶启动子(内参PRO0123)控制下的稻NAC转录因子编码核酸在稻中的表达。
图14显示双元载体p167,其用于增加在RCc3启动子(内参PRO0110)控制下的稻NAC6转录因子(SEQ ID NO:54)编码核酸在稻中的根特异性表达。
图15显示双元载体p168,其用于增加在GOS2启动子(内参PRO0129)控制下的稻NAC7转录因子(SEQ ID NO:56)编码核酸在稻中的组成型表达。
图16显示双元载体p169,其用于增加在RCc3启动子(内参PRO0110)控制下的稻NAC3转录因子(SEQ ID NO:58)编码核酸在稻中的根特异性表达。
图17显示双元载体pGOS2::NAC1,其用于增加在GOS2启动子控制下的稻NAC1转录因子(SEQ ID NO:50)编码核酸在稻中的组成型表达。
图18显示双元载体pGOS2::NAC4,其用于增加在GOS2启动子控制下的稻NAC4转录因子(SEQ ID NO:52)编码核酸在稻中的组成型表达。
图19显示双元载体pRCc3::NAC4,其用于增加在RCc3启动子控制下的稻NAC4转录因子(SEQ ID NO:52)编码核酸在稻中的根特异性表达。
图20显示双元载体pRCc3::NAC6,其用于增加在RCc3启动子控制下的稻NAC6转录因子(SEQ ID NO:54)编码核酸在稻中的根特异性表达。
图21显示双元载体pGOS2::NAC7,其用于增加在GOS2启动子控制下的稻NAC7转录因子(SEQ ID NO:56)编码核酸在稻中的组成型表达。
图22显示双元载体pRCc3::NAC3,其用于增加在RCc3启动子控制下的稻NAC3转录因子(SEQ ID NO:58)编码核酸在稻中的根特异性表达。
图23显示用于增加稻中在GOS2启动子控制下的稻AP2-2蛋白质编码核酸表达的双元载体。
图24显示用于增加稻中在稻RCC3启动子(pRCC3)控制下的稻AP2-70-样蛋白质编码核酸表达的双元载体。
图25显示用于增加稻中在稻GOS2启动子(pGOS2)控制下的稻AP2-70-样蛋白质编码核酸表达的双元载体。
图26至29详述用于实施本发明方法的序列的实例。
实施例
本发明现在将参考仅作为说明的下列实施例加以描述。下列实施例不意图彻底定义或限制本发明范围。
A)OsNAM2
实施例1:克隆OsNAM2 cDNA
使用来自2周龄稻幼苗的总细胞RNA来克隆OsNAM2 cDNA。使用RNeasy试剂盒(Qiagen,德国)来提取RNA。从5’UTR(非翻译区)至终止密码子,OsNAM2 cDNA长度为1292bp。将两个重叠cDNA加入该OsNAM2 cDNA克隆。使用接头引物(5′-AAGCAGTGGTATCAACGCAGAGTACGCGGG-3′)和OsNAM2特异引物(OsNAM2-2)(5’-CTC TCCAGA GGC GGC ATC ATG TCG GA-3’)由5’RACE-PCR获得1025bp的5’cDNA。用BD SMARTTM RACE cDNA扩增试剂盒(Clontech,美国)进行5’RACE-PCR。制造商提供接头引物(SMART II A寡核苷酸)。使用两个OsNAM2-特异引物(NAM2-1(5’-TGA TCG GGA TGA GGA AGAC-3’)和NAM2-3(5’-GAT CAG TCT CGG TCA TCG ATG-3’))的PCR获得620bp的3’cDNA。用Oligotex mRNA试剂盒(Qiagen,Valencia,CA)合成作为PCR模板的第一条cDNA。候选PCR产物进行凝胶纯化、亚克隆进入pGEM-T Easy(Promega,美国),并通过测序确定。携带5’cDNA的载体用HindIII切割,并与3’cDNA载体的HindIII片段连接。产物是1292bp的OsNAM2 cDNA。
实施例2:载体构建
2.1 GOS2启动子控制下的OsNAM2
进入克隆随后在LR反应中与用于稻转化的目的载体一起使用。这种载体在T-DNA边界内含有作为功能性元件的:植物选择标记;可筛选标记表达盒,和旨在与已经克隆于所述进入克隆中的目的核酸序列发生LR体内重组的Gateway盒。用于组成型表达的稻GOS2启动子(SEQ ID NO:39或SEQ ID NO:339,内参PRO0129)位于该Gateway盒的上游。
在LR重组步骤后,将产生的表达载体p163(图9)转化至农杆菌菌株LBA4044并随后转化至稻植物内。使转化的稻植物生长,然后检测下述参数。
2.2原叶绿素酸酯还原酶启动子控制下的OsNAM2
进入克隆随后在LR反应中与用于稻转化的目的载体一起使用。这种载体在T-DNA边界内含有作为功能性元件的:植物选择标记;可筛选标记表达盒,和旨在与已经克隆于所述进入克隆中的目的核酸序列发生LR体内重组的Gateway盒。用于绿色组织特异性表达的原叶绿素酸酯还原酶启动子(SEQ ID NO:40,内参PRO0123)位于该Gateway盒的上游。
在LR重组步骤后,将产生的表达载体p167(图13)转化至农杆菌菌株LBA4044并随后转化至稻植物内。使转化的稻植物生长,然后检测下述参数。
实施例3:评价方法
3.1 评价准备
产生大约30个独立的T0稻转化体。原代转化体从组织培养箱转移至温室用于生长和收获T1种子。留下7个事件,其中所述事件的T1后代对转基因的存在/不存在以3:1比例分离。对于这些事件中的每一事件,通过监测目视标记表达而选择含有转基因的大约10株T1幼苗(杂合子和纯合子)和缺少转基因的大约10株T1幼苗(失效合子)。转基因植物和对应的失效合子在随机位置上并排培育。温室条件是短日照(12小时光照),在光线下28℃和在黑暗中22℃以及相对湿度70%。使植物从播种期直至成熟期通过数字成像箱数次。在每一时间点上,对每株植物从至少6个不同角度拍摄数字图像(2048 x 1536像素,1600万颜色)。
3.2 统计学分析:t检验和F检验
使用双因子ANOVA(方差分析)作为统计模型用于植物表型特征的整体评价。对用本发明基因转化的全部事件的全部植物的所有测量参数实施F检验。实施F检验以检查基因对于全部转化事件的作用并验证基因的整体作用(又称作全局基因作用)。用于真实全局基因作用的显著性的阈值对于F检验设置在5%概率水平上。显著性F检验值标示基因作用,意味着不仅仅基因的存在或位置才造成表型上的差异。
为检查基因在事件中的作用,即株系特异性作用,使用来自转基因植物和对应的无效植物的数据集在每个事件内进行t检验。”无效植物”或“无效分离子”或“失效合子”是以与转基因植物相同的方式受到处理,但是转基因已经从中发生分离的植物。无效植物也可以描述为纯合阴性转化植物。用于t检验的显著性的阈值设置在10%概率水平上。一些事件的结果可以高于或低于这个阈值。这基于如此假设,即基因可能仅在基因组中某些位置内具有作用,并且这种位置依赖性作用的出现并非罕见。这种基因作用在文中又称作“基因的株系作用”。p-值通过t-值与t-分布比较或备选地通过F-值与F-分布比较而获得。该p-值随后给出无效假设(即转基因的作用不存在)是正确的概率。
实施例4:评价结果
4.1 GOS2启动子控制下的OsNAM2
相对失效合子,在GOS2启动子控制下表达OsNAM2基因的转基因植物具有增加的地上部分面积、圆锥花序数、每圆锥花序的花数和种子总数。相对失效合子,转基因植物具有显著增加的每圆锥花序的花数和种子总数。相对失效合子,转基因植物的每圆锥花序的花数增加>12%(4个事件的平均值),来自F-检验的p-值<0.0014(显著)。另外,相对失效合子,转基因植物的种子总数增加35%,来自F-检验的p-值<0.0045(显著)。
4.2 原叶绿素酸酯还原酶启动子控制下的OsNAM2
相对失效合子,在原叶绿素酸酯还原酶启动子控制下表达OsNAM2基因的转基因植物具有增加的地上部分面积、圆锥花序数和种子总数。相对失效合子,转基因植物的地上部分面积增加>16%(2个事件的平均值),来自F-检验的p-值<0.0014(显著)。相对失效合子,转基因植物的圆锥花序数增加16%,且相对失效合子,转基因植物的种子总数增加18%。
B)OsNAC1、3、4、6和7
实施例5:克隆OsNAC1、3、4、6和7
包含NAC结构域、OsNAC1(Gene bank登录号AK067690)、OsNAC3(AK069257)、OsNAC4(AK068392)、OsNAC6(AK102475)和OsNAC7(AK107330)的稻基因由60K稻完整基因组微阵列(GreenGene BiotechInc.,韩国)进行的表达谱鉴定为在稻中为胁迫诱导的。该微阵列含有70-mer寡核苷酸探针,其序列对应已知的或预测的覆盖全部稻基因组(Oh等人,2005 Plant Physiology 138:341-351)的58,417个ORF。OsNAC1和OsNAC3的全长cDNA获自GreenGene Biotech Inc制备的稻EST储备物。这些cDNA插入Bluescript SKII(Stratagene)的EcoR1和Xho1位点。使用稻幼苗cDNA文库(GreenGene Biotech,韩国)作为模板,用PCR扩增OsNAC4、OsNAC6和OsNAC7的全长cDNA。反向转录提取自用400mMNaCl处理6小时的14天龄幼苗的RNA后,该cDNA克隆进入Uni-ZAP XR(Stratagene)。文库的平均插入大小为1.5kb,且噬斑的初始数目为1.106pfu数量级。第一次扩增2.106pfu/ml后的原始滴度为2.109pfu/ml。每50μlPCR混合物中使用0.1μg cDNA文库。用于扩增OsNAC基因的PCR引物列于表7。在标准条件下使用Pfu DNA聚合酶进行PCR扩增。同样使用标准方法扩增和纯化DNA片段。PCR产物连接入pBluescript SKII的EcoR1位点,并测序。
表7.用于分离OsNAC的引物列表
Figure A200780022208D01031
实施例6:表达载体的构建
6.1 GOS2的构建
进入克隆随后在LR反应中与用于稻转化的目的载体一起使用。这种载体在T-DNA边界内含有作为功能性元件的:植物选择标记;可筛选标记表达盒,和旨在与已经克隆于所述进入克隆中的目的核酸序列发生LR体内重组的Gateway盒。用于组成型表达的稻GOS2启动子(SEQ ID NO:39,内参PRO0129)位于该Gateway盒的上游。
在LR重组步骤后,将产生的表达载体p164(图10)、p165(图11)和p168(图15)中的每一个转化至农杆菌菌株LBA4044并随后转化至稻植物内。使转化的稻植物生长,然后检测下述参数。
6.2 RCc3的构建
进入克隆随后在LR反应中与用于稻转化的目的载体一起使用。这种载体在T-DNA边界内含有作为功能性元件的:植物选择标记;可筛选标记表达盒,和旨在与已经克隆于所述进入克隆中的目的核酸序列发生LR体内重组的Gateway盒。用于根特异性表达的稻RCc3启动子(SEQ ID NO:110,内参PRO0110)位于该Gateway盒的上游。
在LR重组步骤后,将产生的表达载体p166(图12)、表达载体p167(图14)和表达载体p169(图16)中的每一个转化至农杆菌菌株LBA4044并随后转化至稻植物内。使转化的稻植物生长,然后检测下述参数。
实施例7:评价方法
7.1 评价准备
产生大约30个独立的T0稻转化体。原代转化体从组织培养箱转移至温室用于生长和收获T1种子。留下7个事件,其中所述事件的T1后代对转基因的存在/不存在以3:1比例分离。对于这些事件中的每一事件,通过监测目视标记表达而选择含有转基因的大约10株T1幼苗(杂合子和纯合子)和缺少转基因的大约10株T1幼苗(失效合子)。转基因植物和对应的失效合子在随机位置上并排培育。温室条件是短日照(12小时光照),在光线下28℃和在黑暗中22℃以及相对湿度70%。使植物从播种期直至成熟期通过数字成像箱数次。在每一时间点上,对每株植物从至少6个不同角度拍摄数字图像(2048 x 1536像素,1600万颜色)。
干旱筛选
在正常条件下在花盆土中培养来自5个事件(T2种子)的植物,直到进入抽穗期。然后将其转移到“干燥”区域,停止灌溉。向随机选择的花盆中插入湿度探测仪,以监测土壤水含量(SWC)。当SWC低于一定的阈值时,自动向植物持续补水,直到再次达到正常水平。然后将植物再次重新转移到正常条件下。其余的栽培(植物成熟、种子收获)与不在非生物胁迫条件下培养的植物相同。用在正常条件下培养的植物收获的T2种子重复筛选进行一轮验证,而不用从首次干旱筛选的植物收获的T2种子。
测量的参数
植物地上部分面积(或叶生物量)通过计数在来自植物地上部分的数字图像上区别于背景的像素的总数而测定。该值对在相同时间点上从不同角度拍摄的画面进行平均化并且通过校正转化成以平方mm表达的物理表面值。实验证实以这种方式测量的地上部分植物面积与地上植物部分的生物量相关。地上部分面积是在植物已经达到其最大叶生物量的时间点上所测量的面积。
将成熟的主要圆锥花序收获、计数、装袋、加条形码标记并且随后在干燥箱内在37℃干燥3日。随后将圆锥花序脱粒并且收集全部种子。使用吹气装置分开饱满粒与空粒。在分离后,随后使用市售计数机对两个种子批次计数。弃去空粒。饱满粒在分析天平上称重并且种子的横截面积使用数字成像法测量。这种方法产生以下的种子相关参数集合:
每个圆锥花序的花数估计植物上每个圆锥花序小花的平均数目,来自种子总数除以第一个圆锥花序数。最高圆锥花序以及垂直排列时与最高圆锥花序重叠的全部圆锥花序被视为第一圆锥花序并以手工方式计数。饱满种子数通过计数分离步骤后的饱满粒数而确定。种子总产量(种子总重量)通过称量从植物中收获的全部饱满粒而测量。每株植物种子总数通过计数从植物中收获的壳粒数目而测量并且对应于每株植物的小花数目。从计数的饱满种子数及其总重量外推出千粒重(TKW)。收获指数定义为种子总产量与地上部分面积(mm2)之间的比,乘以系数106。参数EmerVigor(萌发势)指示幼苗生长势。根据第一次成像中由叶生物量覆盖的面积(以mm2表示)来计算。种子饱满率(fillrate)指示种子的饱满度。其表示为饱满种子的数目占小花数目(种子总数)的比例(以%表示)。
使用图像分析软件,这些参数以自动化方式来自数字图像并通过统计学分析。使用由两个主要部分(称量装置和成像装置及与之连接的用于图像分析的软件)构成的定制仪器测量各个种子参数(包括宽度、长度、面积、重量)。
7.2统计学分析:t检验和F检验
使用双因子ANOVA(方差分析)作为统计模型用于植物表型特征的整体评价。对用本发明基因转化的全部事件的全部植物的所有测量参数实施F检验。实施F检验以检查基因对于全部转化事件的作用并验证基因的整体作用(又称作全局基因作用)。用于真实全局基因作用的显著性的阈值对于F检验设置在5%概率水平上。显著性F检验值标示基因作用,意味着不仅仅基因的存在或位置才造成表型上的差异。
为检查基因在事件中的作用,即株系特异性作用,使用来自转基因植物和对应的无效植物的数据集在每个事件内进行t检验。“无效植物”或“无效分离子”或“失效合子”是以与转基因植物相同的方式受到处理,但是转基因已经从中发生分离的植物。无效植物也可以描述为纯合阴性转化植物。用于t检验的显著性的阈值设置在10%概率水平上。一些事件的结果可以高于或低于这个阈值。这基于如此假设,即基因可能仅在基因组中某些位置内具有作用,并且这种位置依赖性作用的出现并非罕见。这种基因作用在文中又称作“基因的株系作用”。p-值通过t-值与t-分布比较或备选地通过F-值与F-分布比较而获得。该p-值随后给出无效假设(即转基因的作用不存在)是正确的概率。
实施例8:评价结果
8.1 GOS2启动子控制下的NAC1
观察到在GOS2启动子控制下超表达NAC1的转基因植物具有以下增加的产量相关参数。除非另行说明,所示p-值来自t检验。差异百分比是转基因植物与失效合子的差异百分比。还观察到根生物量的增加(虽然未显示在表8中),与失效合子相比,最佳事件给出7%的增加。
表8:GOS2启动子控制下的NAC1的结果
 
性状 阳性事件 平均差异 p值
最大面积 6个事件 13.70% <0.077
总数+11% 0(F检测)
萌发势 5个事件 29.60% <0.225
总数+16% <0.0108(F检测)
TKW 5个事件 5.40% <0.097
总数+3% 0(F检测)
第一圆锥花序 3个事件 20.33% <0.061
种子总数 2个事件 16 <0.15
8.2 GOS2启动子控制下的NAC4
观察到在GOS2启动子控制下超表达NAC4的转基因植物具有以下增加的产量相关参数。除非另行说明,所示p-值来自t检验。差异百分比是转基因植物与失效合子的差异百分比。还观察到种子重量的增加(虽然未显示在表9a中),与失效合子相比,最佳事件给出30%的增加。表9a显示无胁迫条件下获得的结果,表9b显示胁迫条件下获得的结果。
表9a:GOS2启动子控制下的NAC4的结果
 
性状 阳性事件 平均差异 p值
最大面积 3个事件 18.33% <0.051
总数+9% <0.0023(F检测)
萌发势 3个事件 30.67% <0.38
最大根(root max) 2个事件 10.50% <0.088
TKW 4个事件 6.50% <0.042
总数+4% 0(F检测)
第一圆锥花序 3个事件 15.67% <0.34
种子总数 3个事件 13.33 <0.281
总数+5% <0.091(F检测)
表9b:GOS2启动子控制下的NAC4的结果(干旱筛选)
 
性状 阳性事件 平均差异 p值
最大面积 2个事件 10.5% <0.0011
总数+8% 0(F检测)
萌发势 3个事件 42% <0.0007
TKW 3个事件 4% <0.042
总数+4.66% <0.0251(F检测)
第一圆锥花序 3个事件 4.33% <0.091
总数+2% <0.00275(F检测)
根变细(Root thin) 2个事件 6% <0.0901
8.3 RCc3启动子控制下的NAC4
观察到在RCc3启动子控制下超表达NAC4的转基因植物具有以下增加的产量相关参数。除非另行说明,所示p-值来自t检验。差异百分比是转基因植物与失效合子的差异百分比。还观察到千粒重的增加(虽然未显示在表10a中),与失效合子相比,最佳事件给出4%的增加。
表10a:RCc3启动子控制下的NAC4的结果
 
性状 阳性事件 平均差异 p值
最大面积 2个事件 13.00% <0.0125
总数+4% <0.0313(F检测)
萌发势 2个事件 13.50% <0.288
总数+7% <0.11(F检测)
最大根 1个事件 9.00% <0.0597
总数+4% <0.0722(F检测)
总种子产量 2个事件 16.00% <0.094
总数+6% <0.0733(F检测)
种子总数 2个事件 14.5 <0.137
表10b:RCc3启动子控制下的NAC4的结果(干旱筛选)
 
性状 阳性事件 平均差异 p值
最大面积 2个事件 8% <0.1077
总种子产量 2个事件 49% <0.018
总数+20% 0.002(F检测)
饱满种子数 2个事件 50.5% <0.0138
总数+20% 0.0017(F检测)
饱满率 2个事件 46.5% <0.0418
总数+16% 0.011(F检测)
 
收获指数 2个事件 47% <0.0168
总数+19% 0.0037
高度 2个事件 6.5% <0.0103
种子总数 2个事件 26% <0.0579
总数+4% 0.1951(F检测)
最大根 2个事件 6.5% <0.1038
每圆锥花序的花 2个事件 17.5% <0.1019
8.4 RCc3启动子控制下的NAC6
观察到在RCc3启动子控制下超表达NAC6的转基因植物具有以下增加的产量相关参数。除非另行说明,所示p-值来自t检验。差异百分比是转基因植物与失效合子的差异百分比。还观察到每圆锥花序的花数的增加(虽然未显示在表11中),与失效合子相比,最佳事件给出20%的增加。另外,还观察到圆锥花序数的增加(虽然未显示在表中),与失效合子相比,最佳事件给出28%的增加。
表11:RCc3启动子控制下的NAC6的结果
 
性状 阳性事件 平均差异 p值
最大面积 2个事件 17.50% <0.0104
萌发势 2个事件 21.00% <0.2385
最大根 3个事件 13.33% <0.0093
总数+5.00% <0.0673(F检测)
根冠指数 4个事件 64.00% <0.1279
总数+37% <0.0005(F检测)
总种子产量 2个事件 20.00% <0.2378
种子总数 2个事件 20% <0.0323
8.5 GOS2启动子控制下的NAC7
观察到在GOS2启动子控制下超表达NAC7的转基因植物具有以下增加的产量相关参数。除非另行说明,所示p-值来自t检验。差异百分比是转基因植物与失效合子的差异百分比。
表12:GOS2启动子控制下的NAC7的结果
 
性状 阳性事件 平均差异 p值
最大面积 3个事件 18.33% <0.011
总数+11% 0(F检测)
萌发势 3个事件 17.33% <0.422
最大根 1个事件 11.00% <0.0249
总数+4% <0.0370(F检测)
总种子产量 2个事件 20.50% <0.08
每圆锥花序的花 3个事件 10% <0.101
第一圆锥花序 19.00% <0.0769
种子总数 2个事件 15% <0.177
总数+5% <0.0751(F检测)
8.6 RCc3启动子控制下的NAC3
观察到在RCc3启动子控制下超表达NAC3的转基因植物具有以下增加的产量相关参数。除非另行说明,所示p-值来自t检验。差异百分比是转基因植物与失效合子的差异百分比。虽然未显示在表13中,还观察到地上部分面积的增加(最佳事件给出19%的增加)、早期生长势的增加(最佳事件给出20%的增加)、根生物量的增加(最佳事件给出15%的增加)、千粒重的增加、收获指数的增加(最佳事件给出26%的增加)、圆锥花序数的增加(最佳事件给出33%的增加)。
表13:RCc3启动子控制下的NAC3的结果
 
性状 阳性事件 平均差异 p值
总种子产量 2个事件 29.00% <0.00777
总数+6% <0.00553(F检测)
种子总数 1个事件 44% <0.0001
总数+5% <0.1084(F检测)
C)AP2-2多肽
实施例9:SEQ ID NO:131和SEQ ID NO:132相关序列的鉴定
使用数据库序列搜索工具,如基本局部比对工具(BLAST)(Altschul等人(1990)J.Mol.Biol.215:403-410;和Altschul等人(1997)Nucleic AcidsRes.25:3389-3402)在国家生物技术信息中心(NCBI)的Entrez核苷酸数据库中所维护的那些序列内鉴定到与SEQ ID NO:131相关的(全长cDNA、EST或基因组)序列和/或SEQ ID NO:132相关的蛋白质序列。该程序用来通过核酸序列或多肽序列与序列数据库比较并通过计算匹配的统计学显著性而找到序列间具有局部相似性的区域。对SEQ ID NO:131编码的多肽使用TBLASTN算法,采用默认设置和过滤以忽略低复杂性序列抵消。分析的结果通过配对性比较显示,并根据几率评分(E-值)排序,其中该评分反映特定比对结果因偶然而发生的概率(E-值越低,命中的显著性越高)。除了E-值外,比较还通过同一性百分数进行记分。同一性百分数指两个所比较核酸(或多肽)序列之间在特定长度范围内的相同核苷酸(或氨基酸)数目。在一些情况下,可以调整默认参数以调节搜索法的严格性。
表14提供与SEQ ID NO:131所示核酸序列和SEQ ID NO:132所示蛋白质序列相关的核酸和蛋白质序列列表。
表14:AP2-2多肽的编码核酸序列和AP2-2多肽
 
名称/鉴定者 生物来源 核酸SEQ ID NO: 多肽SEQ ID NO:
AP2-EREBP 131 132
Os07g47790 139 140
AAX13280 普通小麦 141 142
Os01g21120 143 144
Os03g08470 145 146
CAD56466 普通小麦 147 148
AT2G47520.1 拟南芥(Arabidopsis thaliana) 149 150
Os02g54160 151 152
Os09g26420 153 154
AAP32468 普通小麦 155 156
AAP32467 普通小麦 157 158
AT1G53910.1 拟南芥 159 160
AAM65746 拟南芥 161 162
AT3G14230.1 拟南芥 163 164
AT3G14230.2 拟南芥 165 166
AT3G14230.3 拟南芥 167 168
AT3G16770 拟南芥 169 170
Os07g42510 171 172
Os03g08490 173 174
Os03g08500 175 176
AT1G72360 拟南芥 177 178
Os03g08460 179 180
 
Os05g29810 181 182
Os03g22170 183 184
Os10g25170 185 186
Os09g11460 187 188
AAK95687 番茄 189 190
Os09g11480 191 192
AAQ91334 番茄 193 194
AAR87866 番茄 195 196
AT1G80580 拟南芥 197 198
AAP40022 烟草 199 200
CAE54591 米心水青冈 201 202
CAD21849 米心水青冈 203 204
ABD65407 辣椒 205 206
AAP72289 辣椒 207 208
AAS20427 辣椒 209 210
AAX07458 陆地棉 211 212
AAT77192 海岛棉 213 214
AAX20013 陆地棉 215 216
AAX68526 陆地棉 217 218
AAX68525 陆地棉 219 220
AAT77191 海岛棉 221 222
AAV51937 陆地棉 223 224
AAV85777 陆地棉 225 226
AAX07460 陆地棉 227 228
 
AAX84670 木薯 229 230
AAW33881 银白杨X欧洲山杨 231 232
BAE71206 红车轴草 233 234
AAQ10777 大豆 235 236
AAL67489 黄水仙 237 238
CAA05084 拟南芥 239 240
ABE84970 蒺藜苜蓿 241 242
ABE80536 蒺藜苜蓿 243 244
AAC29516 马铃薯 245 246
BAC56862 马铃薯 247 248
AAS01337 中粒咖啡 249 250
AAZ14085 大麦 251 252
BAD01556 甜瓜 253 254
BAF43419 苹果 255 256
实施例10:AP2-2多肽序列的比对
使用来自Vector NTI(Invitrogen)的AlignX基于进行性比对的流行Clustal算法(Thompson等人(1997),Nucleic Acids Res 25:4876-4882;Chenna等人(2003),Nucleic Acids Res 31:3497-3500)进行多肽序列的比对。默认值是空位开口罚分10,空位延伸罚分0.1并且选择的权重矩阵是Blosum62(若比对多肽)。在图7中显示AP2-2多肽具有高度序列保守区。下划线示出Os06g09390(SEQ ID NO:132)的基序XII至XVII。
实施例11:用于实施本发明方法的多肽序列之间全局同一性百分数的计算
使用本领域可获得的方法之一MatGAT(矩阵总体比对工具)软件(BMC Bioinformatics.2003 4:29.MatGAT:使用蛋白质序列或DNA序列产生相似性/同一性矩阵的应用.Campanella JJ,Bitincka L,Smalley J;软件由Ledion Bitincka所有)确定用于实施本发明方法的全长多肽序列之间总体相似性百分数和同一性百分数。MatGAT软件为DNA序列或蛋白质序列产生相似性/同一性矩阵,无需数据的预比对。该程序使用Myers和Miller总体比对算法(空位开口罚分12和空位延伸罚分2)执行一系列逐对比对,使用例如Blosum 62(对于多肽)计算相似性和同一性并且随后将结果置于距离矩阵中。序列相似性在分界线的下半部分中显示,序列同一性在对角分界线的上半部分中显示。
比较中所用的参数是:
记分矩阵:Blosum62
第一空位:12
延伸空位:2
多肽序列(排除部分多肽序列)全长上的总体相似性和同一性软件分析结果在表15中显示。同一性百分数在对角线之上给出并且相似性百分数在对角线之下给出。
与SEQ ID NO:132相比,用于实施本发明方法的全长多肽序列之间的同一性百分数可以低到20%氨基酸同一性。当比较特定结构域,例如AP2结构域时,序列特异性将更高。
表15:多肽序列全长上的全局相似性和同一性的MatGAT结果
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.SEQID 132 27.7 63.3 29.8 38.3 62.4 24 59.5 40.8 61.1 58.2 37.2 37.2 37.1 37
2.SEQID 140 37.8 27.2 43.9 29.7 26.6 36.4 27.5 26.5 26.2 25.7 29.1 29.1 27.4 27.7
3.SEQID 142 76.5 35.8 29.9 33.1 90.8 24.5 55.9 39 94.6 88.5 35.9 35.9 36.7 37.3
4.SEQID 144 37.6 55.6 35.5 31.1 30.3 41.1 27.6 25 28.7 29.2 27.7 27.9 27.2 27.5
5.SEQID 146 50.6 37.7 48.2 39.5 32 24.9 36.1 33.2 30.7 30.2 34.3 34.3 32.1 32.4
6.SEQID 148 74.9 35.2 94.4 35.2 47 25.2 56.5 38.6 87.4 88 36.2 36.2 37.6 37.9
7.SEQID 150 31.8 48.1 32.1 52.7 34.1 32.1 23.6 22.2 23.9 24.7 26.3 26.3 24.8 25.3
8.SEQID 152 74.8 35.1 69.9 34.2 47.1 69 31.2 42.7 53.5 53.6 39.9 39.9 36.1 36.3
9.SEQID 154 54 33.6 51.5 32.6 45.7 51 28 56.1 37.3 36.1 36.8 36.8 35 35.3
10.SEQID 156 73.2 33.8 96.1 34.6 46.5 91.3 31.5 67.1 50 85.1 34.8 35.1 35.9 36.3
11.SEQID 158 70.7 34.6 89.9 36.1 45.8 90 34 66.6 48 86.8 32.5 32.5 34 34.4
12.SEQID 160 53.3 38.5 54.2 35.8 48 52.5 33 53.7 50 53.6 49.2 99.4 62.2 62.8
13.SEQID 162 53.3 38.5 54.2 35.8 48 52.5 33 53.7 50 53.6 49.2 100 62.2 62.8
14.SEQID 164 56.7 34.3 54.4 33.5 47.2 54.6 29.6 55.4 49.7 54.1 50.1 70.7 71 98.9
15.SEQID 166 57.1 34.7 54.7 33.9 47.7 54.9 30.4 55.7 49.7 54.7 50.7 71.7 72 98.9
16.SEQID 168 57.2 34.8 54.8 34 47.9 55.1 30.2 55.6 51 54.8 50.8 71.9 72.2 98.7 99.7
17.SEQID 170 41.2 47.2 38.9 46.4 41.3 38.4 46.8 38.6 36.9 37.5 38.3 40.8 40.8 39.6 40
18.SEQID 172 51.9 34.8 52.1 38.9 52 54.4 32.2 50.4 43.9 49.9 52.9 46.6 46.6 44.3 43.7
19.SEQID 174 46.4 34.9 43.4 40.8 51.2 46.7 31.5 48.2 40.9 42.8 44 43.3 43.6 42.2 42.7
20.SEQID 176 50 38.6 49.6 40.1 52.7 49 32.8 48.2 44.7 47.6 45.5 48 48 44.6 45.1
21.SEQID 178 41.7 46.9 44.5 47.7 47 45 44.3 42.5 39.6 42.5 44.6 45 45.3 39.6 40.3
22.SEQID 180 47.5 36.5 40.8 35.9 44.9 42.1 32.8 44.1 38.1 39.4 42.8 46.6 46.6 42.7 42.4
23.SEQID 182 32.3 50 32.7 50.7 36.8 33.2 47 32.1 31.1 31.5 32.2 31.8 31.8 32.5 32.8
24.SEQID 184 39 55.1 37.2 53.5 43.1 39.8 44.9 37.3 36.9 36.6 39.8 36.3 36.3 34.3 34.7
25.SEQID 186 40.6 35.7 42 41.3 50.6 42.1 32 44.4 42.7 42.5 40.7 39.7 39.7 40.1 39.5
26.SEQID 188 31.8 37.9 34.1 41.4 39.2 33.8 38.4 32.1 33.1 33 35.8 34.1 34.1 33 33.6
27.SEQID 190 60.2 34.1 59.1 36.8 48.1 59.4 33.6 58.9 54.3 57.5 54.6 59.7 59.7 60.7 61.3
28.SEQID 192 39.5 41.2 38 42 38.6 39.8 38 38.9 37.4 36.9 39.5 39.4 39.4 38 39.5
29.SEQID 194 53.9 37 54.6 38.2 47.9 55.3 34.9 50.1 46.7 53.2 53.6 57.5 57.5 58.3 57.6
30.SEQID 196 44.2 48.8 44.5 51.2 41.3 43.8 49.2 40.5 37.6 41.4 41.9 39.1 39.1 41.2 40
31.SEQID 198 29.6 35.5 33.5 34 33.2 32.7 32 32.3 29.5 34.1 35.2 33.8 33.8 31.1 31.5
32.SEQID 200 56.6 32.8 55.6 37 49.9 55.3 33.3 56.1 52.3 54 51.4 61.5 61.5 62.8 62.8
33.SEQID 202 56.6 34.9 57.4 37.6 49.7 57.9 31 60.8 56.8 55.3 53.4 63.8 64 64.1 64.3
34.SEQID 204 56.5 34.1 57.6 37.6 49.3 57.6 30.7 60.5 55.1 56.3 53.3 62.7 62.9 62.8 63.5
35.SEQID 206 60 34.1 57.9 36.5 50.4 58.9 32.5 57.6 52.5 56.5 53.3 59.5 59.5 59.6 60.3
 
36.SEQID 208 59.1 32.8 56.6 35.2 49.3 57.7 32 56.6 51.3 55.3 52 58.5 58.5 58.6 59.2
37.SEQID 210 44.2 48.5 43.4 52.3 42.8 43.3 45.8 42.7 39.6 40.8 42.5 43.6 43.6 41.7 41.3
38.SEQID 212 55.4 34.9 51.8 34.6 50 53.3 33.1 57.4 57.6 50 47.7 64.6 64.9 65.6 65.4
39.SEQID 214 50.3 37 49.6 38.6 46.1 51.3 37 48.8 44.9 47.3 52.1 54.2 54.5 53.6 54.1
40.SEQID 216 53.5 30.8 50.8 34.1 49 51.8 33.1 52.8 55.6 49.2 48.2 59.8 60.1 59.8 59.6
41.SEQID 218 39 43.3 40 45.6 41.6 37.2 42.1 40 37.9 37.7 41 39.9 39.7 39.3 38.4
42.SEQID 220 38.7 45.3 42 47.3 42.5 40.4 46.5 37.5 40.7 37.2 40.4 40.5 40.5 40.4 40
43.SEQID 222 32.6 47.7 32.7 49.3 35.3 33 51.5 32.9 31.3 30.4 31.3 33.2 33.2 33.5 34.7
44.SEQID 224 39.2 45.9 40.8 45.1 40.4 39.5 45.9 38.9 39.4 39.4 37.7 41.1 41.1 38.8 38.9
45.SEQID 228 40.6 43.5 39.4 45.4 41.9 40.1 42.4 40.8 38.9 37.5 39.8 39.1 39.1 39.8 40.5
46.SEQID 230 58 34.1 53.5 38.1 48 57 32 59.3 59.3 51.7 53.5 64.8 64.8 64.6 64.6
47.SEQID 232 56.6 33.9 51.3 36.1 47.4 51.6 31.8 56.1 53.8 52.1 49.2 60.3 60 61.3 61.1
48.SEQID 234 56.9 35.1 52.7 35.3 48.1 53.2 31.7 53.8 54.5 50.9 50.6 57.4 57.4 61 61.3
49.SEQID 236 55.7 35.2 52.9 35.4 45.8 53.1 33.3 57 56.8 49.7 50.8 55.7 56 59.4 59.1
50.SEQID 240 40.6 46.3 42.5 47.2 40.4 41.3 46.3 39.5 36.9 39.4 41.3 39.7 39.7 39.8 40.3
51.SEQID 242 42.5 40.7 44.8 43.9 40.7 44.7 43 42.2 37.6 43.1 43.4 44.1 44.1 43 43.7
52.SEQID 244 33.4 40.8 29.6 38.3 32.9 32.1 41.7 32.9 27.8 28.7 31.9 35.2 35.5 32.5 32.8
53.SEQID 246 46.1 42.6 41.4 47.3 42.8 41.3 41.6 41.6 39.4 41.7 40.4 41.6 41.1 40.6 40.8
54.SEQID 248 42.3 46.6 40.6 45.1 42.2 40.7 43.6 37.8 37.9 39.2 39.8 42.2 42.2 41.2 41.1
55.SEQID 250 43.4 40.1 44.8 43.2 48.5 45.6 37.7 45.5 42.7 43.7 44.3 43 43 42.5 42.9
56.SEQID 252 46.7 38.4 47.3 39.6 60.5 47.9 34.1 47.9 42.4 45.9 48.5 44.7 45.8 42.5 42.9
57.SEQID 254 43.4 49.5 44.2 51.6 44.9 43.8 46.2 40.5 40.2 42.5 44 43 43 40.1 40
58.SEQID 256 36.2 44.8 38.3 45.6 40.4 39.5 45.2 36.4 36.6 36.3 38.9 38.3 38.3 38 38.7
 
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1.SEQID 132 37.6 29.6 38.3 30.1 34 26.5 29.6 26 27.2 27.9 23.7 41.4 27.7 38.4 32.2
2.SEQID 140 27.8 34.1 28.7 27.7 27.6 34.1 26.1 40.3 45.8 28.5 26.6 26.9 32.5 28.7 36.7
3.SEQID 142 37.4 28.5 35.2 30.7 32.4 29.1 26.6 25.8 28.2 27.8 23.5 40.1 25.3 36.7 32.8
4.SEQID 144 27.5 35.9 30.6 32 31.3 33 29.8 41.6 39.3 31.4 28.8 29.4 30.2 31.2 43.5
5.SEQID 146 32.5 29.3 36.3 35.7 37.5 29.5 30.2 27.5 30.3 35.9 27.6 35.4 29.7 35.4 30.3
6.SEQID 148 38 28.4 36.9 31.6 32 30.3 26.9 26.9 28.7 29.3 23.5 40.9 26.5 38 33.3
7.SEQID 150 25.7 33.3 25.1 24 24.6 31.7 21.8 36.7 31 24.2 26.9 28 28 25.4 38.1
8.SEQID 152 36.4 28.3 37.2 32 31.6 30.1 27.9 25.8 28.6 32.2 23.4 42 28.7 37.5 31.1
9.SEQID-154 35.7 25.3 31.7 30.1 31 26.2 23.8 24.7 28.8 28.1 23.6 37.8 26.2 33.6 27.5
10.SEQID 156 36.4 27.3 33.2 30.2 31.4 27.7 24.6 24.7 24.5 26.2 22.4 39 24.2 35.3 30.5
11.SEQID 158 34.5 28 33.7 29.3 28.3 29.1 25.3 25.8 27.8 26.6 23.6 37.1 25.9 34.9 30.1
 
12.SEQID 160 63 28.5 32.4 28 30.2 31.3 27.3 24.9 25.7 27.2 24.9 43.4 29.1 42.9 28.9
13.SEQID 162 63 28.5 32.4 28.2 30.2 31 27.3 24.9 25.7 27.2 24.7 43.7 29.1 42.9 28.9
14.SEQID 164 98.7 29.3 32.6 27.9 29.9 27.7 26.1 24.5 26.3 27.1 24.1 42.5 27.9 44 29.1
15.SEQID 166 99.7 29.6 31.9 28.2 30.2 28.3 26.4 24.8 26.6 27.9 24.9 42.9 29.6 43.9 28.3
16.SEQID 168 29.7 31.9 28.3 30.3 28.1 26.7 24.9 26.7 28.5 23.9 43 29.4 44.8 29.5
17.SEQID 170 40.1 30.7 29.6 29.3 31.6 24.8 36.1 35.6 28.5 26.5 28.9 30.4 31.6 34.9
18.SEQID 172 43.6 40.6 31.4 32.6 30.1 28.3 28.8 28.5 32.5 24.4 33.8 26.4 32.5 28.1
19.SEQID 174 42.8 42.7 46.2 47.1 30.5 30.9 30.5 28.9 35.3 24.5 29.3 28.8 27.4 28.7
20.SEQID 176 45.2 41.3 50.3 59.3 28.9 30.3 27.9 29.2 34.3 24.6 29.8 28.5 29.9 29.7
21.SEQID 178 40.1 45 45.6 44.5 45.9 27 30.2 28.6 26.1 27.9 31.4 28.4 31.2 33.7
22.SEQID 180 42.8 38 42.1 47.2 47.1 41.4 25.8 25 26.5 26.1 28 27.5 30 24.7
23.SEQID 182 32.9 46.8 39.2 38 37.7 42.7 35 37.4 27.6 28.6 23.9 33.5 26.6 31.3
24.SEQID 184 34.5 48.8 38.6 40.5 38.6 43.1 37.1 44.4 30.6 27.2 24.6 30.6 28.3 35.4
25.SEQID 186 39.6 40.7 45 51.2 50.2 39.8 38 33.9 37.9 26.9 29.2 28.5 27.3 26.6
26.SEQID 188 33.7 44 33 37.4 36.8 41.6 35.3 37.9 39.5 39.8 23.3 41.3 25.7 25.2
27.SEQID 190 61.5 39.2 49.7 44.9 45.2 46.2 45.4 32.5 34.7 43 33.9 27.1 52.8 32.8
28.SEQID 192 39.6 43.2 37.1 39.9 39.8 47.7 41.4 40.8 43.6 37.6 56.4 37.4 29.5 26.5
29.SEQID 194 59.1 42.2 45.3 47.1 46.5 45.3 45 36.4 38.8 43.1 37 66.9 41.9 31
30.SEQID 196 41.4 51.2 39.8 41.4 42.2 53.1 39.6 41.5 50.8 38.2 42.7 45.4 44.6 43.4
31.SEQID 198 31.6 43.8 33.9 35.2 30.4 42 34 36.3 40.6 33.5 39.5 34.4 41 32.1 41.5
32.SEQID 200 62 40.8 47.8 41.3 44.4 44.2 45 32.6 32.6 40.3 33.9 80.4 37.5 73.9 42.4
33.SEQID 202 64.3 38.4 47.9 45.8 47.9 44.7 46.6 32.5 36.8 41.3 35.2 71.7 35.2 62.2 44.7
34.SEQID 204 63.5 38.1 48.3 45.6 47.5 43.5 45.9 31.7 36 41.1 33.6 71.7 35.7 61.3 45.1
35.SEQID 206 60.3 41.9 50.7 44 46.4 45.1 44.8 33.9 36 39.7 36.3 90.7 38.4 66.7 46.1
36.SEQID 208 59.4 41.7 49.6 43.9 47.4 45.5 46.1 34.4 36.3 40.1 36.6 89.2 38.8 67.8 46.1
37.SEQID 210 42.2 55.7 43 43.6 43.2 50.8 40.5 41.3 51.1 37.9 40.5 45.7 46.2 43.4 81.4
38.SEQID 212 65.9 40.3 47.4 43.1 45.9 43.6 43.1 33.3 33.8 41.3 33.3 67.2 35.4 57.4 44.4
39.SEQID 214 54.3 40.8 44.7 43.9 44.1 47.6 41.1 34.5 37 41.9 32.9 58.9 36.7 53.5 48.6
40.SEQID 216 59.8 35.6 49.2 43.4 45.7 42.7 42.2 30.3 32.6 39.9 33.1 63.9 35.9 55.1 41.4
41.SEQID 218 38.2 62.5 39.2 39.9 41.6 50.8 44.5 44.4 40.6 37.9 41.8 40.1 42.5 44.3 50.6
42.SEQID 220 40.6 59.4 38 38.6 40.1 48.1 40.5 47.3 45.3 38.5 44.1 38.4 43 43.4 50.8
43.SEQID 222 34.5 50.8 32.5 30.8 35 42.7 35.9 51 40.7 34.5 44.4 32.5 41.2 38.5 41.9
44.SEQID 224 38.8 60.4 38 39.6 40.4 47.3 41.4 45.9 45.9 38.2 42 38.2 43.9 42.5 50
45.SEQID 228 40.4 62.6 40.1 39.6 41.3 50.4 42.3 44.3 42 39.8 43.5 41.1 42.7 45 51.1
46.SEQID 230 64.3 39.9 50.4 45.1 46.5 45.9 44.4 33.3 34.9 42 36 69.3 36.2 61.2 43.6
47.SEQID 232 61.8 39.2 46.3 40.8 43.4 43.7 43.4 31.3 35.8 38.4 32.6 67.4 36.8 56.8 42.1
 
48.SEQID 234 61.3 39 43.9 42.3 47 44.2 47.3 32.5 36.1 39 33 63.4 37.7 54.3 42.3
49.SEQID 236 59.4 39.6 45.6 44.5 46.9 43.2 41.9 33.3 37 39.1 33.6 63.5 35.4 53.1 41.9
50.SEQID 240 40.4 94.4 39.8 40.2 42.9 44.7 40.5 45.9 50 37.6 43.1 41.1 42 43.4 51.9
51.SEQID 242 43.6 47.2 43.6 42.1 41.3 44.9 43.3 37.4 42.3 37.9 34.1 48.4 39 48.3 58
52.SEQID 244 31.8 47.6 29.5 33.3 33.1 45 33.1 35.4 39.1 32.3 42.9 33.6 39.6 36.4 41.2
53.SEQID-246 41.2 46 41.8 41.7 41.9 47.7 44.5 35.2 43.6 37.6 37.6 48.4 41.6 45 81.2
54.SEQID 248 40.4 62.1 43 39.6 42.2 51.1 43.6 46.2 47 41.3 42.4 41.9 47 47.1 53.8
55.SEQID 250 43 45.9 47.4 45.3 45 42.6 44.4 37.7 43.8 44.7 35.6 50.5 40.4 48 55.3
56.SEQID 252 43.9 40.9 47.7 45.4 51.4 46 43.9 36.6 40.2 45.7 35.4 46.8 39.9 46.6 41.8
57.SEQID 154 40.4 55.7 41.8 44.2 43.2 52 41.1 41 46.9 38.2 38.5 45.2 42.9 42.8 63.7
58.SEQID-156 39.3 58.3 37.4 38.6 41.3 46.2 40.8 44 46 40.4 40.9 36.8 42.5 42.8 50
 
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
1.SEQID 132 20.3 41.3 41.2 41 40.3 39.4 31.4 42 34.5 38.4 26.8 29.5 24.2 28.2 27
2.SEQID 140 24 25.8 27 26.4 25.1 26.3 36.6 26.9 26.8 25.5 33.1 33.3 35.4 33.1 33.7
3.SEQID 142 21.5 40.3 41.2 40.5 38.7 37 29.9 38.4 34.3 35.7 26.3 28 24 27.9 26.2
4.SEQID 144 24.1 30.1 30.4 30.2 28.9 28.5 42.8 27.8 29.4 27.3 34.2 37.5 33.9 37 34.8
5.SEQID 146 21.5 36.8 34.5 33.8 36.9 36.2 29.7 35 29.4 34.9 29.3 29.1 25.1 28.3 27.8
6.SEQID 148 21.2 41.3 43.1 42 40.6 38.9 31.2 39.9 35.6 37.2 27.4 27.8 24.4 27.7 27.2
7.SEQID 150 23 26.9 26.1 25.8 26.7 26.3 39.4 25.6 26.3 25.3 33.7 34.8 35.8 34.8 32.8
8.SEQID 152 21 41.1 43 43 41.1 40.1 29.8 43.2 35.9 39.7 27 29.1 25.2 28 27.2
9.SEQID 154 20.8 37.1 40 38.7 35.9 35.5 28.3 38.8 30.8 38.1 27.2 29.4 23.5 27.9 26.7
10.SEQID 156 21.3 39.5 39.9 39.5 38.5 36.8 28 36.9 32.5 34.6 25.8 26.2 22.6 27.6 25.1
11.SEQID 158 23.7 38.1 40 38.8 36.8 35.1 29.6 35.4 35.7 34.2 25.7 26.8 22.7 26.5 26.5
12.SEQID 160 23.2 47.2 48.8 47.9 44.3 43.6 32.2 52.1 39.1 46.6 28.4 30.7 25.4 30.1 28.4
13.SEQID 162 23.2 46.9 48.8 47.6 44.1 43.3 32.2 52.1 39.1 46.6 28.4 30.9 25.4 30.4 28.4
14.SEQID 164 21.8 45.8 47 45.3 43.9 43.9 29.8 50.9 38.2 45.8 28.5 30.3 24.8 30 29
15.SEQID 166 21.5 46 47.3 45.5 43.8 43.8 30.1 51.1 38.8 46 28 30.1 24.3 29.8 28.3
16.SEQID 168 21.3 45.9 47.6 45.9 44.4 44.4 30.2 52.5 39.2 46.6 28.3 31 24.3 29.9 28.3
17.SEQID 170 24.5 30.8 28.1 28.3 30.8 30.2 36.9 28.5 27.3 26.1 45 44.1 39.2 44.3 45.2
18.SEQID 172 21.6 34.3 32.2 32.2 34 33.2 28.9 34.3 28.8 36.2 27 28.4 25.6 25.4 27.5
19.SEQID 174 23.5 26.9 30.2 29.9 28.3 27.8 28.4 28 24.9 27.8 25 25.9 22 27.9 24.9
20.SEQID 176 19 30.4 31.2 31.3 29.7 29.8 28.5 30.1 25.9 30.3 25.2 26.7 23.1 28 25.8
21.SEQID 178 23.9 32.5 33.2 33.2 31.4 31.9 32.7 32 31.5 31.5 33.9 31 28.6 31.4 33.1
22.SEQID 180 20.5 27.9 29.8 29.2 27.6 28.3 24.8 27.3 22.1 25.2 27.2 26.4 23 26.1 25.8
23.SEQID 182 24.2 24 24.3 24.5 24.8 25.1 32 24.4 24.5 23.7 35.2 37.5 33.2 37.4 35.5
 
24.SEQID 184 24.9 24.5 27.1 26.5 24.9 25.6 36 25.4 25.4 24.4 29.6 30.5 26.8 31 29.4
25.SEQID 186 23.1 27.6 28 27.7 27.3 26.2 25.2 28.5 24.2 27.9 25.8 24.8 23.1 25.5 25.5
26.SEQID 188 23.8 24.7 23.3 22 24.9 25.3 25.1 24.3 20.9 23.6 28.2 27.8 26.9 25.6 27
27.SEQID 190 21 69.5 54.9 54.5 84.3 82.1 33.6 51.3 44.6 49.5 28.7 27.6 23.9 28.2 29
28.SEQID 192 26.7 26.7 25.2 25.2 26.5 27.2 27.1 26.1 23.5 27 27.4 29.1 27.9 28.4 27
29.SEQID 194 21.3 68.5 48.7 48.3 54.5 55.4 31.7 44.9 35.9 44.2 30.4 31.6 28.4 31.3 30.7
30.SEQID 196 21.9 32.3 32.5 32.7 35.2 34 72.7 32.3 34.2 28.9 32.3 33.9 28.7 33 32.9
31.SEQID 198 20.9 18.9 18.8 20.2 20.5 23 22.1 21 20.9 24.3 24.4 26.5 24.9 25.3
32.SEQID 200 31.5 59.9 59.5 69.4 67.4 32.3 55.1 45.4 52.9 28.1 28.8 23.5 28.5 27.3
33.SEQID 202 30.7 72.9 96.3 56.1 55.1 33.2 66.1 54 58.6 30.5 28.5 24.1 28.9 30.7
34.SEQID 204 30.7 71.8 97.1 55.8 54.7 33.5 65.1 53 57.1 29.7 28.9 24.3 27.7 30.4
35.SEQID 206 32 81.1 72.2 72 97.3 34.4 53.5 45.8 49.5 28.8 28.9 25.3 27.2 28.8
36.SEQID-208 32.8 79.1 70.6 70.4 97.9 33.5 52.5 44.7 48 28.4 28.1 24.7 27.1 28.4
37.SEQID 210 43.6 43.2 43.7 43.2 45.9 46.6 32.1 32 30.6 35.8 36.5 32.5 32.4 36
38.SEQID 212 31.8 69 79.7 78.7 68.7 67.4 42.8 75.1 69.5 27.9 29 25.4 29.2 29.5
39.SEQID 214 33.5 56.1 66.9 66.1 58.7 58.3 46.4 77.7 52.9 25.4 26.9 23.4 25.9 26.7
40.SEQID 216 32.3 64.9 72.5 70.7 63.9 61.6 40.9 83.1 64.4 27 29.5 24 29.2 27.5
41.SEQID 218 43.7 42.6 41.3 40 40.5 39.3 51.1 40.3 40.1 37.6 62.8 65.8 61.9 95.8
42.SEQID 220 41.8 40.6 37.8 38.1 41.1 39 54.5 36.9 39.2 36.4 74.3 47.3 94.1 64.2
43.SEQID 222 38.7 35.1 33.1 33.3 33.1 33.3 44.3 34.1 33.2 32.8 69 54.3 46.5 68.8
44.SEQID 224 40.6 40.3 39.4 38.1 36.8 37.4 49.2 37.9 38.9 36.9 72.8 96.9 541 62.4
45.SEQID 228 42.4 43.2 42.9 41.9 40.3 38.8 52.3 41.8 41.1 38.6 97.3 74.8 70.2 73.3
46.SEQID 230 31.5 72.1 79.5 76.9 70.1 68 44.4 77.7 65.1 70.5 39.6 39.1 34.4 36.5 40.9
47.SEQID 232 30.5 68.2 74.5 72.9 68.2 66.3 42.4 74.1 62.6 65.4 38.4 40.5 31.6 38.9 40.5
48.SEQID 234 28.8 65.6 68.3 66.5 63.4 61.3 43.9 65.9 54.5 64.4 39.7 41.6 33 38.7 39.7
49.SEQID 236 28.6 63.8 69.8 67.2 65.4 63.5 44.5 70.3 57.8 64.6 40.4 40.1 34.4 39.6 41.9
50.SEQID 240 42.6 39.5 38.4 38.7 42.4 42.3 54.5 37.2 40.4 36.4 61.3 58.2 52 60.8 63.4
51.SEQID 242 36.1 47.3 45.5 45.3 46.7 46.6 59 46.9 46.7 43.4 45.6 45.9 37 45.2 45.6
52.SEQID 244 40.2 32.6 31 31.2 33.9 33.9 42.8 31.5 35.1 31.1 42.9 43.8 40.8 42.4 40.8
53.SEQID 246 39.3 42.9 44.4 44.5 47.5 47.4 75.5 46.7 51.4 42.9 43.3 47 37.9 46.3 45
54.SEQID 248 40.2 42.9 40.2 39.5 41.3 40.7 55.3 40.3 44.2 37.4 56.1 62.1 49.2 61.4 58
55.SEQID 250 34.3 46.8 45.2 46.9 46.9 46.3 55.6 46.7 47.4 43.4 43.2 43.8 34 41.9 42.6
56.SEQID 252 36 43.7 45.8 43.2 45.1 45 40.9 41.5 43 43.4 38.7 39 29.9 39.9 36.6
57.SEQID 254 39.9 42.9 45.5 45.1 46.1 45.5 64.1 44.4 47 43.2 48 49.1 38.5 48 48.7
58.SEQID 256 41.8 39.3 41.3 41.3 37.3 37.4 51.9 40 39.8 38.1 62.5 66 50.4 67.5 61.1
 
46 47 48 49 50 51 52 53 54 55 56 57 58
1.SEQID 132 41 41.4 40.8 41.6 28.6 29.8 21.5 33.4 27.9 32.1 33.3 31.5 26.6
2.SEQID 140 28.1 27.1 26.8 27 36.4 31.3 26.8 31.8 36.4 31.1 28.4 37.8 33.2
3.SEQID 142 38.8 38.3 38.6 36.2 30.3 30.5 20.2 27.2 29 30.2 31.3 32.4 26.8
4.SEQID 144 31.3 28.4 29.2 31.1 35.1 33.7 23.5 37.8 34.6 35 30.5 43.8 36.2
5.SEQID 146 34.8 34.4 35.8 34.5 27.8 30.4 21.5 28.1 28.1 31.9 49.7 31.5 29.6
6.SEQID 148 43.4 39.7 39.8 37.9 29.5 32.2 21.5 29.4 28.9 30.3 31 34.5 26.7
7.SEQID 150 26.2 25 24.9 25.3 33.2 33.7 29.1 34.1 35.1 31 25.5 37.7 35.7
8.SEQID 152 45.3 42.4 40.8 39.5 28.3 30.4 22.1 28.6 28.1 30.7 35.7 31 25.4
9.SEQID 154 43.1 37.4 36.8 39.7 26 27.8 19.8 27.1 27.3 30.6 30.2 28.7 27.8
10.SEQID 156 39.2 37.9 37.5 34.5 28.7 27.7 19.9 27.4 27 29.1 28.8 30.8 26.8
11.SEQID 158 40.9 37 38.6 37 29.5 29.8 21.1 27 27.4 29.2 31 32.9 26.5
12.SEQID 160 49.3 46.3 44.8 44.4 28.3 30.8 24.1 29.9 29.7 29.3 31.1 32.2 27
13.SEQID 162 49.3 46 45.1 44.4 28.3 30.8 24.4 29.1 30 29.3 31.6 32.5 27
14.SEQID 164 46.6 42.3 43.2 42.6 29.7 31 22.6 28.3 29.2 29.9 30.6 29.8 28.8
15.SEQID 166 47.1 42.7 43.6 42.8 30.1 31.8 21.8 28.8 29.3 30.2 30.8 29.6 28.8
16.SEQID 168 46.7 42.7 44 43.1 30.1 31.4 21.7 28.6 28.8 30.3 31.9 30.2 28.6
17.SEQID 170 30.2 29.1 29.1 28.4 90.8 32.5 29 34.3 41.2 31.4 27.5 35.4 42.8
18.SEQID 172 34.9 31.7 31.5 33.5 29.8 28.7 19.5 26.9 29.7 31.5 36 30.1 27.9
19.SEQID 174 31.1 28 28 30.8 29 28.3 21.1 26.9 29.4 28.8 32.4 25.5 28.6
20.SEQID 176 31.6 29.9 32.2 33 28.7 26.5 22.5 28 25.5 27.1 35.9 30.8 27.7
21.SEQID 178 35.5 33.3 31.4 32.2 31.2 28.9 26.6 30.1 31.4 29.3 30 35 30.6
22.SEQID 180 28.2 26.4 29.6 29 26.7 27.1 19.6 24.1 25.7 24.1 27.4 26.8 27.5
23.SEQID 182 24.1 24.5 25.7 26.8 36.2 28.9 23.6 27 33 28 27.7 33.3 35.2
24.SEQID 184 27.4 25.7 25.6 26.2 34.9 31.8 23.7 32.8 33.6 30.6 29.8 34.2 33
25.SEQID 186 30 28.3 27 29 28.2 25.4 22.6 25.6 25.8 28 32.4 26.9 28.3
26.SEQID 188 23.6 21.3 22.1 24.8 27.5 23.1 27.9 23 29.1 23.2 25.8 23.4 28.3
27.SEQID 190 52 49.7 46.2 45.1 28.6 37.1 22.2 32.2 28.9 36.1 32.2 35.1 27.2
28.SEQID 192 27.5 26.1 27.8 26.9 29.1 26.4 24.7 24.6 30.4 24.9 28.7 27.4 29.2
29.SEQID 194 46.2 45.3 41.8 40.1 31.5 32.8 26.6 31.3 33.2 30.9 32.6 31.4 30.7
30.SEQID 196 34.1 31.4 31 30.9 37.3 44.6 26.2 77.7 33.2 46.2 28.8 51.1 34.9
31.SEQID 198 18.9 19.2 19.9 19.9 23.7 20 24.9 21.4 22.5 23.7 22.8 22.1 25.1
32.SEQID 200 57.4 55.4 48.4 46.9 30.1 35.5 22.1 32.4 31.5 34.5 32 34.5 29.7
33.SEQID 202 67.1 59.2 53.5 54.4 28.6 33.8 20.4 31.5 30.3 33.2 31.1 35 31
34.SEQID 204 66 58 51.1 52.5 28.8 31.1 20.3 31.2 28.6 34 30.5 34.6 31
35.SEQID 206 51.8 49 45.6 45.3 30.2 34.7 22.3 33.5 29.5 34.5 30.7 36.8 28.3
 
36.SEQID 208 50.3 47.8 44.2 44.2 29.6 34.8 22.4 32.7 28.9 33.4 30.6 36 28.7
37.SEQID 210 33.6 31.4 33.9 34 38.2 44.3 26.8 67.9 37.6 46.3 29.5 48.6 33.9
38.SEQID 212 63.7 57 49.9 52.2 28 34 22.3 31.6 28.4 33.8 31.2 34.3 29.6
39.SEQID 214 50.8 48.2 40.3 43.5 26.1 32.4 20.4 30.6 28.4 31 25.6 34 25.4
40.SEQID 216 57.9 53.2 49.5 48.5 27.3 32.3 19.9 29.9 27.7 31.8 31.6 31 27.4
41.SEQID 218 28.6 26.6 28.8 30.1 44.4 31.5 26.3 29.1 44.6 29.4 25.3 32.2 50
42.SEQID 220 30.4 30.2 30.1 31.2 45.8 32.3 25 31.5 48 30.6 27.9 32.4 52.1
43.SEQID 222 26.5 24.5 24.9 25.6 37.7 26.9 28.8 25.3 37.5 25.6 21 27.1 41.8
44.SEQID 224 28.1 29.1 29.3 29.6 44.5 31.1 24.7 29.9 46.9 29.5 27.5 30.5 51.3
45.SEQID 228 29.4 27.6 29.3 30.7 45.3 31 24.8 29.7 45 30.3 24.9 31.8 49.4
46.SEQID 230 68.5 52.9 51.9 30.8 33.3 22.1 31.9 31.4 35.1 32.9 36 29.1
47.SEQID 232 80.1 46 47.6 27.8 29.5 20.5 30 29.7 35.6 32.9 32.8 27.4
48.SEQID 234 68.3 62.6 69.4 27.5 34 20.3 31.7 28.4 32.5 29.7 32.9 26
49.SEQID 236 69.8 66.4 80.5 28.6 31.9 21.2 30.8 29.4 33.9 30.8 33.1 27.8
50.SEQID 240 39.9 37.9 37.4 41.1 31.3 28.6 33.9 42 32.3 28.4 36.6 40.4
51.SEQID 242 45.4 42.4 46 43.8 45.9 22.3 41.3 33.2 41.7 25.4 52.8 31.3
52.SEQID 244 31.8 31.1 31.9 31.3 47.2 38 23.3 27 23.3 22.2 23.2 28
53.SEQID 246 45.9 41.1 44.2 43 49.3 60.7 38.9 32.8 43.1 26 47.5 31.1
54.SEQID 248 44.6 40 39.5 40.9 60.2 47.2 39.4 48.7 30.5 29.3 33.2 39.9
55.SEQID 250 44.9 48.7 44.9 47.1 44.4 53.8 33.7 56.5 42.9 29.2 46.7 30.2
56.SEQID 252 47.2 45.8 39.5 43.5 40.2 40.9 32.6 42.4 41.8 44.4 26.5 26.9
57.SEQID 254 45.4 41.6 43.1 44.5 57.9 63.6 39.6 61.1 49.8 56.5 38.4 31.9
58.SEQID 256 39.6 36.6 37.1 35.9 58.3 46.9 42.1 45 54.2 41.9 39.9 46.5
实施例12:鉴定在用于实施本发明方法的多肽序列内包含的结构域
蛋白质家族、结构域和位点集成资源(Integrated Resouce of ProteinFamilies,结构域and Site,InterPro)数据库是基于文本和序列的搜索的通常所用标签数据库的集成界面。InterPro数据库组合了这些数据库,所述的数据库使用不同方法学和不同程度的有关已充分表征蛋白质的生物学信息以得到蛋白质标签。合作数据库包括SWISS-PROT、PROSITE、TrEMBL、PRINTS、ProDom和Pfam、Smart和TIGRFAMs。Interpro驻留于英国的欧洲生物信息研究所。
InterPro扫描SEQ ID NO:132所代表的多肽序列的结果在表16中。
表16:SEQ ID NO:132所代表的多肽序列的InterPro扫描结果
 
数据库 登录号 登录名称
PRODOM PD001423 Q9SP16_ORYSA_Q9SP16;
PRINTS PR00367 ETHRSPELEMNT
GENE3D G3DSA:3.30.730.10 未记录
PFAM PF00847 AP2
SMART SM00380 AP2
PROFILE PS51032 AP2_ERF
SUPERFAMILY SSF54171 DNA结合结构域
实施例13:用于实施本发明方法的多肽序列的拓扑学预测(亚细胞定位,跨膜...)
TargetP 1.1预测真核蛋白质的亚细胞定位。位置分配是基于任何氨基端前序列的预测的存在:叶绿体转运肽(cTP)、线粒体靶向肽(mTP)或分泌途径信号肽(SP)。作为最终预测基础的记分并不实际是概率,并且它们未必合为一体。然而,具有最高记分的位置根据TargetP是最有可能的,并且记分之间的关系(可靠性类别)可以是预测的肯定性的一个指标。可靠性类别(RC)是1-5,其中1表示最强预测。TargetP在丹麦技术大学的服务器上维护。
对于预测含有N-末端前序列的序列,也可以预测潜在的切割位点。
选择了众多参数,如生物组(非植物或植物)、临界设置(无、临界的预定义设置或临界的用户指定设置)和对切割位点预测的计算(是或否)。
如SEQ ID NO:132所代表的多肽序列的TargetP 1.1分析的结果在表17中显示。已经选择“植物”生物组,未定义临界值并且需要转运肽的预测长度。如SEQ ID NO:132所代表的多肽序列的亚细胞定位可以是细胞质或核,未预测到转运肽。
表17:如SEQ ID NO:132所代表的多肽序列的TargetP 1.1分析
 
长度(AA) 130
叶绿体转运肽 0.098
线粒体转运肽 0.339
分泌途径信号肽 0.035
其他亚细胞靶向 0.797
预测的位置 /
可靠性类别 3
预测的转运肽长度 /
众多其他算法可以用来执行此类分析,包括:
在丹麦技术大学(Technical University of Denmar)服务器上驻留的ChloroP 1.1;
在澳大利亚布里斯班昆士兰大学分子生物科学研究所(Institute forMolecular Bioscience,University of Queensland,Brisbane,Australia)的服务器上驻留的蛋白质Prowler亚细胞定位预测程序(Protein ProwlerSubcellular Localisation Predictor)第1.2版;
在加拿大阿尔伯塔省埃德蒙顿市阿尔伯塔大学(University of Alberta,Edmonton,Alberta,Canada)的服务器上驻留的PENCE Proteme AnalystPA-GOSUB 2.5;
在丹麦技术大学服务器上驻留的TMHMM。
实施例14:使用SEQ ID NO:131所示核酸序列构建表达载体
除非另外声明,重组DNA技术根据(Sambrook(2001)MolecularCloning:a laboratory manual,第三版Cold Spring Harbor LaboratoryPress,CSH,New York)中或Ausubel等人(1994),Current Protocols inMolecular Biology,Current Protocols第1和2卷中描述的标准方法进行。用于植物分子工作的标准材料和方法在由BIOS Scientific PublicationsLtd(UK)和Blackwell Scientific Publications(UK)出版的R.D.D.Croy的Plant Molecular Biology Labfax(1993)中描述。
通过PCR从稻cDNA文库扩增稻AP2-2基因。使用标准技术纯化期望长度的PCR片段,并将其随后克隆进入
Figure A200780022208D01251
载体。包含SEQ IDNO:131的进入克隆随后在LR反应中与用于稻转化的目的载体一起使用。这种载体在T-DNA边界内含有作为功能性元件的:植物选择标记;可筛选标记表达盒,和旨在与已经克隆于所述进入克隆中的目的核酸序列发生LR体内重组的Gateway盒。用于根特异性表达的稻GOS2启动子(SEQ IDNO:39)位于该Gateway盒的上游。
在LR重组步骤后,根据本领域熟知的方法将产生的表达载体pGOS2::AP2-2(图23)转化至农杆菌菌株LBA4044。
实施例15:植物转化
稻转化
含有表达载体的农杆菌用来转化稻植物。将稻的日本栽培品种Nipponbare的成熟干燥种子脱壳。通过在70%乙醇中温育一分钟,随后在2%HgCl2中30分钟,随后用无菌蒸馏水洗涤6次15分钟而实施消毒。消毒的种子随后在含有2,4-D的培养基(愈伤组织诱导培养基)上萌发。在黑暗中温育4周后,将来自小盾片的愈伤组织切下并在同一种培养基上增殖。2周后,愈伤组织通过在同一种培养基上传代培养另外2周而繁殖或增殖。胚发生性愈伤组织片在新鲜培养基上传代培养3日,之后共培育(以增强细胞分裂活性)。
含有表达载体的农杆菌菌株LBA4404用于共培育。农杆菌接种在含有适宜抗生素的AB培养基上并在28℃培养3日。随后将细菌收集并重悬在液体共培育培养基中至密度(OD600)约1。将混悬液随后转移至培养皿并将愈伤组织在该混悬液内浸泡15分钟。愈伤组织组织随后在滤纸上吸干并转移至固化的共培育培养基上并且在黑暗中于25℃温育3日。共培育的愈伤组织在黑暗中于28℃在选择剂存在下于含有2,4-D的培养基上培育4周。在此时段期间,形成迅速生长的抗性愈伤组织岛。在这种材料转移至再生培养基并在光线下温育后,胚发生潜力释放并且苗在随后4-5周发育。将苗从愈伤组织中切下并且在含有植物生长素的培养基上温育2-3周,其中将苗从所述的培养基上转移至土壤。硬化的苗在高湿度和短日照下于温室中培育。
对于一个构建体,产生大约35个独立T0稻转化体。将原代转化体从组织培养箱转移至温室。在定量PCR分析以验证T-DNA插入物的拷贝数后,仅保留表现选择剂耐受性的单拷贝转基因植物用于收获T1种子。种子随后在移植后3-5月收获。本方法以超过50%的比率产生单一基因座转化体(Aldemita和Hodges1996,Chan等人,1993,Hiei等人,1994)。
玉米(corn)转化
玉米的转化根据对Ishida等人(1996.Nature Biotech 14745-50)描述方法的改良方法进行。在玉米中的转化是基因型依赖的并且仅特定的基因型可操作用于转化和再生。近交系A188(明尼苏达大学)或以A188作为亲本的杂种是用于转化的供体材料的良好来源,但是其他基因型也可以成功地使用。玉米穗从玉米植物中在授粉后大约11日(DAP)收获,此时不成熟胚的长度是大约1至1.2mm。不成熟胚与含有表达载体的根癌农杆菌共培育并且转基因植物通过器官发生而恢复。切下的胚在愈伤组织诱导培养基上、随后在玉米再生培养基上培育,其中所述的再生培养基含有选择剂(例如咪唑啉酮,但可以使用多种选择标记)。培养板在25℃于光照下培养2-3周,或直至苗发育。将绿色苗从每个胚转移至玉米生根培养基并在25℃培养2-3周,直至根发育。将生根的苗移植至温室的土壤中。从表现选择剂耐受的并含有单拷贝的T-DNA插入物的植物中产生T1种子。
小麦转化
小麦的转化用Ishida等Ishida等人(1996)Nature Biotech 14(6):745-50描述的方法进行。通常在转化中使用(可从墨西哥CIMMYT获得的)栽培品种Bobwhite。不成熟胚与含有表达载体的根癌农杆菌共培育并且转基因植物通过器官发生而恢复。在与农杆菌温育后,胚在愈伤组织诱导培养基上、随后在再生培养基上体外培育,其中所述的再生培养基含有选择剂(例如咪唑啉酮,但可以使用多种选择标记)。培养平板在25℃于光照下培养2-3周,或直至苗发育。将绿色苗从每个胚转移至生根培养基并在25℃培养2-3周,直至根发育。将生根的苗移植至温室的土壤中。从表现选择剂耐受的并含有单拷贝的T-DNA插入物的植物中产生T1种子。
大豆转化
根据对Texas A&M美国专利5,164,310中所述方法的改良方法转化大豆。几个商业大豆品种对于通过这种方法的转化是可行的。栽培品种Jack(从Illinois种子基金会可获得)通常用于转化。对大豆种子消毒以便体外播种。从7日龄幼苗中切下下胚轴、胚根和一片子叶。进一步培育上胚轴和余下的子叶以发育腋生节。将这些腋生节切下并与含有表达载体的根癌农杆菌温育。在共培育处理之后,将外植体洗涤并转移至选择培养基。将再生的苗切下并置于苗伸长培养基上。将长度不超过1cm的苗置于生根培养基上直至根发育。将生根的苗移植至温室的土壤中。从表现选择剂耐受的并含有单拷贝T-DNA插入物的植物中产生T1种子。
油菜籽/卡诺拉油菜转化
使用5-6日龄幼苗的子叶柄和下胚轴作为用于组织培养的外植体并且根据Babic等人(1998,Plant Cell Rep 17:183-188)转化。商业栽培品种Westar(Agriculture Canada)是用于转化的标准品种,但是也可以使用其他品种。对卡诺拉油菜种子作表面消毒以便体外播种。从体外幼苗中切下具有附着子叶的子叶柄外植体,并以(含有表达载体的)农杆菌通过叶柄外植体的切口端浸入细菌混悬液而接种。外植体随后在含有3mg/l BAP、3%蔗糖、0.7%植物琼脂(Phytagar)的MSBAP-3培养基上在23℃,16小时光照下培养2天。在与农杆菌共培育2日后,将叶柄外植体转移至含有的3mg/l BAP、头孢噻肟、羧苄青霉素或特美汀(300mg/l)的MSBAP-3培养基上持续7日,并且随后在含头孢噻肟、羧苄青霉素或特美汀和选择剂的MSBAP-3培养基上培养,直至苗再生。当苗具有5-10mm长度时,将苗切下并转移至苗伸长培养基(含0.5mg/l BAP的MSBAP-0.5)。将长度大约2cm的苗转移至用于根诱导的生根培养基(MS0)。将生根的苗移植至温室的土壤中。从表现选择剂耐受性并含有单拷贝T-DNA插入物的植物中产生T1种子。
苜蓿转化
苜蓿的再生性克隆使用(McKersie等人,1999 Plant Physiol119:839-847)的方法加以转化。苜蓿的再生和转化是基因型依赖性的并且因而需要再生植物。已经描述了获得再生性植物的方法。例如,这些再生性植物可以选自栽培品种Rangelander(Agriculture Canada)或如BrownDCW与A Atanassov(1985.Plant Cell Tissue Culture 4:111-112)描述的任何其他商业苜蓿品种。备选地,RA3品种(威斯康星大学)已经被选择用于组织培养中(Walker等人,1978 Am J Bot 65:654-659)。将叶柄外植体与含有表达载体的根癌农杆菌C58C1 pMP90(McKersie等人,1999 PlantPhysiol 119:839-847)或LBA4404的过夜培养物共培育。外植体在黑暗中在含有288mg/L Pro、53mg/L硫代脯氨酸、4.35g/L K2SO4和100μm乙酰丁香酮的SH诱导培养基上共培育3天.外植体在半浓缩Murashige-Skoog培养基(Murashige和Skoog,1962)中洗涤并平板接种在不含乙酰丁香酮而含有合适选择剂和合适抗生素以抑止农杆菌生长的相同SH诱导培养基上。在数周后,将体细胞胚转移至不含生长调节剂、不含抗生素而含有50g/L蔗糖的BOi2Y发育培养基中。体细胞胚随后在半浓缩Murashige-Skoog培养基上萌发。将生根的幼苗移植至花钵内并且在温室中培育。从表现选择剂耐受性并含有单拷贝T-DNA插入物的植物中产生T1种子。
实施例16:表型评价方法
16.1 评价准备
产生大约35个独立的T0稻转化体。原代转化体从组织培养箱转移至温室用于生长和收获T1种子。留下6个事件,其中所述事件的T1后代对转基因的存在/不存在以3:1比例分离。对于这些事件中的每一事件,通过监测目视标记表达而选择含有转基因的大约10株T1幼苗(杂合子和纯合子)和缺少转基因的大约10株T1幼苗(失效合子)。转基因植物和对应的失效合子在随机位置上并排培育。温室条件是短日照(12小时光照),在光线下28℃和在黑暗中22℃以及相对湿度70%。
4个T1事件在T2世代中按照如用于T1世代的相同评价方法作进一步评估,但每个事件采用更多的个体。使植物从播种期直至成熟期通过数字成像箱数次。在每一时间点上,对每株植物从至少6个不同角度拍摄数字图像(2048 x 1536像素,1600万颜色)。
16.2 统计分析:F-检验
使用双因子ANOVA(方差分析)作为统计模型用于植物表型特征的整体评价。对用本发明基因转化的全部事件的全部植物的所有测量参数实施F检验。实施F检验以检查基因对于全部转化事件的作用并验证基因的整体作用(又称作总体基因作用)。用于真实总体基因作用的显著性的阈值对于F检验设置在5%概率水平上。显著性F检验值标示基因作用,意味着不仅仅基因的存在或位置才造成表型上的差异。
16.3 测量的参数
生物量相关参数的测量
从播种期直至成熟期,使植物通过数字成像箱数次。在每一时间点上,对每株植物从至少6个不同角度拍摄数字图像(2048 x 1536像素,1600万颜色)。
植物地上部分面积(或叶生物量)通过计数在来自植物地上部分的数字图像上区别于背景的像素的总数而测定。该值对在相同时间点上从不同角度拍摄的画面进行平均化并且通过校正转化成以平方mm表达的物理表面值。实验证实以这种方式测量的地上部分植物面积与地上植物部分的生物量相关。地上部分面积是在植物已经达到其最大叶生物量的时间点上所测量的面积。早期生长势是萌发后3周的植物(幼苗)地上部分面积。根生物量的增加表述为根总生物量(测量为在植物寿命期间所观察到的根的最大生物量)的增加;或表述为根/冠指数(root/shoot index)(测量为在根和茎干的活跃生长时期中根的量与茎干的量之间的比率)的增加。
种子相关参数的测量
将成熟的主圆锥花序收获、计数、装袋、加条形码标记并且随后在干燥箱内在37℃干燥3日。随后将圆锥花序脱粒并且收集及计数全部种子。使用吹气装置分开饱满粒与空粒。弃去空粒并再次对剩余部分计数。饱满粒在分析天平上称重。饱满种子数通过计数分离步骤后的饱满粒数而确定。种子总产量通过称量从植物中收获的全部饱满粒而测量。每株植物种子总数通过计数从植物中收获的壳粒数目而测量。从计数的饱满种子数及其总重量外推出千粒重(TKW)。收获指数(HI)在本发明中定义为种子总产量与地上部分面积(mm2)之间的比,乘以系数106。如本发明中定义的每圆锥花序的总花数是种子总数与成熟主圆锥花序的数目之间的比率。如本发明中定义的种子饱满率是饱满种子数对种子(或小花)总数的比例(表述为%)。
实施例17:转基因植物的表型评价结果
表达AP2-2核酸的转基因稻植物的评价结果如下。
与对应的失效合子(对照)相比,具有增加的产量,与对照植物相比,尤其是表示为千粒重和收获指数的种子产量具有统计学显著的增加。对于TKW,与对照植物相比,T1总体增加2%,T2总体增加3.4%。对于收获指数的情况,与对照植物相比,总体分别增加9.2%(T1)和36.2%(T2)。
D)APETELA2-70-样(AP2-70-样)多肽
实施例18:鉴定AP2-70-样序列
使用数据库序列搜索工具,如基本局部比对工具(BLAST)(Altschul等人(1990)J.Mol.Biol.215:403-410;和Altschul等人(1997)Nucleic AcidsRes.25:3389-3402)在国家生物技术信息中心(NCBI)的Entrez核苷酸数据库中所维护的那些序列内鉴定到与SEQ ID NO:257相关的(全长cDNA、EST或基因组)序列和/或SEQ ID NO:258相关的蛋白质序列。该程序用来通过核酸序列或多肽序列与序列数据库比较并通过计算匹配的统计学显著性而找到序列间具有局部相似性的区域。对SEQ ID NO:257编码的多肽使用TBLASTN算法,采用默认设置和过滤以忽略低复杂性序列抵消。分析的结果通过配对性比较显示,并根据几率评分(E-值)排序,其中该评分反映特定比对结果因偶然而发生的概率(E-值越低,命中的显著性越高)。除了E-值外,比较还通过同一性百分数进行记分。同一性百分数指两个所比较核酸(或多肽)序列之间在特定长度范围内的相同核苷酸(或氨基酸)数目。在一些情况下,可以调整默认参数以调节搜索法的严格性。
表18提供与SEQ ID NO:257所示核酸序列和SEQ ID NO:258所示蛋白质序列相关的核酸和蛋白质序列列表。
表18:可用于本发明方法中的AP2-70-编码核酸序列和AP2-70多肽
 
名称 生物来源 核酸SEQ IDNO:   多肽SEQ IDNO:   状态
257 258 全长
259 260 全长
NP_001049235.1 261 262 全长
ABB90886.1 普通小麦 263 264 全长
AAZ08560.1 普通小麦 265 266 全长
AAX13274.1 普通小麦 267 268 全长
NM_001054677.1 269 270 全长
ABK28776.1 拟南芥 271 272 全长
BAD37688.1 273 274 全长
ABB89754.1 石刁柏 275 276 全长
ABJ09421.1 芦荟 277 278 全长
AAT39542.1 陆地棉 279 280 全长
AAF17691.1 拟南芥 281 282 全长
NP_177931.1 拟南芥 283 284 全长
NP_195688.1 拟南芥 285 286 全长
AAM08622.1 287 288 全长
ABB89755.1 构树 289 290 全长
AAZ14831.1 麻疯树 291 292 全长
AAC49770.1 拟南芥 293 294 全长
NP_001063013.1 295 296 全长
NP_001061779.1 297 298 全长
AAO13360.1 番茄 299 300 全长
 
AAM80486.1 玉蜀黍 301 302 全长
AAP56252.1 303 304 全长
AAF76898.1 榆钱菠菜 305 306 全长
NP_173638.1 拟南芥 307 308 全长
NP_179810.1 拟南芥 309 310 全长
AAZ03388.1 大豆 311 312 全长
NP_564468.1 拟南芥 313 314 全长
NP_179685.1 拟南芥 315 316 全长
NP_193098.1 拟南芥 317 318 全长
BAD25342.1 319 320 全长
NP_001053379.1 321 322 全长
CAD41199.2 323 324 全长
NP_176620.1 拟南芥 325 326 全长
11978.m07152 327 328 全长
11975.m09040 329 330 全长
实施例19:AP2-70-样多肽序列的比对
使用来自Vector NTI(Invitrogen)的AlignX基于进行性比对的流行Clustal算法(Thompson等人(1997),Nucleic Acids Res 25:4876-4882;Chenna等人(2003),Nucleic Acids Res 31:3497-3500)进行多肽序列的比对。默认值是空位开口罚分10,空位延伸罚分0.1并且选择的权重矩阵是Blosum 62(若比对多肽)。
可以使用来自Vector NTI(Invitrogen)的AlignX中提供的邻接聚类算法构建AP2-70-样多肽的系统发生树。
实施例20:克隆和载体构建
除非另外声明,重组DNA技术根据(Sambrook(2001)MolecularCloning:a laboratory manual,第三版Cold Spring Harbor LaboratoryPress,CSH,New York)中或Ausubel等人(1994),Current Protocols inMolecular Biology,Current Protocols第1和2卷中描述的标准方法进行。用于植物分子工作的标准材料和方法在由BIOS Scientific PublicationsLtd(UK)和Blackwell Scientific Publications(UK)出版的R.D.D.Croy的Plant Molecular Biology Labfax(1993)中描述。
通过PCR从稻cDNA文库扩增稻AP2-70基因。使用标准技术纯化期望长度的PCR片段,并将其随后克隆进入
Figure A200780022208D0133084836QIETU
载体。包含SEQ IDNO:257的进入克隆随后在LR反应中与用于稻转化的目的载体一起使用。这种载体在T-DNA边界内含有作为功能性元件的:植物选择标记;可筛选标记表达盒,和旨在与已经克隆于所述进入克隆中的目的核酸序列发生LR体内重组的Gateway盒。用于组成型表达的稻GOS2启动子(SEQ IDNO:39)位于该Gateway盒的上游。
在LR重组步骤后,根据本领域熟知的方法将产生的表达载体pGOS2::AP2-70(图25)转化至农杆菌菌株LBA4044。
也制备第二载体,其除了包含用于根特异性表达的RCc3启动子(SEQ ID NO:110)之外与上述载体相同。同样,在LR重组步骤后,根据本领域熟知的方法将产生的表达载体pRCc3::AP2-70(图24)转化至农杆菌菌株LBA4044。
实施例21:植物转化
稻转化
含有表达载体的农杆菌用来转化稻植物。将稻的日本栽培品种Nipponbare的成熟干燥种子脱壳。通过在70%乙醇中温育一分钟,随后在2%HgCl2中30分钟,随后用无菌蒸馏水洗涤6次15分钟而实施消毒。消毒的种子随后在含有2,4-D的培养基(愈伤组织诱导培养基)上萌发。在黑暗中温育4周后,将来自小盾片的愈伤组织切下并在同一种培养基上增殖。2周后,愈伤组织通过在同一种培养基上传代培养另外2周而繁殖或增殖。胚发生性愈伤组织片在新鲜培养基上传代培养3日,之后共培育(以增强细胞分裂活性)。
含有表达载体的农杆菌菌株LBA4404用于共培育。农杆菌接种在含有适宜抗生素的AB培养基上并在28℃培养3日。随后将细菌收集并重悬在液体共培育培养基中至密度(OD600)约1。将混悬液随后转移至培养皿并将愈伤组织在该混悬液内浸泡15分钟。愈伤组织组织随后在滤纸上吸干并转移至固化的共培育培养基上并且在黑暗中于25℃温育3日。共培育的愈伤组织在黑暗中于28℃在选择剂存在下于含有2,4-D的培养基上培育4周。在此时段期间,形成迅速生长的抗性愈伤组织岛。在这种材料转移至再生培养基并在光线下温育后,胚发生潜力释放并且苗在随后4-5周发育。将苗从愈伤组织中切下并且在含有植物生长素的培养基上温育2-3周,其中将苗从所述的培养基上转移至土壤。硬化的苗在高湿度和短日照下于温室中培育。
对于一个构建体,产生大约35个独立T0稻转化体。将原代转化体从组织培养箱转移至温室。在定量PCR分析以验证T-DNA插入物的拷贝数后,仅保留表现选择剂耐受性的单拷贝转基因植物用于收获T1种子。种子随后在移植后3-5月收获。本方法以超过50%的比率产生单一基因座转化体(Aldemita和Hodges1996,Chan等人,1993,Hiei等人,1994)。
玉米转化
玉米的转化根据对Ishida等人(1996.Nature Biotech 14745-50)描述方法的改良方法进行。在玉米中的转化是基因型依赖的并且仅特定的基因型可操作用于转化和再生。近交系A188(明尼苏达大学)或以A188作为亲本的杂种是用于转化的供体材料的良好来源,但是其他基因型也可以成功地使用。玉米穗从玉米植物中在授粉后大约11日(DAP)收获,此时不成熟胚的长度是大约1至1.2mm。不成熟胚与含有表达载体的根癌农杆菌共培育并且转基因植物通过器官发生而恢复。切下的胚在愈伤组织诱导培养基上、随后在玉米再生培养基上培育,其中所述的再生培养基含有选择剂(例如咪唑啉酮,但可以使用多种选择标记)。培养板在25℃于光照下培养2-3周,或直至苗发育。将绿色苗从每个胚转移至玉米生根培养基并在25℃培养2-3周,直至根发育。将生根的苗移植至温室的土壤中。从表现选择剂耐受的并含有单拷贝的T-DNA插入物的植物中产生T1种子。
小麦转化
小麦的转化用Ishida等Ishida等人(1996)Nature Biotech 14(6):745-50描述的方法进行。通常在转化中使用(可从墨西哥CIMMYT获得的)栽培品种Bobwhite。不成熟胚与含有表达载体的根癌农杆菌共培育并且转基因植物通过器官发生而恢复。在与农杆菌温育后,胚在愈伤组织诱导培养基上、随后在再生培养基上体外培育,其中所述的再生培养基含有选择剂(例如咪唑啉酮,但可以使用多种选择标记)。培养平板在25℃于光照下培养2-3周,或直至苗发育。将绿色苗从每个胚转移至生根培养基并在25℃培养2-3周,直至根发育。将生根的苗移植至温室的土壤中。从表现选择剂耐受的并含有单拷贝的T-DNA插入物的植物中产生T1种子。
大豆转化
根据对Texas A&M美国专利5,164,310中所述方法的改良方法转化大豆。几个商业大豆品种对于通过这种方法的转化是可行的。栽培品种Jack(从Illinois种子基金会可获得)通常用于转化。对大豆种子消毒以便体外播种。从7日龄幼苗中切下下胚轴、胚根和一片子叶。进一步培育上胚轴和余下的子叶以发育腋生节。将这些腋生节切下并与含有表达载体的根癌农杆菌温育。在共培育处理之后,将外植体洗涤并转移至选择培养基。将再生的苗切下并置于苗伸长培养基上。将长度不超过1cm的苗置于生根培养基上直至根发育。将生根的苗移植至温室的土壤中。从表现选择剂耐受的并含有单拷贝T-DNA插入物的植物中产生T1种子。
油菜籽/卡诺拉油菜转化
使用5-6日龄幼苗的子叶柄和下胚轴作为用于组织培养的外植体并且根据Babic等人(1998,Plant Cell Rep 17:183-188)转化。商业栽培品种Westar(Agriculture Canada)是用于转化的标准品种,但是也可以使用其他品种。对卡诺拉油菜种子作表面消毒以便体外播种。从体外幼苗中切下具有附着子叶的子叶柄外植体,并以(含有表达载体的)农杆菌通过叶柄外植体的切口端浸入细菌混悬液而接种。外植体随后在含有3mg/l BAP、3%蔗糖、0.7%植物琼脂(Phytagar)的MSBAP-3培养基上在23℃,16小时光照下培养2天。在与农杆菌共培育2日后,将叶柄外植体转移至含有的3mg/l BAP、头孢噻肟、羧苄青霉素或特美汀(300mg/l)的MSBAP-3培养基上持续7日,并且随后在含头孢噻肟、羧苄青霉素或特美汀和选择剂的MSBAP-3培养基上培养,直至苗再生。当苗具有5-10mm长度时,将苗切下并转移至苗伸长培养基(含0.5mg/l BAP的MSBAP-0.5)。将长度大约2cm的苗转移至用于根诱导的生根培养基(MS0)。将生根的苗移植至温室的土壤中。从表现选择剂耐受性并含有单拷贝T-DNA插入物的植物中产生T1种子。
苜蓿转化
苜蓿的再生性克隆使用(McKersie等人,1999 Plant Physiol119:839-847)的方法加以转化。苜蓿的再生和转化是基因型依赖性的并且因而需要再生植物。已经描述了获得再生性植物的方法。例如,这些再生性植物可以选自栽培品种Rangelander(Agriculture Canada)或如BrownDCW与A Atanassov(1985.Plant Cell Tissue Culture 4:111-112)描述的任何其他商业苜蓿品种。备选地,RA3品种(威斯康星大学)已经被选择用于组织培养中(Walker等人,1978 Am J Bot 65:654-659)。将叶柄外植体与含有表达载体的根癌农杆菌C58C1 pMP90(McKersie等人,1999 PlantPhysiol 119:839-847)或LBA4404的过夜培养物共培育。外植体在黑暗中在含有288mg/L Pro、53mg/L硫代脯氨酸、4.35g/L K2SO4和100μm乙酰丁香酮的SH诱导培养基上共培育3天.外植体在半浓缩Murashige-Skoog培养基(Murashige和Skoog,1962)中洗涤并平板接种在不含乙酰丁香酮而含有合适选择剂和合适抗生素以抑止农杆菌生长的相同SH诱导培养基上。在数周后,将体细胞胚转移至不含生长调节剂、不含抗生素而含有50g/L蔗糖的BOi2Y发育培养基中。体细胞胚随后在半浓缩Murashige-Skoog培养基上萌发。将生根的幼苗移植至花钵内并且在温室中培育。从表现选择剂耐受性并含有单拷贝T-DNA插入物的植物中产生T1种子。
实施例22:表型评价方法
22.1 评价准备
产生大约35个独立的T0稻转化体。原代转化体从组织培养箱转移至温室用于生长和收获T1种子。留下6个事件,其中所述事件的T1后代对转基因的存在/不存在以3:1比例分离。对于这些事件中的每一事件,通过监测目视标记表达而选择含有转基因的大约10株T1幼苗(杂合子和纯合子)和缺少转基因的大约10株T1幼苗(失效合子)。转基因植物和对应的失效合子在随机位置上并排培育。温室条件是短日照(12小时光照),在光线下28℃和在黑暗中22℃以及相对湿度70%。
4个T1事件在T2世代中按照如用于T1世代的相同评价方法作进一步评估,但每个事件采用更多的个体。使植物从播种期直至成熟期通过数字成像箱数次。在每一时间点上,对每株植物从至少6个不同角度拍摄数字图像(2048 x 1536像素,1600万颜色)。
22.2 统计分析:F-检验
使用双因子ANOVA(方差分析)作为统计模型用于植物表型特征的整体评价。对用本发明基因转化的全部事件的全部植物的所有测量参数实施F检验。实施F检验以检查基因对于全部转化事件的作用并验证基因的整体作用(又称作总体基因作用)。用于真实总体基因作用的显著性的阈值对于F检验设置在5%概率水平上。显著性F检验值标示基因作用,意味着不仅仅基因的存在或位置才造成表型上的差异。
22.3 测量的参数
生物量相关参数测量
从播种期直至成熟期,使植物通过数字成像箱数次。在每一时间点上,对每株植物从至少6个不同角度拍摄数字图像(2048 x 1536像素,1600万颜色)。
植物地上部分面积(或叶生物量)通过计数在来自植物地上部分的数字图像上区别于背景的像素的总数而测定。该值对在相同时间点上从不同角度拍摄的画面进行平均化并且通过校正转化成以平方mm表达的物理表面值。实验证实以这种方式测量的地上部分植物面积与地上植物部分的生物量相关。地上部分面积是在植物已经达到其最大叶生物量的时间点上所测量的面积。早期生长势是萌发后3周的植物(幼苗)地上部分面积。根生物量的增加表述为根总生物量(测量为在植物寿命期间所观察到的根的最大生物量)的增加;或表述为根/苗指数(测量为在根和苗的活跃生长时期中根质量与苗质量之间的比率)的增加。
种子相关的参数测量
将成熟的主圆锥花序收获、计数、装袋、加条形码标记并且随后在干燥箱内在37℃干燥3日。随后将圆锥花序脱粒并且收集及计数全部种子。使用吹气装置分开饱满粒与空粒。弃去空粒并再次对剩余部分计数。饱满粒在分析天平上称重。饱满种子数通过计数分离步骤后的饱满粒数而确定。种子总产量通过称量从植物中收获的全部饱满粒而测量。每株植物种子总数通过计数从植物中收获的壳粒数目而测量。从计数的饱满种子数及其总重量外推出千粒重(TKW)。收获指数(HI)在本发明中定义为种子总产量与地上部分面积(mm2)之间的比,乘以系数106。如本发明中定义的每圆锥花序的总花数是种子总数与成熟主圆锥花序的数目之间的比率。如本发明中定义的种子饱满率是饱满种子数对种子(或小花)总数的比例(表述为%)。
实施例23:转基因植物的表型评价结果
表达AP2-70核酸的转基因稻植物的评价结果如下所示。同样显示转基因物和对应的失效合子之间的差异百分比。
表19a pGOS2::AP2-70表达的结果
 
性状 阳性事件 平均差异
根冠指数 3个事件 21.3%
总数+14%
总种子产量 2个事件 27%
饱满率 3个事件 27%
TKW 4个事件 8.75%
总数+6%
收获指数 4个事件 30.5%
总数+16%
根粗细 2个事件 10.5%
高度 2个事件 8%
总数+4%
表19b pRCc3::AP2-70表达的结果
 
性状 阳性事件 平均差异
最大面积 2个事件 16.5%
总数+7%
总种子产量 2个事件 233%
总数+89%
饱满种子数 2个事件 184.5%
总数+68%
饱满率 2个事件 206%
总数+87%
收获指数 2个事件 238.5%
总数+86%
TKW 3个事件 11.3%
总数+7%
高度 2个事件 12.5%
总数+7%

Claims (82)

1.增强植物中产量相关性状的方法,其包括调节编码NAC转录因子的核酸在植物中的表达,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:2所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
2.权利要求1的方法,其中所述NAC转录因子包含任意一个或多个以下基序:
基序I:KIDLDIIQELD,或与基序I的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序II:CKYGXGHGGDEQTEW,或与基序II的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%,其中“X”是任意氨基酸或空位;
基序III:GWVVCRAFQKP,或与基序III的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
3.权利要求1或2的方法,其中所述编码NAC转录因子的核酸是表3中给出的任一SEQ ID NO的核酸或其部分,或能够与表3中给出的任一SEQ ID NO的核酸杂交的序列。
4.权利要求1-3中任一项的方法,其中所述调节表达通过T-DNA激活标签化、TILLING和同源重组中的任何一种或多种方法实现。
5.权利要求1-3中任一项的方法,其中所述调节表达通过在植物中引入并表达编码NAC转录因子的核酸实现,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQID NO:2所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
6.权利要求1-5中任一项的方法,其中所述增强的产量相关性状是增加的地上部分面积。
7.权利要求1-6中任一项的方法,其中所述增强的产量相关性状是增加的种子产量。
8.权利要求5-7中任一项的方法,其中所述核酸与绿色组织特异性启动子有效连接,优选与原叶绿素酸酯还原酶启动子有效连接。
9.权利要求5-7中任一项的方法,其中所述核酸与组成型启动子有效连接,优选与GOS2启动子有效连接。
10.增强植物中产量相关性状的方法,其包括调节编码NAC转录因子的核酸在植物中的表达,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ ID NO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
11.增强生长在非生物胁迫条件下的植物中产量相关性状的方法,其包括调节编码NAC转录因子的核酸在植物中的表达,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:53所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
12.权利要求10的方法,其中所述NAC转录因子包含任意一个或多个以下基序:
基序IV:PVPIIA,或与基序IV的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序V:NGSRPN,或与基序V的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序VI:CRLYNKK,或与基序VI的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序VII:NEWEKMQ,或与基序VII的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序VIII:WGETRTPESE,或与基序VIII的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序IX:VPKKESMDDA,或与基序IX的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;
基序X:SYDDIQGMYS,或与基序X的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%;以及
基序XI:DSMPRLHADSSCSE,或与基序XI的序列具有一定序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、60%、70%、80%或90%。
13.权利要求10或12的方法,其中所述编码NAC转录因子的核酸是表4中给出的任一SEQ ID NO的核酸或其部分,或能够与表4中给出的任一SEQ ID NO的核酸杂交的序列。
14.权利要求10-13的方法,其中所述调节表达通过T-DNA激活标签化、TILLING和同源重组中的任何一种或多种方法实现。
15.权利要求10-13中任一项的方法,其中所述调节表达通过在植物中引入并表达编码NAC转录因子的核酸实现,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ IDNO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
16.权利要求10-15中任一项的方法,其中所述增强的产量相关性状是增加的地上部分面积。
17.权利要求10-16中任一项的方法,其中所述增强的产量相关性状是增加的种子产量。
18.权利要求10-17中任一项的方法,其中所述增强的产量相关性状是增加的早期生长势。
19.权利要求15-18中任一项的方法,其中所述核酸与根特异性启动子有效连接,优选与RCc3启动子有效连接。
20.权利要求15-18中任一项的方法,其中所述核酸与组成型启动子有效连接,优选与GOS2启动子有效连接。
21.权利要求1-20中任一项的方法,其中所述编码NAC转录因子的核酸是植物来源,优选来自单子叶植物,更优选来自禾本科,进一步优选来自稻属,最优选来自稻。
22.权利要求1-21中任一项的方法获得的植物,或包括种子的植物部分,其中所述植物或植物部分包含编码NAC转录因子的核酸。
23.构建体,其包含:
(a)编码NAC转录因子的核酸,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:2所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组;
(b)能够驱动(a)的核酸序列表达的一种或多种调控序列;和任选地
(c)转录终止序列。
24.权利要求23的构建体,其中所述一种或多种调控序列至少是绿色组织特异性启动子,优选是原叶绿素酸酯还原酶启动子。
25.构建体,其包含:
(a)编码NAC转录因子的核酸,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ ID NO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组;
(b)能够驱动(a)的核酸序列表达的一种或多种调控序列;和任选地
(c)转录终止序列。
26.权利要求25的构建体,其中所述一种或多种调控序列至少是根特异性启动子,优选是RCc3启动子。
27.权利要求23或25的构建体,其中所述一种或多种调控序列至少是组成型启动子,优选是GOS2启动子。
28.权利要求23-27中任一项的构建体在制备相对于对照植物具有增强的产量相关性状,尤其是增加的种子产量和/或增加的地上部分面积的植物中的用途。
29.植物、植物部分或植物细胞,其由权利要求23-27中任一项的构建体转化。
30.用于产生相对于对照植物具有增强的产量相关性状的转基因植物的方法,所述方法包括:
(i)在植物中引入并表达编码NAC转录因子的核酸,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:2、SEQ ID NO:51、SEQ ID NO:53、SEQ IDNO:55、SEQ ID NO:57或SEQ ID NO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组;以及
(ii)在促进植物生长和发育的条件下培育植物细胞。
31.相对于合适的对照植物具有增加的产量的转基因植物,所述增加的产量来自编码NAC转录因子的核酸的增加的表达,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:2、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ ID NO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
32.权利要求22、29或30中任一项的转基因植物,其中所述植物是作物植物、单子叶植物或谷物,例如稻、玉米、小麦、大麦、粟、黑麦、高粱和燕麦。
33.权利要求22、29、31或32中任一项的植物的可收获部分,其中所述可收获部分优选是种子。
34.产物,其来自权利要求32的植物和/或权利要求33的植物的可收获部分。
35.编码NAC转录因子的核酸在增强植物产量相关性状中的用途,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:2、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57或SEQ ID NO:59所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
36.编码NAC4转录因子的核酸在增强生长在非生物胁迫条件下的植物的产量相关性状中的用途,其中当所述NAC转录因子的氨基酸序列用于构建诸如图1所示的NAC系统树时,趋向聚簇于包含SEQ ID NO:53所示的氨基酸序列的NAC组,而不是聚簇于任何其他NAC组。
37.权利要求35或36的用途,其中所述增强的产量相关性状是相对于对照植物增加的种子产量和/或增加的地上部分面积和/或早期生长势。
38.相对于对照植物增强植物中产量相关性状的方法,其包括调节编码AP2-2多肽的核酸在植物中的表达,其中所述AP2-2多肽包含基序XII(SEQ ID NO:133),并优选还包含以下一种或多种基序:基序XIII(SEQID NO:134)、基序XIV(SEQ ID NO:135)、基序XV(SEQ ID NO:136)、基序XVI(SEQ ID NO:137)和基序XVII(SEQ ID NO:138)。
39.权利要求38的方法,其中所述AP2-2多肽与SEQ ID NO:132所示的AP2-2多肽具有一定序列同一性,所述序列同一性按照增加的优选顺序为至少20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高。
40.权利要求38或39的方法,其中所述编码AP2-2多肽的核酸是表14中给出的任一SEQ ID NO的核酸或其部分,或由能够与表14中给出的任一SEQ ID NO的核酸杂交的序列。
41.权利要求38-40中任一项的方法,其中所述核酸序列编码表14中给出的任一SEQ ID NO的直向同源物或旁系同源物。
42.权利要求38-41中任一项的方法,其中所述调节表达由在植物中引入并表达编码AP2-2多肽的核酸实现。
43.权利要求38-42中任一项的方法,其中所述增强的产量相关性状是相对于对照植物的增加的产量,优选是增加的种子产量。
44.权利要求42或43的方法,其中所述核酸与组成型启动子有效连接,优选与GOS2启动子有效连接。
45.权利要求38-44中任一项的方法,其中所述编码AP2-2多肽的核酸是植物来源,优选来自双子叶植物,更优选来自禾本科,进一步优选来自稻属,最优选来自稻。
46.权利要求38-45中任一项的方法获得的植物,或包括种子的植物部分,其中所述植物或植物部分包含编码AP2-2多肽的重组核酸。
47.构建体,其包含:
(a)权利要求38-41中任一项定义的编码AP2-2多肽的核酸;
(b)能够驱动(a)的核酸序列表达的一种或多种调控序列;和任选地
(c)转录终止序列。
48.权利要求47的构建体,其中所述一种或多种调控序列是组成型启动子,优选是GOS2启动子。
49.权利要求47或48的构建体在制备相对于对照植物具有增加的产量,尤其是增加的种子产量的植物的方法中的用途。
50.植物、植物部分或植物细胞,其由权利要求47或48的构建体转化。
51.用于产生相对于对照植物具有增加的产量,尤其是增加的种子产量的转基因植物的方法,其包括:
(i)在植物中引入并表达权利要求38-41中任一项定义的编码AP2-2多肽的核酸;以及
(ii)在促进植物生长和发育的条件下培育植物细胞。
52.相对于对照植物具有增加的产量,尤其是增加的种子产量的转基因植物,或来自所述转基因植物的转基因植物细胞,所述增加的产量,尤其是增加的种子产量来自权利要求38-41中任一项定义的编码AP2-2多肽的核酸的增加的表达。
53.权利要求46、50或52中任一项的转基因植物,或来自所述转基因植物的转基因植物细胞,其中所述植物是作物植物、单子叶植物或谷物,例如稻、玉米、小麦、大麦、粟、黑麦、高粱和燕麦。
54.权利要求53的植物的可收获部分,其中所述可收获部分优选是种子。
55.产物,其来自权利要求53的植物和/或权利要求54的植物的可收获部分。
56.编码权利要求41所定义的AP2-2多肽的核酸相对于对照植物,在植物中增加产量,尤其是增加种子产量中的用途。
57.相对于对照植物增强植物中产量相关性状的方法,其包括(i)调节编码APETELA2-70-样(AP2-70-样)多肽的核酸在植物中的表达,其中所述APETELA2-70-样(AP2-70-样)多肽包含:
(i)SEQ ID NO:332:YRGVRQRHWGKWVAEIRLPRNRTRLWLGTFDTAEEAALAYDSAAFRLRGESARLNF所示的AP2DNA-结合结构域,或与SEQ ID NO:332所示的结构域具有一定序列同一性的结构域,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和
(ii)与SEQ ID NO:258所示的稻多肽序列具有一定序列同一性的多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和
(iii)包含SEQ ID NO:333:RLPXNX1RXRXWLGT F/Y D/E T/S所示基序I的多肽,其中X是任意氨基酸,且X1是0、1或更多,最多至30、空位;和
(iv)包含SEQ ID NO:334:RG D/E所示基序XIX的多肽。
58.权利要求57的方法,其中所述AP2-70-样多肽还包括一个或多个以下基序:
(i)SEQ ID NO:335/基序XX:WDESESFLLHKYPSLEIDWDAILS,或与基序XX具有一定的序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和/或
(ii)SEQ ID NO:336/基序XXI:GPPLHAAVDAKLHAICH,或与基序XXI具有一定的序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和/或
(iii)SEQ ID NO:337/基序XXII:GANYLTPAQVLHVQAQLQRLRRP,或与基序XXII具有一定的序列同一性的基序,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高;和/或
(iv)SEQ ID NO:338/基序XXIII:VDSKELMGALAPSMVSFSYPCSEQSASS,或与基序XXIII具有一定的序列同一性,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更高。
59.权利要求57或58的方法,其中所述调节表达由在植物中引入并表达编码AP2-70-样多肽的核酸实现。
60.权利要求57-59中任一项的方法,其中所述编码AP2-70-样多肽的核酸是表18中给出的任一SEQ ID NO的核酸或其部分,或是能够与表18中给出的任一SEQ ID NO的核酸杂交的序列。
61.权利要求57-60中任一项的方法,其中所述核酸序列编码表18中给出的任意SEQ ID NO的直向同源物或旁系同源物。
62.权利要求57-61中任一项的方法,其中所述增强的产量相关性状是相对于对照植物的增加的产量,尤其是增加的种子产量。
63.权利要求57-62中任一项的方法,其中所述核酸与组成型启动子有效连接,优选与GOS2启动子有效连接,最优选与来自稻的GOS2启动子有效连接。
64.权利要求59-62中任一项的方法,其中所述核酸与根特异性启动子有效连接,优选与RCC3启动子有效连接,最优选与来自稻的RCC3启动子有效连接。
65.权利要求57-64中任一项的方法,其中所述编码AP2-70-样多肽的核酸是植物来源,优选来自单子叶植物,更优选来自禾本科,进一步优选来自稻属,最优选来自稻。
66.权利要求57-65中任一项的方法获得的植物,或包括种子的植物部分,其中所述植物或植物部分包含编码AP2-70-样多肽的重组核酸。
67.分离的核酸分子,其包括:
(a)SEQ ID NO:257所示的核酸;
(b)SEQ ID NO:257所示的核酸的互补物;
(c)核酸,其编码与SEQ ID NO:258所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;以及其编码与SEQ ID NO:331:PFLMQWLNLLPLPV LDSSSWCPEHFHNSESDALP所示的氨基酸序列具有一定序列同一性的AP2-70-样多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
68.分离的多肽,其包含:
(a)SEQ ID NO:258所示的氨基酸序列;
(b)氨基酸序列,其与SEQ ID NO:258所示的氨基酸序列具有一定序列同一性,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;以及其与SEQ ID NO:331:PFLMQWLNLLPLPVLDSSSWCPEHFHNSESDALP所示的氨基酸序列具有一定序列同一性,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;
(c)上述(a)或(b)给出的氨基酸序列的衍生物。
69.构建体,其包含:
(a)权利要求57、58或67中任一项定义的AP2-70-样多肽的编码核酸;能够驱动(a)的核酸序列表达的一种或多种调控序列;和任选地
(b)转录终止序列。
70.权利要求69的构建体,其中所述一种或多种调控序列选自:
(i)组成型启动子,优选是GOS2启动子,最优选是来自稻的GOS2启动子;或
(ii)根特异性启动子,优选是RCC3启动子,最优选是来自稻的RCC3启动子。
71.权利要求69或70的构建体在制备相对于对照植物具有增加的产量,尤其是增加的种子产量的植物的方法中的用途。
72.植物、植物部分或植物细胞,其由权利要求69或70的构建体转化。
73.用于产生相对于对照植物具有增加的产量,尤其是增加的种子产量的转基因植物的方法,其包括:
(i)在植物中引入并表达权利要求57、58或67所定义的AP2-70-样多肽的编码核酸;以及
(ii)在促进植物生长和发育的条件下培育植物细胞。
74.相对于对照植物具有增加的产量,尤其是增加的种子产量的转基因植物,或来自所述转基因植物的转基因植物细胞,所述增加的产量,尤其是增加的种子产量来自权利要求57、58或67所定义的AP2-70-样多肽的编码核酸的增加的表达。
75.权利要求66、72或74中任一项的转基因植物,或来自所述转基因植物的转基因植物细胞,其中所述植物是作物植物、单子叶植物或谷物,例如稻、玉米、小麦、大麦、粟、黑麦、高粱和燕麦。
76.权利要求75的植物的可收获部分,其中所述可收获部分优选是种子。
77.产物,其来自权利要求75的植物和/或权利要求76的植物的可收获部分。
78.编码AP2-70-样多肽的核酸相对于对照植物,在增加产量,尤其是增加种子产量中的用途。
79.分离的核酸分子,其包含:
(i)SEQ ID NO:347、SEQ ID NO:349、SEQ ID NO:351、SEQ IDNO:353、SEQ ID NO:355、SEQ ID NO:357、SEQ ID NO:359、SEQ IDNO:361或SEQ ID NO:363中的一个所示的核酸;
(ii)SEQ ID NO:347、SEQ ID NO:349、SEQ ID NO:351、SEQ IDNO:353、SEQ ID NO:355、SEQ ID NO:357、SEQ ID NO:359、SEQ IDNO:361或SEQ ID NO:363中的一个所示的核酸的互补物;
(iii)核酸,其编码与SEQ ID NO:348、SEQ ID NO:350、SEQ ID NO:352、SEQ ID NO:354、SEQ ID NO:356、SEQ ID NO:358、SEQ ID NO:360、SEQ ID NO:362或SEQ ID NO:364中的一个所示的氨基酸序列具有一定序列同一性的NAC多肽,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
80.分离的多肽,其包含:
(i)SEQ ID NO:348、SEQ ID NO:350、SEQ ID NO:352、SEQ IDNO:354、SEQ ID NO:356、SEQ ID NO:358、SEQ ID NO:360、SEQ IDNO:362或SEQ ID NO:364中的一个所示的氨基酸序列;
(ii)与SEQ ID NO:348、SEQ ID NO:350、SEQ ID NO:352、SEQ IDNO:354、SEQ ID NO:356、SEQ ID NO:358、SEQ ID NO:360、SEQ IDNO:362或SEQ ID NO:364中的一个所示的氨基酸序列具有一定序列同一性的氨基酸序列,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;
(iii)如上(i)或(ii)中给出的氨基酸序列的衍生物。
81.分离的核酸分子,其包含:
(i)SEQ ID NO:341、SEQ ID NO:343或SEQ ID NO:345中的一个所示的核酸;
(ii)SEQ ID NO:341、SEQ ID NO:343或SEQ ID NO:345中的一个所示的核酸的互补物;
(iii)编码POI多肽的核酸,所述POI多肽与SEQ ID NO:342、SEQID NO:344或SEQ ID NO:346中的一个所示的氨基酸序列具有一定序列同一性,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高。
82.分离的多肽,其包含:
(i)SEQ ID NO:342、SEQ ID NO:344或SEQ ID NO:346中的一个所示的氨基酸序列;
(ii)与SEQ ID NO:342、SEQ ID NO:344或SEQ ID NO:346中的一个所示的氨基酸序列具有一定序列同一性的氨基酸序列,所述序列同一性按照增加的优选顺序为至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高;
(iii)如上(i)或(ii)中给出的氨基酸序列的衍生物。
CN200780022208.1A 2006-06-15 2007-06-15 具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法 Expired - Fee Related CN101473037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510422859.6A CN105087634A (zh) 2006-06-15 2007-06-15 具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法

Applications Claiming Priority (21)

Application Number Priority Date Filing Date Title
EP06447082.6 2006-06-15
EP06447082 2006-06-15
EP06447081 2006-06-15
EP06447081.8 2006-06-15
US81644406P 2006-06-26 2006-06-26
US81644706P 2006-06-26 2006-06-26
US60/816,444 2006-06-26
US60/816,447 2006-06-26
EP07100862.7 2007-01-19
EP07100862 2007-01-19
EP07101534 2007-01-31
EP07101535.8 2007-01-31
EP07101535 2007-01-31
EP07101534.1 2007-01-31
US88995707P 2007-02-15 2007-02-15
US60/889,957 2007-02-15
US89104707P 2007-02-22 2007-02-22
US89104507P 2007-02-22 2007-02-22
US60/891,045 2007-02-22
US60/891,047 2007-02-22
PCT/EP2007/005292 WO2007144190A2 (en) 2006-06-15 2007-06-15 Plants with modulated expression of nac transcription factors having enhanced yield-related traits and a method for making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510422859.6A Division CN105087634A (zh) 2006-06-15 2007-06-15 具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法

Publications (2)

Publication Number Publication Date
CN101473037A true CN101473037A (zh) 2009-07-01
CN101473037B CN101473037B (zh) 2015-08-19

Family

ID=37075621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780022208.1A Expired - Fee Related CN101473037B (zh) 2006-06-15 2007-06-15 具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法

Country Status (1)

Country Link
CN (1) CN101473037B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063706A1 (zh) * 2009-11-27 2011-06-03 创世纪转基因技术有限公司 一种棉花nac转录因子基因及其应用
CN102471374A (zh) * 2009-07-07 2012-05-23 巴斯夫植物科学有限公司 具有受调节的碳分配的植物及其制备方法
WO2013057705A1 (en) * 2011-10-21 2013-04-25 Basf Plant Science Company Gmbh Plants having enchanced yield-related traits and method for making the same
WO2015162567A1 (en) * 2014-04-25 2015-10-29 Basf Plant Science Company Gmbh Plants having one or more enhanced yield-related traits and method for making the same
CN105050387A (zh) * 2013-01-28 2015-11-11 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
CN108484744A (zh) * 2018-05-11 2018-09-04 北京市农林科学院 一种提高小麦粒重相关蛋白Tc105及其基因和应用
CN109797242A (zh) * 2019-03-25 2019-05-24 中国农业科学院作物科学研究所 鉴定小麦产量相关性状的分子标记与方法
CN110066796A (zh) * 2013-03-14 2019-07-30 孟山都技术有限公司 植物调控元件和其用途
CN111620933A (zh) * 2019-02-26 2020-09-04 中国科学院遗传与发育生物学研究所 蛋白GmNAC2在调控植物耐盐性中的应用
CN111909939A (zh) * 2020-07-28 2020-11-10 河南大学 水稻基因ljs4-2在控制水稻叶枕发育和叶夹角大小中的应用
CN114480484A (zh) * 2021-12-30 2022-05-13 华南农业大学 番茄转录因子基因SlNAC2的应用
CN116003546A (zh) * 2022-07-18 2023-04-25 上海交通大学 一种紫花苜蓿nac转录因子及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000906A2 (en) * 2001-06-22 2003-01-03 Syngenta Participations Ag Plant disease resistance genes
AU2002314417A1 (en) * 2001-06-22 2003-01-08 Syngenta Participations Ag Identification and characterization of plant genes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471374A (zh) * 2009-07-07 2012-05-23 巴斯夫植物科学有限公司 具有受调节的碳分配的植物及其制备方法
WO2011063706A1 (zh) * 2009-11-27 2011-06-03 创世纪转基因技术有限公司 一种棉花nac转录因子基因及其应用
CN102080078B (zh) * 2009-11-27 2012-08-08 创世纪转基因技术有限公司 一种棉花nac转录因子基因及其应用
WO2013057705A1 (en) * 2011-10-21 2013-04-25 Basf Plant Science Company Gmbh Plants having enchanced yield-related traits and method for making the same
KR20140090974A (ko) * 2011-10-21 2014-07-18 바스프 플랜트 사이언스 컴퍼니 게엠베하 향상된 수확량 관련 형질을 갖는 식물 및 이의 제조 방법
CN103987848A (zh) * 2011-10-21 2014-08-13 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物及其制备方法
KR101662483B1 (ko) * 2011-10-21 2016-10-06 바스프 플랜트 사이언스 컴퍼니 게엠베하 향상된 수확량 관련 형질을 갖는 식물 및 이의 제조 방법
CN105050387A (zh) * 2013-01-28 2015-11-11 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
CN110066796B (zh) * 2013-03-14 2023-11-10 孟山都技术有限公司 植物调控元件和其用途
CN110066796A (zh) * 2013-03-14 2019-07-30 孟山都技术有限公司 植物调控元件和其用途
WO2015162567A1 (en) * 2014-04-25 2015-10-29 Basf Plant Science Company Gmbh Plants having one or more enhanced yield-related traits and method for making the same
CN108484744A (zh) * 2018-05-11 2018-09-04 北京市农林科学院 一种提高小麦粒重相关蛋白Tc105及其基因和应用
CN108484744B (zh) * 2018-05-11 2020-05-22 北京市农林科学院 一种提高小麦粒重相关蛋白Tc105及其基因和应用
CN111620933A (zh) * 2019-02-26 2020-09-04 中国科学院遗传与发育生物学研究所 蛋白GmNAC2在调控植物耐盐性中的应用
CN109797242A (zh) * 2019-03-25 2019-05-24 中国农业科学院作物科学研究所 鉴定小麦产量相关性状的分子标记与方法
CN109797242B (zh) * 2019-03-25 2022-05-03 中国农业科学院作物科学研究所 鉴定小麦产量相关性状的分子标记与方法
CN111909939B (zh) * 2020-07-28 2023-03-24 河南大学 水稻基因ljs4-2在控制水稻叶枕发育和叶夹角大小中的应用
CN111909939A (zh) * 2020-07-28 2020-11-10 河南大学 水稻基因ljs4-2在控制水稻叶枕发育和叶夹角大小中的应用
CN114480484A (zh) * 2021-12-30 2022-05-13 华南农业大学 番茄转录因子基因SlNAC2的应用
CN116003546A (zh) * 2022-07-18 2023-04-25 上海交通大学 一种紫花苜蓿nac转录因子及其应用
CN116003546B (zh) * 2022-07-18 2024-03-08 上海交通大学 一种紫花苜蓿nac转录因子及其应用

Also Published As

Publication number Publication date
CN101473037B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN101473037B (zh) 具有增强的产量相关性状的nac转录因子受调节表达的植物和用于产生该植物的方法
AU2007260202B2 (en) Plants with modulated expression of NAC transcription factors having enhanced yield-related traits and a method for making the same
CN102676575B (zh) 具有增强的产量相关性状的植物和用于产生该植物的方法
CN101842489B (zh) 具有增强的产量相关性状的植物和用于制备该植物的方法
EP2599870A2 (en) Plants having enhanced yield-related traits and a method for making the same
EP2193203B1 (en) Plants having increased yield-related traits and a method for making the same
EP1948807B1 (en) Plants having improved growth characteristics and a method for making the same
EP2423317A2 (en) Plants with modulated expression of RAN binding protein (RANB) having enhanced yield-related traits and a method for making the same
EP2441773A1 (en) Plants having enhanced yield-related traits and a method for making the same
CN101218347B (zh) 产率增加的植物及其制备方法
CN104232679A (zh) 具有增强的产量相关性状的植物及其制备方法
CN102666858A (zh) 具有增强的产量相关性状的植物和用于产生该植物的方法
CN104789573A (zh) 具有增强的产量相关性状的植物及其制备方法
CN101688214A (zh) 具有增强的产量相关性状的植物和用于产生该植物的方法
CN101627125A (zh) 具有增强的产量相关性状的植物及其制备方法
JP2013055943A (ja) 収量が増加した植物および該植物を作製する方法
CN104328137A (zh) 具有增强的非生物胁迫耐受性和/或增强的产量相关性状的植物及其制备方法
CN103068992A (zh) 具有增强的产量相关性状的植物和用于制备该植物的方法
DE112008001837T5 (de) Pflanzen mit verbesserten Ertragsmerkmalen und Verfahren zu ihrer Herstellung
CN101874116A (zh) 具有增强的产量相关性状的植物及其生产方法
CA2568222A1 (en) Plants having improved growth characteristics and a method for making the same
CN101688221A (zh) 具有增强的产量相关性状的植物及其制备方法
MX2008005840A (en) Plants having improved growth characteristics and a method for making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20170615